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Valuing Public Information in Agricultural Commodity Markets: 

WASDE Corn Reports  

 

Abstract  

Monthly WASDE reports by USDA estimate current and future global supply-utilization balances for 
various commodities, including corn. Existing literature has shown that markets respond to WASDE 
releases (news effects) but has not quantified the value or distribution of benefits from those reports. 
We use Monte Carlo simulations of a quarterly model of the U.S. corn market to estimate the value of 
the WASDE forecast and its components. Our results show significant value to market participants from 
the WASDE reports, roughly $301 million or 0.55% of overall corn market value. The results also show 
significant value for each forecasted component of the reports: area ($145 million), yield ($188 million), 
production ($299 million), demand/stocks ($300 million) and exports ($320 million). The benefits of 
each component do not strictly sum when new information is added because substantial redistribution 
of benefits occurs, since specific information components help specific interest groups. The expected 
benefits or losses realized by consumers, producers or traders is often nearly as large as (and sometimes 
larger than) the net benefits to society from better information. In the base case benefits from WASDE 
information largely accrues to producers ($153 million) and consumers ($341 million). Traders lose $192 
million, as they are presumed to buy at harvest, before valuable demand, stocks and export data is 
known.  Farmers behave as traders when they choose to store, sell forward, or participate directly in 
futures markets. Thus, the net trader benefit or loss accrues partially to farmers as traders and partially 
to commercial agents. These results are sensitive to elasticity assumptions that capture both how agents 
behave in markets and how their welfare is measured.  

 

Keywords: Market information, public information, World Agricultural Supply and Demand Estimates 
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Valuing Public Information in Agricultural Commodity Markets: WASDE Corn Reports  

 

Introduction 

Information plays a vital role in ensuring the efficiency of market outcomes. With an inaccurate forecast, 

hence poor market information, quantities are misallocated over time and space due to inefficient price 

signals, resulting in social welfare losses. In agricultural commodity markets information is largely 

shaped by public information sources, which provide numerous historical statistics as well as projections 

on future supply, domestic use, trade, and storage. The monthly World Agricultural Supply and Demand 

Estimates (WASDE) issued by the World Agricultural Outlook Board (WAOB) of the United States 

Department of Agriculture (USDA) estimate current and future global supply-utilization balances for 

various commodities. Those forecasts are informed by area, yield and stocks surveys in the U.S. 

conducted by the National Agricultural Statistical Service (NASS) of USDA as well as by independent data 

from other public (and private) entities on trade and use. The Foreign Agricultural Service (FAS) of USDA 

through its network of overseas agricultural attaches collects information on foreign production and 

trade, informing WASDE export demand and foreign supply –use balance forecasts. 

 

Market agents use information from WASDE (and other sources) to shape decision-making, as shown in 

recent literature (Lusk, 2013). That literature has found that WASDE reports influence market 

performance (news effects), but it does not attempt to quantify the value of that information (e.g. 

Adjemian,2012; Garcia et al., 1997; Isengildina-Massa et al., 2008). Much earlier work (Bradford and 

Kelejian 1977, 1978; Hayami and Peterson 1972) followed an approach similar to that found in early 

literature evaluating price stabilization policies to approximate the value of public information for 

agricultural markets. More recent work has also investigated “myths” that WASDE reports incorporate 

systematic biases, finding that those myths generally are not well founded, but that sampling error from 

the surveys on which the WASDE balances are based matters (Irwin, Sanders and Good, 2014). Irwin and 

Good (2015) also connsidered the role of emerging private forecasts, which they argue are not 

nationally representitive nor as complete as USDA efforts, but may complement WASDE outlook and 

NASS data.  Nevertheless, controversy persists, leaving funding of WASDE and NASS efforts vulnerable in 

a budget limited environment. Given this recent empirical work, as well as increased scrutiny of WASDE 

in commodity markets and on government expenditures, a greater understanding of the value of this 

public information is both timely and warranted. 
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This paper develops an empirical model for quantifying the value of public information provided to 

agricultural markets, with specific application to WASDE reports on the US corn market. Our approach 

builds on advances in the price stabilization literature through the use of Monte-Carlo simulations to 

more accurately depict implications of detailed market forecast distributions and the impact of 

improving information over time. A dynamic quarterly model of the US corn market is fit to USDA’s corn 

data from its feed grain database (USDA, ERS, 2015). In each quarter, beginning when area planted 

survey information first becomes available and continuing until full information is obtained (hence 

overlapping the prior and next crop years), predicted supply–use equilibrium takes into account history 

(prior quarters) and expectations on future supply-use balance. As the model progresses across time 

and new, improved forecasts are revealed, current and expected future equilibriums are continually 

estimated, while past period equilibrium outcomes become fixed. The process follows that of any 

dynamic market with updating information, where current decisions influence future supply and use 

balances through the irreversibility of previous outcomes.  

 

The model is built along the lines of a standard commodity model, where supply-use balance establishes 

equilibrium conditions, and price is the endogenous variable determining components of that 

equilibrium. Uncertainty is captured as error realizations in the constants of linear supply and demand 

(component) functions.  As information is updated over time, better forecasts are made, reducing the 

size of unobserved (unrealized) errors. Supply is uncertain through the uncertainty of both area and 

yield, while demand is uncertain through stocks, foreign and domestic use forecast errors. The supply-

utilization balance of markets and of WASDE forecasts require estimation of forecast errors that are 

correlated. Moreover, stocks data rather than use are collected by USDA surveys and price 

determination is often informed by expected stocks-to-use ratios (Wright, 2011). We therefore utilize 

the theory of storage (Wright and Williams, 1982) to capture price dynamics both within and across crop 

years, which are linked by annual carry-out stocks. 

  

The value of information is derived from the ability to forecast future events with greater accuracy, such 

that more efficient decisions can be made and current use will not exceed or fall below eventual supply 

as much as in less well-informed cases. Monte-Carlo simulations trace out the distributions of expected 

outcomes based on forecast errors found in historical WASDE data. Simulated forecast errors in the 

model include area, yield, exports, and stocks. While the expectation of the errors remains constant at 
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zero across time, the variance or likelihood of larger errors is declining as new quarterly forecasts 

become available, since information is continually improving. Predictions of expected distributions for 

prices, uses and welfare are compared to two counterfactual cases – behavior under a naïve forecast 

based on historical trends and under perfect information. Sensitivity analysis explores alternative 

behavioral parameter assumptions as well as decomposing the value of WASDE forecast components.  

  

Results highlights 

By adjusting the assumptions on forecast errors, value can be quantified based on the differences in 

expected social welfare across cases. Our results show significant value to market participants from the 

WASDE reports, roughly $301 million or 0.55% of corn market value (as measured by producer revenue). 

Since median welfare improvement was $340 million, the distribution of welfare outcomes is skewed, 

with information being more valuable when stocks are low and production shortfalls are likely. 

Additionally, our results show significant value for each component of the WASDE reports: area ($145 

million), yield ($188 million), and production ($299 million). Improvement in overall welfare from better 

demand/stocks or export information is small after production information improves, but there is 

significant redistribution of benefits to producers and consumers.  

Benefits from the WASDE information largely accrue to producers ($153 million) and consumers ($341 

million). Traders lose $192 million, an amount equal to about 10% of the storage cost payments 

received. They are presumed to buy at harvest, before valuable demand, stocks and export data is 

known. Redistribution is large relative to net welfare gains. 1 Farmers who store, sell forward, or 

participate in futures markets realize part of the benefits/losses attributed here to traders. That is, 

farmers engage in some activities as producers, and some as traders. Other participants in commodities 

markets, in addition to farmers, also realize part of the trader profits or losses. An alternative model 

specification is included to identify by how much farmers as producers benefit from WASDE information, 

showing that adjusting supply (area and inputs at planting) to expected profits yields substantial value 

(as much as $137 million) to farmers.  

                                                           
1 While the change in value due to new information for traders is negative, this is a deduction from storage 
charges. If firms can store below the market storage cost rate, their returns to trading are higher. The expected 
positive returns to traders from more efficient storage explains the rationale for participating in the market. 
Moreover, results suggest the uncertainty with only trend information available harms producers and consumers 
more so than traders.  
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The model utilized parameter values taken from literature rather than from our own econometric 

estimation. Therefore, sensitivity analyses were also performed to account for various assumptions on 

demand and supply parameters/elasticities. Given the nature of the model and ambiguities in previous 

literature on the magnitudes of these parameters, scenarios are presented which span the range of 

previously estimated elasticities. Information was shown to be $22 million more valuable in highly 

elastic cases relative to the base assumptions, and as much as $80 million less in the most inelastic 

cases, as the results are strongly dependent on supply parameter assumptions.  

 

 Roadmap 

The next section provides background information on USDA data collection and forecasts. Next, we 

explore conceptual issues related to modeling and valuing public information. Our model specification is 

then described, followed by our Monte Carlo simulation strategy, and information on empirical 

implementation of our US corn market model. Results are provided next, including our estimates of the 

value attributable to the various components of WASDE forecasts as well as the sensitivity analysis on 

key model parameters. The concluding section summarizes our findings and their implications as well as 

limitations of our approach.  

 

Background and Conceptual Issues 

The World Agricultural Supply and Demand Estimates (WASDE) created by the United States 

Department of Agriculture’s (USDA) World Agricultural Outlook Board (WAOB) are the most widely 

disseminated source of information on U.S. agricultural markets today (Adjemian 2012). In each monthly 

report estimates are made of past, current and future supply and demand quantities for various 

commodities important to US agricultural markets. WASDE estimates outcomes in detail for domestic 

supply and use as well as global outcomes influencing trade. This report is presented as a compilation 

from multiple sources within the USDA (and outside) describing the state of the market as well as 

providing a forecast (Vogel & Bange, 1999). 

USDA’s National Agricultural Statistical Service (NASS) is one key source. NASS surveys farmers and 

commercial agents to estimate area planted and harvested, yield, and stocks. FAS and its PS&D 

(Production, Supply and Demand) database provide information and outlook on foreign production, 

trade and other components of foreign and global supply utilization balances. NASS surveys, FAS data 
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and WAOB models generate estimates of historical data describing U.S. agricultural markets as well as 

outlook information on future expectations. Our methods focus on the outlook effort, as it is difficult to 

imagine a counterfactual scenario where there is no information, even on historical data, from USDA. 

While the historical data is also clearly valuable, our methods will not be able to estimate just how 

valuable it is. This means one issue we will not address is the controversy over estimating trend 

expectations (the basis for our naïve case and the WASDE starting point) before survey results become 

available (Irwin and Good, 2015). 

Table 1 reports errors in expectations from various monthly WASDE reports, showing the extent to 

which information improves as time passes. It also shows the estimated forecast error from a naïve 

forecast. The naïve forecast error is based on annual linear trend forecasts, and is simply the difference 

between that trend forecast and actual outcomes. While additional information in the market is likely 

available beyond trend forecasting projections, particularly as the year proceeds, this method provides a 

baseline understanding to the role of USDA and WASDE information, and how the market would behave 

in the absence of any information. The updating of information provided by WASDE forecasts is shown 

in the reductions of the variance of forecast errors over the course of the year as new, improved 

forecasts are issued. It is seen in table 1 that early on WASDE forecasts exhibit errors similar to those of 

a naïve trend forecast, but information improves when survey data and observations on crop conditions 

here and abroad yield better market information.2 These historical error distributions will be used to 

represent the case where USDA data informs markets as well as what errors might look like in a case 

corresponding with trend (naive) expectations. Table 1 shows that information on production is 

revealed relatively early in the crop year, while domestic use and foreign demand are slower to be 

resolved, as they are due to later events like foreign production and changes in exchange rates.  

The presence of complementary private information sources in addition to WASDE offers an argument 

against strictly valuing WASDE forecasts based on outcomes relative to naïve trends. However, there is 

debate as to the extent to which those private forecasts improve on (or could substitute for) the USDA 

forecasts, and specifically on how complete and nationally representative they are (Irwin and Good, 

2015). In the absence of USDA data and forecasts, relatively poor, limited private information would 

need to fill the gap. These private forecasts are often not free and nor publicly available, and typically 

rely heavily on USDA’s historical databases.  

                                                           
2 Historical errors, both naïve and in WASDE forecasts are estimated from data starting in 1993. Prior to 1993 USDA 
did not make production forecasts in May 
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There are also international sources for outlook information on some crops – from AMIS and the 

International Grains Council. These estimates are not independent of USDA data nor its outlook 

projections. They are competitive yet complementary to the USDA effort, and USDA is an active 

participant in AMIS. The FAO, who manages AMIS, and USDA share information, even if final data or 

projections may differ. Moreover, AMIS data are in principle a compilation of national outlook estimates 

by member governments, which may vary in quality. AMIS’s track record is too new to see how accurate 

its’ outlook is relative to WASDE.3  

Our results will show that farmers benefit or lose from market information in their capacity as traders as 

well as producers. Additionally, the results suggest it is likely that farmers may benefit more from public 

information, since large commercial entities have greater capacity to generate data and market 

information if USDA data were not available. We shall assume the USDA forecasts are the best available 

public information, and our valuation estimate will be based on their forecasts.  

Valuing Public Information 

Information plays a vital role in ensuring the efficiency of agricultural commodity markets. The decisions 

to plant crop varieties, make investments, produce livestock, store or sell at harvest, and more are 

rooted in the information obtained through and about commodity markets. Accurate information and 

forecasts prevent misallocation of physical and financial resources over time, while imperfect (or 

incorrect) information can generate volatility in markets as agents respond quickly when presented with 

unexpected information. In addition to the overall gains from reduced volatility, greater information can 

shift welfare across market participants as select agents benefit/suffer under scenarios with 

misinformation. 

In assessing value to public information, one must determine the decisions which are influenced by that 

information. The relationship of dynamic information on equilibria and welfare can be anecdotally 

explained through a scenario of bad information. An inaccurate forecast sets spot prices at inefficient 

                                                           
3 While admittedly there are many information sources for the US corn market, both public and private, 

the difficulty of untangling the related and dependent sources makes it challenging to strictly assume 

WASDE is the sole source of information for determining market outcomes. Moreover, the naïve trend 

forecast cannot fully represent the information available to market participants without WASDE.  

 



9 
  

levels, generating an inefficient allocation of use, trade and stocks. As time progresses previous 

outcomes are fixed and the quantities now available are above or below efficient levels due to the 

inaccurate prior estimate. This distortionary effect of imperfect information on all future equilibria 

through a misallocation of initial consumption (use) sets all future outcomes on an inefficient path, 

influencing expected welfare. Accurate information, however, creates a smoothing of prices and 

consumption over the crop year, as quantities can be efficiently allocated and priced across time based 

on actual availability. Capturing the dynamics of the crop year and the timing of decisions is therefore 

important for effectively valuing information provided in WASDE reports.   

Hayami and Peterson (1972) were among the first to propose a method for valuing information in an 

agricultural context. They analyzed the market in two separate forms: an inventory adjustment model 

and a production adjustment model. Defining these models through linear supply and demand 

functions, the authors were able to attribute changes in welfare in a two-period model due to more 

accurate early information. In their inventory adjustment model, production was determined 

exogenously, and information affected storage levels. In the production adjustment model, supply was 

endogenously determined by producers’ expectations of market behavior. In either model the valuation 

of information can be attributed to improving on the inefficient levels of supply and demand caused by 

inaccurate information.  

Bradford and Kelejian (1977) advanced this research through a model which linked prices with storage, 

as speculative stockholders determine efficient quantities stored to carry across time periods. 

Information influences stockholder behavior, which directly determines supply and demand throughout 

the year as well as carryover stocks before the next harvest. The storage literature provides the basis for 

understanding the linkage between storage costs, expected output prices, interest rates, and storage 

levels (Wright & Williams, 1982). Through this multi-period linkage of stocks, production, and prices 

their model more closely followed storage theory and market behavior. 

The approaches in that early research utilized minimal discrete approximations to production 

uncertainty, as opposed to now more modern Monte Carlo simulation modeling. That approach was 

quite similar to the early approach taken to examine price stabilization policy (e.g. Waugh, 1944; Oi, 

1961; Massell, 1969). Advances in examining stabilization policy resorted to Monte Carlo simulations to 

capture the distributions of uncertain model elements, since large number of repetitions and 

distributional assumptions could be used to better model uncertainty (e.g. Bigman and Reutlinger, 1979; 
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Wright, 2001; Gouel, 2013). While there has not been recent work valuing public agricultural commodity 

information, the Monte Carlo simulation approach is appropriate as a framework to advance the work 

on this topic. 

 

Simulation Model  

The research presented here estimates specific value to WASDE forecasts/reports through the use of 

dynamic multi-period Monte Carlo simulations of the US market for corn. Building off the inventory 

adjustment models that assessed information through limited discrete assumptions on information 

errors (Bradford & Kelejian, 1977; Hayami & Peterson, 1972), Monte Carlo simulations were produced to 

analyze the value of information based on forecast distributions under uncertainty. Asymptotically 

continuous forecast distributions can be derived for market outcomes that more accurately depict 

market behavior and consequences from better information. Relative to that early research, this 

approach also advances previous work by separating production uncertainty into correlated area and 

yield uncertainty, as well as through considering domestic use (hence feed use or stocks) and foreign 

demand uncertainty. 

The model used here starts with a dynamic quarterly inventory adjustment model that analyzes the 

short run outcomes of the US corn market over the course of one crop year. Equilibrium conditions 

based on supply-use balance for each crop year fundamentally set the equations of the model. The price 

in the period corresponding to the quarter in which the forecast is issued is the corresponding 

endogenous variable. Expected quarterly future prices are then set based on storage theory, and supply 

and demand components each quarter may be calculated and then summed across quarters using linear 

functions embedded in the equilibrium conditions. Forecast errors are found in the constants of those 

functions.  The long run model links these short run models again using storage theory along with the 

assumption that short run supply is based on expected prices found in the fourth quarter of the previous 

crop year. A ten-year sequence of one crop-year quarterly models is generated 3000 times, and 

distributions of current and expected prices, quantities, and welfare measures are observed.4  The short 

                                                           
4 Given the complexity of our uncertainty specification (forecast error realizations for area, yield, exports 
and feed demand by quarter), a large number of repetitions are required to consistently estimate 
expected outcome distributions. Additionally, 3,000 simulations were chosen based on the trade-off between 
computing speed and the convergence of the results. The simulation results appeared to converge toward a 
consistent solution with 1,000 simulations but we used more simulations to be cautious.   



11 
  

run model is similar to previous models that have set an unknown exogenous supply level. Farms also 

use information in choosing inputs (variety, fertilizer and chemical use, and area planted), so alternative 

assumptions on medium run supply response to expected prices are also captured in the way the 

sequence of short run models are linked. The focus of the short run component of the model is heavily 

on the role of information in shaping consumption (use) and inventory levels. In the longer run, supply 

for an upcoming crop year depends on expected harvest prices, with expectations formed at planting. 

The value of information can then be directly attributable to differences in various welfare measures 

under alternative information scenarios affecting production, use, storage and trade decisions. For 

example, a sensitivity analysis scenario with perfectly inelastic supply in the long run will help show that 

supply response allows farmers to realize significantly greater value from better market information.  

The WASDE reports by the USDA are released monthly as projections of supply and use for the entire 

crop year. In order to create a multi-period single crop year model, information is required at less time-

aggregated levels than yearly statistics. The least aggregated complete data on consumption and use for 

corn from the USDA is quarterly in its feed grain database (USDA, 2015). Previous research forced strong 

assumptions on similar statistics and disaggregated the quarterly data into a monthly model (Bradford & 

Kelejian, 1978). This method was not implemented here as it is expected that it would only increase 

complexity without improving the nature of the results, and is not supported by realistic data 

availability. Bradford & Kelejian (1978) do show a positive relationship between forecast frequency and 

value of information, implying the quarterly model used in this paper likely underestimates the true 

value of monthly WASDE reports.  

The short run implementation of the model is a six-quarter model that links across three crop years: 

prior, current (year of focus), and following. By including the quarter before the crop year and 

assumptions on expectations about the next crop year, the model can evaluate the effect of stocks 

across crop years. Moreover, information is available before the beginning of the crop year, which is 

typically set when harvest begins. Information on the next crop year influences demand and stocks 

toward the end of a crop year, and information is not fully known until the next crop year has begun. 

The long run is captured by solving a sequence of these short run models, with solutions for one crop 

year becoming prior information for the next crop year simulated.  

Each forecast catalogues a point in time that represents when new information is realized by market 

participants. As information is continually updated with each new forecast, the quarterly periods 

transition from expected outcomes to realized values and then to history over the course of the crop 
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year. Equilibriums for every quarter are determined by history, current events, and the expectations of 

future supply and demand, as well as the linkages across periods through expected prices and storage 

costs. With new information there are shifts in the expectations of supply and demand, as well as the 

realized values of prior quarter’s use and trade levels, which generates new estimated equilibriums for 

the future periods. This process continues dynamically for each forecast period until all uncertainty on 

the current crop year is removed.  

Though supply is fixed (once planting decisions are taken), it remains unknown to all market participants 

due to area and yield uncertainty until harvest.5 Similar to market conditions, it is assumed here that 

farmers plant an unknown quantity of acres with uncertain yields. Expected area planted and yield will, 

however, depend on expected future prices at the time of planting. As time progresses, actual area 

becomes known to the market while yield remains uncertain. Updates to the expectations of crop yield 

are made throughout the season. When harvesting is finished, actual yield is realized and production is 

fully known.  Uncertainty in demand, omitted in previous studies, is also considered in this model since 

each WASDE report makes projections on domestic use, exports and stocks.  

The model specification is fully described below. Our simulation model is constructed around the 

supply-utilization (S-U) balance that serves as the basis for WASDE reports and USDA’s Feedgrains and 

PS&D databases. Behavioral relationships for each component of S-U balance are then described, along 

with corresponding welfare measures for relevant agents – farmers, end users, and traders. 

Supply-Utilization Equilibria 

In each quarter, hence for the entire crop year, carry-in stocks plus production equals domestic demand, 

net exports and carry-out stocks: 

(1) 𝑆𝑆𝑡𝑡−1 + 𝑄𝑄𝑄𝑄𝑡𝑡 = 𝑄𝑄𝑄𝑄𝑡𝑡 + 𝐸𝐸𝑡𝑡 + 𝑆𝑆𝑡𝑡 Quarterly S-U balance 

(2) 𝑆𝑆0 + 𝑄𝑄𝑄𝑄1 = �[𝑄𝑄𝑄𝑄𝑡𝑡 + 𝐸𝐸𝑡𝑡]
4

𝑡𝑡=1

+ 𝑆𝑆4 Annual S-U balance 

where 𝑆𝑆𝑡𝑡 is stocks carried out from period (quarter) 𝑡𝑡, hence carried into quarter 𝑡𝑡 + 1, 𝑄𝑄𝑄𝑄𝑡𝑡 is quantity 

supplied (harvested) in period 𝑡𝑡, 𝑄𝑄𝑄𝑄𝑡𝑡 is domestic demand in period 𝑡𝑡, and 𝐸𝐸𝑡𝑡 is exports during period 𝑡𝑡. 

                                                           
5 We assume producers, consumers, end users and traders all have access to the same market information. This is 
least likely to be true for the naïve scenarios, where commercial agents may have better information if USDA 
information is no longer made public. 
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Production is harvested only in the first quarter of a crop year (𝑡𝑡 = 1). In each other quarter supply 

equals stocks carried in from the prior quarter (e.g. 𝑆𝑆3 in quarter 4), so 𝑄𝑄𝑄𝑄𝑡𝑡 = 0 for 𝑡𝑡 ≠ 1.  

This equilibrium condition must be respected for actual quantities produced and consumed, and will 

also be respected in assessing market expectations when using imperfect information to set the market 

price. Time subscripts (t) denote when transactions occur (t), and superscripts (f) indicate when 

forecasts are issued (f). Table 2 indicates when these periods are. With a forecast in each f period, 

expectations are determined for all current and future periods (all t ≥ f) such that the S-U equilibrium 

condition holds: 

(3) 𝑆𝑆𝑡𝑡−1
𝑓𝑓 + 𝑄𝑄𝑄𝑄𝑡𝑡

𝑓𝑓 = 𝑄𝑄𝑄𝑄𝑡𝑡
𝑓𝑓 + 𝐸𝐸𝑡𝑡

𝑓𝑓 + 𝑆𝑆𝑡𝑡
𝑓𝑓 Quarterly S-U expectations balance 

where 𝑋𝑋𝑡𝑡
𝑓𝑓 is the expected value of variable 𝑋𝑋𝑡𝑡 revealed in forecast period 𝑓𝑓.   The future expectation of a 

variable is denoted by superscript f, where f indicates when that expectation is formed. How 

expectations are formed, and how the distribution of forecast errors is estimated for random variables 

are described when each variable in the model is subsequently defined. When each new forecast is 

issued, and as time passes, initial conditions, current market outcomes, and future expectations 

equilibrate according to this supply-use balance. 

The crop year nominally begins with harvest (𝑡𝑡 = 1) but forecasts begin at planting time, the prior 

quarter (𝑡𝑡 = 0), since information is revealed by planting intentions surveys as well as observations of 

crop conditions before harvest. We denote forecast periods by 𝑓𝑓, where the first forecast (𝑓𝑓 = 1) is 

early in the quarter prior to harvest (𝑡𝑡 = 0). When there is no information other than history available, 

at 𝑡𝑡 = −1 or before, 𝑓𝑓 = 0 denotes a naïve trend forecast. Moreover, data is not fully revealed for use 

until after the crop year is over, at 𝑡𝑡 = 5 (𝑓𝑓 = 6). Table 2 shows the calendar for the corn crop year 

using this nomenclature and shows when information is revealed by WASDE forecasts and NASS surveys.    

We can write equilibrium conditions that apply when each forecast is issued that set the actual market 

outcome that quarter and initial conditions for later quarters: 

(4)  𝑓𝑓 = 1; 𝑆𝑆−1 = 𝑄𝑄𝑄𝑄01 + 𝐸𝐸01 + 𝑆𝑆01 Planting period 

  
𝑆𝑆01 + 𝑄𝑄𝑄𝑄11 −�[𝑄𝑄𝑄𝑄𝑡𝑡1 + 𝐸𝐸𝑡𝑡1]

4

𝑡𝑡=1

= 𝑆𝑆41 Crop year beginning at upcoming harvest 

  
𝑆𝑆41 + 𝑄𝑄𝑄𝑄51 −�[𝑄𝑄𝑄𝑄𝑡𝑡1 + 𝐸𝐸𝑡𝑡1]

8

𝑡𝑡=5

= 𝑆𝑆81 Next crop year 
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With the initial forecast (𝑓𝑓 = 1), expectations are determined by supply-utilization equilibrium 

conditions in the planting period for the crop year, and for the next crop year as in equation (4).  Stock 

conditions and decisions link equilibrium outcomes across multiple years. With the initial stocks at time 

of planting (𝑆𝑆−1) pre-determined, the choice becomes how much to carry in to the new crop year (𝑆𝑆01) 

given expectations of supply and demand, as well as the carry-out stocks to the following two crop years 

(𝑆𝑆41 and 𝑆𝑆81). 

 

The model progresses dynamically with each subsequent forecast as follows: 

(5)  𝑓𝑓 = 2,3,4,5;   𝑆𝑆0 + 𝑄𝑄𝑄𝑄1
𝑓𝑓 −��𝑄𝑄𝑄𝑄𝑡𝑡

𝑓𝑓 + 𝐸𝐸𝑡𝑡
𝑓𝑓�

4

𝑡𝑡=1

= 𝑆𝑆4
𝑓𝑓 Current crop year 

  
𝑆𝑆4
𝑓𝑓 + 𝑄𝑄𝑄𝑄5

𝑓𝑓 −��𝑄𝑄𝑄𝑄𝑡𝑡
𝑓𝑓 + 𝐸𝐸𝑡𝑡

𝑓𝑓�
8

𝑡𝑡=5

= 𝑆𝑆8
𝑓𝑓 Next crop year 

With the carry-in stocks previously determined (𝑆𝑆0 = 𝑆𝑆01), expectations for supply and demand are 

derived with each new forecast. As time passes and new information enters the market with each new 

forecast, new equilibrium expectations are set, and outcomes prior to each forecast period become 

realized. The final within-year forecast is: 

(6) 𝑓𝑓 = 6; 𝑆𝑆0 + 𝑄𝑄𝑄𝑄1 −�[𝑄𝑄𝑄𝑄𝑡𝑡 + 𝐸𝐸𝑡𝑡]
4

𝑡𝑡=1

= 𝑆𝑆4 
Prior (previously current) crop year 

known 

where all information is fully realized for the crop year, with final values fixed, and welfare outcomes 

may then be evaluated 

This specification identifies effectively four agents in the model –producers (farmers) who derive income 

from production (𝑄𝑄𝑄𝑄), consumers who will be later divided into feed users and industrial users (𝑄𝑄𝑄𝑄), 

exporters who earn export revenue from overseas sales (𝐸𝐸), and traders (farmers and commercial 

agents) who store and may realize gains or losses on stored grain (𝑆𝑆). Farmers are both producers and 

traders, but they are not necessarily all traders. (Expected) behavior will depend on (expected) prices in 

each period (𝑝𝑝𝑡𝑡
𝑓𝑓). Each agent’s welfare function will be specified once its behavior is modeled, and an 

overall welfare function can then be derived. Partial equilibrium measures (e.g. consumer and producer 

surplus) are used throughout. 
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Production risk 

Production (𝑄𝑄𝑄𝑄) is assumed equal to area6 (𝐴𝐴) times yield (𝑌𝑌) and is harvested in period 1, the first 

quarter of the new crop year: 

(7) 𝑄𝑄𝑄𝑄 = 𝑄𝑄𝑄𝑄𝑡𝑡 = 𝐴𝐴 ∗ 𝑌𝑌   𝑎𝑎𝑎𝑎𝑎𝑎   𝑄𝑄𝑄𝑄𝑡𝑡 = 0 ∀ 𝑡𝑡 ≠ 1 𝑜𝑜𝑜𝑜 5  

Harvested production is uncertain until the second quarter of the crop year (𝑡𝑡 = 2), with area (𝐴𝐴) 

planted uncertain prior to the beginning of the crop year (𝑖𝑖𝑖𝑖 𝑡𝑡 = 0) and yield uncertain until harvest is 

completed (𝑖𝑖𝑖𝑖 𝑡𝑡 = 0 𝑎𝑎𝑎𝑎𝑎𝑎 1). Information on expected area and yield have improved due to the WASDE 

forecasts, and gets better as time passes. Imperfect information results in forecast errors that are 

assumed to follow a normal (𝑁𝑁~(0,𝑉𝑉𝑉𝑉𝑉𝑉𝑄𝑄𝑄𝑄)) distribution, for area prior to the beginning of the crop year 

(𝑓𝑓 = 1) and until harvest is complete for yield, and so for production (𝑓𝑓 = 1, 2).  

In order to capture supply response to future price expectations, we assume area planted and yield are 

determined by trend expectations and by expected harvest prices during planting. Once those planting 

decisions are taken supply is fixed, though uncertain until harvest. Specifications for representation of 

area, yield and so production are detailed below. 

Area harvested 

The model uses area harvested as the representation of area. 𝐴𝐴0 is base data on area harvested, 𝐴𝐴𝑓𝑓is 

expected area harvested in forecast period 𝑓𝑓, and 𝐴𝐴 is actual area harvested, so: 

(8) 𝐴𝐴 = 𝐴𝐴0 �1 + 𝛽𝛽𝐴𝐴 ∗
𝑝𝑝10 − 𝜌𝜌1
𝜌𝜌1

�+ 𝜀𝜀𝐴𝐴 
 

where 𝜀𝜀𝐴𝐴is the actual deviation from trend (naïve) area harvested, 𝛽𝛽𝐴𝐴  is the short run supply elasticity 

with respect to area, and 𝜌𝜌1 is the expected price for period 1 at planting in the base data. Land use (and 

input) decisions are assumed to be taken in period 0, well before harvest, and based on expected prices 

in that pre-harvest period. Prior to May and June WASDE reports: 

(9) 𝑓𝑓 = 0: 𝐴𝐴0 = 𝐴𝐴0 �1 + 𝛽𝛽𝐴𝐴 ∗
𝑝𝑝10 − 𝜌𝜌1
𝜌𝜌1

�  

                                                           
6 Any differences between area planted and area harvested are ignored in the model for simplicity. While there is 
uncertainty on the differences in planted and harvested area, as well as the timing of when that information is 
revealed, it is assumed most of the uncertainty in forecasting production each year is in yield and the differences in 
area across years. 
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At 𝑓𝑓 =  1, when the first relevant reports are issued, part of the error is revealed (𝜀𝜀𝐴𝐴1), and at 𝑓𝑓 = 2 

area is known as the remainder of the error is revealed (𝜀𝜀𝐴𝐴2).7 Hence, 

(10) 𝜀𝜀𝐴𝐴 = 𝜀𝜀𝐴𝐴1 + 𝜀𝜀𝐴𝐴2  

 𝐴𝐴1 = 𝐴𝐴0 + 𝜀𝜀𝐴𝐴1  

 𝐴𝐴2 = 𝐴𝐴0 + 𝜀𝜀𝐴𝐴1 + 𝜀𝜀𝐴𝐴2 = 𝐴𝐴0 + 𝜀𝜀𝐴𝐴 = 𝐴𝐴  

Mean expectations of all errors are zero: 𝐸𝐸(𝜀𝜀𝐴𝐴)  =  0, 𝐸𝐸(𝜀𝜀𝐴𝐴1)  =  0, 𝐸𝐸(𝜀𝜀𝐴𝐴2)  =  0. The variance of 𝜀𝜀𝐴𝐴 is the 

observed WASDE variance of harvested area around its trend or naïve expectation.  The variance of 𝜀𝜀𝐴𝐴2 is 

the deviation of the June WASDE estimates from trend area harvested, which is less than the variance of 

𝜀𝜀𝐴𝐴 since WASDE forecasts provide improved information. Since the naïve error and the WASDE forecast 

error are correlated we take that covariance into account. Expected prices driving supply (𝑝𝑝10) come 

from prior crop year forecasts, and must be updated as repetitions drive the model forward in time.  

We can observe the historical error variances both for a naïve (trend) forecast (𝑉𝑉𝑉𝑉𝑉𝑉(𝜀𝜀𝐴𝐴)) and for the 

June WASDE report (𝑉𝑉𝑉𝑉𝑉𝑉(𝜀𝜀𝐴𝐴2)) as well as estimating the error covariance matrix (𝐶𝐶𝐶𝐶𝐶𝐶(𝜀𝜀𝐴𝐴1, 𝜀𝜀𝐴𝐴2)). The 

Monte Carlo simulation model will generate realizations of area planted errors 𝜀𝜀𝐴𝐴1 and 𝜀𝜀𝐴𝐴2 using 

distributions estimated from historical data, and will also generate actual area harvested from 𝐴𝐴 =

 𝐴𝐴0 + 𝜀𝜀𝐴𝐴1 + 𝜀𝜀𝐴𝐴2. 

Yield 

In May and June, since information on weather is limited, WASDE yield estimates are only somewhat 

better than naïve trend yield estimates.8 When the crop year begins on September 19, much better 

information on yield is available, but yield remains uncertain. At the beginning of the next quarter (𝑡𝑡 =

2), once harvest is finished yield is essentially known, as reported in the November and December 

WASDE reports. Hence, the pattern by which information is revealed is similar to that for area, but 

delayed one quarter. 

𝑌𝑌0 is base data on yield,  𝑌𝑌0 𝑖𝑖𝑖𝑖 naïve (trend) expected yield (taking price expectations into account), 

hence when f = 0,  𝑌𝑌𝑓𝑓 is expected yield in forecast 𝑓𝑓 and 𝑌𝑌 is actual yield. 

                                                           
7 (Expected) price responsiveness is fully captured in the initial forecast, A0. Full information is assumed in periods 
when according to historical WASDE data forecast errors have nearly vanished (see Table 1). That occurs during 
period 2 for area, hence A2 = A. 
8 Poor planting conditions (e.g. an overly wet spring) can influence expected and eventual yield. 
9 The convention in virtually all databases, including those of USDA and FAO, is to begin the crop year at harvest 
not planting. We follow that convention.  
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(11) 
𝑌𝑌 = 𝑌𝑌0 �1 + 𝛽𝛽𝑌𝑌 ∗

𝑝𝑝10 − 𝜌𝜌1
𝜌𝜌1

�+ 𝜀𝜀𝑌𝑌 
 

where 𝜀𝜀𝑌𝑌 is the actual deviation from trend yield, 𝛽𝛽𝑌𝑌  is the short run supply elasticity for yield response, 

and 𝜌𝜌1 is the expected price for period 1 at planting in the base data. Prior to May, June WASDE reports: 

(12) 
 𝑌𝑌0 = 𝑌𝑌0 �1 + 𝛽𝛽𝑌𝑌 ∗

𝑝𝑝10 − 𝜌𝜌1
𝜌𝜌1

� 
 

At 𝑓𝑓 =  1 and 2, when reports are issued, part of the error is revealed (𝜀𝜀𝑌𝑌1, 𝜀𝜀𝑌𝑌2), and at 𝑓𝑓 = 3 yield is 

known as the remainder of the error is revealed (𝜀𝜀𝑌𝑌3). Hence, 

(13) 𝜀𝜀𝑌𝑌 = 𝜀𝜀𝑌𝑌1 + 𝜀𝜀𝑌𝑌2 + 𝜀𝜀𝑌𝑌3  

 𝑌𝑌1 = 𝑌𝑌0 + 𝜀𝜀𝑌𝑌1  

 𝑌𝑌2 = 𝑌𝑌0 + 𝜀𝜀𝑌𝑌1 + 𝜀𝜀𝑌𝑌2  

 𝑌𝑌3 = 𝑌𝑌0 + 𝜀𝜀𝑌𝑌1 + 𝜀𝜀𝑌𝑌2 + 𝜀𝜀𝑌𝑌3 = 𝑌𝑌0 + 𝜀𝜀𝑌𝑌 = 𝑌𝑌  

Mean expectations of all errors are zero:  𝐸𝐸(𝜀𝜀𝑌𝑌) =  0, 𝐸𝐸(𝜀𝜀𝑌𝑌1) =  0, 𝐸𝐸(𝜀𝜀𝑌𝑌2) =  0,𝐸𝐸(𝜀𝜀𝑌𝑌3)  =  0. The 

variance of 𝜀𝜀𝑌𝑌 is the actual variance of yield around its trend or naïve expectation.  The variances of 𝜀𝜀𝑌𝑌3 

(and  𝜀𝜀𝑌𝑌2 + 𝜀𝜀𝑌𝑌3) are the deviations of the September (and June, respectively) WASDE estimates from 

trend yield, which are less than the variance of 𝜀𝜀𝑌𝑌 since WASDE forecasts provide improved information. 

We can observe the historical error variances both for a naïve (trend) forecast (𝑉𝑉𝑉𝑉𝑉𝑉(𝜀𝜀𝑌𝑌)) and for the 

WASDE reports (𝑉𝑉𝑉𝑉𝑉𝑉(𝜀𝜀𝑌𝑌
𝑓𝑓)), as well as estimating the error covariance matrix. The simulation model will 

generate yield errors:  𝜀𝜀𝑌𝑌1, 𝜀𝜀𝑌𝑌2 and 𝜀𝜀𝑌𝑌3 using distributions estimated from this historical data, and will also 

generate actual yield from 𝑌𝑌 = 𝑌𝑌0 + 𝜀𝜀𝑌𝑌1 + 𝜀𝜀𝑌𝑌2 + 𝜀𝜀𝑌𝑌3. 

Expected Production 

Expected Production is expected area (harvested) times expected yield: 

(14) 𝑄𝑄𝑄𝑄𝑓𝑓 = 𝐴𝐴𝑓𝑓 ∗ 𝑌𝑌𝑓𝑓  

Hence at: 

(15)  𝑓𝑓 = 0   𝑄𝑄𝑄𝑄0 = 𝐴𝐴0 ∗ 𝑌𝑌0 

 𝑓𝑓 = 1   𝑄𝑄𝑄𝑄1 = (𝐴𝐴0 + 𝜀𝜀𝐴𝐴1) ∗ (𝑌𝑌0 + 𝜀𝜀𝑌𝑌1) 

 𝑓𝑓 = 2   𝑄𝑄𝑄𝑄2 = (𝐴𝐴0 + 𝜀𝜀𝐴𝐴1 + 𝜀𝜀𝐴𝐴2) ∗ (𝑌𝑌0 + 𝜀𝜀𝑌𝑌1 + 𝜀𝜀𝐴𝐴2) = 𝐴𝐴 ∗ (𝑌𝑌0 + 𝜀𝜀𝑌𝑌1 + 𝜀𝜀𝐴𝐴2) 

 𝑓𝑓 = 3,4,5,6   𝑄𝑄𝑄𝑄𝑓𝑓 = (𝐴𝐴0 + 𝜀𝜀𝐴𝐴1 + 𝜀𝜀𝐴𝐴2) ∗ (𝑌𝑌0 + 𝜀𝜀𝑌𝑌1 + 𝜀𝜀𝐴𝐴2 + 𝜀𝜀𝐴𝐴3) = 𝐴𝐴 ∗ 𝑌𝑌= 𝑄𝑄𝑄𝑄 

Observation of historical data suggest that early yield forecast errors are correlated with area forecast 

errors, so a full variance-covariance matrix for the production related error terms  (𝜀𝜀𝐴𝐴1, 𝜀𝜀𝐴𝐴2, 𝜀𝜀𝑌𝑌1, 𝜀𝜀𝑌𝑌2, 𝜀𝜀𝑌𝑌3) was 
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generated from historical data and a Cholesky transformation is used to generate error realizations for 

the Monte Carlo simulation scenarios that duplicate that historical pattern.    

Farmers derive welfare from production and from their storage/marketing activities. We shall equate 

producer surplus in this model with the income due to production and cannot differentiate any benefits 

from storage and marketing that may accrue to farmers, traders or other intermediaries. Since this is a 

short run model, and production is treated as perfectly inelastic over that timeframe, producer surplus 

is approximated effectively as revenue accruing to production at the price during the harvest period: 

(16) 𝜋𝜋𝑄𝑄𝑄𝑄 = 𝑝𝑝1 ∗ 𝑄𝑄𝑄𝑄   𝑎𝑎𝑎𝑎𝑎𝑎   ∆𝜋𝜋𝑄𝑄𝑄𝑄 = 𝑝𝑝1 ∗ 𝑄𝑄𝑄𝑄 − 𝑝𝑝10 ∗ 𝑄𝑄𝑄𝑄10  

where 𝜋𝜋𝑄𝑄𝑄𝑄 is producer surplus (farm income) evaluated at harvest prices. 

Any actual farm income and gains due to storage are lumped with trader income/costs to be derived 

later. Benefits accruing to farmers as a consequence of their trading activities, such as storage, forward 

selling, or participation in futures markets, are also captured in trader profits not producer revenue. This 

methodology cannot disentangle who among various commodity market participants realizes the 

benefits or losses accruing to traders.   

In the scenarios when supply is not assumed to be endogenous 𝛽𝛽𝑌𝑌 and 𝛽𝛽𝐴𝐴 are set equal to zero, so 

supply is perfectly inelastic in the medium to long run. When price responsiveness and endogenous 

supply are considered, the dynamics of supply adjustment across crop years will generate different 

market outcomes and so different welfare outcomes due to that adjustment. Nevertheless, producer 

welfare remains measured as revenue because in the short run supply is perfectly inelastic. 

Utilization 

Demand components in WASDE supply-utilization balances include various domestic uses, exports and 

annual carry-out stocks. The WASDE forecast provides estimates of exports and stocks, conducting 

quarterly stocks surveys and collecting some weekly (from FAS/USDA) and some monthly trade data 

(from ITC/Commerce). Domestic use (feed use) is treated as a residual, insuring supply-use balance 

holds. As shown above, this means forecast errors for stocks and use are not independent, so we specify 

one of these, calculating the other from this equilibrium condition. In principle, from a modeling 

perspective, it makes more sense to specify the error as an error in the domestic use (demand) 

functions, but this error will show up in WASDE reports as an error in expected stocks, and that is what 

NASS surveys measure. The S-U balance relationship can be used with historical data to specify/compute 

a use error component from the observed stocks errors. 
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With an improved forecast (when a new WASDE report is issued): 

(17) 𝑆𝑆𝑡𝑡−10 + 𝜀𝜀𝑆𝑆,𝑡𝑡−1
𝑓𝑓 + 𝑄𝑄𝑄𝑄10 + 𝜀𝜀𝑄𝑄𝑄𝑄

𝑓𝑓 = 𝑄𝑄𝑄𝑄𝑡𝑡0 + 𝜀𝜀𝑄𝑄𝑄𝑄,𝑡𝑡
𝑓𝑓 + 𝐸𝐸𝑡𝑡0 + 𝜀𝜀𝐸𝐸,𝑡𝑡

𝑓𝑓 + 𝑆𝑆𝑡𝑡0 + 𝜀𝜀𝑆𝑆,𝑡𝑡
𝑓𝑓   

Quarterly S-U expectations error balance 

(18) 𝜀𝜀𝑆𝑆,𝑡𝑡−1
𝑓𝑓 + 𝜀𝜀𝑄𝑄𝑄𝑄

𝑓𝑓 − 𝜀𝜀𝑄𝑄𝑄𝑄,𝑡𝑡
𝑓𝑓 − 𝜀𝜀𝐸𝐸,𝑡𝑡

𝑓𝑓 = 𝜀𝜀𝑆𝑆,𝑡𝑡
𝑓𝑓   

Annual S-U expectations error balance 

(19) 𝜀𝜀𝑆𝑆,0
𝑓𝑓 + 𝜀𝜀𝑄𝑄𝑄𝑄

𝑓𝑓 −��𝜀𝜀𝑄𝑄𝑄𝑄,𝑡𝑡
𝑓𝑓 − 𝜀𝜀𝐸𝐸,𝑡𝑡

𝑓𝑓 �
4

𝑡𝑡=1

= 𝜀𝜀𝑆𝑆,4
𝑓𝑓   

where 𝑋𝑋𝑡𝑡0 is a naïve (trend) expectation for variable 𝑋𝑋𝑡𝑡, and 𝜀𝜀𝑋𝑋,𝑡𝑡
𝑓𝑓  is the (revealed) errors in expectations 

for 𝑋𝑋𝑡𝑡  as expectations improve over a naive forecast in forecast period 𝑓𝑓. Over time, as new WASDE 

forecasts are issued, 𝑋𝑋𝑡𝑡0 + ∑ 𝜀𝜀𝑋𝑋,𝑡𝑡
𝑓𝑓

𝑓𝑓  approaches actual 𝑋𝑋𝑡𝑡. Therefore, initially 𝜀𝜀𝑋𝑋,𝑡𝑡 = ∑ 𝜀𝜀𝑋𝑋,𝑡𝑡
𝑓𝑓

𝑓𝑓  is the 

deviation of actual 𝑋𝑋𝑡𝑡  from a naïve forecast of 𝑋𝑋𝑡𝑡0.  

Domestic use and export functions depend on the short run price (the price in the quarter when use or 

exports occur), although in actuality these errors may follow improving production information and use 

may be moved across quarters. We shall assume price effects capture the consequences of production 

expectations on use and ignore across quarter ‘arbitrage’, as rationale expectations are assumed, but 

need to build domestic and export demand functions that include error terms reflecting imperfect 

information. 

Domestic Use  

Domestic demand (𝑄𝑄𝑄𝑄) is broken into components in the WASDE report – Food, seed and industrial use 

(FSI), and Feed Use. Further disaggregation (e.g. into seed use, ethanol use, etc.) is possible from USDA’s 

quarterly feed grain database, but these broader categories will be used here since prior estimates of 

demand elasticities can be found from the literature for those components and at this level of 

aggregation. Hence: 

(20) 𝑄𝑄𝑄𝑄𝑡𝑡 = 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑡𝑡 + 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑡𝑡  

Each demand component is modeled as a linear function of price that is benchmarked to base data on 

quarterly demand with a slope relative to price that gives the assumed elasticity at that initial point. 

(21) 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑡𝑡 = 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑡𝑡0 �1 − 𝛽𝛽𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 ∗
𝑝𝑝𝑡𝑡 − 𝜌𝜌𝑡𝑡
𝜌𝜌𝑡𝑡

� + 𝜀𝜀𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄,𝑡𝑡  
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 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑡𝑡 = 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑡𝑡0 �1 − 𝛽𝛽𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 ∗
𝑝𝑝𝑡𝑡 − 𝜌𝜌𝑡𝑡
𝜌𝜌𝑡𝑡

� + 𝜀𝜀𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄,𝑡𝑡  

where 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑡𝑡0 and 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑡𝑡0 denote base data (trend expectation) in quarter 𝑡𝑡 for domestic demand 

components FSI and Feed Use, respectively. Similarly, 𝛽𝛽𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 and 𝛽𝛽𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 are the demand price 

elasticities and 𝜀𝜀𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄,𝑡𝑡 and 𝜀𝜀𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄,𝑡𝑡 are the errors (uncertainty) for each domestic demand component. 

As noted above, WASDE reports and data collection treat domestic use as a residual, explicitly 

measuring stocks and production instead. This means we cannot observe the historical patterns of the 

error terms of quarterly component demand equations. We can compute from supply-utilization 

balance a measure of the annual domestic use error in each forecast. Therefore, we build into the model 

that error in a manner similar to treatment of the errors in production estimation. Hence,  

(22) 𝜀𝜀𝑄𝑄𝑄𝑄 = �[𝑄𝑄𝑄𝑄𝑡𝑡−𝑄𝑄𝑄𝑄𝑡𝑡0]
4

𝑡𝑡=1

  

is the difference between domestic use at 𝑝𝑝0 and trend use. 𝜀𝜀𝑄𝑄𝑄𝑄
𝑓𝑓  is the part of 𝜀𝜀𝑄𝑄𝑄𝑄 revealed by forecast 

𝑓𝑓, so:  

(23) 𝜀𝜀𝑄𝑄𝑄𝑄 = ��𝜀𝜀𝑄𝑄𝑄𝑄
𝑓𝑓 �

6

𝑓𝑓=2

  

We need to assume quarterly values for 𝜀𝜀𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄,𝑡𝑡 and 𝜀𝜀𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄,𝑡𝑡 since they represent some unobserved 

consumption that generates utility, and so are part of the constants of the demand functions used to 

measure that. We must make some strong assumptions to do so. We shall assume that this error is 

entirely due to feed use (not FSI), since feed use is the largest and most uncertain component of 

domestic use, hence 𝜀𝜀𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄,𝑡𝑡 = 0. We shall further assume that the error in feed use is proportionally 

weighted across quarters according to historical use patterns.      

Consumer surplus relative to the base outcome is calculated each quarter from these functions as the 

sum of surplus from actual feed use and FSI use in that quarter. Since demand functions are linear, 

surplus measures are simply the triangles defined by price, quantity used and the intercept of the 

demand function: 

(24) 𝜋𝜋𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 = �(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐹𝐹𝐹𝐹𝐹𝐹,𝑡𝑡 − 𝑝𝑝𝑡𝑡)(𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑡𝑡)/2
4

𝑡𝑡=1
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 𝜋𝜋𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 = �(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹,𝑡𝑡 − 𝑝𝑝𝑡𝑡)(𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑡𝑡)/2
4

𝑡𝑡=1

 
 

where 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐹𝐹𝐹𝐹𝐹𝐹,𝑡𝑡 and 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹,𝑡𝑡
 are the intercepts of  the linear demand function in each quarter 

found from the demand equations above ( by setting 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑡𝑡 = 0 & 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑡𝑡 = 0), and including the 

appropriate 𝜀𝜀𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄,𝑡𝑡 and 𝜀𝜀𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄,𝑡𝑡 as part of that constant. 

Exports 

Exports are modeled and information on exports is revealed in a manner similar to domestic use, except 

that WASDE reports explicitly estimate/observe export data over short time horizons. Exports are 

uncertain because of production uncertainty, hence availability, as reflected in the expected price, and 

because foreign demand depends also on uncertain foreign production.  USDA estimates production 

worldwide, but information is not as timely as for the US, in part because production in some key 

competitor countries occurs in the southern hemisphere, giving rise to a six month lag relative to the US 

crop year schedule. Hence, we need price dependent export demand functions that exhibit the errors 

slowly revealed by WASDE reports: 

(25) 𝐸𝐸𝑡𝑡 = 𝐸𝐸𝑡𝑡0 �1 − 𝛽𝛽𝐸𝐸 ∗
𝑝𝑝𝑡𝑡 − 𝜌𝜌𝑡𝑡
𝜌𝜌𝑡𝑡

� + 𝜀𝜀𝐸𝐸,𝑡𝑡 
 

where 𝐸𝐸𝑡𝑡0 denotes base export data (trend expectations) in quarter 𝑡𝑡, 𝛽𝛽𝐸𝐸  is the export demand price 

elasticity, and 𝜀𝜀𝐸𝐸,𝑡𝑡   is the error (uncertainty) in export demand each quarter. 

As for domestic use, we shall assume errors revealed about exports are shared proportionally across 

quarters according to historic quarterly export patterns. As for domestic use, export demand functions 

need to be adjusted as information about past exports is revealed. 

Exports are described by a demand function representing the behavior of foreigners, so export surplus 

(πExport) can be computed in a manner similar to end user surplus (see equation 24). Since this accrues to 

foreigners, it is not included in overall welfare, intended to capture benefits to U.S. domestic interest 

groups. Nevertheless, it provides evidence on the net spillover effects of WASDE information to trade 

partners and competitors, although the distribution of benefits is likely to matter, as it does for domestic 

agents. Also, a global social welfare estimate would add the exporter welfare to our current overall 

welfare measure.  
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Stocks and Prices 

Uncertainty in annual carry-out stocks is based on uncertainty in the other components of supply-

utilization balance and may be derived from them (or observed, as in practice). The theory of storage 

(Williams and Wright, 1982; Wright, 2011) is used to model short term pricing and to establish annual 

price levels as a function of expected stocks.  

From our equilibrium condition (supply-utilization balance) expected annual carry-out stocks are: 

(26) 𝑆𝑆4
𝑓𝑓 = 𝑆𝑆0

𝑓𝑓 + 𝑄𝑄𝑄𝑄1
𝑓𝑓 −��𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑡𝑡

𝑓𝑓 + 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑡𝑡
𝑓𝑓 + 𝐸𝐸𝑡𝑡

𝑓𝑓�
4

𝑡𝑡=1

 
 

 𝑆𝑆8
𝑓𝑓 = 𝑆𝑆4

𝑓𝑓 + 𝑄𝑄𝑄𝑄5
𝑓𝑓 −��𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑡𝑡

𝑓𝑓 + 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑡𝑡
𝑓𝑓 + 𝐸𝐸𝑡𝑡

𝑓𝑓�
8

𝑡𝑡=5

 
 

Hence, stocks link crop years because the annual carry out from one year becomes the carry-in for the 

next year. Similarly, stocks link quarters because carry-out from one quarter equals carry-in to the next 

quarter. We assume that expected stocks also respect these linkages. 

Pricing within a crop year presumes, according to the theory of storage, that the expected price in one 

quarter must equal the price in the prior quarter plus storage costs whenever stocks are held from one 

quarter to the next. Hence: 

(27) 𝐹𝐹𝐹𝐹𝐹𝐹 𝑡𝑡 = 2,3,4,6,7,8;  𝑝𝑝𝑡𝑡
𝑓𝑓 = 𝑝𝑝𝑡𝑡−1

𝑓𝑓 + 𝛼𝛼  

where 𝛼𝛼 is the cost to store one quarter. Across crop years expected prices can disconnect from this 

relationship, for example if a low production (shortfall) year is followed by an expected high (surplus) 

production year. In principle, stocks would be completely drawn down (to zero) in the short year, and 

the price in the short year would exceed the price in the abundant year by more than storage costs. This 

relationship can easily occur if stocks are low relative to the uncertainty in production each year. This 

would be represented by a complementary slackness condition relating annual carry-out stocks to the 

expected prices before and after harvest: 

(28) 𝑝𝑝5
𝑓𝑓 ≤ 𝑝𝑝4

𝑓𝑓 + 𝛼𝛼;            𝑆𝑆4
𝑓𝑓 ≥ 0     𝑎𝑎𝑎𝑎𝑎𝑎     �𝑝𝑝5

𝑓𝑓 − 𝑝𝑝4
𝑓𝑓 − 𝛼𝛼�𝑆𝑆4

𝑓𝑓 = 0  
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In practice stocks never are zero, as there is a pipeline level of stocks that must be maintained. The 

minimum stocks level is also not well known, nor is the “convenience yield”10 associated with holding 

stocks when this pricing relationship suggests they should be sold. We approximate the L shaped stocks 

demand function represented above by a function that asymptotically approaches either the short run 

pricing linkage (when stock and supply are abundant) or the minimum stocks level (when supply is low): 

(29) 𝑆𝑆4
𝑓𝑓 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 + 𝜑𝜑/�𝑝𝑝4

𝑓𝑓 + 𝛼𝛼 − 𝑝𝑝5
𝑓𝑓�  

where 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 is the exogenously assumed minimum stocks level; and 𝜑𝜑 is a constant fitting this pricing 

relationship to observed market data.  The model presumes agents are looking ahead to the next crop 

year, so to close the model we need a function explaining carry-out stocks from the next crop year (𝑡𝑡 =

8). We presume it is based on a long run expectation of some minimum price that prevails when stocks 

are abundant (𝑝𝑝∗). 

(30) 𝑆𝑆8
𝑓𝑓 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 + 𝜑𝜑/�𝑝𝑝8

𝑓𝑓 + 𝛼𝛼 − 𝑝𝑝∗�  

Figure 1 depicts this stocks demand relationship for this latter condition with 𝑝𝑝∗ set at $3.00 per bushel 

and 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 at 600 million bushels, which we believe are reasonable assumptions for the U.S. corn market.  

 

Welfare 

The costs of stockholding reduce producer revenue relative to export revenue plus expenditures on 

domestic use. Traders may also realize gains or losses on the stocks they hold, when expectations and so 

prices change.   We can compute the net costs to traders by comparing these revenue streams: 

(31) 𝑇𝑇𝑇𝑇 = �[𝑝𝑝𝑡𝑡{𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑡𝑡 + 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑡𝑡 + 𝐸𝐸𝑡𝑡}]
4

𝑡𝑡=1

− 𝑝𝑝1 ∗ 𝑄𝑄𝑄𝑄 

By computing actual storage costs we can also determine net trader profit (or loss): 

(32) 𝜋𝜋𝑇𝑇 = 𝑇𝑇𝑇𝑇 −�𝛼𝛼 ∗ 𝑆𝑆𝑡𝑡

4

𝑡𝑡=1

 
 

Overall welfare for any simulated scenario is the sum of producer surplus, consumer surplus and net 

trader profit: 

                                                           
10 Convenience yield is the (positive) difference between the expected future price and the current price plus 
storage costs. It applies for the quarters that cross crop years, and when stocks fall near minimum (pipeline) levels. 
It was first introduced by Keynes (1930) and its relevance to the theory of storage is explained by Wright (2001). 
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(33) 𝑊𝑊 = 𝜋𝜋𝑄𝑄𝑄𝑄 + 𝜋𝜋𝑄𝑄𝑄𝑄 + 𝜋𝜋𝑇𝑇  

Foreigner welfare  (𝜋𝜋𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸) is calculated separately, and can be added to W to gauge global welfare. 

 

Monte Carlo Simulation Strategy 

Monte Carlo simulations generate estimates of the distributions of various equilibrium outcome 

measures (prices, quantities and welfare) based on assumptions concerning uncertain exogenous 

factors. In this case area planted/harvested, yield, therefore production; domestic feed use; and exports 

were all considered stochastic. The error terms in the above model specification define when 

information is revealed about each of these terms. Assumptions and historical data are used to describe 

when information is revealed by WASDE reports and what a naïve forecast might look like. Table 1 

summarized that historical information. The error terms are assumed to be normally distributed, and 

correlated. A random number generator establishes for each iteration a realization of each error term 

such that the distribution of the error terms over a large number of iterations follows the observed 

distribution, including its covariance.  

The model used here has a short term module that is repeated over time in order to capture a sequence 

of years. Hence, the number of iterations is the number of years in that sequence (10 years are 

projected here) times the number of repetitions of that sequence. Since there are several correlated 

error terms, and based on experimentation with the model, it became clear that a large number of 

iterations is needed to accurately reproduce the assumed distributions of the error terms. Therefore, 

3000 repetitions of the 10 year sequence are solved, resulting in 30,000 iterations for each scenario 

examined. Experimentation with varying numbers of repetitions indicated results are consistent at this 

large number of iterations, hence crop years simulated. 

The model incorporates short run elements and long run elements. The short run version of the model 

begins with the quarter before harvest when planting occurs, finding expected equilibrium during the 

next crop year and setting initial conditions (most importantly, carry-in stocks levels). Then that quarter 

becomes history and the first quarter of the crop year is simulated, determining actions taken during 

that quarter based on history and expected future outcomes. This is repeated by moving forward 

through each of the four quarters in the crop year, as prior quarters become history and future 

expectations are over fewer quarters in the crop years. The solution of the fourth quarter is the same as 

the solution of the prior quarter for this crop year, but applicable to the next crop year. A final outcome 
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is established based on revealed uncertainty once the crop year has completed and all decisions have 

been taken. That final outcome describes quantities and prices each quarter, and is used to calculate 

welfare measures. The model then moves forward to the next crop year, assuming that quarter 4 is now 

the history establishing initial conditions for that next crop year.   

In principle, one might choose to iterate over 1000 years (or more), repeating this sequence that many 

times. In order to avoid persistence effects that might occur as large stocks build in some simulations, 

we chose to instead repeat sequences of ten year projections. That builds in sufficient variability in 

initial and terminal conditions so that they are not overly important in averaging model outcomes across 

the entire sample of simulations. The goal is for the predictions of the model to accurately trace out the 

distributions of market outcomes under presumed existing uncertainty, and under varying assumptions 

on information availability. Our selection of base case matters to the relevance of the results, so we 

have chosen it to approximate recent “normal years”. 

Three basic cases incorporating different assumptions on the timing and extent of market information 

are considered, and the 30,000 iterations are repeated for each case.  In each case the same 

assumptions on underlying uncertainty are assumed, and the same realizations of error components are 

used. Differences across scenarios are in when information about that uncertainty is revealed. A perfect 

information case presumes that the variations in the stochastic terms are fully known immediately (f=0). 

The WASDE case assumes that the distributions of error terms as described in the specification above 

follow deviations from trend predications as in the historical WASDE forecasts since 1994. In the naïve 

case, it is presumed that information becomes available one quarter later than in the WASDE case, when 

market outcomes have already occurred and when there has been sufficient time to observe what those 

outcomes were. Variations on the base cases are used to conduct sensitivity analysis on key parameters 

– price responsiveness of uses and supply. Additional sensitivity analysis cases are also used to assess 

the value of each component of the WASDE forecasts.  

 

Empirical Model Implementation 

The short run model is benchmarked to data on US corn market after the 2007-08 food crisis from the 

USDA’s Feedgrains database. The intent is to represent an average over recent normal years for 

benchmarking. Therefore, our base data is for variables averaged over the 2010/11, 2011/12 and 
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2013/14 crop years.11 The 2012/13 crop year was omitted in benchmarking the model due to the 

extremely low yields in that year, though included when deriving the empirical forecast error 

distributions. The feed grain database includes information at the level of aggregation in the model 

specification on a quarterly basis. Table 3 present the base data assumed in this model. 

To ensure a dynamically stable model, the expected outcome in the next crop year is based on the same 

assumed base outcome for the current crop year. That is, if the stochastic elements of the model remain 

fixed at their base levels, the same base outcome will be repeated year after year. Trends are therefore 

suppressed. Carry-in and carry-out stocks levels were adjusted slightly from observed averages so that 

they are the same in each base year. The assumed level is above minimum stocks, but is not so large as 

to drive prices near minimum assumed price levels. The minimum assumed stocks and price levels, at 

600 million bushels and $3.00 per bushel, are judgment calls based on recent market behavior. 

As noted above, stochastic terms in the model include production as captured by area and yield, and use 

as captured by feed use and export demand. Table 1 reported deviations from a naïve trend forecast for 

each of these elements and standard deviations, in both percentage terms relative to base market 

outcomes and in the units of measure for each term. The model’s random number generator and 

Cholesky transformation generate correlated percentage error realizations that are transformed to the 

appropriate units of each error using the mean values of variables in the base case. The WASDE forecast 

for the first month of each quarter is used to establish errors. Hence, September is the month of the first 

report once a new crop year begins. June reports inform both the final quarter of a crop year and 

expectation on the next crop year. December and March reports inform quarters 2 and 3 of a crop year. 

As noted earlier, we are likely underestimating the value of WASDE reports since they are actually 

provided monthly, and some information is available ahead of the schedule we assume. Table 1 

indicates how important this might be by showing forecast errors in additional months beyond those 

built into the model.  

The model implementation is completed by specifying parameters for the various behavioral equations 

included in our model specification. These are elasticities of demand for feed use, food use and exports 

as well as supply elasticities for area planted and yield adjustments. As corn is a major agricultural 

commodity in the US, a great deal of research has been undertaken to estimate these elasticities. 

                                                           
11 We use this recent data to establish base levels for variables but distributions for errors are estimated from data 
going back to 1993. Those estimations are for errors in percentage terms, so that they can be applied to this more 
current base year approximation.  
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Moreover, several simulation models used to evaluate policy alternatives have assumed elasticities 

based on that literature and on author judgment. Table 4 presents the results of various studies 

estimating or assuming these supply and demand elasticities. The studies showed markedly different 

responsiveness of demand or supply to changes in prices. This empirical literature showed the elasticity 

of demand for exports ranged from -0.3 to -1.727; feed and residual use elasticities ranged from -0.11 to 

-0.9; and FSI elasticities ranged from -0.064 to -0.33. In our base case the demand elasticities used to 

calculate the slopes of demand functions are FSI (-0.2), Feed (-0.4), and exports (-1.0). Supply elasticities 

ranged from 0 to 0.4 for area and 0 to 0.2 for yield.  Given the ambiguity of the results from previous 

literature, and evident difficulties in estimating them, we have benchmarked our model to a set of 

assumed elasticities rather than directly using econometrically estimated models. The elasticities chosen 

for the base case are in the middle of this wide range of previously estimated values. 

The slope of the demand curve is important both because it describes how agents behave and is also a 

key factor in the computation of welfare measures. Similarly, there is controversy on what are 

appropriate supply elasticities12, and these are key to determining effects on producer revenue. To 

account for the potential differences in the value of information due to elasticity assumptions, the 

model was simulated over an additional three sensitivity analysis scenarios. Alternative scenario 1 

represents a case with the more elastic supply and demand parameters found in Table 4 for each 

category. Scenario 2 is less elastic than the original WASDE model, based on the lower range of 

elasticities found in table 4. Scenario 3 makes supply perfectly inelastic in the long run, largely to assess 

how the effects due to supply parameter changes matter. These assumptions were used to re-estimate 

the distributions of the outcomes of the three information cases- naïve, perfect and WASDE.  

Decomposition of the value of various WASDE components is assessed by assuming only the error term 

associated with a specific component is revealed according to the WASDE schedule. Since it makes little 

sense to assume better domestic use or export forecasts in the absence of a better production forecast, 

in those cases we conducted simulations assuming that the production forecast, and either the domestic 

demand or export forecast, improved according the WASDE schedule. This allows us to approximately 

estimate the added value from area, yield, production, export and demand/stocks forecasts separately. 

                                                           
12 Traditionally it has been assumed that area is price responsive with a small elasticity but yield is not. 
Miao, Khanna and Huang (2015) recently argued that previous estimates are too small, and that yield is 
also price responsive. Our base case reflects the traditional assumption while one sensitivity analysis 
scenario assumes more elastic area and yield response.  
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Results 

Table 5 presents results from three scenarios representing alternative assumptions on information 

availability and timing. Then results for overall (net) expected welfare and welfare measures for specific 

agents are reported for each assumption – Naïve expectations, Perfect information and WASDE 

expectations. To facilitate comparisons, differences in these average (or expected) outcomes across 

scenarios are calculated. These scenarios are all generated using the base elasticity assumptions.  

In this base case overall welfare has increased on average by $301 million from the Naïve expectations 

scenario to the WASDE expectations scenario. It increased further, by another $284 million, in the 

Perfect information scenario, $585 million higher than in the Naive scenario. This improvement due to 

WASDE reports is 0.55% of corn market value as measured by producer revenue. Hence, there is 

significant value to WASDE reports, though it is a small fraction of overall market value  

The overall welfare gains are distributed unequally across agents. Like the gains from trade, there are 

winners and losers but also net gains. Moreover, the redistributions of benefits are large relative to the 

net gains. Consumers (end users) gain the most, at $341 million, due to a $240 million or 0.49% 

reduction in expenditure on corn. Producers gain additional revenue amounting to on average $153 

million, or 0.28% of their revenue. Traders’ profit declines $192 million, or 8.7% of base trader costs.  It 

is important to remember the assumptions in setting these measures (that producers sell at harvest), 

and to remember that farmers who hold stocks are counted as traders. The trader welfare measure 

represents benefits accruing to not only farmers but also commercial agents, and it is not possible with 

this methodology to separate benefits or costs between those sub-agents.  

Export revenue has increased $172 million or 2.3%, resulting in an increase in foreigner surplus of $19 

million as price increases offset effects of quantity increases. This is a spillover benefit, not counted in 

overall welfare that was constructed to capture outcomes for domestic agents only. 

The fact that WASDE has moved more than half of the way to the value of the perfect information 

outcome suggests further returns to better information could be difficult to achieve given the inherent 

uncertainty in forecasting agricultural production and trade, and the expected increasing marginal costs 

of acquiring better information. Information from the perfect information case suggest only small 

additional gains to consumers, and bigger gains to producers, to some extent at the expense of traders. 



29 
  

Producer revenue is $465 million higher in the perfect information case, while trade losses are $213 

million higher.  

Table 6 reports results comparing scenarios that introduce only components of the WASDE forecast in 

order to assess the incremental contributions of each component. In the export and demand/stocks 

cases, however, the scenario presumes WASDE production information is also known. The area forecast, 

for example, increases overall welfare by $145 million. This is the gain in expected welfare when only 

the area forecast improvements due to WASDE information are included, and is relative to naïve 

expectations.  For yield, these gains amount to $188 million. Producer revenue gains are larger, 

however, in the yield case, at $152 million, relative to the area case, where producer gains are only $32 

million. Similarly sized changes in the other direction are found for trader profit, while the increases in 

consumer surplus are similar in size to the overall gains, when all information becomes available. The 

gains from production forecasts – the combination of better area and better yield forecasts -- are not 

quite additive, at $299 million, with gains to each agent being similar to that found for yield information 

improvement.  Overall gains from the export demand forecast (hence from better information on 

foreign production and trade) are $320 million. Since the production information is assumed to be 

known in this scenario, marginal net gains are small, at about $21 million. The distribution of gains is 

different, however, producer gains and traders losses are smaller by $86 million, while consumer surplus 

is largely unchanged.  Marginal gains from the feed demand forecast, hence from better stocks 

information, are also small, with producer gains in this case increasing by $38 million, while trader losses 

are larger by $31 million. Each of these components is contributing to the distribution of welfare gains 

from the information contained in WASDE reports, with the production information accounting for the 

biggest portion of overall or net gains.  

Table 7 presents sensitivity analysis from scenarios that varied the demand and supply elasticities 

around the assumptions of the base case. The first column reports outcomes for the base case, the final 

column of table 5. Elasticities assumed are shown at the bottom of this table, and are at the 

“reasonable” extremes of results from our literature search (see Table 4). Overall welfare gains or their 

distribution are of a similar magnitude, except when perfectly inelastic supply is coupled with lower 

demand elasticities. In that case overall welfare gains are only $221 million, and the smallest producer 

gains, at $94 million, are found. More elastic demand also means lower consumer surplus gains. Trader 

losses are greatest, at $604 million, and consumer surplus gains the largest, when demand is assumed to 

be more inelastic. In the case of producers, however, greater elasticity, hence greater adjustment in the 
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face of market signals, results in greater gains from better information. Both the overall gains and their 

distribution across agents are clearly sensitive to these elasticity assumptions. This sensitivity is due 

both to the market behaviors these elasticities represent and to the calculation method to arrive at 

welfare measures.  

Exporter surplus, hence the spillover gains realized by foreigners, behave like demand and are larger 

when export demand is more inelastic. Since exports are a fraction of domestic use (16% in the base 

case), the magnitude of these spillovers is smaller in size than are consumer surplus gains. In the 

inelastic demand case foreigner gains rise to $56 million. But when that is coupled with inelastic supply, 

spillover gains disappear.  

Results presented above have shown that the incremental contributions of WASDE components are not 

additive, and that expected welfare and its distribution across agents are sensitive to supply and 

demand elasticity assumptions. This is because the model, and notably stocks demand, is not linear. 

Prices spike when there are production shortfalls and low carry-in stocks under inelastic demand, but 

are much less variable when there are surpluses that end up in carry-over stocks. Stocks persistence 

means there are more cases of large supply resulting in low prices and revenue than of shortfalls and 

disproportionally higher prices and producer revenue. This behavior results in skewed distributions for 

both overall welfare and the welfare of each agent. The median overall net welfare gain due to WADSE 

information (compared to a corresponding naïve outcome) is $340 million, $39 million larger than the 

mean net gain. Means are generally higher than median values in each scenario for producer revenue 

and trader profit, and they are usually lower for consumer surplus. The skewness in overall welfare is 

greater in the WASDE case than in the naive information case. For example, median overall welfare is 

$49 million lower than mean welfare in the naïve scenario, and $103 million lower in the WASDE 

scenario. Median producer revenue is $223 million lower in the naïve scenario, but only $2 million lower 

in the WASDE scenario, however. Median consumer surplus revenue is $370 million higher in the naïve 

scenario, and $269 million higher in the WASDE scenario. Figure 2 presents histograms showing this 

skewness for both overall welfare and for the welfare of each agent type in our base case under WASDE 

expectations. The skewness is seen as more pronounced for consumer surplus and trader profit relative 

to producer revenue. Differences in means, medians, and skewness across information assumptions and 

across agents result in skewness in the other direction for net gains to WASDE information.   
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Conclusions 

WASDE reports published monthly by USDA provide public information on both past and likely future 

outcomes in global agricultural commodity markets. Recent literature has shown that these reports are 

essentially unbiased and that markets respond to the news in those reports (Irwin, Sanders and Good, 

2014; Lusk, 2013). This paper attempts to estimate the value of that news to market participants 

utilizing a methodology that has advanced in investigating price stabilization policy but has not been 

updated to address the value of public market information. Monte Carlo simulations of a quarterly 

model of the U.S. corn market generate estimates of the magnitude and distribution of economic 

benefits due to WASDE reports for that market. Separate experiments determine the distribution of this 

value to farmers as producers, traders (including farmers), and consumers (end users). They also 

estimate the value of each component of forecasts included in WASDE reports – area and yield, hence 

production; exports; and demand/stocks. Sensitivity analysis explored the wide range of estimated 

elasticities describing supply and demand behavior in the corn market. 

The expected value of WASDE outlook information on the U.S. corn market is estimated to equal $301 

million, or 0.55% of corn market value as measured by production revenue. Since the model is non-

linear outcomes distributions are skewed. So that median net gains are $340 million. While these are 

only a small fraction of market value, it surely exceeds the marginal costs of generating this information, 

and as we will see below, this is likely an underestimate of the value of these reports. The analysis also 

generates an estimate of net foreigner surplus, or spillovers of better WASDE information onto global 

markets. Foreigner surplus was estimated at $19 million, which sums benefits or losses to trading 

partners as well as competitors.   

One reason why market response is so strong to these reports is that the benefit to certain agents is 

often larger than overall (net) welfare gains, and there are losers as well as winners. Like the gains from 

trade, the redistribution of benefits between agents is often at least as great as the net gains. This 

methodology identifies impacts on producers (revenue valued at harvest prices), traders, and 

consumers. Farmers behave as both producers and traders. End users may also behave as traders along 

with commercial agents like grain elevator operators and the multi-national grain exporters, who are 

only traders. In our base case results, consumers are the biggest winners from better information, and 

producers also gain while trader profits are smaller. These outcomes are sensitive to assumptions on 

elasticities that are used to measure both market behavior and welfare.  
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Alternative assumptions on supply elasticities revealed differences in model predictions. Similarly, 

alternative assumptions on demand elasticities also alter the estimates of both the overall welfare 

impact of WASDE reports and the distribution of those impacts. Overall welfare impacts of WASDE 

information in the entire set of scenarios ranged from $221 to $348 million. Trader losses ranged from 

$192 to $604 million.  The more inelastic an agent is, the greater its gains from better information. 

Trader profits are smallest when demand elasticities are the smallest, and foreigner surplus spillover is 

almost three times as great when more inelastic export demand is assumed. Moreover, non-linearity of 

the model, due largely to stockholding behavior, leads to skewed distributions of overall benefits and 

the extent of redistribution. Any market model is dependent on the quality of behavioral information it 

incorporates, and this exercise highlights the need to continue to reevaluate the magnitude of price 

responsiveness in agricultural markets.  

One limiting assumption of this methodology is the availability of market information if the public 

information provided by USDA were no longer available – the assumptions of the “naïve” scenario. 

While there is now “competing” private information on agricultural markets, most of that is 

complementary to and reliant on USDA data and outlook reports. It is difficult to predict when market 

information would become available, or how accurate it would be, in the absence of USDA data.  If 

public information disappears, it is likely that some sub-sets of agents (e.g. large commercial traders) 

would suffer less than the decline in information available to farmers (as either producers or traders). 

Hence, one role of the WASDE reports is to level the playing field. 

There are several other limitations to this methodology, most of which would result in underestimation 

of the value attributable to USDA data and to WASDE reports. First, generation of the outlook reports is 

an integral part of the process of collecting historical data. Without that historical data, gauging market 

trends as well as understanding adjustments to various shocks (e.g. weather) would be more difficult. 

Even our naïve scenario must assume historical data is available, and abstracts from the difficult task of 

identifying trends, and when they might change. Secondly, WASDE reports are issued monthly, as are 

numerous other reports, while this model assumes information improves on a quarterly basis.  Data 

limitations and the requirement to keep the model manageable necessitated this approach. A more 

time disaggregated model would likely find higher value to the more timely information available in 

those more frequent reports. Thirdly, in spite of its seeming complexity, this is a rather simple model 

that may well exclude mechanisms (such as futures trading and inter-quarter arbitrage) that would allow 

traders to take advantage of frequent, timely information.  
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The value of information is limited by the decisions that are enabled and improved by better 

information. While in some cases it is hard to identify actions that can be taken given better 

information, for WASDE reports that is not the case. These results suggest that significant value, 

especially to specific agents, can be attributed to both USDA data and to its outlook reports. It should be 

no surprise that markets respond when these reports are issued, because agents with much at stake can 

take better informed decisions. 
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Table 1. Area, Yield, Production, Stocks and Export Uncertainties 
 

 

  

Area Yield Production Exports Stocks
CV* CV* CV* StDev CV* StDev CV* StDev

Trend adjusted variation
Naïve error+ 5.4% 8.2% 10.0% 1291 25.3% 444 51.9% 629

Errors in WASDE reports prior to harvest
May 2.5% 8.3% 9.3% 1201 24.8% 437 59.6% 663
June 2.4% 8.4% 9.2% 1187 24.9% 438 58.5% 651
August 0.9% 4.8% 4.3% 549 19.8% 350 37.6% 418

Errors in WASDE reports during crop year
September 0.9% 4.0% 3.5% 454 19.1% 338 35.5% 395
November 0.8% 0.8% 102 15.1% 267 29.9% 333
December 13.4% 236 25.4% 282
March 7.9% 140 24.6% 274
June 4.3% 76 12.0% 134
August 1.6% 28 8.7% 105

Errors in WASDE reports after crop year
September 9.4% 115

+ Standard deviation of the error term from a naïve (trend) forecast, and relative to the base variable value (CV).
* Standard deviation of  the forecast error in that month's report, and relative to the base variable value.
WASDE forecast errors are from monthly reports between 1993 and 2014.
Base variable values are an average over the 2010/11, 2011/12 and 2013/14 crop years.
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Table 2. Corn Market Information and Uncertainty Calendar 

  

t
Quarterly 
Periods

Uncertainty              
(Naïve case) f

WASDE Release Months Information Improvements  
for current crop year only

   Prior crop year  (Y = 0)

t = -1, 
Y = 0, 
Q = 3

March-May    
Q3

Supply (Area, Yield)              
Exports              
Domestic Use           
Stocks (t=-1,0,4)                      

0

Initial conditions from 
historical data - uncertain 
initial stocks and use data           
Naïve expectations

t = 0,   
Y = 0,   
Q = 4

June- August    
Q4

Supply (Area, Yield)              
Exports              
Domestic Use           
Stocks (t=-1,0,4)                      

1
May, June, July                                     
(Area planted survey)                   
(Stocks survey in June)

Area                                                     
Stocks (t=-1,0)

t=1,     
Y = 1,   
Q = 1

September- 
November        

Q1

Supply (Area, Yield)              
Exports              
Domestic Use           
Stocks (t=4)                      

2
August,  September, October           
(Yield surveys)                                     
(Stocks survey in September)

Area now known                                          
Yield                                               
Stocks (t=0 now known)                        
Exports (Foreign production)

t=2,     
Y = 1,   
Q = 2

December-
February           

Q2

Exports                           
Stocks (t=4)                      
Domestic Use

3
November, December, January                    
(Stocks survey in December)

Area known                                    
Yield now known                                     
Stocks (t= 0 now known)                  
Exports (Foreign production)

t=3,     
Y = 1,   
Q = 3

March-May          
Q3

Exports                            
Stocks (t=4)                      
Domestic Use

4
February, March, April                              
(Stocks survey in March)

Area known                                    
Yield  known                                     
Stocks (t= 0 known)                  
Exports (Foreign production)

t= 4,     
Y = 1,   
Q = 4

June- August          
Q4

Exports                      
Stocks (t=4)                      
Domestic Use    
Future supply & use

5
May, June, July                                                 
(For next crop year)

Area known                                    
Yield  known                                     
Stocks (t= 0 known)                  
Exports (Foreign production)

   Next crop year (Y = 2)

t= 5,     
Y = 2,   
Q = 1

September- 
November        

Q1

                                   
Future supply & use 6

August,  September, October                  
(For next crop year)                  
(Stocks survey in September)

Stocks (t= 4 now known)                  
Exports now known       
Domestic use resolved

   Current crop year (Y = 1)



39 
  

Figure 1.  Prices across Crop years versus Minimum Stocks 
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Table 3.  Base Data: Perfect Information Outcome 

 

 

Prior crop year Current crop year Annual Next crop year Annual
Q3 Q4 Q1 Q2 Q3 Q4 Total Q1 Q2 Q3 Q4 Total

t = -1 0 1 2 3 4 1 2 3 4
Price  ($/bushel) 4.52 4.25 4.34 6.19 4.43 4.25 4.34 6.19 4.43
Area (million acres) 84.3 84.3 84.3 84.3
Yield (bushels/acre) 154.2 154.2 154.2 154.2
Production* 12990 12990 12990 12990
Domestic use - FSI 1618 1581 1606 1644 1618 6449 1581 1606 1644 1618 6449
Domestic use - Feed 398 2047 1521 812 398 4778 2047 1521 812 398 4778
Exports 431 403 413 516 431 1763 403 413 516 431 1763
Stocks (carry-out) 3547 1100 1100 1100

* Quantities are in million bushels
+ Base data are an average of outcomes for the 2010/11,11/2 and 13/14 crop years (omitting the extradorinarily low production year 2012/13)
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Table 4.  Own-Price Supply and Demand Elasticities from the Literature 

Demand- Exports Elasticity Values 
Babcock (2008)# -1.2 
Bredahl, Meyers, and Collins (1979) -1.31 
Chambers and Just (1981) Range -0.47 to-0.63 
Fortenbery and Park (2008) Range -.26 to-.32 
Gardiner and Dixit (1987)^ Range -0.3 to -0.6 
Hanoitis, Baffes, and Ames (1988)* -1.727 
Reimer, Zheng, and Gehlhar (2012) Range -1.11 to -1.64 

  
Demand- Feed and Residuals   
Babcock (2008)# -0.4 
Fortenbery and Park (2008) Range -.3 to -.4 
Taylor, Mattson, Andino, Koo (2006) -0.11 
Womack (1976) Range -.4 to -.9 

  
Demand- Food, Seed, and Industrial   
Babcock (2008)# -0.1 
Fortenbery and Park (2008) Range -0.075 to -.064 

Taylor, Mattson, Andino, Koo (2006)** 
-0.33 
-0.22 

Womack (1976) Range -.08 to -.14 
  

Supply- Area   
Boussios and Barkley (2014) 0.26 
Chavas and Holt (1990) 0.15 
Hendricks, Smith, and Sumner (2014) 0.4 
Lin and Desmukes (2007) Range 0.17 to 0.35 
Miao, Khanna, and Huang (2015) 0.45 
Orazem and Miranowski (1994) 0.1 
Roberts and Schenkler (2013) Range 0.086 to 0.114 

  
Supply- Yield   
Boussios and Barkley (2014) 0.18 
Choi and Helmberger (1993) 0.27 
Miao, Khanna, and Huang (2015) 0.26 

Notes: * Export demand elasticity is a relative price elasticity, measuring the response of US exports to changes of the US export 
price to the trade weighted export price of US competitors. #- All of Babcock (2008) numbers were estimated to fit model, as 
opposed to derived. ^- Their review of papers found elasticities to fall in that range. **- The elasticities represent “Ethanol 
Demand” and “other Industrial Use”.
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Table 5.  WASDE Valuations – Welfare across Agents and Information Cases ($ millions) 

  
Naïve 
Expectations 

Perfect 
Information 

WASDE 
Expectations 

Perfect 
Improvement 
over Naïve 

WASDE 
Improvement 
over Naïve 

Overall Welfare 
          
$150,726  

           
$151,311  

              
$151,027  

                     
$585  

                     
$301  

Producer Revenue 54,322  
             
54,941  

                
54,475  

                     
618  

                     
153  

Consumer Surplus  96,229  
             
96,600  

                
96,570  

                     
371  

                     
341  

Trader Profit 
                  
175  

                 
(230) 

                      
(17) 

                  
(405) 

                   
(192) 

Export Revenue 
               
7,268  

               
7,619  

                   
7,440  

                     
351  

                     
172  

Consumer expenditure 49,256  
             
49,072  

                
49,016  

                  
(185) 

                   
(240) 

Export Welfare 
               
4,448  

               
4,345  

                   
4,467  

                  
(102) 

                       
19  

Storage Costs 
               
2,027  

               
1,980  

                   
1,999  

                     
(47) 

                     
(28) 
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Table 6.  WASDE Valuations Improvement over Naïve outcome- Forecast Components ($ millions) 

  Area Yield Production 
Export 
Demand 

Feed 
Demand/ 
Stocks 

Overall Welfare 
                 
$145  

              
$188  

                   
$299  

                 
$320  

                       
$300  

Producer Revenue 
                   
32  

              
152  

                   
186  

                 
100  

                       
224  

Consumer Surplus 
                 
125  

              
199  

                   
338  

                 
355  

                       
333  

Trader Profit 
                 
(12) 

            
(163) 

                
(226) 

               
(135) 

                     
(257) 

Export Revenue 
                   
56  

                 
88  

                   
124  

                 
173  

                       
131  

Consumer expenditure 
                 
(48) 

            
(110) 

                
(183) 

               
(234) 

                     
(183) 

Storage Costs 
                 
(12) 

              
(11) 

                   
(19) 

                 
(25) 

                       
(24) 

Exporter Surplus 
                   
10  

                 
40  

                     
60  

                   
(1) 

                          
76  

  



44 
  

Table 7.  WASDE Valuations—Sensitivity Analysis on Elasticities (Improvement over Naïve in $ millions) 

 Base 

Elastic 
Supply & 
Elastic 
Demand 

Elastic 
Supply & 
Inelastic 
Demand 

Inelastic 
Supply and 
Inelastic 
Demand 

Overall Welfare 
                 
301  

              
323  

                   
348  

                 
221  

Producer Revenue 
                 
153  

              
279  

                   
231  

                   
94  

Consumer Surplus 
                 
341  

              
265  

                   
721  

                 
369  

Trader Profit 
              
(192) 

            
(220) 

                
(604) 

               
(242) 

Export Revenue 
                 
172  

              
179  

                   
179  

                 
182  

Consumer expenditure 
              
(240) 

            
(143) 

                
(577) 

               
(358) 

Export Welfare 
                   
19  

                 
24  

                     
56  

                 
(17) 

Storage Costs 
                 
(28) 

              
(22) 

                   
(25) 

                 
(28) 

Elasticities Assumed        
Export demand -1.0 -1.5 -0.5 -0.5 

Feed demand -0.4 -0.5 -0.3 -0.3 
FSI demand -0.2 -0.3 -0.1 -0.1 

Area Planted 0.2 0.4 0.1 0 
Yield 0 0.2 0 0 
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Figure 2.  Simulation Histograms of the Valuations for the Base Case with WASDE Information Available
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