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Abstract 

 
In this paper we describe a procedure for disaggregating agricultural land use choices at NUTS 

2 level to about 18.000 homogeneous spatial units completely covering the usable agricultural 

area of the EU. The disaggregation procedure uses 40.000 sampling points and aggregate data 

from administrative regions and requires two steps: First, we employ crop specific, spatial bi-

nary choice models to regress land use decisions on local natural conditions (soil, relief, cli-

mate) based on the sample information. Results allow predicting crop shares in each spatial 

unit. Second, consistency with data from administrative regions is achieved by maximising the 

posterior density of crop shares subject to aggregating equations using the forecast distribu-

tions as prior information. Comparison with actual crop shares shows the validity of the pro-

cedure. 

 

1.  Introdu cti on 

 

Not at least due to the so-called multi-functional model of European agriculture, there is grow-

ing interest in modelling environmental effects of the agricultural sector in the EU. In many 

cases, results beyond rather crude passive indicators can only be obtained linking biophysical 

models to economic models for policy impact analysis. An important methodological problem 

in this context is “bridging” the scales: whereas most bio-physical models work on field scale, 

comprehensive EU-wide economic models generally work on large administrative regions. 

                                                         
1 The research is supported by the European Commission in the context of the CAPRI-DynaSpat project (Project 
number 501981). 
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Within these administrative boundaries the natural conditions of soil, relief and climate 

usually differ in such a manner, that the assumption of identical cropping pattern, yields or in-

put use cannot be maintained. Simulations with bio-physical models thus require breaking 

down results from the economic models into a smaller regional scale. This paper proposes a 

statistical approach combining a logit model with a Bayesian highest posterior density estima-

tor to break down production data of 30 crops in about 150 European administrative regions 

for EU15 (NUTS 2) to 18.000, so called, Homogeneous Spatial Mapping Units (HSMUs).  

The approach is based on two steps. The first step regresses cropping decisions in each 

HSMU on geographic factors (soil, climate etc.), using results of the Land Use / Cover Area 

Frame Statistical Survey (LUCAS) providing observations on agricultural crops at approxi-

mately 40.000 sampling points all over the EU territory. Spatial statistical techniques are used 

to allow for spatial heterogeneity of the coefficients using a locally weighted logit model. In the 

second step of the disaggregation procedure, simulated or given data for the administrative 

Nuts II regions are broken down to HSMU level by Bayesian methods. Two possible ways to 

introduce prior information from the logit regression step are discussed: (1) using means and 

variances of the predicted shares in each HSMU, or (2) using the estimated coefficients and 

their covariance matrix in the Nuts II region. In the first case, we search for shares at HSMU 

level consistent with Nuts II results maximizing the posterior density of the predicted shares. 

The second approach selects the most probable set of regression coefficients producing data 

consistent shares over all HSMU maximizing the posterior density of the coefficients.  

The basic approach – estimating prior information and achieving consistency between 

scales afterwards is in line with previously suggested disaggregation procedures (Howitt and 

Reynaud, 2003). While different estimation procedures are motivated by data availability, the 

proposed method contributes to the literature in the following respects: (1) Lower level units 

are defined by homogeneous production conditions rather than administrative boundaries; (2) 

Functional relationships between location factors and land use are identified explicitly using 

spatial statistical techniques. This allows to discern prior information on crop shares even un-

der scarce data information for some lower level units; (3) The applied Bayesian method fully 

and transparently accounts for the available prior information – prior distributions – when 

searching for consistency between the scales. 

The paper is organised as follows. Chapter 2 describes the database and the definition of 

the HSMUs. Chapter 3 explains the two step disaggregation procedure in detail. Chapter 4 pre-

sents and discusses selected results. 

 

2.  Database  and Def init ion of  Homogeneous  Spatia l  Mapping Uni ts  (HSMUs) 

 
The description of the database is divided in three main parts: (1) sources and definitions of 

the natural location factors, (2) the construction of HSMUs, and (3) a characterisation of the 

agricultural production data in administrative regions. 
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Maps of Natural Location Factors 

 
The relative competitiveness of an agricultural crop at a certain location is determined by natu-

ral factors, technology, and market conditions. While market conditions and the generally 

available technology are assumed to be rather invariant within an administrative region, differ-

ences in natural conditions will lead to heterogeneity regarding the optimal crop mix between 

different locations inside the Nuts II region. Therefore, this study concentrates on natural loca-

tion factors.  

 

Table 1. Relevant Maps of Natural Conditions 

 

Factors Indicators 

Sand content 

Clay content 

Soi l  qual i ty2  

Organic Carbon Content 

Slope Rel ie f  3 

Elevation 

Annual Rainfall 

Length of the vegetation period 

Cumulative temperature sum 

Climate  4 

Bio-geographical region 

 
According to plant production literature (e.g. Heyland 1994), yield potentials of agricultural 

crops are mostly affected by soil quality, relief and climate conditions. Small scale information 

on location factors stems from different sources and was prepared with the help of geographi-

cal information systems (GIS). The bio-geographical region characterizes the ecological system 

at a certain location (alpine, alpine boreal, alpine pyrenees, anatiolian, artic, atlantic, atlantic 

north, black sea, boreal, continental, continental south, macaronesia, mediterranean, pan-

nonian, stepic) and modifies a scheme proposed in Roekaerts (2002). 

 

                                                         
2 Hiederer R., Jones B. and Montanarella L. (2003): European Soil Raster Maps (1km by 1km) for Topsoil Organic 
Carbon Content, Texture, Depth to Rock, Soil Structure, Packing Density, Base Saturation, Cation exchange. Devel-
oped under the EC-JRC-Action 2132: Monitoring the state of European soils (MOSES). 
3 EuroLandscape/Agri-Environment Catchment Characterisation and Modellig Activity, Land Management Unit, In-
stitute for Environment and Sustainability, EC-Joint Research Centre. 250 Meter DEM, compiled on the basis of data 
acquired from data providers and national mapping agencies over Europe for internal use. 
4 Interpolated meteorological data. Source, JRC/MARS Data Base – European Commission – JRC; Van der Goot E. 
& Orlandi S. (1997/2003). 



9. Evaluating Agricultural Policy by (quasi) Spatial Analysis Methodologies 

 813 

CORINE Land Cover Map (CLC) 
 

The general distinction of different land cover classes is based on the CORINE land cover 

map (European Topic Centre on Terrestrial Environment, 2000) describing land cover (and 

partly land use) according to a nomenclature of 44 classes, based on the visual interpretation of 

satellite images and ancillary data (aerial photographs, topographic maps etc.).  

The CORINE classification system distinguishes 11 agricultural classes (Non-irrigated ar-

able land, permanently irrigated land, rice fields, vine yards, fruit and berry plantations, olive 

groves, annual crops associated with permanent crops, complex cultivation, pasture, marginal 

areas and forestry). Some of the classes as “Rice fields”, “Olive groves”, “Vineyard”, “Pasture” 

or “Arable Land” clearly indicate a special agricultural use. A minimum of 25 ha of homogene-

ous land cover is defined to build one CORINE mapping unit. That definition of the mini-

mum mapping unit leads to two effects. Firstly, “pure” classes such as “Arable land” may in 

reality comprise small parcels of other land cover classes as well if these are smaller then 25 ha. 

Secondly, so-called heterogeneous agricultural areas as e.g. “Land principally occupied by agri-

culture with significant areas of natural vegetation (marginal area)” comprise no pre-dominant 

land use >25 ha and give only limited information about the type of agricultural use. The 25 ha 

limit results from the mapping conventions and the interpretative limits set by the spatial and 

spectral resolution of the satellite images. 

In this study we assume that only the agricultural classes are suitable for farming. The 

reader is reminded that agricultural classes may comprise small parcels of non-agricultural uses, 

as agricultural use may be found in non-agricultural classes. 

 

Motivation and Construction of Homogeneous Spatial Mapping Units (HMSU) 

 
The aim of building HMSU is the definition of areas inside an administrative region where ap-

proximate homogeneity according location factors may be assumed. The HMSU serve then as 

simulation units for the bio-physical models and are constructed by overlaying different maps 

(land cover, soil map, climatic factors etc.). In order to allow for a manageable number of 

HSMUs, the most important factors must be selected, and continuous parameters must be 

grouped in classes. The CORINE land cover map was used here in combination with three 

further main factors relating to soil (sand content in 4 classes), relief (slope in 5 classes) and 

climate (“biogeographical region”). Each HSMU has identical values for these four items, other 

parameters (such as clay content) may differ inside the HSMU. Weighted averages are defined 

for the parameters shown in Table 1 above for each HSMU using GIS techniques. 
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Figure 1. Homogeneous Spatial Mapping Units 

 
The HMSU approach was deemed superior to a grid layout, especially as factors determining 

optimal cropping patterns may be identical across very large regions (say Northern Finland) so 

that grid units would be “wasted”, whereas in other regions especially such which high relief 

changes, the grid units may already comprise huge differences in natural conditions. Further 

on, the units can be defined so that they do not cross administrative borders, and grid data may 

be redefined based on the HSMUs. 

 

Agricultural Production Data 

 
The agricultural sector model CAPRI uses complete and consistent statistics for Nuts II re-

gions, based on EUROSTAT. The second step of the disaggregation procedure adjusts land 

use choices in the HSMUs until the summed areas over the HSMU match the observed statis-

tics for Nuts II regions. Another important database in the LUCAS survey, which allows direct 

assignment of land use choice and natural conditions. 

 

Land Use / Land Cover Frame Statistical Survey (LUCAS) 
 

In opposite to mapping approaches, area frame surveys based on a common statistical sam-

pling method gather land cover and land use data (EUROSTAT, 2000) at specific sample 

points, only, and extrapolate from these to the entire area under investigation (European 

Commission, 2003a). LUCAS covers the territory of all EU Member States and all kinds of 

land uses, and is based on a two-stage sampling design: at the first level, so-called Primary 

Sampling Units (PSUs) are defined as cells of a regular grid with a size of 18 × 18 km, while 

the Secondary Sampling Units (SSUs) are 10 points regularly distributed (in a rectangular of 

1500 × 600 m side length) around the centre of each PSU (Figure 2) resulting in approximately 

10.000 PSUs for the whole EU (European Commission, 2003). 
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LUCAS statistical frame survey 
on land cover and land use 

• Main land cover/use survey raster:  

18 km by 18 km with 10 subsampling Units 

 

• Phase 1: field survey at ~100 000 observa-

tion points in EU15 (spring) 

 

• Phase 2: interview with ~5000 farmers to 

obtain additional technical or environ-

mental information (autumn) 

 

• The first survey has been carried out in 

2001 (UK 2002) 

 

• 57 land cover classes are separated in-

cluding 34 agricultural classes 

 

• High geometrical accuracy of the sampling 

locations (± 3m) 

 

Sam-

pling de-

sign 

Due to possible measurement errors regarding the geo-references in the CORINE maps 

(Gallego 2002), about 30% of the LUCAS points closer then 100 m to the border of a 

CORINE class were not considered in here. The 38 agricultural classes found in LUCAS (36 

crop land, 2 permanent grassland classes) were re-grouped according to the crops found in 

CAPRI as shown in Table 2. All other classes (artificial areas, woodland, water, etc.) are aggre-

gated in a residual classed termed “OTHER”. 

 

 

 

 

 
Figure 2. Design of the LUCAS survey 
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Table 2. Considered crops 

 

 

3.  The Disaggregation  Procedure  

 

HSMU1 SWHE

0 0.2 0.4 0.6 0.8 1

SHARE

PD

HSMU2 GRAS

0 0.2 0.4 0.6 0.8 1

SHARE

PD

HSMU2 SWHE

0 0.2 0.4 0.6 0.8 1

SHARE

PD

HSMU1 GRAS

0 0.2 0.4 0.6 0.8 1

SHARE

PD

26% SWHE -> 10.4 ha

72% GRAS  -> 28.8 ha

70% SWHE -> 42 ha
35% GRAS  -> 21 ha

25% SWHE -> 10 ha
75% GRAS  -> 30 ha

75 % SWHE -> 45 ha

25% GRAS  -> 15 ha
55 ha SWHE

45 ha GRAS

Nuts II

HSMU       

+    +    +    +    + +

+    +    +    + +    +

+    + +    +    +    +

+ +    +    +    +    +

+    +    +    +    +    +

+    +    + +    +    +

LUCAS

60ha        30% Sand
650mm Rain

…..

40 ha      20% Sand

700mm Rain

…..

SWHE

30% Sand

680mm Rain

…..

GRAS

25% Sand

700mm Rain

…..

Share = f (SAND, RAIN …)

PREDICTION

ESTIMATION

CONSISTENCY

 

Figure 3. Disaggregation Procedure 

Group Crops 
Cereals Soft wheat (SWHE), Durum wheat (DWHE), Reye (REYM), Barley (BARL), Oats 

(OATS), Corn (MAIZ), Rice (PARI), Other cereals (OCER)  
Oilseed and 
Pulses 

Rapeseed (RAPE), Sunflowers (SUNF), Soybean (SOYA), Pulses (PULS) 

Industrial crops Potatoes (POTA), Sugar beet (SUGB), Texture (TEXT), 
Other industrial crops (OIND)  

Labour intensive 
crops 

Tomatoes (TOMA), Other vegetable (OVEG), 
Flowers (FLOW), Tobacco (TOBA) 

Permanent crops Olive grows (OLIV), Citrus fruits (CITR), Other fruits (FRUI), Nurseries (NURS), 
Vine (TWIN) 

Fodder Produc-
tion 

Grass (GRAS), Food from arable land (OFAR), Fodder root crops (ROOF) 

Fallow Land Set aside or fallow land (FALL) 
Other Land 
Cover 

Other crops (OCRO), non agricultural land cover (OTHER)  
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Before describing the crucial steps in detail the general approach of the disaggregation proce-

dure is illustrated in Figure 3. Suppose there is a Nuts II region divided in only two HSMUs 

each comprising two crops – grassland (GRAS) and soft wheat (SWHE). Combining the LU-

CAS survey with digital maps provides us with several observations of crops grown at a de-

fined point with a set of natural conditions. Using an adequate estimation model we can re-

gress the probabilities of finding a crop at a certain location on the natural conditions. As this 

probability can be interpreted as the share of the crop in a homogeneous region, applying these 

estimated coefficients to the average natural conditions in a certain HSMU yields normally dis-

tributed predictions of crop shares for this HSMU under corresponding assumptions on the 

stochastic processes governing crop choice. These a priori information on cropping shares are 

generally not consistent with the “known” cropping area in the Nuts II region. The “best” set 

of data-consistent shares given the prior information is identified by a Bayesian highest posterior 

density approach. 

 

3.1 Locally Weighted Binomial Logit Estimation 

 
Generally, shares for each crop 

C
Ŷ  are regressed on the following explanatory variables de-

scribing natural conditions:  

 

• Sand content (SAND) 

• Clay content (CLAY) 

• Organic carbon content (OCTO) 

• Slope (SLOP) 

• Elevation (ELEV) 

• Rainfall (RAIN) 

• Length of vegetation period (VEGP) 

• Sum of temperature in vegetation period (TSUM) 

 
The regressions were estimated independently for each crop c in each CORINE class clc: 

 

),,,,,,,(ˆ TSUMVEGPRAINELEVSLOPOCTOCLAYSANDf=
clcc,

Y  (1) 

 
The arguments for using specific coefficients for each CORINE class are as follows. Assume 

grass land parcels are found in the LUCAS survey in the “non-irrigated land” CORINE class. 

We would assume that slope has a positive effect on the probability to find grass. In the “pas-

ture” class of CORINE, we would eventually find the opposite effect: with increasing slope, 

grass land could be replaced by forest (see also chapter 4.1). For convenience the indices c and 

clc are omitted in the following. 

The LUCAS survey reports one point in time observations and hence does not deliver 

cropping shares (or rotations), but requires a binary choice model. Both logit and probit mod-

els (see e.g. Green 2000) were originally tested, with the logit approach giving slightly better 
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results. The likelihood function of finding crop c at a specific LUCAS point i for the binomial 

logit model is defined as: 

 

! 

"(#'x
i
) =

e
# 'x i

1+ e
?'x i

logL = [yi log"(#'x i ) + (1$ yi)(1$ "(#'x i ))]
i=1

n

%

 (2) 

 
where Y is a dummy vector indicating whether a certain crop was observed at a location i 

(yi=1), xi is the design matrix containing data on natural conditions and 

! 

"(#'x
i
)  is the prob-

ability that a specific crop   is grown at location i. 

Applying the estimated   

! 

) 
"  to the average natural conditions in a HSMU (

h
x ) give us a 

prior estimate for the share of a specific crop in a certain HSMU: 

 

! 

ˆ Y = "(#'x
h
) =

e
# ' xh

1+ e
# ' x

h

 (3) 

 
Binomial versus Multinomial Regression 

 
The approach discussed above examines the crops independently from each other and thus 

neglects the information that crops compete for the available land, with two possible effects. 

Firstly, the error terms for the different crops are probably correlated, and secondly, the indi-

vidual estimated shares don’t add up to unity. The multinomial probit model would be ideal as 

it allows for an unrestricted variance covariance structure of the error terms and satisfies the 

additivity condition, but is computationally infeasible for 30 crops and 10.000 points. The as-

sumption of an identity matrix for the variance covariance matrix underlying the multinomial 

logit model was deemed as too inflexible (Nelson et al. 2004), albeit it is easier to solve. The 

way out might be a nested logit model, a possible expansion in further analysis. 

However, both problems were not deemed crucial for the application at hand. Given the 

large number of observations, the possible gain of taking correlations between the error terms 

across crops into account is most probably small. Furthermore, the violation of the adding up 

condition for the shares is explicitly accommodated in the second step of the disaggregation 

procedure, where the estimated shares serve as prior information, only. 

 
Local versus Global Regressions 
 
The assumption of European wide invariant relationships between the share of each crop and 

a limited number of location factors describing natural conditions may be problematic if other 

omitted explanatory factors are not randomly distributed in space, but “clustered”. Suppose, 

for example, two HSMUs with identical natural conditions, the first one close to a sugar refin-

ery, and the second one far way from the next sugar plant. The share of sugar beets in the first 

unit will be probably much higher, an effect not linked to the natural conditions. Clearly, omit-
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ted variables as the effect of sugar refineries could lead to seriously biased parameter estimates. 

Adding more explanatory variables would certainly help, but it is simply impossible to collect 

information on all probably relevant factors (market points, transport infrastructure, environ-

mental legislation, etc.). Instead, spatial econometric techniques are applied to overcome the 

problem of omitted variables that are correlated over space. 

The basic idea behind Locally Weighted Regression, which was proposed by Cleveland and 

Devlin (1988), is to produce site specific coefficient estimates using Weighted Least Squares to 

give nearby observation more influence than those far away. Further on, the estimation for any 

specific site is limited to a number of observations within a certain bandwidth around the site. 

Locally Weighted Regression are mostly found combined with Least Squares estimators, but 

application to Maximum Likelihood Estimation as needed in the case of discrete dependent 

variables are described as well (Anselin et al. 2004). 
 

+ + +

+ + + + +

+ + + + +

+ + + + +

+ + + + +

+ + +

+ + +

+ + +

NutsII SWHE

30% Sand

680mm Rain

…..

GRAS

25% Sand

700mm Rain

…..

d

i
!

Locally Weighted Max. Likelihood 

+

 

Figure 4. Scheme of locally weighted maximum estimation 

 
The weight given to any observation i in constructing the estimate for site j is given by ij

! . 

The tri-cube is a commonly used weighting function: 

 

)(1

3
3

jij

j

ij

ij dI
d

<
!
!

"

#

$
$

%

&

'
'

(

)

*
*

+

,
-= .

.
/   (4) 

Where ij
!  is the distance between site i and observation j. jd  is the bandwidth and (.)I is 

an indicator function that equals one when the condition is true. The effect of any one location 
in space on near points thus falls depending on the distance and becomes zero once the dis-
tance exceeds the bandwidth. There are other common weighting schemes like the Gaussian 
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function or several Kernel weighting functions (see: Anselin et al. 2004 or Fotheringham et al. 
2002). But it has been shown that opting for a proper bandwidth is more significant than 
choosing a certain spatial weighting function. 

When there is no prior justification for applying a particular bandwidth, an appropriate 

bandwidth can be found by the minimising either the cross-validation score (CV), the Akaike 

Information Criterion (AIC) or the Schwartz Criterion (SC). The AIC and the SC are offered 

by most software packages. The CV is calculated as: 

 

( )
2

1

ˆ!
=

"#=
n

i

iii yyCV

 (5) 

 

where n is the number of data points and the prediction for the ith data point ii
y !
ˆ

is obtained 
with the weight for that observation set to zero. Each of the criteria can be minimised by a 
golden section search (see Press et al. 1989). In our study all criteria led to similar results. We 
opted to minimise the Schwartz Criterion, because according to Boots et al. (2002) it seems to 
have better large sample properties.  

In typical applications, sites and observations would be identical. In our context, that 
would require estimates per crop and CORINE class for each LUCAS point, which is compu-
tational impossible. Instead, the NUTS II regions were chosen as sites. When estimating for a 
particular NUTS II region, all LUCAS point inside that NUTS II region received uniform 
unity weight, and points in neighbouring NUTS II regions weights equal or smaller unity ac-
cording to (4). That still leads to a large number of possible estimations: 150 Nuts II regions 
times 10 agricultural CORINE classes times 30 crops, but fortunately, many of the combina-
tions do not comprise any observations. Weighting each likelihood contribution with 

! 

" ij
 gives 

(Fotheringham et al. 2002): 
 

! 

logL = " ij yi log# $ j

'
xi( ) + 1% yi( ) 1% # $ j

'
xi( )( )[ ]

i=1

n

&  (6) 

 
Robust Covariance Matrix Estimation 

 
Calculating accurate variance and covariance matrixes for the coefficients is essential to ensure 

proper a priori density functions for the Bayesian methods in the second step of the disaggre-

gation procedure. Given the non-linear character of the estimations, the variance-covariance 

matrices offered by the statistical packages are not analytically calculated, but are instead nu-

merically approximated which proved to be not suitable. Quite small predicted mean values in 

combination incredibly high variances led to shaky final results. It became therefore necessary 

to calculate the asymptotic covariance matrix analytically (see White (1982)) as: 

 

! 

Cov ˆ " [ ] = ˆ H 
#1 ˆ B ˆ H 

#1 (7) 
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where for the weighted logit model the elements of Hessian H and the Brendt, Hall, Hall and 

Hausman matrix B  are given by (Green 2000): 

 

! 

H =
"2LogL

"#"# '
= $ % i& i 1$ & i( )xixi

'

i

'  (8) 

( )! "#=
i

iii
y

'

ii
xxB

2

$  (9) 

 
As insignificant parameter estimates might influence the efficient calculation of a robust co-
variance matrix although they do not influence the forecasted value, insignificant variables 

were removed from the estimations. The variance of Ŷ builds upon the calculated covariance 

matrix

! 

V
?

= Cov ˆ " [ ]. 

 

! 

V
Y

=Var ˆ Y [ ] = "
i
1# "

i( )[ ]
2

I + 1# 2"
i( )$x'[ ]V?

I + 1# 2"
i( )x$ '[ ]  (10) 

 
Using specific 

HSMU
x   yields variances of the predicted land use share in each HSMU 

(Green 2000). 
 

3.2 Data-consistent Disaggregation  

 
The second step of the disaggregation procedure identifies crop shares in each HSMU using 
the prior information on the estimated crop shares from the first estimation step under two 
data constraints: Firstly, adding up the areas per crop in each HSMUs must recover the crop-
ping areas CA for that crop at NUTS II level. Secondly, the posterior shares in each HSMU 
must add to unity, including all non-agricultural land use from the LUCAS survey aggregated 
to the category “OTHER”. In opposite to the first step this requires simultaneous accounting 
for all crops c in all relevant  HSMUs h. The notation is therefore extended, e.g. from Y to 

hc
Y
,

. 

The crop areas in each HSMU are defined by multiplying the posterior shares con

hc
Y
,

 with 

the entire area 
h
A  thus 

 

2,

2

, Nch

Nh

con

hc
CAAY =!

"

 (11) 

 
and the adding up to unity 
 

1
,
=!

C

con

hc
Y  (12) 

 
must be imposed. 
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As the predicted unrestricted shares will typically violate the constraints, a penalty function 
is necessary to define the optimal deviations from the predictions. Generalized Maximum En-
tropy (GME) techniques (Golan, Judge and Miller 1996) have often been used for this type of 

data balancing exercises in recent times. Here, however, a Bayesian highest posterior density 
(HPD) estimator is applied allowing for a direct and transparent formulation of prior infor-

mation and considerably reducing the computational complexity compared to the GME ap-
proach (Heckelei et al. 2005). The prior information is expressed either as normal densities of 

predicted shares, with mean vector 
hc,

Ŷ and variance
hC ,

Y
V , or as prior multivariate normal 

densities of parameters con

clcc,
â  with mean vector

clcc,
â̂  and covariance matrix

clcc,â
V .. After taking 

logs, the prior density function for the consistent shares con

HSMUC
Y

,
 is: 
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In order to define the HDP solution for the coefficients, an additional equation has to be im-

posed. We assume that the coefficients should be the same in all HSMU belonging to a certain 

Corine class clc: 
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# '
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x
h

1+ e
# '
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     h $ clc  (14) 

The multivariate prior density function equals:  
 

! 

"
1

2
n log 2#( ) + logV?c,clc + $

c,clc

con " ˆ $ 
c,clc( )'V$ c,clc

"1 $
c,clc

con " ˆ $ 
c,clc( )[ ]

clc

%
c

%  (15) 

 
Where n is the number of coefficients. 

 

4.  Resul ts  

 
The framework of the binary choice models does not provide us with such a meaningful 

measure of fit like the R2 value in a standard linear least squares regression. Other measures of 

fit are proposed but checking them for about 15.000 estimated equations is a time-consuming 

process and they do not tell us much about the quality of the final result. Therefore we con-

centrate on interpreting estimated land use shares in the light of prior knowledge on crop cul-

tivation and on comparing aggregated estimation results with observed statistics at NUTS III 

level. 
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The following figures illustrate the estimated land use patterns under changing conditions 
in selected HSMUs of a French Nuts II region (FR71 – Rhone-Alpes). Figure 5 and Figure 6 
show different land use choices on “Non Irrigated Land” depending on different slope, re-
spectively sand classes. The cultivation of maize (MAIZ, shown in red) comes with a high ero-
sion potential and is therefore likely to decrease significantly in steep areas. Equally, with in-
creasing slope the share of high yield crops (soft wheat - SWHE, rape seed - RAPE) is ex-
pected to drop whereas more robust cereals (BARL - barley, OCER – other cereals) should 
increase. The main land use alternatives on high slopes according to the estimation are grass 
land (GRAS) and non-agricultural use (OTHER), e.g. forestry, both with low erosion risk. The 
estimated land use changes thus seem to be in line with common expectations.  
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Figure 5. Changing Land Use on Arable Land (increasing slope) 

 
The changes in the land use choice regarding changing sand content are less pronounced but 

comprehensible since the poor storage capacity of sandy soils can be compensated by rainfall 

and fertilizer applications in this region.  
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Figure 6. Changing Land Use on Arable Land (increasing sand content) 
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Figure 7 shows land use choices in the CORINE class PASTURE. As expected, this “pure” 

class consists mostly of grassland. With increasing slope the grassland is gradually replaced by 

non agricultural land cover as forestry. The response in the share of grassland to slope in-

creases is fundamentally different from the reaction observed on arable land. This shows the 

necessity of estimating distinct models for different CORINE classes.  
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Figure 7. Changing Land Use in PASTURES (increasing slope) 

 

4.1 Comparing Estimated Results with Observations 

 
For some European regions, land use statistics at a lower administrative level, called Nuts 

III, are available from the farm structure survey (FSS; EUROSTAT, 2002). This information is 

used as out-of-sample observation to validate the results of the disaggregation algorithm, 

which predicts cropping shares for the HSMUs consistent to NUTS II. Those predicted shares 

at HSMU are then aggregated to NUTS III level and c compared to the observed data.  

Another quick check is to run the second step of the disaggregation procedure without re-

covering the Nuts II statistics (without constraint (11)) and compare the “quasi multinomial” 

forecasts with the Nuts II statistics. This comparison allows a first evaluation whether adjust-

ing “shares” or “coefficients” is the preferable method. Table 1 shows the R2 calculated from 

the deviation between the forecasted cropping area and the Nuts II statistics for common 

crops. Two different methods of predicting the cropping areas are compared with the cropping 

areas in a Nuts II region derived from the share of LUCAS points with a certain crop within 

this region. The fairly high R2 for the areas calculated from the LUCAS survey show that the 

point observations reflect the observed cropping areas quite well. At least the “adjusting 
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shares” prediction comes up in most cases with higher R2. This shows that the disaggregation 

procedure is more precise than a simple statistical method.5  

 

Table 3. R2 values - forecasted cropping area compared to observed production level in Nuts II re-

gions of EU-15 

 

Staistic

LUCAS survey

shares calculated f rom 

observations in NutsII 

regions

consitency by 

adjusting predicted 

shares 

consistency by 

adjusting coef f ic ients

SWHE 0.92 0.94 0.71

DWHE 0.87 0.80 0.65

RYEM 0.37 0.73 0.69

BARL 0.83 0.90 0.09

OATS 0.48 0.78 -0.04

OCER 0.06 0.28 0.12

CERE 0.89 0.94 0.63

MAIZ 0.91 0.79 0.54

PARI 0.91 0.93 0.93

SUNF 0.84 0.85 0.15

PULS 0.62 0.68 -0.10

RAPE 0.88 0.71 -3.50

POTA 0.56 0.55 -2.70

SUGB 0.84 0.62 0.24

TOMA 0.52 0.50 0.24

OVEG 0.30 0.22 -0.51

CITR 0.97 0.96 0.81

FRUI 0.57 0.64 0.41

OLIV 0.97 0.95 0.80

TWIN 0.91 0.93 0.96

TEXT 0.71 0.62 0.48

OFAR 0.23 0.44 0.21

GRAS 0.87 0.93 0.65

GRAL 0.88 0.96 0.86

FALL 0.61 0.61 -0.28

Crops "Quasi Multinomial"

R2  Values

Loclly weighted Logit Estimation 

 

                                                         
5 Besides this the simple statistical method could not be applied to HSMU level, since there a sparse observations 
within a HSMU (in average 4 sampling points per HSMU, often even none). 



Modelling Agricultural Policies: State of the Art and New Challenges 

 826 

derived from LUCAS observation:  

 

nsobservatio total

SWHEn observatio   (in each NutsII region) 

 

�  p rovides realistic shares for NutsII regions (allows 

no breakdown to shares in HSMU)  

�  a dequate database for locally weighted estimation  

 

Weighted average over forecasted HSMU-shares 

• “Adding up to unity” is imposed  

• Data consistency not yet ensured 

 

�  a llows for first evaluation of the prior information 

estimated using locally weighted maximum likeli-

hood  

�  r educes in general deviation between LUCAS and 

NUTS II statistics   

 

Complete and Consistent (Coco) Database from the 

CAPRI sector model 
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Legend - share of land use in % 

 

Figure 8. Cropping shares for soft wheat in NutsII regions derived from different 

methodologies and sources. 

 

 

Compared to “adjusting shares”, the “adjusting coefficients” method suffers from a small fea-

sible space, since the number of adaptable parameters is lower. The poor R2 for several crops 

indicates that this problem is present. Although further investigation is necessary we prefer 

achieving consistency by adjusting the predicted shares 

The R2 of the estimated cropping areas resulting from the disaggregation procedure with 

full consistency imposed are generally better than those calculated only from the LUCAS ra-

tios, proving the usefulness of the disaggregation procedure. Only for some crops (potatoes, 

sugar beet and vegetables) the R2 of the LUCAS areas is higher. The estimation may suffer 

from strong spatial heterogeneity unrelated to soil and climate but arising from heterogeneous 

market conditions. 

The low R2 of “other fodder on arable land” (OFAR) indicates that the reclassification be-

tween LUCAS and CAPRI should be reviewed. OFAR is in fact mostly grass grown on arable 

land. The information contained in the LUCAS points might not perfectly discriminate be-

tween grass grown on pastures (GRAS) or on arable land (OFAR), as this classification is pre-

dominantly an administrative issue. Aggregating these two crops might help. Similar problems 

could be present among cereals, where distinguishing between types of grain is sometimes dif-

ficult (see e.g. Bavaria: significantly lower shares of soft wheat (SWHE) whereas shares of 

other cereals (OCER) are relatively high).  

The validation with out-of-sample data (EUROSTAT, 2002) at NUTS III level (see Figure 

9) shows that the land use shares predicted with the complete disaggregation procedure follow 

the actual distribution quite well. However, we can also see, that the disaggregation procedure 

is not able to capture the full variation between the NUTSIII regions at this point.  
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Figure 9. Comparison of estimated and observed shares in NUTS III region for different crops 

(Region Rhone-Alpes ) 

 

5.  Conclus ions  

 
This paper introduced a procedure of disaggregating cropping shares at NUTS II level to 

cropping shares in homogeneous spatial mapping units (HSMU) within the NUTS II regions 

in order to provide appropriate input data to lower scale bio-physical models calculating envi-

ronmental indicators. The methodology involves two steps: (1) Estimation of cropping shares 

depending on location factors based on a spatial maximum likelihood estimator and using ob-

servations on cropping choices at a high resolution grid-level. (2) Application of a Bayesian 

methodology to ensure consistency of predicted cropping shares at HSMU-level with NUTS II 

statistics. Variations of this computationally intensive methodology were discussed and evalu-

ated. The procedure was applied to data from the EU-15 territory. Selected results show that 

the methodology provided results superior to crop shares directly calculated from the grid-level 

sample in capturing observed aggregate shares. An out-of-sample validation with NUTS III 

data indicated the procedure’s ability to represent the distribution of cropping shares within a 

NUTS II region.   

There are several limitations of the approach to be addressed in further research: First, the 

methodology needs to be extended to allow for simulation of changes in cropping patterns at 

lower scale. Second, the approach tends to somewhat underestimate the variation of cropping 

shares between smaller scale regional units. Third, the set of explanatory location factors is lim-
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ited by the available data and the implied functional form is rather restrictive. Forth, other vari-

ables such as yield and related input use are also relevant as data for biophysical models. To 

overcome some of these problems, the study will be extended to introduce the new LUCAS 

survey and additional location factors becoming available soon. In addition, non-parametric 

techniques or non-linear transformations of explanatory variables are envisaged to make the 

approach more general. Finally, the study will be supplemented by making yield estimates and 

input use spatially varying across NUTS2 regions. At a later stage, we envisage to use time se-

ries data at NUTS II level in combination with spatial disaggregation to allow for the simula-

tion of land use and input changes at lower scale in response to changing economic conditions.   
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