

Give to AgEcon Search

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu

i

 Comparison of the Speed

of the 2007 Census of

Agriculture Donor Search

Method Against Five

Alternative Techniques

Matthew E. Gregg

Michael Hogye

 United States

 Department of

 Agriculture

 National

 Agricultural

 Statistics

 Service

 Research and

 Development Division

 Washington DC 20250

 RDD Research Report

 Number RDD-09-07

October 2009

 This report has been prepared for limited distribution to the research community outside the United

States Department of Agriculture (USDA). The views expressed herein are not necessarily those of

NASS or USDA.

i

EXECUTIVE SUMMARY

Since assuming responsibility for conducting the Census of Agriculture in 1997, the National

Agricultural Statistics Service (NASS) has worked continuously to improve the processing

capabilities of the census edit system. Following the 2002 Census of Agriculture, NASS realized

that it needed to improve the speed and reliability of the edit system for the 2007 Census. The

subroutine that performed item level imputation was one component of the edit that was targeted

for improvement, and it underwent extensive redesign between 2002 and 2007.

The imputation routine utilized several techniques that were new for 2007. These techniques

included stratifying all potential donors into groups called profiles; running the donor program as

a continually running program, known in computer terminology as a daemon, using SAS/Share

to mediate interprocess communication between an edit job and a donor daemon; and storing

donor data in temporary arrays in SAS to provide optimal access to the data. The new imputation

program achieved the speed goals set forth during the 2007 Census planning phase. Due to the

time constraints involved in getting the new system in place, however, no effort was made to

benchmark the speed of new donor delivery methodology.

In this report, the speed of searching through temporary arrays is compared with five alternative

techniques. The use of temporary arrays requires that multiple searches are conducted within a

single data step. The alternative methods conduct multiple searches by starting and stopping the

data step for each search. The key measure of speed used was the CPU time spent on the search.

The results of the study show that searching for a record in temporary arrays, the current

operational method, had the fastest response times among the methods tested.

ii

RECOMMENDATIONS

1. NASS should continue to use donor daemons and temporary arrays as the means of donor

delivery for the 2012 Census of Agriculture.

2. In cases where large datasets are repeatedly subset on the same variable, SAS indexes or

compressed indexes should be considered to improve the speed of data retrieval.

iii

TABLE OF CONTENTS

1. INTRODUCTION ……………………………………………………………….…………...1

2. MEASURING RESPONSE TIMES ……………………………………………………….…3

2.1 Response Time Data …………………………………………………………….3

2.2 Collecting Response Time Data …………………………………………….......3

3. METHODS ………………………………………………………………………………...…4

3.1 Search Methods …………………………………………………………………4

3.2 Test Methods ……………………………………………………………………5

4. RESULTS ………………………………………………………………………………….…6

5. DISCUSSION ………………………………………………………………………………..9

6. RECOMMENDATIONS …………………………………………………………………...11

7. REFERENCES ……………………………………………………………………………...11

APPENDIX A: An Example of the Use of ARM Macros and Temporary Arrays …………….12

APPENDIX B: Summary Tables ……………………………………………………………….14

APPENDIX C: Box Plots of Search Methods ………………………………………………….22

APPENDIX D: Plots of Search Methods ……………………………………………………....28

1

Comparison of the Speed of the 2007 Census of Agriculture Donor Search

Method Against Five Alternative Techniques

Matthew E. Gregg, Michael Hogye
1

Abstract

The National Agricultural Statistics Service (NASS) conducts a census of

agriculture every five years. A major focus after the 2002 Census was to improve

the speed and efficiency of the edit and imputation system for the 2007 Census.

The imputation routine developed for 2007 achieved the speed goals set forth

during the 2007 Census planning phase, but no effort was made to benchmark the

new procedure against other SAS search techniques.

This study compared the search method used in the 2007 Census of Agriculture

imputation routine with five alternative SAS techniques for finding a record in a

SAS dataset. The results showed that the temporary array technique used in the

2007 Census had the fastest response times with the least variation among the

techniques tested.

Key Words: SAS, donor, imputation, daemon, nearest neighbor

1. INTRODUCTION

Prior to assuming responsibility for the census of agriculture in 1997, the National Agricultural

Statistics Service (NASS) had little experience in the use of donor imputation to correct data at

the item level in records where specific data fields were found to be in error. As part of an effort

to reduce analyst review and more fully automate the editing process, nearest neighbor

imputation was implemented in the 2002 Census of Agriculture. The results for 2002 were

mixed; ultimately the work got done but the system experienced frequent downtime, slow

response times for both the edit and imputation routines, and a large volume of records with

imputed values that analysts found problematic. A post-census review of the edit and imputation

process led NASS to conclude that "Employees must be provided a significantly improved

system for the 2007 Census with respect to the speed, stability, and quality of the data generated

by the interactive edit/imputation system" (Nealon, 2004).

In the 2002 Census edit, all donors in a recipient’s state plus some from adjoining states were

considered for imputation. For each request, all records of a state-wide donor pool had to be

considered, and there were no explicit strata within the state. After the 2002 edit experience,

1
 Matthew E. Gregg and Michael Hogye are mathematical statisticians in the USDA’s National Agricultural

Statistics Service (NASS) – Research and Development Division (RDD), located in Room 305, 3251 Old Lee

Highway, Fairfax, VA 22030.

2

there was strong sentiment for reducing the scope of records examined by each donor search,

with the hope that imputation could focus on appropriate donors without individually considering

all of those available. For the 2007 Census, it proved more practical to create a donor dataset for

each module rather than for each state. Only records and data fields relevant to the module were

included. For example, only operations with cattle were kept as potential cattle donors, and for

those donors, only variables required for cattle imputation were part of the dataset. For each

module, the donors were stratified within a state.

Increasing the speed of the response times was one of the main focus areas for improvements to

the donor imputation system for 2007. The edit system for the 2007 Census of Agriculture was

designed to process records in a batch environment and in an interactive environment. In batch

mode, records were processed in groups of 1,000. A batch of records had the potential to

produce thousands of imputation calls, so incremental improvements in speed had a large impact

on total processing time over the course of editing 1.5 million records. In interactive mode,

system responsiveness was important to keep staff working effectively. Having a highly

responsive donor imputation routine was an important component of an effective edit and

imputation system.

The redesign of the donor imputation program centered around the idea that if the pool of

potential donors was made more readily available, the time spent searching for a donor,

whenever the edit called the donor imputation routine, could be greatly reduced. To make the

donor pools more readily available, the decision was made to store the donor data in random

access memory (RAM) instead of on the hard disk. This task was accomplished in SAS using

temporary arrays and by running the donor program as a daemon. This idea was a major shift

from 2002 where the imputation routine was run anew with each batch of records processed

through the edit.

A daemon is a computer program that runs continuously in the background and performs a

function in response to certain events. Running the donor program as a daemon consisted of

inserting an infinite loop into the SAS code so that the program would never terminate. For the

2007 Census, the event that triggered the function of the donor daemon was a request for

imputation. The function of the donor daemon was to find a nearest neighbor among all

potential donors for the current request. Within the census of agriculture edit system, 26

modules make requests for donor imputation, and one daemon was used for each of these

modules. Thus, during the data collection and editing phase of the census of agriculture, there

were 26 donor daemons running concurrently to perform donor delivery to the edit system.

The solution of using daemons and temporary arrays to deliver donors was gradually achieved

through experimentation with a variety of SAS programming techniques. The new system had to

be completed and thoroughly tested prior to the mail-out of the 2007 Census of Agriculture.

This did not allow for an in-depth analysis of how the speed of the new procedure might

compare to other SAS programming techniques that could be used to search the donor pools for a

suitable donor.

3

In this study, the speed of the temporary arrays solution used in the 2007 Census of Agriculture

was benchmarked against five alternative SAS techniques used to retrieve a donor from a SAS

dataset.

2. MEASURING RESPONSE TIMES

2.1 Response Time Data

Measuring the performance times for the various methods broke down into three categories: real

time, user central processing unit (CPU) time, and system CPU time. The definitions for these

terms are taken from the SAS Online help (SAS Institute Inc., 2002).

Real Time: the amount of time spent to process the SAS job. Real time is also referred

to as elapsed time.

User CPU: the CPU time spent to execute the SAS code.

System CPU: the CPU time spent to perform system overhead tasks on behalf of the SAS

process.

CPU Time: the total time spent to execute the SAS code and spent to perform system

overhead tasks on behalf of the SAS process. This value is the combination

of the user CPU and system CPU statistics from FULLSTIMER.

Measuring user CPU and system CPU times was the focus of the study. Differences in these

time measures among the six techniques tested provide the best measure of the speed differences

between the methods. In what follows, CPU time will refer to the sum of user CPU time and

system CPU time.

2.2 Collecting Response Time Data

The SAS log provides information on response times, however it is limited to reporting times at

the conclusion of each DATA or PROC step. This restriction to obtaining response time data

using response times from the SAS log did not meet the needs of the study. Instead, a different

procedure for tracking response times was needed. Application Response Measurement (ARM)

filled this need. ARM was developed by an industry partnership to define a standard for

measuring application performance. The result of this collaboration was the ARM application

program interface (API) which is a vendor neutral interface for measuring application response

time. SAS implements the ARM API through a set of ARM macros. The definition of the ARM

macros states that:

 The ARM macros provide a way to measure the performance of applications as they are

 executing. The macros write transaction records to the ARM log. The ARM log is an

 external output text file that contains the logged ARM transaction records. You insert the

4

 ARM macros into your SAS program at strategic points in order to generate calls to the

 ARM API function calls. The ARM API function calls typically log the time of the call and

 other related data to the log file. Measuring the time between these function calls yields an

 approximate response-time measurement (SAS Institute Inc., 2002).

The ability of the programmer to control when and how often time data are logged through the

use of ARM macros provided the flexibility needed to track response time data. The use of ARM

in this study developed from the need to track response times within a data step. One of the

search techniques used temporary arrays and performed repeated searches within a single data

step. Using ARM, it was possible to log response time data separately for each of these events.

It was then possible to calculate time spent loading data into the arrays and time spent on each

search separately. An example program showing the use of ARM logging is included in

Appendix A.

3. METHODS

3.1 Search Methods

The records in the census donor pools were extracted from an IBM Red Brick database of clean

census records known as the Central Donor Repository or CDR. A donor pool was created for

each of the 26 census edit modules that use donor imputation. The data were transformed into a

standard format, and each record in a donor pool was matched to its profile (stratum) value. The

SAS datasets that resulted from the process were sorted by state, profile, and record number.

Six search techniques were chosen to be included in the testing. Method 1 was based on the

methodology used in the 2007 Census of Agriculture. The other search methods were chosen to

compare against Method 1. Methods 2-6 follow more traditional SAS programming, where

several DATA and PROC steps combine to accomplish the task of finding a donor, and these

same tasks are repeated for each request. The majority of the program code for Methods 2-6 was

the same, but the descriptions that follow highlight the differences in each.

Method 1 used the technique of temporary arrays, which was the method employed by the 2007

Census of Agriculture donor program. In this method, all donor data for a module and any

needed supporting data were loaded and stored in temporary arrays. The program then received

a request from a separate SAS program and searched through the temporary arrays for a suitable

donor.

Method 2 consisted of searching through the donor pool restricting the search to only those

records with the same profile or state as the recipient. The subset of records to search was

created using a WHERE clause on the SET statement in the SAS program.

5

Method 3 was identical to Method 2 except the donor pool dataset was indexed prior to running

the program. This method used the index to optimize the search for records that matched the

specific profile or state criteria in the WHERE clause used to subset the data.

Method 4 used direct access through the SAS dataset option KEY=. The KEY= <index name>

option references an index that was created for the dataset being read. In addition to the index

being named in the KEY= dataset option, there needs to be a variable in the program data vector

(PDV) that matches the index in name and data type. The variable in the PDV supplies the value

to search for in the index file when subsetting the data.

Method 5 used direct access through the SAS dataset option POINT=. The POINT= option

refers to a temporary variable in the PDV that resolves to the observation number of the record to

point to. This method relies on the fact that the donor pools are sorted by profile. A support

dataset was created that contained the frequencies for each profile and also the observation

number of the first and last record in the profile. Knowing the exact location of the first and last

record in the profile allowed the use of a loop to cycle through the observations in the profile and

the POINT= option to jump directly to each record in the profile as identified by the incremented

value of the loop.

Method 6 used the SAS dataset options FIRSTOBS= and OBS= to limit the records searched in

the donor pool. This technique is similar to Method 5 in that it takes advantage of the data being

sorted in profile order and knowing the observation number of the first and last record in the

profile. Where it differs is that FIRSTOBS= and OBS= are assigned at compile time and records

are read sequentially from the SAS dataset. With this technique, there is no need to set up a do

loop in the datastep to cycle through the records. The program uses the automatic datastep loop

to read each record in the profile.

3.2 Test Methods

For this study, the donor pools used were the final donor pools generated for the 2007 Census of

Agriculture. Of the 26 modules that use donor imputation, Modules 110 and 320 were selected

for testing, based primarily on the differences in size and complexity of the data. Module 110,

the edit module for land use, encompassed a large portion of the land use and crop acreage edits

for the census of agriculture. There was a large volume of records (1,435,375) and a large

number of variables (247) in the donor pool for this module. Module 320 was the cattle and calf

inventory module. The records in the donor pool were limited to those with positive cattle

inventory, and the number of variables related to cattle inventory was relatively small. For

Module 320, there were 643,769 records and 18 variables in the donor pool.

All programs were written and tested using SAS v9.13 and were run on the same AIX Unix

system that ran the 2007 Census of Agriculture edit system. The simulation was run twice and

generated two complete sets of data for the study. Programs were run as close together as

6

possible in order to reduce variation due to system usage by other users or programs. Response

time data were downloaded to a PC for analysis and summarization.

A record requiring imputation was randomly selected from each state. Each record was

classified into a stratum, called its profile. Alaska, Minnesota, and Texas were chosen for testing

based on their respective profile sizes. The search for a donor in these three states represented a

search in a small, medium, and large sized profile. In addition, the search programs were run for

All States, where the program cycled through an imputation request from each of the 50 states.

Each program conducted 1,000 searches for a donor by looping through the search routine 1,000

times. The same recipient for each state was used throughout. In the case of All States, the same

set of 50 recipients was used each time. For All States, the set of 1,000 observations contained 20

observations for each state.

In addition to testing the performance of each search method on four different states, the speed of

each search method was tested with the donor pool data stored in two different memory

locations. Two copies of the donor pools were created, with one copy stored on the hard disk

and the other stored in RAM. Response time data were collected for the six search methods,

with donor pools being accessed on hard disk and on RAM.

Finally, the conditions of the search were modified to look at different subsets of potential

donors. Response time data were collected by searching through the matching profile of the

recipient and also by searching through the matching state of the recipient. The profile search

was done for each method with the data resident on disk and on RAM, but the state search was

done with the data only resident on disk. It should be noted that the number of records in a

profile is always a subset of the number of records in the state.

The nearest neighbor calculation used in the test programs was a reduced form of the calculation

used in the operational program for the 2007 Census of Agriculture. The distance between a

recipient and a potential donor was calculated as a standardized Euclidean distance. For the

census there was a geographical distance component and a dissimilarity penalty added to the

distance calculation that contributed to the total difference between the recipient and the

potential donor. For this study, the geographical and dissimilarity components were not included

in the difference calculation.

4. RESULTS

A partial summary of response times as measured by total CPU time is shown for Minnesota in

Table 1. The results in the table show the mean and median CPU time as well as the standard

deviation of the CPU time for Module 110. Table 1 shows that Method 1 produced the fastest

results. The results shown for Minnesota were consistent across the other states, with temporary

arrays outperforming the other search methods. In general, Method 2 produced the slowest

7

results. In Module 320 for Texas, Method 2 was faster than Methods 3 and 4. Methods 3-6

performed at about the same level throughout testing.

Table 1 also shows that restricting the search to the recipient’s profile produced faster response

times than searching through the entire state. Response times at the state level took roughly twice

as long as searches at the profile level. In general, state searches were slower than searches at the

profile level. The exception was Alaska in Module 320, where state level searches were as fast as

or faster than searches at the profile level. Minnesota’s results for Module 110, where there were

approximately six times as many records in the state as in the recipient’s profile, were the most

extreme case of size disparity between the profile and the state.

Another result that was consistent across states was that response times when the SAS dataset

resided on disk vs. RAM were virtually indistinguishable. In Table 1, the largest difference in

average response times between the profile search on disk and the profile search on RAM is

0.01459 seconds. Also, the small differences don’t point in a single direction. Full summary

tables are available in Appendix B.

Table 1. Summary of Search Times (in seconds) for Minnesota for Module 110

State Run

Method

Number

Method

Name

Search

Type Records

Data

Location

Mean

CPU

Time

Median

CPU

Time

Standard

Deviation

CPU

Time

Minnesota 1 1 Temporary arrays Profile 9,394 Disk 0.0190 0.02 0.0048

 Profile 9,394 RAM 0.0196 0.02 0.0028

 State 56,187 Disk 0.1099 0.11 0.0163

 2 WHERE clause non-indexed Profile 9,394 Disk 0.6203 0.68 0.1168

 dataset Profile 9,394 RAM 0.6349 0.69 0.1148

 State 56,187 Disk 1.4641 1.50 0.3713

 3 WHERE clause indexed Profile 9,394 Disk 0.1729 0.18 0.0194

 dataset Profile 9,394 RAM 0.1712 0.18 0.0191

 State 56,187 Disk 0.3557 0.37 0.0421

 4 Direct access with KEY= Profile 9,394 Disk 0.1747 0.18 0.0206

 option Profile 9,394 RAM 0.1814 0.19 0.0204

 State 56,187 Disk 0.3752 0.40 0.0480

 5 Direct access with POINT= Profile 9,394 Disk 0.1680 0.18 0.0224

 option Profile 9,394 RAM 0.1664 0.17 0.0215

 State 56,187 Disk 0.3035 0.32 0.0330

 6 Subsetting with FIRSTOBS= Profile 9,394 Disk 0.1648 0.17 0.0206

 OBS= options Profile 9,394 RAM 0.1676 0.17 0.0201

 State 56,187 Disk 0.3078 0.33 0.0454

8

Figure 1 shows a set of box plots for Minnesota. The graph clearly shows that temporary arrays

have the fastest response times among the methods tested. In addition, the spread in the data is

far less for temporary arrays than for the other methods. The graph also shows that the Method 2,

labeled with a D, produced the slowest and least consistent response times, and that Methods 3-6

had very similar results. See Appendix B for a full set of box plots.

Figure 1. Comparison of Search Methods for Minnesota
Module 110, Run 1, Profile Search, Data on Disk

 D=Where clause non-indexed dataset K=Direct access with key= option F=Subsetting with firstobs= obs= options
 A=Temporary arrays I=Where clause indexed dataset P=Direct access with point= option

A D I K P F

0

0.2

0.4

0.6

0.8

C
P

U
 T

im
e
 (

s
e
c
)

Search Method

Figure 2 shows a comparison of the average response times for the six methods for Minnesota

for the different combinations of data location and state (vs. profile) level. As the graph shows,

there is little difference between data residing on disk or on RAM. However, there does tend to

be a difference between searching through the profile and searching through the state. Searching

through the state was slower for all methods and all states except for Alaska. For Module 110

and Module 320, the average response times for Alaska at the profile and state level were the

same or nearly the same. In Alaska this held true for all search methods except Method 2, where

it was still slower to search through the entire state. Refer to Appendix C for a full set of plots.

9

Figure 2. Comparison of Average Search Times for Minnesota
Module 110, Run 1

 D=Where clause non-indexed dataset K=Direct access with key= option F=Subsetting with firstobs= obs= options
 A=Temporary arrays I=Where clause indexed dataset P=Direct access with point= option

Search Level,
Data Location Profile, Disk Profile, RAM State, Disk

C
P

U
 T

im
e
 (

se
c
)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

Search Method

A D I K P F

5. DISCUSSION

The results of the investigation show that the use of temporary arrays was the fastest search

method of the six chosen for review. The response times for temporary arrays were faster and

more consistent across all methods, modules, runs, data locations and search levels. Using

temporary arrays is an effective technique for performing fast searches through a SAS dataset

when a large number of searches are performed during a single SAS session, or if the program is

set up to run continuously.

The determination as to whether to conduct a large number of searches or set up a continuously

running program is an important consideration for temporary arrays because there is a fixed time

cost associated with loading data into the arrays. The average response times reported in Table 1

do not include the time spent loading data into the temporary arrays. This overhead time was not

included because the main focus of the study was testing the time spent searching for a donor

and because the impact of the overhead on individual search times decreases as the number of

searches increases. However, the overhead is a consideration that should not be ignored. For

10

Module 110, loading data into the temporary arrays took an average of 78.78 seconds. This

would have added an average of 0.078 seconds to the response times for each of the 1,000

searches. Adding this amount to the average response times reported in the study does not

change the status of temporary arrays as the fastest method. However, consider a program that

performs 100 searches in Module 110. This would translate into 0.788 seconds, which when

added to the reported average response times, would make temporary arrays the slowest method.

With the exceptions for Texas detailed in the results section, Method 2, subsetting with a where

clause on a non-indexed dataset, was the slowest method with the largest variation in response

times. This makes sense because this technique was the most basic of the techniques tested, and

nothing was done to try and improve the efficiency of finding a record with this technique.

The results for the other four search methods were close enough that it was not possible to say

one was better than the other. However, there is a difference in how Methods 3-6 are

implemented. Methods 3 and 4 rely on a SAS index when reducing the full donor pool to a

subset of potential donors. A SAS index file stores information about each key variable and each

observation with that key variable value. When the program is run, it refers to the index file to

find the location of the records in the dataset that match the search criteria.

Methods 5 and 6 use what Keintz (2009) calls a compressed index that identifies the first and last

record in the profile or state. The compressed index is a SAS dataset that functions in a similar

fashion to a SAS index by identifying where in the main dataset a subset of records is located.

Methods 5 and 6 rely on the data being sorted by the key variable. If the data are not sorted by

the key variable, these methods do not work.

A clear advantage to Methods 3 and 4 is that the index is automatically updated whenever data

are added, changed or deleted. A potential disadvantage to Methods 3 and 4 is that a SAS index

can be a large file. The compressed index dataset by comparison is a small file. Table 2 shows

the difference in size between the SAS index file and the compressed index dataset.

Considerable space savings can be achieved by using the compressed index.

Table 2. Index File Sizes

Module

Profile State

SAS Index Compressed Index SAS Index Compressed Index

110 18,244 KB 17 KB 17,605 KB 17 KB

320 8,553 KB 17 KB 7,988 KB 17 KB

Methods 3-6 improved search speeds over using a where clause on a non-indexed dataset. SAS

indexes worked well in this test because the data were sorted by the key variable and the key

variable is used in subsetting the data. Further, the number of records to be searched was a small

subset of the total number of records in the donor pool. If data in a SAS dataset are used for

many different analyses where the data are subset on different variables depending on the

analysis, an index may not improve performance.

11

6. RECOMMENDATIONS

1. NASS should continue to use donor daemons and temporary arrays as the means of donor

delivery for the 2012 Census of Agriculture.

2. In cases where large datasets are repeatedly subset on the same variable, SAS indexes or

compressed indexes should be considered to improve the speed of data retrieval.

7. REFERENCES

Keintz, M. (2009). A Faster Index for Sorted SAS® Datasets. SAS Global Forum 2009,

Washington, D.C.

Nealon, J. (2004), “PRISM Interactive Edit/Imputation System,” Decision Memorandum for

internal NASS use, November 2004

SAS Institute Inc., SAS 9.1.3 Help and Documentation, Cary, NC: SAS Institute Inc., 2002-

2004.

12

APPENDIX A. AN EXAMPLE OF THE USE OF ARM MACROS AND TEMPORARY

ARRAYS IN SAS.

/* Turn on the ARM Macros. */

%let _armexec=1;

/* Specify the external file where ARM data will be logged. */

options armloc='C:\SAS-stuff\SAS_tempdata\armlog.txt';

/* Create a test dataset with 1,000,000 observations and 20 variables all

generated from a uniform distribution. */

data test;

 array rv{20};

 do _n_ = 1 to 1000000;

 do i = 1 to 20;

 rv{i}=ranuni(0);

 end;

 output;

 end;

 drop i;

run;

/* Initialize the ARM log with the %arminit macro. */

%arminit(APPNAME='ARM Example', MACONLY=YES, APPIDVAR=app1);

%armgtid(TXNNAME="Datastep Transactions", MACONLY=YES, APPIDVAR=app1,

TXNIDVAR=txn1);

data test2;

/* Write the start of array loading transaction to the ARM log */

%armstrt(TXNIDVAR=txn1,txndet='Load Data into Temporary Arrays',SHDLVAR=sh1);

/* Create a two dimensional temporary array with 1,000,000 rows and 20

 columns to store the data from the test dataset. Each row will be

 treated as a unique record and each column as a unique variable. */

 array rand_num{1000000,20} _temporary_;

 array new_rand{20} _temporary_; *Create an array with 20 columns;

 array rv{20};

 /* Populate the rand_num array from the test dataset created above. */

 do i = 1 to 1000000;

 set test;

 do j = 1 to 20;

 rand_num[i,j]=rv{j};

 end;

 end;

/* Write a stop transaction to the ARM log to indicate loading of the array

is complete. */

%armstop(STATUS=0,SHDLVAR=sh1);

13

/*Write the start of the search transaction to the ARM log. */

%armstrt(TXNIDVAR=txn1, txndet='Begin Search Routine',SHDLVAR=sh2);

/* Conduct 25 searches in the rand_num array. */

 do repeat = 1 to 25;

 /* Populate the new_rand array with random numbers from a uniform

 distribution. The new_rand array simulates the record we want to

 compare against the records in the rand_num array. */

 do i = 1 to 20;

 new_rand[i] = ranuni(0);

 end;

 nn_diff = 1E50; *Reset the nearest neighbor distance for each

 search.;

 /* Find the record in the rand_num array that is closet to the record

 represented by the values in the new_rand array by computing the sum of

 the squared distances between the variables. */

 do i = 1 to 1000000;

 diff = 0;

 do j = 1 to 20;

 diff = sum(diff,(new_rand[j]-rand_num[i,j])**2);

 end;

 if diff < nn_diff then do;

 nn_id=i;

 nn_diff=diff;

 end;

 end;

 output test2;

 /* *Update the time spent on each individual search to the ARM log. */

 %armupdt(data="Search Complete", SHDLVAR=sh2);

 end; *End repeat loop;

 keep nn_id nn_diff diff;

 /* *Write the stop time of the total search time to the ARM log. */

 %armstop(STATUS=0, SHDLVAR=sh2);

run;

%armend(MACONLY=YES,APPIDVAR=app1); *Mark the end of logging transactions.;

/* Process the arm log using the SAS supplied ARM Macros %armproc and

%armjoin */

%armproc(log=C:\SAS-stuff\SAS_tempdata\armlog.txt);

%armjoin;

14

APPENDIX B. SUMMARY TABLES

Table 3. Summary of Search Times (in seconds) for All States for Module 110

State Run

Method

Number

Method

Name

Search

Type Records

Data

Location

Mean

CPU

Time

Median

CPU

Time

Standard

Deviation

CPU

Time

All 1 1 Temporary arrays Profile 757,346 Disk 0.0320 0.02 0.0412

 Profile 757,346 RAM 0.0320 0.02 0.0412

 State 1,435,375 Disk 0.0615 0.05 0.0574

 2 WHERE clause non-indexed Profile 757,346 Disk 0.7179 0.68 0.3695

 dataset Profile 757,346 RAM 0.7123 0.69 0.3669

 State 1,435,375 Disk 1.3402 1.40 0.2246

 3 WHERE clause indexed Profile 757,346 Disk 0.1963 0.18 0.0802

 Dataset Profile 757,346 RAM 0.1926 0.17 0.0742

 State 1,435,375 Disk 0.2557 0.23 0.1155

 4 Direct access with KEY= Profile 757,346 Disk 0.2057 0.19 0.0868

 option Profile 757,346 RAM 0.2029 0.18 0.0847

 State 1,435,375 Disk 0.2697 0.24 0.1286

 5 Direct access with POINT= Profile 757,346 Disk 0.1853 0.17 0.0660

 option Profile 757,346 RAM 0.1848 0.17 0.0657

 State 1,435,375 Disk 0.2247 0.21 0.0821

 6 Subsetting with FIRSTOBS= Profile 757,346 Disk 0.1909 0.17 0.0687

 OBS= options Profile 757,346 RAM 0.1860 0.17 0.0650

 State 1,435,375 Disk 0.2363 0.22 0.0989

 2 1 Temporary arrays Profile 757,346 Disk 0.0283 0.02 0.0374

 Profile 757,346 RAM 0.0329 0.02 0.0420

 State 1,435,375 Disk 0.0581 0.05 0.0551

 2 WHERE clause non-indexed Profile 757,346 Disk 0.7018 0.64 0.3732

 dataset Profile 757,346 RAM 0.6727 0.62 0.3544

 State 1,435,375 Disk 1.2590 1.31 0.2413

 3 WHERE clause indexed Profile 757,346 Disk 0.1876 0.17 0.0728

 dataset Profile 757,346 RAM 0.1930 0.17 0.0744

 State 1,435,375 Disk 0.2450 0.22 0.1107

 4 Direct access with KEY= Profile 757,346 Disk 0.1932 0.17 0.0819

 option Profile 757,346 RAM 0.1918 0.17 0.0784

 State 1,435,375 Disk 0.2622 0.24 0.1245

 5 Direct access with POINT= Profile 757,346 Disk 0.1791 0.16 0.0612

 option Profile 757,346 RAM 0.1889 0.17 0.0698

 State 1,435,375 Disk 0.2170 0.20 0.0850

 6 Subsetting with FIRSTOBS= Profile 757,346 Disk 0.1786 0.16 0.0605

 OBS= options Profile 757,346 RAM 0.1855 0.17 0.0629

 State 1,435,375 Disk 0.2242 0.21 0.0910

15

Table 4. Summary of Search Times (in seconds) for Alaska for Module 110

State Run

Method

Number

Method

Name

Search

Type Records

Data

Location

Mean

CPU

Time

Median

CPU

Time

Standard

Deviation

CPU

Time

Alaska 1 1 Temporary arrays Profile 434 Disk 0.0008 0.00 0.0027

 Profile 434 RAM 0.0011 0.00 0.0032

 State 578 Disk 0.0013 0.00 0.0034

 2 WHERE clause non-indexed Profile 434 Disk 0.1631 0.17 0.0198

 dataset Profile 434 RAM 0.1594 0.16 0.0203

 State 578 Disk 1.2995 1.38 0.2560

 3 WHERE clause indexed Profile 434 Disk 0.1395 0.14 0.0150

 dataset Profile 434 RAM 0.1399 0.14 0.0152

 State 578 Disk 0.1360 0.14 0.0149

 4 Direct access with KEY= Profile 434 Disk 0.1389 0.14 0.0154

 option Profile 434 RAM 0.1393 0.14 0.0179

 State 578 Disk 0.1372 0.14 0.0155

 5 Direct access with POINT= Profile 434 Disk 0.1394 0.14 0.0155

 option Profile 434 RAM 0.1427 0.14 0.0173

 State 578 Disk 0.1409 0.15 0.0159

 6 Subsetting with FIRSTOBS= Profile 434 Disk 0.1415 0.14 0.0155

 OBS= options Profile 434 RAM 0.1416 0.15 0.0174

 State 578 Disk 0.1380 0.14 0.0155

 2 1 Temporary arrays Profile 434 Disk 0.0012 0.00 0.0032

 Profile 434 RAM 0.0011 0.00 0.0032

 State 578 Disk 0.0015 0.00 0.0036

 2 WHERE clause non-indexed Profile 434 Disk 0.1633 0.17 0.0186

 dataset Profile 434 RAM 0.1638 0.17 0.0189

 State 578 Disk 1.2870 1.36 0.2062

 3 WHERE clause indexed Profile 434 Disk 0.1392 0.14 0.0152

 dataset Profile 434 RAM 0.1416 0.15 0.0151

 State 578 Disk 0.1375 0.14 0.0150

 4 Direct access with KEY= Profile 434 Disk 0.1403 0.14 0.0138

 option Profile 434 RAM 0.1403 0.14 0.0163

 State 578 Disk 0.1369 0.14 0.0149

 5 Direct access with POINT= Profile 434 Disk 0.1435 0.15 0.0147

 option Profile 434 RAM 0.1449 0.15 0.0161

 State 578 Disk 0.1410 0.15 0.0154

 6 Subsetting with FIRSTOBS= Profile 434 Disk 0.1412 0.15 0.0157

 OBS= options Profile 434 RAM 0.1405 0.14 0.0154

 State 578 Disk 0.1400 0.14 0.0157

16

Table 5. Summary of Search Times (in seconds) for Minnesota for Module 110

State Run

Method

Number

Method

Name

Search

Type Records

Data

Location

Mean

CPU

Time

Median

CPU

Time

Standard

Deviation

CPU

Time

Minnesota 1 1 Temporary arrays Profile 9,394 Disk 0.0190 0.02 0.0048

 Profile 9,394 RAM 0.0196 0.02 0.0028

 State 56,187 Disk 0.1099 0.11 0.0163

 2 WHERE clause non-indexed Profile 9,394 Disk 0.6203 0.68 0.1168

 Dataset Profile 9,394 RAM 0.6349 0.69 0.1148

 State 56,187 Disk 1.4641 1.50 0.3713

 3 WHERE clause indexed Profile 9,394 Disk 0.1729 0.18 0.0194

 dataset Profile 9,394 RAM 0.1712 0.18 0.0191

 State 56,187 Disk 0.3557 0.37 0.0421

 4 Direct access with KEY= Profile 9,394 Disk 0.1747 0.18 0.0206

 option Profile 9,394 RAM 0.1814 0.19 0.0204

 State 56,187 Disk 0.3752 0.40 0.0480

 5 Direct access with POINT= Profile 9,394 Disk 0.1680 0.18 0.0224

 option Profile 9,394 RAM 0.1664 0.17 0.0215

 State 56,187 Disk 0.3035 0.32 0.0330

 6 Subsetting with FIRSTOBS= Profile 9,394 Disk 0.1648 0.17 0.0206

 OBS= options Profile 9,394 RAM 0.1676 0.17 0.0201

 State 56,187 Disk 0.3078 0.33 0.0454

 2 1 Temporary arrays Profile 9,394 Disk 0.0179 0.02 0.0056

 Profile 9,394 RAM 0.0198 0.02 0.0047

 State 56,187 Disk 0.1056 0.11 0.0204

 2 WHERE clause non-indexed Profile 9,394 Disk 0.6304 0.69 0.1096

 dataset Profile 9,394 RAM 0.6051 0.66 0.1214

 State 56,187 Disk 1.4015 1.50 0.2361

 3 WHERE clause indexed Profile 9,394 Disk 0.1682 0.17 0.0214

 dataset Profile 9,394 RAM 0.1718 0.18 0.0201

 State 56,187 Disk 0.3428 0.37 0.0491

 4 Direct access with KEY= Profile 9,394 Disk 0.1710 0.17 0.0218

 option Profile 9,394 RAM 0.1738 0.17 0.0218

 State 56,187 Disk 0.3669 0.39 0.0493

 5 Direct access with POINT= Profile 9,394 Disk 0.1674 0.17 0.0212

 option Profile 9,394 RAM 0.1649 0.16 0.0209

 State 56,187 Disk 0.2918 0.31 0.0388

 6 Subsetting with FIRSTOBS= Profile 9,394 Disk 0.1634 0.17 0.0217

 OBS= options Profile 9,394 RAM 0.1683 0.17 0.0204

 State 56,187 Disk 0.3015 0.32 0.0469

17

Table 6. Summary of Search Times (in seconds) for Texas for Module 110

State Run

Method

Number

Method

Name

Search

Type Records

Data

Location

Mean

CPU

Time

Median

CPU

Time

Standard

Deviation

CPU

Time

Texas 1 1 Temporary arrays Profile 122,625 Disk 0.2450 0.25 0.0349

 Profile 122,625 RAM 0.2487 0.25 0.0312

 State 158,341 Disk 0.3197 0.33 0.0359

 2 WHERE clause non-indexed Profile 122,625 Disk 1.4672 1.53 0.2887

 dataset Profile 122,625 RAM 1.4220 1.53 0.2459

 State 158,341 Disk 1.6078 1.72 0.3269

 3 WHERE clause indexed Profile 122,625 Disk 0.6072 0.65 0.0872

 dataset Profile 122,625 RAM 0.6183 0.66 0.0806

 State 158,341 Disk 0.7478 0.80 0.1017

 4 Direct access with KEY= option Profile 122,625 Disk 0.6697 0.71 0.0887

 Profile 122,625 RAM 0.6760 0.72 0.0874

 State 158,341 Disk 0.8165 0.87 0.1046

 5 Direct access with POINT= Profile 122,625 Disk 0.5465 0.58 0.0800

 option Profile 122,625 RAM 0.5084 0.55 0.0962

 State 158,341 Disk 0.5797 0.63 0.0819

 6 Subsetting with FIRSTOBS= Profile 122,625 Disk 0.5131 0.56 0.0857

 OBS= options Profile 122,625 RAM 0.5022 0.55 0.0898

 State 158,341 Disk 0.6320 0.68 0.1015

 2 1 Temporary arrays Profile 122,625 Disk 0.2441 0.25 0.0270

 Profile 122,625 RAM 0.2501 0.25 0.0334

 State 158,341 Disk 0.3124 0.32 0.0408

 2 WHERE clause non-indexed Profile 122,625 Disk 1.4912 1.54 0.2451

 dataset Profile 122,625 RAM 1.4483 1.52 0.3108

 State 158,341 Disk 1.6691 1.75 0.2344

 3 WHERE clause indexed Profile 122,625 Disk 0.6003 0.64 0.0848

 dataset Profile 122,625 RAM 0.6094 0.65 0.0840

 State 158,341 Disk 0.7620 0.81 0.0960

 4 Direct access with KEY= option Profile 122,625 Disk 0.6638 0.70 0.0837

 Profile 122,625 RAM 0.6759 0.72 0.0853

 State 158,341 Disk 0.8256 0.87 0.0959

 5 Direct access with POINT= Profile 122,625 Disk 0.5246 0.56 0.0867

 option Profile 122,625 RAM 0.5248 0.57 0.0890

 State 158,341 Disk 0.5902 0.63 0.0743

 6 Subsetting with FIRSTOBS= Profile 122,625 Disk 0.5047 0.55 0.0859

 OBS= options Profile 122,625 RAM 0.5148 0.56 0.0847

 State 158,341 Disk 0.6454 0.69 0.1001

18

Table 7. Summary of Search Times (in seconds) for All States for Module 320

State Run

Method

Number

Method

Name

Search

Type Records

Data

Location

Mean

CPU

Time

Median

CPU

Time

Standard

Deviation

CPU

Time

All 1 1 Temporary arrays Profile 308,783 Disk 0.0083 0.00 0.0140

 Profile 308,783 RAM 0.0087 0.00 0.0139

 State 643,769 Disk 0.0158 0.01 0.0184

 2 WHERE clause non-indexed Profile 308,783 Disk 0.0705 0.07 0.0307

 dataset Profile 308,783 RAM 0.0687 0.06 0.0298

 State 643,769 Disk 0.1173 0.11 0.0237

 3 WHERE clause indexed Profile 308,783 Disk 0.0411 0.04 0.0246

 dataset Profile 308,783 RAM 0.0416 0.04 0.0255

 State 643,769 Disk 0.0525 0.05 0.0331

 4 Direct access with KEY= Profile 308,783 Disk 0.0430 0.04 0.0278

 option Profile 308,783 RAM 0.0427 0.04 0.0277

 State 643,769 Disk 0.0575 0.05 0.0385

 5 Direct access with POINT= Profile 308,783 Disk 0.0395 0.04 0.0175

 Option Profile 308,783 RAM 0.0371 0.03 0.0162

 State 643,769 Disk 0.0537 0.05 0.0297

 6 Subsetting with FIRSTOBS= Profile 308,783 Disk 0.0374 0.04 0.0164

 OBS= options Profile 308,783 RAM 0.0386 0.04 0.0165

 State 643,769 Disk 0.0447 0.04 0.0212

 2 1 Temporary arrays Profile 308,783 Disk 0.0121 0.00 0.0190

 Profile 308,783 RAM 0.0120 0.00 0.0200

 State 643,769 Disk 0.0227 0.02 0.0262

 2 WHERE clause non-indexed Profile 308,783 Disk 0.0823 0.08 0.0358

 dataset Profile 308,783 RAM 0.0829 0.08 0.0357

 State 643,769 Disk 0.1391 0.14 0.0313

 3 WHERE clause indexed Profile 308,783 Disk 0.0481 0.04 0.0286

 dataset Profile 308,783 RAM 0.0499 0.04 0.0315

 State 643,769 Disk 0.0631 0.05 0.0406

 4 Direct access with KEY= Profile 308,783 Disk 0.0511 0.04 0.0344

 option Profile 308,783 RAM 0.0527 0.04 0.0352

 State 643,769 Disk 0.0675 0.06 0.0468

 5 Direct access with POINT= Profile 308,783 Disk 0.0489 0.05 0.0231

 option Profile 308,783 RAM 0.0472 0.04 0.0221

 State 643,769 Disk 0.0547 0.05 0.0294

 6 Subsetting with FIRSTOBS= Profile 308,783 Disk 0.0451 0.04 0.0202

 OBS= options Profile 308,783 RAM 0.0441 0.04 0.0199

 State 643,769 Disk 0.0515 0.05 0.0255

19

Table 8. Summary of Search Times (in seconds) for Alaska for Module 320

State Run

Method

Number

Method

Name

Search

Type Records

Data

Location

Mean

CPU

Time

Median

CPU

Time

Standard

Deviation

CPU

Time

Alaska 1 1 Temporary arrays Profile 62 Disk 0.0014 0.00 0.0009

 Profile 62 RAM 0.0019 0.00 0.0008

 State 99 Disk 0.0014 0.00 0.0008

 2 WHERE clause non-indexed Profile 62 Disk 0.0314 0.03 0.0077

 dataset Profile 62 RAM 0.0301 0.03 0.0075

 State 99 Disk 0.1014 0.10 0.0123

 3 WHERE clause indexed Profile 62 Disk 0.0295 0.03 0.0075

 dataset Profile 62 RAM 0.0291 0.03 0.0076

 State 99 Disk 0.0271 0.03 0.0073

 4 Direct access with KEY= Profile 62 Disk 0.0290 0.03 0.0075

 option Profile 62 RAM 0.0289 0.03 0.0075

 State 99 Disk 0.0265 0.03 0.0073

 5 Direct access with point= Profile 62 Disk 0.0316 0.03 0.0077

 option Profile 62 RAM 0.0317 0.03 0.0077

 State 99 Disk 0.0321 0.03 0.0093

 6 Subsetting with FIRSTOBS= Profile 62 Disk 0.0308 0.03 0.0076

 OBS= options Profile 62 RAM 0.0307 0.03 0.0076

 State 99 Disk 0.0261 0.03 0.0069

 2 1 Temporary arrays Profile 62 Disk 0.0021 0.00 0.0010

 Profile 62 RAM 0.0021 0.00 0.0010

 State 99 Disk 0.0020 0.00 0.0011

 2 WHERE clause non-indexed Profile 62 Disk 0.0359 0.04 0.0089

 dataset Profile 62 RAM 0.0371 0.04 0.0089

 State 99 Disk 0.1191 0.12 0.0166

 3 WHERE clause indexed Profile 62 Disk 0.0353 0.04 0.0089

 dataset Profile 62 RAM 0.0340 0.03 0.0089

 State 99 Disk 0.0319 0.03 0.0084

 4 Direct access with KEY= Profile 62 Disk 0.0330 0.03 0.0083

 option Profile 62 RAM 0.0349 0.04 0.0085

 State 99 Disk 0.0327 0.03 0.0082

 5 Direct access with POINT= Profile 62 Disk 0.0386 0.04 0.0089

 option Profile 62 RAM 0.0379 0.04 0.0088

 State 99 Disk 0.0331 0.03 0.0086

 6 Subsetting with FIRSTOBS= Profile 62 Disk 0.0364 0.04 0.0090

 OBS= options Profile 62 RAM 0.0360 0.04 0.0088

 State 99 Disk 0.0350 0.04 0.0081

20

Table 9. Summary of Search Times (in seconds) for Minnesota for Module 320

State Run

Method

Number

Method

Name

Search

Type Records

Data

Location

Mean

CPU

Time

Median

CPU

Time

Standard

Deviation

CPU

Time

Minnesota 1 1 Temporary arrays Profile 3,256 Disk 0.0056 0.00 0.0049

 Profile 3,256 RAM 0.0057 0.00 0.0049

 State 17,075 Disk 0.0219 0.02 0.0059

 2 WHERE clause non-indexed Profile 3,256 Disk 0.0607 0.06 0.0092

 dataset Profile 3,256 RAM 0.0592 0.06 0.0090

 State 17,075 Disk 0.1203 0.12 0.0142

 3 WHERE clause indexed Profile 3,256 Disk 0.0367 0.04 0.0081

 dataset Profile 3,256 RAM 0.0362 0.04 0.0080

 State 17,075 Disk 0.0619 0.06 0.0101

 4 Direct access with KEY= Profile 3,256 Disk 0.0370 0.04 0.0080

 option Profile 3,256 RAM 0.0368 0.04 0.0079

 State 17,075 Disk 0.0655 0.06 0.0111

 5 Direct access with POINT= Profile 3,256 Disk 0.0379 0.04 0.0080

 option Profile 3,256 RAM 0.0377 0.04 0.0080

 State 17,075 Disk 0.0590 0.06 0.0140

 6 Subsetting with FIRSTOBS= Profile 3,256 Disk 0.0373 0.04 0.0078

 OBS= options Profile 3,256 RAM 0.0363 0.04 0.0081

 State 17,075 Disk 0.0496 0.05 0.0090

 2 1 Temporary arrays Profile 3,256 Disk 0.0075 0.01 0.0050

 Profile 3,256 RAM 0.0071 0.01 0.0050

 State 17,075 Disk 0.0305 0.03 0.0058

 2 WHERE clause non-indexed Profile 3,256 Disk 0.0711 0.07 0.0111

 dataset Profile 3,256 RAM 0.0720 0.07 0.0100

 State 17,075 Disk 0.1420 0.15 0.0207

 3 WHERE clause indexed Profile 3,256 Disk 0.0417 0.04 0.0093

 dataset Profile 3,256 RAM 0.0422 0.04 0.0099

 State 17,075 Disk 0.0759 0.08 0.0141

 4 Direct access with KEY= Profile 3,256 Disk 0.0435 0.04 0.0098

 option Profile 3,256 RAM 0.0440 0.04 0.0098

 State 17,075 Disk 0.0800 0.08 0.0148

 5 Direct access with POINT= Profile 3,256 Disk 0.0454 0.05 0.0095

 option Profile 3,256 RAM 0.0443 0.05 0.0098

 State 17,075 Disk 0.0638 0.07 0.0133

 6 Subsetting with FIRSTOBS= Profile 3,256 Disk 0.0423 0.04 0.0090

 OBS= options Profile 3,256 RAM 0.0419 0.04 0.0094

 State 17,075 Disk 0.0598 0.06 0.0129

21

 Table 10. Summary of Search Times (in seconds) for Texas for Module 320

State Run

Method

Number

Method

Name

Search

Type Records

Data

Location

Mean

CPU

Time

Median

CPU

Time

Standard

Deviation

CPU

Time

Texas 1 1 Temporary arrays Profile 77,471 Disk 0.0950 0.09 0.0122

 Profile 77,471 RAM 0.0844 0.08 0.0118

 State 99,971 Disk 0.1221 0.12 0.0175

 2 WHERE clause non-indexed Profile 77,471 Disk 0.1936 0.19 0.0193

 Dataset Profile 77,471 RAM 0.1961 0.20 0.0193

 State 99,971 Disk 0.2159 0.21 0.0232

 3 WHERE clause indexed Profile 77,471 Disk 0.1950 0.20 0.0214

 dataset Profile 77,471 RAM 0.1946 0.20 0.0211

 State 99,971 Disk 0.2310 0.23 0.0273

 4 Direct access with KEY= Profile 77,471 Disk 0.2218 0.23 0.0240

 option Profile 77,471 RAM 0.2193 0.22 0.0243

 State 99,971 Disk 0.2657 0.27 0.0332

 5 Direct access with POINT= Profile 77,471 Disk 0.1387 0.14 0.0177

 option Profile 77,471 RAM 0.1408 0.14 0.0182

 State 99,971 Disk 0.1985 0.22 0.0452

 6 Subsetting with FIRSTOBS= Profile 77,471 Disk 0.1364 0.14 0.0162

 OBS= options Profile 77,471 RAM 0.1336 0.13 0.0164

 State 99,971 Disk 0.1579 0.16 0.0180

 2 1 Temporary arrays Profile 77,471 Disk 0.1290 0.13 0.0153

 Profile 77,471 RAM 0.1289 0.13 0.0146

 State 99,971 Disk 0.1626 0.17 0.0248

 2 WHERE clause non-indexed Profile 77,471 Disk 0.2255 0.24 0.0333

 dataset Profile 77,471 RAM 0.2236 0.24 0.0327

 State 99,971 Disk 0.2716 0.29 0.0389

 3 WHERE clause indexed Profile 77,471 Disk 0.2299 0.25 0.0378

 dataset Profile 77,471 RAM 0.2266 0.25 0.0374

 State 99,971 Disk 0.2871 0.31 0.0431

 4 Direct access with KEY= Profile 77,471 Disk 0.2597 0.28 0.0381

 option Profile 77,471 RAM 0.2623 0.28 0.0388

 State 99,971 Disk 0.3232 0.35 0.0497

 5 Direct access with POINT= Profile 77,471 Disk 0.1624 0.18 0.0341

 option Profile 77,471 RAM 0.1683 0.19 0.0339

 State 99,971 Disk 0.2078 0.23 0.0446

 6 Subsetting with FIRSTOBS= Profile 77,471 Disk 0.1574 0.17 0.0277

 OBS= options Profile 77,471 RAM 0.1570 0.17 0.0297

 State 99,971 Disk 0.1962 0.21 0.0318

22

APPENDIX C. BOX PLOTS OF SEARCH METHODS

 All States

C
P

U

T
im

e
 (

s
e

c
)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Search Method
A D I K P F

 Alaska

C
P

U

T
im

e
 (

s
e

c
)

0.00

0.03

0.06

0.09

0.12

0.15

0.18

0.21

0.24

Search Method
A D I K P F

 Minnesota

C
P

U

T
im

e
 (

s
e

c
)

0.00

0.08

0.16

0.24

0.32

0.40

0.48

0.56

0.64

0.72

0.80

Search Method
A D I K P F

 Texas

C
P

U

T
im

e
 (

s
e

c
)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Search Method
A D I K P F

 All States

C
P

U

T
im

e
 (

s
e

c
)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Search Method
A D I K P F

 Alaska

C
P

U

T
im

e
 (

s
e

c
)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

Search Method
A D I K P F

 Minnesota

C
P

U

T
im

e
 (

s
e

c
)

0.00

0.08

0.16

0.24

0.32

0.40

0.48

0.56

0.64

0.72

0.80

Search Method
A D I K P F

 Texas

C
P

U

T
im

e
 (

s
e

c
)

0.0

0.4

0.8

1.2

1.6

2.0

2.4

2.8

3.2

3.6

Search Method
A D I K P F

Figure 3. Comparison of Search Methods for Module 110
Profile Search, Data on Disk

 D=Where clause non-indexed dataset K=Direct access with key= option F=Subsetting with firstobs= obs= options
 A=Temporary arrays I=Where clause indexed dataset P=Direct access with point= option

 Run1

 Run2

23

 All States

C
P

U

T
im

e
 (

s
e

c
)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Search Method
A D I K P F

 Alaska

C
P

U

T
im

e
 (

s
e

c
)

0.00

0.03

0.06

0.09

0.12

0.15

0.18

0.21

0.24

Search Method
A D I K P F

 Minnesota

C
P

U

T
im

e
 (

s
e

c
)

0.00

0.08

0.16

0.24

0.32

0.40

0.48

0.56

0.64

0.72

0.80

Search Method
A D I K P F

 Texas

C
P

U

T
im

e
 (

s
e

c
)

0.0

0.3

0.6

0.9

1.2

1.5

1.8

2.1

Search Method
A D I K P F

 All States

C
P

U

T
im

e
 (

s
e

c
)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Search Method
A D I K P F

 Alaska

C
P

U

T
im

e
 (

s
e

c
)

0.00

0.03

0.06

0.09

0.12

0.15

0.18

0.21

0.24

Search Method
A D I K P F

 Minnesota

C
P

U

T
im

e
 (

s
e

c
)

0.00

0.08

0.16

0.24

0.32

0.40

0.48

0.56

0.64

0.72

0.80

Search Method
A D I K P F

 Texas

C
P

U

T
im

e
 (

s
e

c
)

0.0

0.3

0.6

0.9

1.2

1.5

1.8

2.1

2.4

2.7

3.0

Search Method
A D I K P F

Figure 4. Comparison of Search Methods for Module 110
Profile Search, Data on RAM

 D=Where clause non-indexed dataset K=Direct access with key= option F=Subsetting with firstobs= obs= options
 A=Temporary arrays I=Where clause indexed dataset P=Direct access with point= option

 Run1

 Run2

24

 All States

C
P

U

T
im

e
 (

s
e

c
)

0.0

0.3

0.6

0.9

1.2

1.5

1.8

2.1

2.4

Search Method
A D I K P F

 Alaska

C
P

U

T
im

e
 (

s
e

c
)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Search Method
A D I K P F

 Minnesota

C
P

U

T
im

e
 (

s
e

c
)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Search Method
A D I K P F

 Texas

C
P

U

T
im

e
 (

s
e

c
)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Search Method
A D I K P F

 All States

C
P

U

T
im

e
 (

s
e

c
)

0.0

0.3

0.6

0.9

1.2

1.5

1.8

2.1

2.4

2.7

Search Method
A D I K P F

 Alaska

C
P

U

T
im

e
 (

s
e

c
)

0.0

0.3

0.6

0.9

1.2

1.5

1.8

2.1

2.4

2.7

Search Method
A D I K P F

 Minnesota

C
P

U

T
im

e
 (

s
e

c
)

0.0

0.3

0.6

0.9

1.2

1.5

1.8

2.1

2.4

2.7

Search Method
A D I K P F

 Texas

C
P

U

T
im

e
 (

s
e

c
)

0.0

0.3

0.6

0.9

1.2

1.5

1.8

2.1

2.4

2.7

Search Method
A D I K P F

Figure 5. Comparison of Search Methods for Module 110
State Search, Data on Disk

 D=Where clause non-indexed dataset K=Direct access with key= option F=Subsetting with firstobs= obs= options
 A=Temporary arrays I=Where clause indexed dataset P=Direct access with point= option

 Run1

 Run2

25

 All States
C

P
U

T

im
e

 (
s

e
c

)

0.00

0.03

0.06

0.09

0.12

0.15

0.18

0.21

0.24

0.27

Search Method
A D I K P F

 Alaska

C
P

U

T
im

e
 (

s
e

c
)

0.000

0.006

0.012

0.018

0.024

0.030

0.036

0.042

0.048

0.054

0.060

Search Method
A D I K P F

 Minnesota

C
P

U

T
im

e
 (

s
e

c
)

0.000

0.008

0.016

0.024

0.032

0.040

0.048

0.056

0.064

0.072

0.080

Search Method
A D I K P F

 Texas

C
P

U

T
im

e
 (

s
e

c
)

0.00

0.03

0.06

0.09

0.12

0.15

0.18

0.21

0.24

0.27

0.30

Search Method
A D I K P F

 All States

C
P

U

T
im

e
 (

s
e

c
)

0.00

0.03

0.06

0.09

0.12

0.15

0.18

0.21

0.24

0.27

0.30

Search Method
A D I K P F

 Alaska

C
P

U

T
im

e
 (

s
e

c
)

0.000

0.008

0.016

0.024

0.032

0.040

0.048

0.056

0.064

0.072

0.080

Search Method
A D I K P F

 Minnesota

C
P

U

T
im

e
 (

s
e

c
)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Search Method
A D I K P F

 Texas

C
P

U

T
im

e
 (

s
e

c
)

0.00

0.04

0.08

0.12

0.16

0.20

0.24

0.28

0.32

0.36

Search Method
A D I K P F

Figure 6. Comparison of Search Methods for Module 320
Profile Search, Data on Disk

 D=Where clause non-indexed dataset K=Direct access with key= option F=Subsetting with firstobs= obs= options
 A=Temporary arrays I=Where clause indexed dataset P=Direct access with point= option

 Run1

 Run2

26

 All States
C

P
U

T

im
e

 (
s

e
c

)

0.00

0.03

0.06

0.09

0.12

0.15

0.18

0.21

0.24

0.27

Search Method
A D I K P F

 Alaska

C
P

U

T
im

e
 (

s
e

c
)

0.000

0.006

0.012

0.018

0.024

0.030

0.036

0.042

0.048

0.054

0.060

Search Method
A D I K P F

 Minnesota

C
P

U

T
im

e
 (

s
e

c
)

0.000

0.008

0.016

0.024

0.032

0.040

0.048

0.056

0.064

0.072

0.080

Search Method
A D I K P F

 Texas

C
P

U

T
im

e
 (

s
e

c
)

0.00

0.03

0.06

0.09

0.12

0.15

0.18

0.21

0.24

0.27

0.30

Search Method
A D I K P F

 All States

C
P

U

T
im

e
 (

s
e

c
)

0.00

0.03

0.06

0.09

0.12

0.15

0.18

0.21

0.24

0.27

0.30

Search Method
A D I K P F

 Alaska

C
P

U

T
im

e
 (

s
e

c
)

0.000

0.009

0.018

0.027

0.036

0.045

0.054

0.063

0.072

0.081

0.090

Search Method
A D I K P F

 Minnesota

C
P

U

T
im

e
 (

s
e

c
)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

Search Method
A D I K P F

 Texas

C
P

U

T
im

e
 (

s
e

c
)

0.00

0.04

0.08

0.12

0.16

0.20

0.24

0.28

0.32

0.36

Search Method
A D I K P F

Figure 7. Comparison of Search Methods for Module 320
Profile Search, Data on RAM

 D=Where clause non-indexed dataset K=Direct access with key= option F=Subsetting with firstobs= obs= options
 A=Temporary arrays I=Where clause indexed dataset P=Direct access with point= option

 Run1

 Run2

27

 All States
C

P
U

T

im
e

 (
s

e
c

)

0.00

0.04

0.08

0.12

0.16

0.20

0.24

0.28

0.32

Search Method
A D I K P F

 Alaska

C
P

U

T
im

e
 (

s
e

c
)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Search Method
A D I K P F

 Minnesota

C
P

U

T
im

e
 (

s
e

c
)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

Search Method
A D I K P F

 Texas

C
P

U

T
im

e
 (

s
e

c
)

0.00

0.04

0.08

0.12

0.16

0.20

0.24

0.28

0.32

0.36

Search Method
A D I K P F

 All States

C
P

U

T
im

e
 (

s
e

c
)

0.00

0.04

0.08

0.12

0.16

0.20

0.24

0.28

0.32

0.36

0.40

Search Method
A D I K P F

 Alaska

C
P

U

T
im

e
 (

s
e

c
)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Search Method
A D I K P F

 Minnesota

C
P

U

T
im

e
 (

s
e

c
)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

Search Method
A D I K P F

 Texas

C
P

U

T
im

e
 (

s
e

c
)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Search Method
A D I K P F

Figure 8. Comparison of Search Methods for Module 320
State Search, Data on Disk

 D=Where clause non-indexed dataset K=Direct access with key= option F=Subsetting with firstobs= obs= options
 A=Temporary arrays I=Where clause indexed dataset P=Direct access with point= option

 Run1

 Run2

28

APPENDIX D. PLOTS OF SEARCH METHODS

 All States
C

P
U

T

im
e

 (
s

e
c

)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Search Method
A D I K P F

 Alaska

C
P

U

T
im

e
 (

s
e

c
)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Search Method
A D I K P F

 Minnesota

C
P

U

T
im

e
 (

s
e

c
)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Search Method
A D I K P F

 Texas

C
P

U

T
im

e
 (

s
e

c
)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Search Method
A D I K P F

 All States

C
P

U

T
im

e
 (

s
e

c
)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Search Method
A D I K P F

 Alaska

C
P

U

T
im

e
 (

s
e

c
)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Search Method
A D I K P F

 Minnesota

C
P

U

T
im

e
 (

s
e

c
)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Search Method
A D I K P F

 Texas

C
P

U

T
im

e
 (

s
e

c
)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Search Method
A D I K P F

Figure 9. Comparison of Average Search Times for Module 110

 D=Where clause non-indexed dataset K=Direct access with key= option F=Subsetting with firstobs= obs= options
 A=Temporary arrays I=Where clause indexed dataset P=Direct access with point= option

Search Level, Data Location Profile, Disk Profile, RAM State, Disk

 Run1

 Run2

29

 All States
C

P
U

T

im
e

 (
s

e
c

)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Search Method
A D I K P F

 Alaska

C
P

U

T
im

e
 (

s
e

c
)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Search Method
A D I K P F

 Minnesota

C
P

U

T
im

e
 (

s
e

c
)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Search Method
A D I K P F

 Texas

C
P

U

T
im

e
 (

s
e

c
)

0.00

0.04

0.08

0.12

0.16

0.20

0.24

0.28

0.32

0.36

Search Method
A D I K P F

 All States

C
P

U

T
im

e
 (

s
e

c
)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Search Method
A D I K P F

 Alaska

C
P

U

T
im

e
 (

s
e

c
)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Search Method
A D I K P F

 Minnesota

C
P

U

T
im

e
 (

s
e

c
)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Search Method
A D I K P F

 Texas

C
P

U

T
im

e
 (

s
e

c
)

0.00

0.04

0.08

0.12

0.16

0.20

0.24

0.28

0.32

0.36

Search Method
A D I K P F

Figure 10. Comparison of Average Search Times for Module 320

 D=Where clause non-indexed dataset K=Direct access with key= option F=Subsetting with firstobs= obs= options
 A=Temporary arrays I=Where clause indexed dataset P=Direct access with point= option

Search Level, Data Location Profile, Disk Profile, RAM State, Disk

 Run1

 Run2

