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ABSTRACT  

The National Agricultural Statistics Service (NASS) plans to use estimation strategies of increasing
complexity in the future and will need to estimate the variances resulting from those strategies.  This
report describes a relatively simple method of variance/mean squared error estimation, the delete-a-
group jackknife, that can be used meaningfully in a remarkably broad range of settings employing
complex estimation strategies.   The text describes a number of applications of the method in abstract
terms.  It  goes on to shows how the delete-a-group jackknife has been applied to some recent NASS
surveys.
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SUMMARY

Historically, NASS has employed mostly expansion estimators and ratios of expansion estimators
based on stratified, simple random samples when computing indications of agricultural activity.
This is changing due in no small part to increasing demands on the agency to make more efficient
use of the information it collects.  Fortunately, parallel increases in computing power are allowing
NASS to use more sophisticated estimation strategies involving multi-phase sampling designs and
calibration estimators.   For example, the 1996 Agricultural Resource Management Study (ARMS)
used a multi-phase sampling design (a first-phase sample is randomly drawn, then a second-phase
subsample is randomly drawn from the first-phase sample, and so forth).  Ratio adjustments of the
initial inverse-probability sampling weights capture relevant information from the ARMS screening
phase about farms not selected for a particular survey module.

This report shows how different variations of a delete-a-group jackknife can be used to estimate the
variances (or, more precisely, the mean squared errors)  of a variety of  estimation strategies.  Many
of these are strategies are currently in use by NASS.   

The delete-a-group jackknife is simple to use once appropriate replicate weights are constructed.
By contrast, the “linearization” methods traditionally used by NASS for estimating variances can
be exceedingly complicated and cumbersome when applied to complex estimators strategies.   The
advantage of the delete-a-group jackknife over the traditional, delete-one-primary-sampling-unit-at-
a-time jackknife (see Rust 1985) is that the number of needed replicate weights per sample record
is kept manageable.  

A disadvantage of the delete-a-group jackknife over the delete-one jackknife is that it requires the
first-phase stratum sample sizes to be large ) at least five sample units per stratum.  Otherwise, the
delete-a-group jackknife will be overly conservative; that is, higher, on average,  than the true
variance it is measuring.  As a result, when this jackknife is applied to estimators from the NASS
area frame, it will be biased upward.   

Like the delete-one jackknife, the delete-a-group jackknife is a nearly unbiased estimator of
variance only when the first-phase sampling fractions are small ) no more than 1/5 for most
records.  Otherwise, the delete-a-group jackknife tends to be biased upward.   This bias is likely to
be ignorable in most NASS applications.  For the 1996 VCUS, however, it was so great that the
delete-a-group jackknife has to be modified.  A potential modification is discussed in the text.  It
is useful, but has a striking limitation:  One set of replicate weights is  needed when estimating the
variances of totals and another when estimating the variances of ratios.            
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INTRODUCTION

This report addresses the construction of
delete-a-group jackknife variance estimators
for a variety of estimation strategies (an
estimation strategy is a sampling design
paired with an estimator).    The emphasis
will be on computational formulae, which
will be rendered in fairly abstract form.
Relevant theoretical comments will be made
where appropriate, but most proofs are left for
the appendices.        

The sampling designs with which we will be
dealing may have any number of phases.  At
each phase, one of the following selection
schemes is assumed to be used: 

1) stratified simple random sampling without
replacement, 

2) systematic probability sampling (usually
called systematic probability proportional to
size sampling; here we want to de-emphasize
the “size” measure),

3) the converse of systematic probability
sampling (what remains in a frame after a
systematic probability sample has been
removed), or

4) Poisson sampling (in which each element
is given its own selection probability, and the
sampling of one element has no impact on
whether another gets selected).

All stratum samples are assumed to be large
(contain at least five sampling units).
Violation of this assumption in the first-phase
of sampling can cause the delete-a-group
jackknife to be biased upward.  This is shown
in Appendix A.

NASS currently incorporates two types of

calibration in its estimators and does not plan
to use any other types in the near future. 
“Calibration” is a general term for a
sampling-weight adjustment that forces the
estimates of certain item totals based on the
sample at one phase of sampling to equal the
same totals based on a previous phase or
frame (control) data. 
 
Ratio adjustments, the most common form of
calibration, were used repeatedly in the 1996
Agricultural Resource Management Study
(ARMS).  Restricted regression, another
population form of calibration, was used in
both the 1997 Minnesota pilot Quarterly
Agriculture Survey (QAS) and the second-
phase of the 1996 Vegetable Chemical Use
Survey (VCUS).   Only these forms of
calibration are discussed in the text.    

Most of the results in this report are supported
with randomization-based (design-based)
analyses.  As a consequence, all estimators of
population parameters are assumed to be
randomization consistent (i.e., have small
randomization mean squared errors and even
smaller randomization biases).   A brief
discussion of the model-based properties of
the delete-a-group jackknife is reserved for a
separate section.

The concise term “variance estimation” will
be used throughout the text in place of the
more cumbersome “mean squared error
estimation.”  It should be understood,
however, when the delete-a-group jackknife
is a good estimator for the variance of a
randomization-consistent estimator,  it is also
a good estimator for its mean squared error.

For our purposes, the term “nearly unbiased”
will mean that the bias of the estimator in
question is an ignorably small fraction of its
mean squared error.  The term “biased” will
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be used to mean “not (necessarily) nearly
unbiased.”   

When first-phase stratum sample sizes are
large, the delete-a-group jackknife is
appropriate  (has only a small potential for
bias) whenever the conventional,
randomization-based, delete-one jackknife is.
Kott and Stukel (1997) have extended the use
of the latter jackknife to two-phase estimators
with calibration in the second phase.  This
report relies heavily on their results.  Here,
however, systematic probability can be used
in the second design phase, even though Kott
and Stukel only treated strategies featuring
stratified simple random sampling in the
second phase.        

In most applications of the delete-a-group
jackknife at NASS the need for finite
population correction (fpc) is ignored.   One
section of the text discusses a number of
those applications.  

A subsequent section takes up variance
estimation of totals and ratios when proper
fpc is a concern.  Strictly speaking, the
variant of the delete-a-group jackknife that
captures fpc requires single-phase Poisson
sampling to be nearly unbiased.
Nevertheless, the practical application can be
broader, as we shall see.   

WHY USE THE DELETE-A-GROUP
JACKKNIFE?

The delete-a-group jackknife is simple to
compute once appropriate replicate weights
are constructed.  The so-called “lineari-
zation” methods traditionally used by NASS
for estimating variances can be very
cumbersome when applied to estimators
based on multi-phase designs like the 1996
Vegetable Chemical Use Survey (VCUS)

1998) and components of the 1996 ARMS
(Kott and Fetter 1997).   Estimators using
calibrated weights based on restricted
regression, like those calculated for the 1997
Minnesota pilot Quarterly Agriculture Survey
(QAS), pose even greater practical problems
for linearization variance methods (a
multivariate regression coefficient would
need to be estimated for every item of
interest).   

It is also a relatively simple matter to apply
the  delete-a-group jackknife to the composite
estimators associated with the ARMS.  With
1996 survey data, for example, results from
the Phase II Corn Production Practices Report
(PPR) were composited with results from the
Phase II Corn-for-Grain Production Practices
and Costs Report (PPCR).  In addition, results
from the Phase III Cost and Returns Report
(CRR) stand-alone (based on respondents that
were not in the Phase II PPCR sample) were
composited with results from the Phase III
CRR follow-on (based on respondents that
were).  

The advantage of the delete-a-group jackknife
over the traditional, delete-one-primary-
sampling-unit-at-a-time jackknife (see Rust
1985) is that the number of needed replicate
weights per sample record is kept
manageable.   A common practice with the
delete-one jackknife for handling this
problem is to group primary sampling units
(PSU’s) into variance PSU’s.  This practice
reduces the number of replicate weights
needed per record ) there is  one for every
variance PSU.  Nevertheless, NASS would
need at least 15 replicate weights per record
to compute variances for state estimators.
This would result in national variance
estimates employing several hundred
replicate weights per record.
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COMPUTING A DELETE-A-GROUP
JACKKNIFE: AN OVERVIEW

Suppose we have a sampling design with any
number of phases and a randomization-
consistent estimator, t, we wish to apply to
the resultant sample.  To compute a delete-a-
group jackknife variance estimator for t, we
first divide the first-phase sample ) both
respondents and non-respondents ) into R
(jackknife) groups.  Currently, R is 15 in
NASS applications.  Consequently, we will
assume R = 15 in the text.   By setting R at
15, we lengthen the traditional, normality-
based 95% confidence interval by ten percent.
To see why this is so, observe that  the ratio
of the t-value at 0.975 for a Student’s t
distribution with 14 degrees of freedom and
the normal z-value at 0.975 is approximately
1.1.

Suppose we have a survey which may have
multiple phases.  Let F be the sample selected
at the first phase of the sampling process.
The first-phase sample units may be
composed of distinct elements (e.g., farms) or
it may consist of clusters of elements (e.g.,
area  segments).  Many survey designs feature
a single phase of sample selection.

The delete-a-group jackknife begins by
dividing the first-phase sample F, into 15
groups.   This can be done as follows: order F
in an appropriate manner (discussed below);
select the first, sixteenth, thirty-first, ... units
for the first group; select the second,
seventeenth, thirty-second, ..., units for the
second group; continue until all 15 groups are
created.  Unless the number of units in F is
divisible by 15 (which is unlikely), the groups
will not all be of the same size.

Ordering in an “appropriate manner” depends
on the context.   If F was drawn using

stratified random sampling, then order the
sample so that units in the same stratum are
listed together (i.e., contiguously).  If samples
were drawn using Poisson sampling, order the
sample units randomly.    
 
 Let S denote the final respondent sample
used to compute t, and let wi denote the
sampling weight for element i in S.  The
elements in S may be the same as the sample
units in F or they may be a subsample of
those units.  The elements in S may also have
a different nature than the original sample
units in F; for example, they may be farms as
opposed to area segments or fields as opposed
to farms.   In all such cases, however,  each
element in S must be contained within an
original sample unit in F in a clearly defined
way.  Let ei be the original sampling weight
of the unit containing i (which may be i
itself); that is, ei is the inverse of the unit’s
first-phase probability of selection. 
 
Let Sr denote that part of the final sample
originating in first-phase sample units
assigned to group r.  The jackknife replicate
S(r) is the whole final sample S with Sr

removed.   We similarly define F(r) as the set
of first-phase sample units not in r.

We need to create 15 sets of replicate weights
{wi(r)}, one for each r, in the following
manner: wi(r) = 0 for all elements in Sr; for
other elements, wi(r) will be close to (15/14)wi

but adjusted to satisfy calibration constraints
similar to those satisfied by wi (exactly how
to do this in a number of situations is the
subject matter of the following section).
Observe  that  a wi(r)-value has been assigned
to every element in S including those in Sr. 

Now t is an estimate based on the sample S
calculated using the set of weights, {wi}.   Let
t(r) be the same estimate but with the member
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of {wi(r)} replacing {wi}.    The delete-a-group
jackknife variance estimator for t is  

vJ = (14/15) 315 (t(r) - t)
2.                           (1)

PARTICULAR CASES (IGNORING
FINITE POPULATION CORRECTION)

In this section, we see how the delete-a-group
jackknife can be fruitfully applied in a
number of estimation strategies where fpc
may be ignored; that is, when the first-phase
selection probabilities are all small (say less
than or equal to 1/5).  

One sampling design not discussed in detail
subsequently is stratified multi-stage
sampling, in which subsampling within each
primary (first-stage) sampling unit is
conducted independently of subsampling in
other primary sampling units.   When the first
stage of sampling has ignorably small
selection probabilities, the conventional
variance estimator for a stratified multi-stage
sample looks exactly like that for a stratified
single-stage cluster sample with estimated
totals for primary sampling units used in
place of actual values.  As a result, when a
delete-a-group jackknife is appropriate for an
estimator based on a stratified single-stage
sample, it is appropriate for an estimator
based on a stratified multi-stage sample. 

Stratified Simple Random Sampling
Suppose we have a single-phase stratified
simple random sample without any
nonresponse (handling nonresponse will be
discussed later).  The original and final
sampling weight for a unit i in stratum h is ei

= wi = Nh /nh, where Nh is the population size
of stratum h and nh is its sample size.  

Let us now consider the r’th set of replicate
weights.   For a unit i  in S(r)  and  stratum h,

ei(r) = (15/14)Nh /nh.  By contrast, the
appropriate final r’th replicate weight for unit
i recognizes the calibration equations
inherent in the direct expansion estimator 
(i.e., Nh =  3j0S(r)1h wj(r) for all h).  It is wi(r) =
Nh /nh(r) = (nh /nh(r))ei, where nh(r) is the number
of sample units in both S(r) and h.  Observe
that ei(r) = wi(r) only when nh is divisible by 15.

Stratified Systematic Probability Sampling 
Suppose we have a single-phase, stratified
systematic probability sample.  The original
and final sampling weight for a unit i in
stratum h is ei = wi = Mh /(nhmi), where mi is
the measure of size of unit i in stratum h, Mh

is the sum of the mj across all units in stratum
h, and nh is the stratum sample size.  

Analogous to the simple random sampling
case, the appropriate final r’th replicate
weight for element i recognizes the
calibration equations inherent in the Horvitz-
Thompson expansion estimator (i.e., Mh =
3j0S(r)1h wj(r)mj  for all h).  It is wi(r) =
(nh /nh(r))ei, where nh(r) is the number of sample
units in both S(r) and h.  

Stratified simple random sampling can be
viewed as equivalent to a special case of
systematic probability sampling from
randomly-order lists (one in which mi is
constant within strata).  Appendix A provides
some theoretical justification for using the
delete-a-group jackknife as described above
with a stratified, single-phase systematic
probability sampling design under certain
conditions.  One of those conditions is that
the systematic samples be drawn from
randomly-ordered lists.  Variance estimation
can be problematic when systematic samples
are drawn from purposefully-ordered lists.   

Purposefully-ordered lists can reduce the
variance in estimators based on systematic
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samples.  Unfortunately, the reduction in
variance due to a well-designed ordering
usually can not be measured in an effective
manner.

Restricted Regression 
(A Form of Calibration) 
There are many versions of restricted
regression.  Below is a description of a
method similar to what was used in the 1996
VCUS and 1997 Minnesota pilot QAS.  The
version presented here will likely be used in
the future.   
 
Suppose, for exposition purposes, there are
two sampling phases.  Suppose further that
the second phase sample is calibrated to a row
vector of totals, 0, based on estimates from
the first-phase sample or determined from the
frame itself.    

Let fj be the weight for element j after the first
phase of sampling, and let pj be the element’s
selection probability in the second sampling
phase.  In the absence of non-response (again,
nonresponse will be dealt with later) in the
second sampling phase, a general form of the
calibrated weight for j under restricted
regression is
wj = fj /pj + 
        (0* ) 3i,S* [fi /pi]xi)
             ( 3i,S*  [fi /pi]xi'xi)

-1
 [fj /pj]xj'           (2)

                       
for i 0 S*,  and a predetermined value
otherwise (chosen so that wj is not too small
or too far from fj /pj), where S is the second-
phase sample, S* a subset containing almost
all the elements of S,  xi is a row vector of
covariates whose sum across all elements in
the population is either 0 or has been
previously estimated to be 0 ) that is,  0 =
3F fixi, where F denotes the elements in the
first-phase sample; finally, 0* = 0 ) 3S-S* wixi.

Let fj(r) be the r’th jackknife replicate weight
for unit j after the first sampling phase.   The
r’th jackknife replicate weight for element j
is 0 when  j0Sr ; otherwise, it is  

wj(r) = wj[fj(r) /fj] +
           (0(r) ) 3i,S(r) wi[fi(r) /fi]xi)                  (3)
          ( 3i,S(r) wi[fi(r) /fi]xi'xi)

-1 wj [fj(r)/fj]xj',      

where 0(r) = 0 when 0 has been determined
from frame; 0(r) = 3F fi(r)xi when 0 has been
estimated from the first-phase sample.

Equation (3) is not the standard way to
construct jackknife replicate weights.  The
expression wk[fk(r) /fk] has been used in place
of the more common fk(r) /pk, with which it is
nearly equal (because wk . fk /pk).  Equation
(3)’s  strength is that it forces the replicate
weights (for elements not in group r) to be
fairly close to the associated calibrated
weights.  This appears to reduce the upward
bias that unexpected differences between the
two can cause.  It should be noted that any
such upward bias is small; in fact, it is
asymptotically ignorable.  We live, however,
in a finite world.   

Restricted-regression as described above can
be done at any phase of sampling.  At the t’th
phase, fi in equation (2) becomes the weight
for element i at the t-1'th phase and pi the
element’s conditional selection probability at
the t’th phase.  For a single-phase restricted-
regression estimator, we can set all pi =1 in
equation (2). 

When the phase of sampling calibrated in this
manner contains more than a single stratum,
the jackknife can have an upward bias (see
Appendix B).   In addition, for a single-phase
Poisson sample, xi8 = 1 must hold for some 8
(see the section on Poisson sampling and
Appendix D).
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Ratio-Adjusted Weights
(Another Form of Calibration)
Consider, again, a two-phase sample with fi

and pi as above.  A very common form of
calibration occurs when a vector of covariates
for element i, xi, is defined in such a way that
only one component of the vector is non-zero
for each i.  That is to say, the elements are
categorized into G mutually exclusive
calibration (or ratio-adjustment) groups, and
xig >0 only when element i is in group g;
otherwise, xig = 0.  

Under that structure, a ratio-adjusted weight
for an element j in group g is 

wj = 0g ( 3i,S [fi /pi]xig)
-1[fj /pj],                    (4)

and 0 = (01, ..., 0G).  Similarly, the
corresponding replicate weight is 0 for
j0Sr , and  

 wj(r) = 0g(r) ( 3i,S(r) fi(r) /pi]xig)
-1[fj(r) /pj]         (5)

otherwise, where 0(r) = (01(r), ..., 0G(r)).   

If the second-phase sample is stratified, and
more than one of these strata are contained
within a calibration group, then the jackknife
can have an upward bias (see Appendix B).
When the second-phase sample is unstratified
or the second-phase strata and ratio-
adjustment groups coincide, the delete-a-
group jackknife is nearly unbiased. In the
1996 ARMS and 1996 VCUS, second-(and
later-)phase sampling was unstratified.

Extensions of these results to estimation
strategies with t > 2 phases are straight-
forward; the  fi in equation (4) and fi(r) in
equation (5) become the weight and replicate
weight at the t-1'th phase.  For a single-phase
sample, we can set all the pi equal to 1 in both
equations (4) and (5).

The establishment of the appropriateness of
the delete-a-group jackknife for ratio-adjusted
estimators parallels that of restricted-
regression estimators, which is outlined in
Appendix B.

NASS Applications of Ratio-Adjusted
Weighting
One way to handle nonresponse is to treat the
set of responding elements (at any phase of
the design) as a stratified simple random
subsample of the selected sample.   This was
essentially what was done in the first-phase of
the 1996 VCUS.  All the original sample
elements (respondents and nonrespondents)
were assigned to jackknife replicates, and
nonresponse was treated as a second phase of
sampling.   The “second-phase” strata and
calibration groups coincided with the original
stratum definitions, and xig was set equal to 1
when i was in group g (0, otherwise).  Since
fi was equal for all i in the same stratum, and
pi was likewise identical for each respondent
i in the stratum, wi in equation (4) collapsed
to the population size in the stratum
containing i divided by the respondent sample
size in that stratum.  Equation (5) collapsed
similarly.

In the 1996 ARMS, a stratified simple
random screening sample of farms was
subsampled sequentially for several mutually
exclusive survey modules (see Kott and Fetter
1997).  Farms were selected for the Phase II
Soybean PPR in Nebraska, for example, using
an additional five phases of sampling (to be
selected for this module, a respondent farm
from the screening sampled had to avoid
being subsampled for one of the four modules
preceding it).  Each of these phases employed
unstratified systematic probability sampling
from a purposefully-ordered list (the theory in
Appendix B is assumes  a randomly-ordered
list;  if anything, purposeful ordering should
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reduce mean squared errors and contribute an
upward bias to the delete-a-group jackknife).
Finally, a field was randomly selected from
each sampled soybean farm.   

The separate-ratio estimator in equation (4)
was used twice in Phase II Soybean PPR
estimates.  It was used to ratio adjust the
weights for the screening-sample respondents
to the frame total-value-of-sales within every
sc reen i n g  s t r a t u m  ( n o t i c e  t h a t
response/nonresponse on the screening survey
is treated here implicitly as another phase of
sampling).  In addition, the soybean field
sample was divided into three size groups.
Here, 0g was the total soybean acres in
calibration (size) group g as estimated from
the screening sample with the weights
described above, and pi was the product of the
six (conditional) probabilities: the
probabilities that the farm containing field i
was not selected for the four modules
preceding soybeans, the probability that this
farm was selected for the production practices
module, and the probability that field i was
subsampled from the farm.   

We treated the fields from which we collected
Phase II  PPR information as if they were a
stratified simple random subsample of the
selected fields, where the three calibration
groups served as strata.  This had no practical
effect on the calculation of the pi (observe
that if all the pi in a group are multiplied by
the same factor, the computed weights in
equations (4) and (5) are unchanged).           

Composite Estimators
Consider a set of C distinct samples, each of
which can be used to estimate a common
target value.  Let S denote the combined
sample, and wi

(c) denote the weight for
element i in original sample c.  If i is not in
sample c, set  wi

(c) = 0.  A composite

estimator t uses the set of weights {wi},
where each wi = 3C 8cwi

(c) and 3 8c = 1.

To estimate the variance of t, we can create
15 sets of replicate weights for every wi

(c) and
denote each by {wi(r)

(c)}.  We then estimate the
t(r) using  wi(r) = 3C 8cwi(r)

(c) and compute vJ

using equation (1). 

Composite estimation was used, for example,
to combine the Phase III Beef and Corn-for-
Grain CRR follow-on samples in the 1996
ARMS with the Phase III CRR stand-alone
sample.  First the two enterprise CRR
samples were composited and then this
combined sample was composited with the
other CRR sample (see Kott and Fetter 1997).

Samples being combined need not correspond
to identical target populations.  For example,
the population of list farms with corn for
grain in 1996 is not the same as the
population of list farms with ten weaned
calves in 1996 (the Beef CRR population).
When combining CRR samples, we also
combine target populations; in this case, to
the set of all list farms with either grain corn
or ten weaned calves in 1996.  Only those
sample farms having both corn for grain and
at least 10 weaned calves are assigned
composite weights as described above.  Other
farms in the combined sample retain their pre-
composite weights.  

Appendix C shows why the delete-a-group
jackknife works for the composite estimators
used in the ARMS in which the components
were separate modules based on the same
screening sampling.  Composite estimation
was also used in the ARMS to combine
independently drawn samples like the Phase
II Soybean PPR sample and the National
Resource Inventory sample.  Here, like a
conventional jackknife, when the delete-a-
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group jackknife is appropriate for each
independent component, it is also appropriate
for any linear combination of the components.

SINGLE-PHASE POISSON SAMPLING
A N D  F I N I T E  P O P U L A T I O N
CORRECTION

In this section, we restrict our attention ) at
first ) to a single-phase Poisson sample of
elements.  Let Bj be the selection probability
of element j.  We assume there is no
nonresponse.  

The versions of the delete-a-group jackknife
developed in this section will contain finite
population corrections.  The versions are
different for an estimator of a total and the
estimator of a ratio.  This is a reflection of the
fact that a simple formula like equation (1)
does NOT work for all smooth
transformations of calibrated expansion
estimators when finite population correction
is an issue (note:  a “smooth” transformation
has first, second, and third derivatives; most
statistics of interest are smooth
transformations of expansion estimations, the
major exception being percentiles).  

A Calibrated Estimator for a Total
Suppose we have a calibrated estimator for a
total, t = 3S wjyj, where   
 
wj = 1/Bj +
            (0* ) 3i,S* [1/Bi]xi)                        (6)
                  ( 3i,S* [1/Bi]xi'xi)

-1
 [1/Bj]xj'            

          
for j 0 S*,  and a predetermined value
otherwise (chosen so that wj $ 1 and, perhaps,
not too far from 1/Bj), S is the sample, S* a
subset containing almost all the elements of
S,  xi is a row vector of covariates whose sum
across all elements in the population is 0, and

0* = 0 ) 3S-S* wixi.  There must also be a
vector 8 such that xj8 = ¾(1 ) Bj) for all j (that
is to say, either a component of xj or a linear
combination of components must equal
¾(1 ) Bj)).  Since we are dealing with a
single-phase sample, (6) is simply equation
(2) with 1/Bk replacing fk /pk (i.e., fk in
equation (2) is 1, while pk is Bk). 

To estimate the variance of t, we use equation
(1) but replace t with t(v) = 3S wj

(v)yj, and t(r)

with  t(r)
(v) =3S wj(r)

(v)yj, where 

 wj
(v) = wj¾(1 ) 1/wj),                                 (7)

and

wj(r)
(v) = wj

(v){1 + (3S wi
(v)xi ) 3S(r) wi

(v)xi)
                           (3S(r) wi

(v)xi'xi)
-1xj'}          (8)

                                     

when j 0 S(r) and 0 otherwise.  Appendix D
outlines why this works. 

Observe that wj
(v) .  wj¾(1 ) Bj), so that

wj
(v) .  wj when the selection probability for

element j is ignorably small.  When all
element selection probabilities are very small,
there is little difference between this delete-a-
group jackknife for a total estimator with
finite population correction, vJ(fpcT), and the
standard delete-a-group jackknife, vJ.
Moreover, the rather odd assumption that
there exists a 8 such that xj8 = ¾(1 ) Bj)
becomes close to the more standard
assumption that either a component of xj or a
linear combination of components is a
constant  (i.e.,  xj8 = 1 for some 8).  

In fact, if we were to ignore finite population
correction (which we can do for most
surveys, but not VCUS), we could estimate
the variance of t with equation (1), replacing
equation (8) with
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wj(r) = wj{1 + (3S wixi ) 3S(r) wixi)
               (3S(r) wixi'xi)

-1xj'}                        (8')
                                  
when j 0 S(r) and 0 otherwise as long as xj8 =
1 for some 8.  This is what we did for the
1997 Minnesota pilot QAS (see Bailey and
Kott 1977).

An Estimator for a Ratio
Suppose tR is an estimator for a ratio of the
form, tR = 3S wjyj /3S wjzj , where wj is
calibrated as above.  One can estimate the
variance of t with 

vJ(fpcR) = (3S wj
(v)zj /3S wjzj)

2

                  (14/15)315 (tR(r)
(v) - tR

(v))2,          (9)

where tR
(v) = 3S wj

(v)yj /3S wj
(v)zj, and tR(r)

(v) =
3S wj(r)

(v)yj / 3S wj(r)
(v)zj.   This  assumes  xj8 =

¾(1 ) Bj) for some 8.   Even without this
assumption holding, in fact, even without
calibration, vJ(fpcR) will likely be a reasonable
variance estimator; as we shall see.

Alternatively, we could estimate the variance
of tR ignoring finite population correction
with equation (1).   We need not assume that
xj8 = 1 for some 8.  In fact, the wi need not
even be calibrated in this case (to see why,
observe that multiplying all the weights in tR

by a fixed constant so that 3S wj equals the
population size has no effect on the
estimator; consequently, all ratio estimators
are effectively calibrated on xj = 1).

Some Explanations and Extensions
Consider a single-phase element sample that
is not necessarily Poisson.  Suppose we wish
to estimate the variance of t = 3S wjyj, where
the  wj  satisfy equation (6).   Let  uk  =  yk )
xk(3U xi'xi)

-13U xi'yi, where U denotes the
population.  The variance of t is
approximately

V = 3U uk
2(1 ) Bk)/Bk +

          3U(k�i) ukui(Bki ) BkBi)/(BkBi).          (10)

Under Poisson sampling the joint selection
probability of k and i, Bki, is equal to the
product BkBi, and so V collapses to
3U uk

2(1 ) Bk)/Bk.  This can, in principle, be
estimated by 3S uk

2(1 ) Bk)/Bk
2 , which is

approximately equal to 3S[wkuk¾(1 ) 1/wk)]
2 ,

which is what vJ(fpcT) estimates (see Appendix
D).   

A similar argument can be made for the ratio
estimator, tR = 3S wjyj /3S wjzj, except that now
V becomes approximately 

V* = (3S wjzj)
-2[3U (uk*)2(1 ) Bk)/Bk +

               3U(k�i) uk*ui*(Bki ) BkBi)/(BkBi)],
where 

uk* = uk
+ ) xk (3P xi'xi)

-1 3P xi'ui
+, and

uk
+ = yk ) (3U yi /3U zi) zk .

Under  Poisson  sampling,   V*  collapses  to 
(3S wjzj)

-2[3U (uk*)2(1 ) Bk)/Bk].  If we tried to
compute a delete-a-group jackknife with
equation (1) replacing t by tR

(v) and t(r) by
tR(r)

(v), we would get a reasonable estimator for
(3S wj

(v)zj)
-2[3U (uk*)2(1 ) Bk)/Bk] rather than

V*, hence the factor (3S wj
(v)zj /3S wjzj)

2 on the
right hand side of equation (9).

This factor is unnecessary if finite population
correction is ignored.  In fact, since 3U ui

+ = 0
(simplifying the proof in Appendix D), the
weights need not be calibrated for the delete-
a-group jackknife variance estimator for tR  to
be nearly unbiased.

Calibrated estimators of totals were computed
in the 1997 Minnesota pilot QAS.   Sampling
was not exactly Poisson due to the need to
combine some samples and subsample others
(see Bailey and Kott 1997).  Nevertheless, it is
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not unreasonable to assume that 
3U(k�i) ukui(Bki ) BkBi)/(BkBi) in the right hand
side of equation (10) is roughly zero and then
) ignoring finite population correction )  use
vJ to estimate variances.  

It is of interest to note that for systematic
probability sampling from an purposefully-
ordered list, Bki will often be zero when i and
k are listed sequentially in the ordering.   If uk

and ui in equation (10) tend to have the same
sign when i and k are listed together, then it
is likely that 3U(k�i) ukui(Bki ) BkBi)/(BkBi) will
be negative ) reducing the variance of t.  The
delete-a-group jackknife does not capture this
variance-reducing phenomenon, however.
That is why it was claimed earlier that the
use of systematic unequal probability
sampling from an ordered list will, if
anything, bias the delete-a-group jackknife
upward.  This presupposes that elements (or
units) listed together in the ordering are in
some sense similar.  

Remember the delete-a-group jackknife for
an estimated total with finite population
correction, vJ(fpcT), is only appropriate when
there is no nonresponse.  Still, computing
vJ(fpcT) and vJ using imputed values in place of
real ones can provide a means of evaluating
the impact of high selection probabilities on
variance.  There is one additional caveat.
When one does not require there exists a 8
such that  xj8 = ¾(1 ) Bj) for all j, then vJ(fpcT)

may be biased downward.  This possibility is
likely to be remote in practice (see Appendix
D).

We could have used vJ(fpcR) to estimate
variances from the 1996 VCUS.   In theory,
this might not be appropriate since the
calibration in that survey was to first-phase
totals rather than to control totals.  Moreover,
we did not require that there be a vector 8

such that xj8 = ¾(1 ) Bj) for all j.  It is unlikely
that either failing would cause much bias in
vJ(fpcR).  This is because calibration does little
to reduce the variance of t in the VCUS.
Moreover,  it  is  likely  that   3S wi

(v)ui*   (or
3S wi

(v)ui
+ when vJ(fpcR) is used with an un-

calibrated VCUS estimator) is close to zero
even when there is no 8 such that xj8 = ¾(1 )
Bj).   Appendix D explains why  3S wi

(v)ui*
must be near zero.     

SUMMARY OF NASS USES (SO FAR)

The delete-a-group jackknife was used to
estimate variances for the 1996 ARMS, 1996
VCUS, and 1997 Minnesota pilot QAS.  It has
also been used in some of NASS’s foreign
consulting work, but that is beyond the scope
of this report. 

Bailey and Kott (1997) describes the sample
design used in the Minnesota pilot QAS. 
Since NASS imputes for nonresponse on the
QAS, there was essentially a single-phase
sample in Minnesota.  Equation (2), with all pj

set equal to 1  and fj computed as described in
Bailey and Kott, was used to generate most of
the calibration weights.  The vector xi had 20
components including a constant term.   

When a wj  calculated with equation (2) would
have been less than 1, farm j was removed
from S*, and wj was set equal to 1.   Sampled
farms were randomly assigned to jackknife
groups, and replicate weights were calculated
using the more conventional        

wj(r)  = [15/14]fj + 

          (0(r) ) 3i,S(r) [15/14]fixi)

             ( 3i,S(r) [15/14]fixi'xi)
-1 [15/14]fjxj' 

       = fj + (0(r) ) 3i,S(r) fixi)
                                  ( 3i,S(r) fixi'xi)

-1 fjxj' 
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instead of equation (3).   This was because
the advantages of using the latter equation
was not clear at the time.

The 1996 VCUS had a two-phase design.
The first phase was stratified simple random
sampling.   Sampled units were randomly
assigned to jackknife groups within  first-
phase strata.  Nonresponse to the first design
phase of the VCUS was treated as an
additional phase of stratified simple random
sampling where the strata were the same as
the first-phase. 

The second design phase of the VCUS used
systematic unequal probability sampling.
Nonresponse to this phase was treated as an
additional phase of simple random sample.
Equation (2) was used to compute calibrated
weights.  The “first-phase” weight, fj, was
actually the population size of the first-phase
stratum containing i divided by the number
of first-phase usables in the stratum; 0 was a
vector of estimated planted-acre totals for in-
scope vegetables based on the first-phase
sample adjusted for nonresponse; pi was the
second-phase probability of selection
multiplied by the number of second-phase
usables and divided by the number of
second-phase sample farms.  Replicate
weights were computed using             
  
wj(r)  = wj + (0(r) ) 3i,S(r) wixi)
                                ( 3i,S(r) wixi'xi)

-1 wjxj',  

which turned out to have slightly better
empirical properties (less negative values;
values closer to wj) in this context than those
produced by equation (3) for some reason . 

The many uses of ratio-adjustment and
composite estimation in list-based estimates
from the 1996 ARMS are discussed
thoroughly in Kott and Fetter (1997).    The

original screening sample was randomly
allocated into jackknife groups on a stratum-
by-stratum basis.   The text provides some
details for a couple of examples.  See Kott and
Fetter for more. 

The delete-a-group jackknife was also used
for the non-overlap (area)  portion of the 1996
ARMS for economic statistics.  The area
design had effectively three-phases: 1) a
stratified simple random sample of area
segments, 2) a restratified simple random
subsample of farms; and 3) a stratified (using
the first-phase strata) simple random
subsample of respondents.  Using the delete-a-
group jackknife in this context treats the three-
phase sample as if it were a three-stage
sample.  As a result, the variance estimator
can be biased upward (see Kott 1990).   The
problem here is that the second-phase sample
is not calibrated in any way.  

There is an additional source of upward bias
in the delete-a-group jackknife applied to the
1996 ARMS non-overlap sample.   Some area
substrata have very small samples sizes (less
than five areas segments).  Collapsing 
substrata into land-use strata helped some, but
on occasion even land-use strata had small
sample sizes.  Appendix A shows why this
can cause a bias in the delete-a-group
jackknife.

A DIGRESSION ON MODEL-BASED
INFERENCE

The delete-a-group jackknife can be applied 
to estimate variances in a reasonable fashion
under a variety of complex estimation
strategies.  Both the text so far and the
appendices rely exclusively on the principles
of randomization-based inference.  As a result
of this, we were forced to assume two number
of questionable or erroneous assumptions:
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1) systematic probability sampling is
conducted by NASS from randomly-ordered
lists, and

2) farm in the same ratio-adjustment
(calibration) group are equally likely to
respond to a survey.  

These assumptions would not be necessary if
we replace them by the model assumptions
behind calibration; namely; 

yi = xi$ + ,i,

where the ,i have zero mean, bounded
variances, and are uncorrelated ) at least
across first-phase sampling units.   

For example, consider the difference between
the calibration estimator, 
t = 3S wiyi, and its target, T = 3U yi : 

t ) T = 3S wiyi ) 3U yi = 3S wi,i ) 3U ,i

                                     = 3U (wiIi ) 1),i,

where Ii = 1 when i 0 S, and Ii = 0 otherwise.
Now

(t ) T)2 = 3U (wiIi ) 1)2,i
2 +

                  3U(i�k) (wiIi ) 1)(wkIk ) 1),i,k.

If ,i and ,k are uncorrelated, the model
variance of t as an estimator for T is 

E,[(t ) T)2] = 3U (wi
2Ii  ) 2wiIi + 1)E(,i

2)
                   = 3S (wi

2 ) wi)E(,i
2)

                          )   [3S wi E(,i 
2) ) 3U E(,i

2)]

no matter what the sampling design.
Moreover, if E(,i

2) = xi( for some (, then the
model variance of t as an estimator for T
collapses further to 3S (wi

2 ) wi)E(,i
2), which

is what the delete-a-group jackknife for a
total with finite population correction

estimates.  (Note: even if E(,i
2) does not equal

xi( for some (, we know that  3S wi E(,i 
2) .

3S (1/Bi )E(,i 
2) . 3U E(,i

2) for randomization-
based reasons).            
                                               
Similar arguments can be made for calibration
in the second (or later) phase of sampling. 
Kott (1997) contains a treatment of this topic
for the conventional delete-one-primary-
sampling-unit jackknife.  The interested reader
may also want to look at the expression for
Var2d in Appendix B and replace each uk with
,k.  Similar sub-stitutions can profitably be
made in Appendices C and D as well.

In the real world, models fail, which is the
reason NASS insists on using randomization-
consistent estimators where possible.  The
impact of model failure is typically greater on
bias than on variance.  This is because model
failure is usually small and subtle but can
nonetheless lead to a bias in a non-
randomization-consistent estimator that is not
asymptotically ignorable.  Once the potential
for asymptotic bias is removed by using a
randomization-consistent estimator, a model
can often be safely invoked to estimate
variance.  

The situation can be reversed when ratio-
adjustment is used (in part) to handle
nonresponse as in the 1996 ARMS and
VCUS.  The model assumption that the
expected value for an unknown y-value is a
fixed multiple of a known x-value within a
ratio-adjustment group is usually more
reasonable than the quasi-randomization
assumption that all farms in the group are
equally likely to be survey respondents.   In
this situation, the assumption of the linear
model offers  some protection against a
systematic bias in an estimated value due to
the failure of the quasi-randomization
assumption.
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CONCLUDING REMARKS

The delete-a-group jackknife is remarkably
simple to compute once appropriate replicate
weights are determined.  We have seen how
this variance estimation method can be
meaningfully applied to a number of complex
estimation strategies.  These include the 1996
ARMS (with multiple phases and ratio
adjustments), the 1997 Minnesota pilot QAS
(restricted regression and Poisson sampling),
and the 1996 VCUS (two phases, calibration
of the second phase to the first, and finite
population correction problems). 

Like any variance estimator, the delete-a-
group  jackknife  is not  necessarily  nearly 
unbiased when any phase of the sample is
drawn systematically from a purposefully-
ordered list (as is the case in latter phases of
the ARMS).  If anything, however, the
delete-
a-group jackknife will usually be
conservative (biased upward) in this
circumstance.  In addition, the delete-a-group
jackknife requires the following to be nearly
unbiased:

1)  results from each  phase of a survey )
including the first phase )  be calibrated for
some key items of interest on results from
either an earlier same phase or the frame (for
example, the estimated number of farm
names on the list frame is often forced to
equal the actual number of farm names on the
list frame); and

2) the sample size of at every follow-on
phase of a non-nested (not multi-stage) multi-
phase design be large (contain at least five
sample units per stratum at that phase).

These are not difficult requirements, and
NASS need keep them in mind when
developing estimators in the future. 

A disadvantage of the delete-a-group
jackknife over potential competitors is that it
requires the first-phase stratum sample sizes to
be large (at least five sample units per
stratum).  Otherwise, the delete-a-group
jackknife can be overly conservative.  As a
result, when this jackknife is applied to
estimators from the NASS area frame ) as it
was with the non-overlap component of the
1996 Phase III CRR, it has an upward bias.
NASS needs to assess how big a problem this
constitutes in practice. 

JULY 2001 UPDATE

NASS made the Minnesota QAS pilot
operational in all states in 2000.  A slightly
different form of restricted regression is used.
Variances are estimated ignoring finite
population correction.  For more details, see
Kott and Bailey (2000).
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     APPENDIX A: Justifying the Delete-a-Group Jackknife
Under a Single-Phase, Stratified Sampling Design

Suppose we have a probability sample design with H strata and nh sampled units within each
stratum h.  Let us assume that the sample was selected without replacement but the selection
probabilities are all so small, and the joint selection probabilities are such,  that using the with-
replacement variance estimator is appropriate (this rules out systematic sampling from a
purposefully-ordered lists).  In particular, let us assume that the estimator itself can be written in
the form:
                                                        H     

 nh         
                                                   t = 3     3   thj.
                                                        h=1 j=1

                       nh

Let qhj = thj ) 3thg /nh.  The randomization variance of t is Var(t) = 3H Var(3 th+),  where th+ = 3j thj.
Now Var(th+) can be estimated in a (nearly) unbiased fashion by 

                                                                                            nh

var(th+) = (nh /[nh  ) 1]) 3  qhj
2

                                                                                           j=1

(“nearly” because we are ignoring finite population correction).  

In order to estimate Var(t) with a delete-a-group jackknife as suggested in the text, we first order
the strata in some fashion and then order the units within each stratum randomly.  The sample is
partitioned into R (i.e., 15) systematic samples using the resulting ordered list.  Let Sr denote one
such systematic sample, Shr the set of nhr units in both Sr and stratum h, and Sh(r) the set of nh(r) units
in stratum h and not in r. 

The jackknife replicate estimator t(r) is

                                                 
 H

                                        t(r) =  3  (nh /nh(r))  3    thj.
                                                h=1              j0Sh(r)

Now 
                                                   H
                                    t(r) ) t =  3  [(nh /nh(r)) 3    thj  ) th+].
                                                 h=1               j0Sh(r)   

   

Treating each Sh(r) as a simple random subsample of the sample in stratum h, we have 

                                                             H
                                     E2[(t(r) ) t)2] = 3 Var2([nh /nh(r)]  3  thj) 
                                                                                        j0Sh(r)   
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                                                             H                                      nh

                                                         = 3 (nh
2/nh(r))[1 ) (nh(r)/nh)] 3 qhj

2/(nh ) 1)
                                                             H                                    nh

                                                         = 3 (nh/[nh ) 1])(nhr /nh(r)) 3 qhj
2

                                                             H
                                                         = 3 (nhr /nh(r)) var(th+), 

where E2 denotes expectation with respect to the subsampling.   

Observe that for strata where nh < R, nhr /nh(r) is either zero because there are no units in both r and
h or nhr /nh(r) is 1/(nh ) 1) because there is one unit in both r and h.   Since the latter situation occurs
in exactly nh replicates, 3R nhr /nh(r) = nh /(nh ) 1).

For strata where nh $ R, nhr /nh(r) = O(1/R) and 3R nhr /nh(r) . 1 + O(1/R).  (Technical note: z = O(1/R)
means limR64 R|z| is a constant).   In fact, when nh /R is an integer, nhr /nh(r) exactly equals 1/(R ) 1),
and 3R nhr /nh(r) = R/[R ) 1] . 

Since Var(t) can itself be estimated in an approximately unbiased fashion by var(t) = 
3H (nh /[nh  ) 1]) 3j qhj

2, it is not difficult to see that  the delete-a-group jackknife variance estimator,
vJ = ([R ) 1]/R) 3R (t(r) ) t)2 is approximately unbiased for var(t) and thus for Var(t) when all strata
are such that nh $ R and is biased upward otherwise.  Moreover, the relative upward bias is bounded
by ([R ) 1]/R)minh {1/(nh ) 1)}.   
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APPENDIX B:  Justifying the Delete-a-Group Jackknife
for a Restricted-Regression Estimator Under a Two-Phase Sample

(Including When the “Second” Phase is a String of Phases)

Consider the estimator, t = 3S wiyi, where wi have the same definition as in equation (2), and yi is
a value of interest for element i.   For ease of exposition, we will let fi be the inverse of the first-
phase selection probability of element i, which we assume to be large for all i.  It is a simple matter
to use induction to cover the situation where fi is itself the result of several phases and calibrations.

We also assume that neither phase sample is Poisson.  Poisson sampling in the first phase is
discussed in Appendix D.  Poisson sampling in a later phase is identical to an additional stage of
sampling because Poisson sampling is independent from one selection to the next. 

Let B = (3U xi'xi)
-1 3U xi'yi, where U is the set of all elements in the population, and ui = yi ) xiB.

Equation (2) allows us to rewrite t as t = 0B + 3S wiui, and the variance of t as Var(t) . Var(0B) +
Var(3S wiui ) + 2Cov(0B, 3S wiui).   Now 0 has no variance when it comes from the frame, and
Var(t) collapses to Var(3S wiui) .

Let O and o define asymptotic orders (z = O(m) means limm64 |z|/m is a constant; z = o(m) means
limm64 |z|/m = 0).  We assume that equation (2) holds for almost all elements in the sample (i.e., it
fails at most oP(m) times, where m is the size of S).  As a result, 3S wiui . 3S (fi /pi)ui under mild
conditions,  we assume to hold (this is because, treating each (fi /pi) as O(1),  (0*  ) 3i,S* [fi /pi]xi)
( 3i,S*  [fi /pi]xi'xi)

-13S* [fj /pj]xj'uj = OP(¾m)OP(1/m)OP(¾m) is ignorably small compared to t = OP(m);
note that the equality 3U xj'uj = 0 has a role in making this contention viable).  Thus, Var(3S wiui)
is approximately the variance of a double-expansion estimator, 3S (fi /pi)ui.  Assuming the second-
phase samples within each second-phase stratum are large, results in Kott (1990, p.  103) show the
single-phase variance estimator with estimated primary sampling unit values put in place of actual
values will over-estimate the variance of a double expansion estimator unless the sum of the fiui in
the second-phase strata before subsampling are equal to zero (note that since both md and nh in
equation (B) of Kott are large, only ed..

2 matters).  

Kott assumed stratified simple random sampling in both phases, but extensions to stratified
systematic probability sampling from randomly-ordered lists are straight-forward.  For the first-
phase sample all the fi must be large (as in the simple random sampling case), so that the with-
replacement expression for variance is appropriate.  For the second-phase sample, the selection
probabilities and population must be such that the approximation pik . (md ) 1)pipk /md holds (see
Hartley and Rao 1962), where pik is the second-phase joint selection probability of two elements,
i and k, from second-phase stratum d, and md is the number of sampled elements in that stratum.
In most NASS applications, the second-phase of selection is unstratified, which is equivalent to d
being all the elements in the first-phase sample. 

The second-phase variance of 3S wiui originating from second-phase stratum d can be expressed by
(we are assuming md is large) 
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Var2d  =  3 (fiui )
2(1 ) pi)/pi + 3 (fiui)(fkuk)(pik ) pipk)/(pipk)

           .  3 (fiui )
2(1 ) pi)/pi ) 3 (fiui)(fkuk)pipk /md

          =  3 (fiui )
2(1 ) [(md ) 1)/md]pi)/pi  ) (3 fiui)

2/md

           .  3 (fiui)
2(1 ) pi)/pi  ) (3 fiui)

2/md

 

where the summations are over all elements in second-phase stratum d before the second-phase of
sampling takes place.  This  is analogous to equation (3) in Kott. 

Note that Var2d #  3 (fiui)
2(1 ) pi)/pi, where equality holds only when 3 fiui = 0.  This turns out to

be the reason (not directly proven here) why the delete-a-group jackknife over-estimates the
variance of t when the sum of the fiui within all second-phase strata are not approximately zero.  
Observe that given any column vector 8 of the same dimension as xi', 3F 8'xi'fiui .3U 8'xi'ui =
3U 8'xi'[yi ) xi(3U xi'xi)

-1 3U xi'yi] = 0.  Since 3F 8'xi'fiui .0 for any 8, when there exists a 8d for every
second-phase stratum d such that xi8d = 8'dxi' equals 1 when i is in d and 0 otherwise, then the sum
of the fiui in any second-phase strata before subsampling is approximately (asymptotically) zero.

Applying the weights defined by equation (3) to t, we get t(r) . 0(r)B + 3S(r) [fj(r) /fj]wjuj .
3S(r) [fj(r) /pj]uj.  The second part of the first s approximation makes use of the facts that the
components of (0(r) ) 3i,S(r) [fj(r) /fj]wixi) are OP(m/R), while the diagonal components of
3i,S(r) [fi(r) /fi]wixi'xi are OP(m) under mild conditions.  

When 0 = 0(r) is a frame value, t(r) ) t .  3S(r) [fj(r) /pj]uj ) 3S [fj /pj]uj.  It is straight-forward to show
that the delete-a-group jackknife estimates Var(t) = Var(3S wiui) . Var(3S [fj /pj]uj)  fairly well with
the possibility of being upwardly biased when the sum of the fiui before subsampling in one or more
of the second-phase strata is not equal to zero.     

When 0 = 3F fixi, then 0B =3F fixiB, and t can be rewritten as t = 3F fiyi + (3S wiui ) 3F fiui) .
3F fiyi + (3S [fi /pi]ui ) 3F fiui) = 3F fi(yi + {[Ii /pi] ) 1}ui), where Ii = 1 when i is in S and zero
otherwise .   In a similar fashion, t(r) . 3F fi(r)(yi + {[Ii /pi] ) 1}ui).  It is straight-forward to show that
the delete-a-group jackknife estimates the conventional multi-stage variance estimator ignoring fpc
at the first stage, which in turn estimates Var(t) fairly well but has the possibility of being upwardly
biased when the sum of the fiui  before subsampling in one or more of the second-phase strata is not
equal to zero (see Kott and Stukel [1997] for some missing details).  

Extension of the above result to a sample design where the “second-phase” sample is itself the
result of a string of phases, all within the same second-phase strata, is a simple matter.  We need
only assume that pik* . "pi*pk*  where pj* (pik*) denotes the appropriate product of conditional
(joint) selection probabilities, and " = 1 ) O(1/md).  Appendix C has more on the sequence-of-
sampling-phases methodology used in the ARMS design.
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APPENDIX C:  Justifying the Delete-a-Group Jackknife
for Certain Composite Estimators in the ARMS

We restrict attention in this appendix to the unusual composite estimators used with the ARMS
surveys. 

To show that the delete-a-group jackknife works for a composite estimator like the Phase III Corn-
for-Grain/Beef CRR described in the text, one needs to show that it works when estimating a total
for: 

1) the intersection of the two original target populations (list farms with grain corn and at least 10
weaned calves), 

2) each of the two “rump” populations that contain elements in one population but not the other,
and, 

3) the union of the two rumps and the intersection.  

The delete-a-group jackknife works for estimates of a rump total because it works for domains (by
defining item values within one target population as zero for farms outside the domain),  and it
works for estimated totals in the union ) assuming it works for estimated totals in the intersection
) because it works for functions of estimators ( like the sum of the totals in the two rumps and the
intersection).   We discuss intersections below.

Let us call the two samples we are compositing A and B.  In principle, we can estimate an item total
in the intersection of the target population using either sample.  Let tC = 3C wi

Cyi be the estimated
total calculated using sample C ( = A or B), and let t = 8tA + (1-8)tB be the composite total.  Note
the yi is defined to be zero for farms outside the intersection.  

The ARMS  samples are drawn sequentially to avoid overlap using an unstratified variant of
systematic unequal probability sampling at every phase after the initial screening phase.   Let Bi

t be
the probability of selecting farm i for sample t given that it is available for sampling after sample
t-1 is drawn.  Let t=1 denote the first sample drawn after the screening sample.  Finally,  let pi

t =
(1 ) Bi

1) ... (1 ) Bi
t-1)Bi

t.  Note that Bi
s = 0 when farm i is not in the target population for sample s.

 Without loss of generality, we will assume sample A was selected before B, and that A, B, and
their intersection are of size O(m).

Using arguments similar to those in the previous appendix, we can see that 

tC .  3F fiyi + (3C [fi /pi
C]ui

C ) 3F fiui
C),  

where ui
C = yi ) (3 yk /3 xk

C)xi
C, the summations being over the farms in the population that are in

the same calibration group as i when computing tC, and xk
C is the x-value of farm k when computing

tC.  Observe that the first-phase sample applies to both A and B since there is one ARMS screening
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sample for all purposes.  By contrast x and u-values as well as calibration group memberships may
differ across samples for the same i.  This happens when the 1996 Phase II Corn-for-Grain PPCR
is composited with the Phase II Corn PPR; xi

A is corn-for-grain acres for farm i, while xi
B is general

corn acres.   

We can now see that 

Var(t) = Var1( 3F fiyi) + E1{Var2( 3A [fi /pi
A]ui

A) +Var2( 3B [fi /pi
B]ui

B) +
                                     2Cov2( 3A [fi /pi

A]ui
A, 3B [fi /pi

B]ui
B)}.

Now         
 
Cov2( 3A [fi /pi

A]ui
A, 3B [fi /pi

B]ui
B) = 3i0F(A) 3k0F(B) (fiui

A)(fkuk
B){[(pi

A
k

B)/(pi
Apk

B)] ) 1},

where F(C) denotes that part of the first-phase sample in the target population for sample C, and
pi

A
k

B = Bi*k*
1  ...  Bi*k*

A-1Bik*
A(1 ) Bk

A+1) ... (1 ) Bk
B-1)Bk, when Bi*k*

t is the probability  of selecting neither
farm i nor k for sample t providing both are available after sample t-1, and  Bik*

A is the probability
of selecting farm i but not k for sample A given that both are available after A-1.   We will assume
that the design is such that  given k�i, pi

A
k

B . (1 + "k)pi
Apk

B, where "k = O(1/m) (if Bi*j*
s/Bi*

sBj*
s .

1 for all s < A, then the assumption is equivalent to  Bik*
A = Bk*

A Prob(i chosen for A|k not chosen
for A) = Bk*

ABi
A(1 + "k)).   Since 3F(B) fiui

B . 0 and  pi
A

i
B = 0, summing the left hand size of the last

expression for Cov2 over i yields a term of order 1/m.  Summing then over k yields a term of order
1.  Since Var1(t

A) is O(m), the covariance term is asymptotically ignorable. 

 It is now not hard to show using arguments developed here and in the previous appendices that the
delete-a-group jackknife is unbiased for t under conditions we assume to hold.



21

APPENDIX D: Justifying the Delete-a-Group Jackknife
with Finite Population Correction for a Single-Phase Poisson Sample

Suppose we have a calibrated estimator for a total, t = 3S wjyj, where the wj satisfy equation (6): 
 
                        wj = 1/Bj + (0* ) 3i,S* [1/Bi]xi)( 3i,S* [1/Bi]xi'xi)

-1
 [1/Bj]xj'                                     (6)

                    
for j 0 S*,  and a predetermined value otherwise.  In addition, there is a vector 8 such that
xj8 = ¾(1 ) Bj) for all j. 

Let B = (3U xi'xi)
-1 3U xi'yi, where U is the set of all elements in the population, and ui = yi ) xiB. 

Now t =3S wjyj = 3S wj(xjB + uj) = 0 + 3S wjuj. Consequently, Var(t) =  Var( 3S wjuj) . 
Var( 3S uj /Bj) under conditions we assume to hold (see Appendix B).

If the sample is Poisson, we have Var(t) . 3U uj
2(1 ) Bj)/Bj, which, in principle, can be estimated

in a nearly unbiased fashion by var(t) = 3S uj
2(1 ) Bj)/Bj

2 . 3S wj
2(1 ) 1/wj)uj

2 = 3S (wj
(v))2uj

2, where
wj

(v) = wj¾(1 ) 1/wj) (see equation (7)).

Using the definition of wj(r)
(v) in equation (8), we have  t(r)

(v) =3S wj(r)
(v)yj . 3S wj

(v)xjB + 3S(r) wjr
(v)uj.

Consequently,  t(r)
(v) )  t(v) = 3S(r) wjr

(v)uj  ) 3S wj
(v)uj.   Now 3S wi

(v)ui /¾n =  3U (1 ) 1/wi)
1/2ui /¾n .

3U (1 ) Bi)
1/2ui ¾n = 3U 8'xi'ui /¾n = 0, since 8'xj' = xj8 =¾(1 ) Bj) for some 8, while 3U xi'ui = 0.

Similarly,  3S wj
(v)uj /¾n . 0.   

The the n(r) members of S(r) can be viewed as a simple random subsample of the n members of S.
Since n/n(r) = 1 +OP(1/R),  t(r)

(v) ) t(v) . (n/n(r))3S(r) wj(r)
(v)uj.  Using arguments similar to ones made

in Appendix A, we have E2[(t(r)
(v) ) t(v))2] . (n/n(r))(1 ) n(r) /n)[ 3S (wj

(v))2uj
2 ) (3S wj

(v)uj)
2/n]. So,

E2[(t(r)
(v) ) t(v))2] . (n/n(r))(1 ) n(r) /n) 3S (wj

(v))2uj
2 =  (nr /n(r)) 3S (wj

(v))2uj
2, where nr is the size of Sr.

From here it is easy to see that vJ(fpcT) is nearly unbiased for 3S (wj
(v))2uj

2, which is turn is nearly
unbiased for Var(t).  

Observe that when 3U (1 ) Bi)
1/2ui � 0, the jackknife is biased, although the bias depends on the size

of the Bi.   In practice, this may be of little importance because if we felt that 3U (1 ) Bi)
1/2ui /¾n had

an absolute value far from zero, we would include ¾(1 ) Bj) as a component of xj.   


