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Calibration can be used to adjust for unit nonresponse when the model 
variables on which the response/nonresponse mechanism depends do 
not coincide with the benchmark variables in the calibration equation.  
As a result, model-variable values need only known for the 
respondents.  This allows the treatment of what is usually considered 
nonignorable nonresponse.  Although one can invoke either quasi-
randomization or prediction-model-based theory to justify the 
calibration, both frameworks rely on unverifiable model assumptions, 
and both require large samples to produce nearly unbiased estimators 
even when those assumptions hold.  We will explore these issues 
theoretically and with an empirical study. 
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1.  Introduction  
 

Although not orginally designed for that purpose, calibration can be used to 

adjust for unit nonresponse.   See, for example, Kott (2006).  It is less well known 

that calibration can be employed when the (explanatory) model variables on which 

the response/nonresponse mechanism depends do not coincide with the benchmark 

variables in the calibration equation.  As a result, model-variable values need only be 

known for the respondents.  This allows the treatment of what is usually considered 

nonignorable nonresponse.   

Section 2 lays out the two theories behind using calibration as a method for 

nonresponse adjustment: quasi-random response modeling and prediction modeling.  

Section 3 extends the prediction-modeling approach to cover nonignorable 

nonresponse.  The response mechanism is said to be “nonignorable” when the 

expected value of the survey variable under the prediction model differs between 

respondents and nonrespondents even when conditioned on benchmark variables. 

Only the prediction-modeling approach needs to be extended to cover 

nonignorable nonresponse.  This is because the ignorability of the response 

mechanism is an irrelevant concept under quasi-random response modeling since 

the unit propensities of response are modeled in that approach, not the survey 

variable.   

 A version of the prediction model in the approach bearing its name relates the 

survey variable to the model variables.  In the extension, a second model equation, 

called the “measurement-error model,” connects the model variables to the 

benchmark variables. 

 The  respective theories behind the quasi-random-response and prediction-

modeling approaches rely on samples being large and on model assumptions that 

can fail in practice.  We explore this empirically in Sections 4 and 5 for a census, 

thereby avoiding the added complication of a random-sampling component in the 

estimates.   

 Mutually exclusive group-indicator variables known for all units in the 

population serve as the benchmark variables in our empirical evaluations.  The  

“benchmark groups” themselves are based on previously-collected frame 

information.  Following Kott (2005), model variables are created by constructing 

analogous “model groups” using survey information known only for the respondents.   
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 Neither the prediction/measurement-error model nor the response model 

justifying calibration using these model groups is correct.  Both, however, are closer 

to the truth than the models justifying calibration treating the benchmark groups as 

the model groups.  As a consequence, using the response-generated model groups  

leads to much lower empirical biases and smaller mean squared errors if slightly 

larger empirical standard deviations.      

 We had hoped that a prediction-model-based correction to the quasi-

randomization mean-squared-error estimate would prove to be effective even when 

the models supporting the prediction-model approach were not strictly true.  

Unfortunately, this turns out not to be the case even when the model variables in the 

calibration are based on the true quasi-random response model.         

 Section 6 provides a discussion of these and some additional empirical 

results.  In particular, we show there can be efficiency gains from a two-step 

calibration under a simple random sample with unit nonresponse.  This approach 

first poststatifies the sample using the benchmark groups and then creates and 

employs analogous model groups to adjust for the nonresponse.    

 
2.  Some theory 

 

2.1.  Calibration 

 Linear calibration weights can be put in the form: 

 

   wk = dk(1 + zk
Tg),                                                                       (1) 

                                                                                                       

where k denotes an element in population U,  

{dk} is the set of original sample weights − the inverses of the element selection 

probabilities (for a census, all dk = 1) − for the elements in sample S,  

zk = (zk1, ..., zkP)T  is a P-vector with zk1 = 1 (or the equivalent: zk
T

 λ = 1 for some λ),   

g = (∑j∈S djxjzj
T)-1(∑j∈U xj

 −∑ j∈S djxj), and  

xk  is a P-vector of benchmark (or calibration) variables for which ∑ j∈U xj is known.  

For convenience, we will assume that matrices such as N − 1∑ j∈S djxjzj
T  when 

encountered in the theoretical sections of this paper are of full rank.  

 The weights in equation (1) are constructed so that the calibration equation,  
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   N − 1∑   wkxk = N − 1∑  xk,                                                              (2) 
                                      k∈S                       k∈U 
 

holds.  In most multivariate applications, the vector zk coincides with xk, but that will 

not generally be the case here.  In linear regression, the components of zk  when not 

equal to corresponding components of xk are called “instrumental variables.” 

 Under mild conditions which we assume to hold,  t = ∑k∈S wkyk is a 

randomization-consistent estimator for T = ∑k∈U yk.  In addition, t is an unbiased 

predictor for T under the linear prediction model:  
 

   yk = xk
Tβ + εk,                                                                            (3)  

 

for each k ∈U,  where  

 

   E{εk |(xj, zj, Ij ; j∈U)} = 0,                                                            (4) 

 

and Ij = 1 when  j ∈S, 0 otherwise.   

 

2.2  Nonresponse 

 Linear calibration can also be used to adjust for nonresponse.  Redefining S 

as the subset of sample respondents, t remains a prediction-model unbiased 

predictor for T.  Equation (4) requires that the prediction model in equation (3) hold 

whether or not k is in S.  This now means the response mechanism, like the 

sampling mechanism, is ignorable.    

 Strictly speaking, the sampling and response mechanism is ignorable if the 

distribution of  εk |(xj, zj, j∈U) is the same regardless of the Ij .  For most  practical 

purposes, however, it suffices to focus on the conditional expectation of the εk. 

 An alternative justification for linear calibration as a method of nonresponse 

adjustment treats sample response as an additional phase of probability sampling.  

Each element in the population is assumed to have a Poisson probability of 

response equal to  

 

   pk  = ρ(zk
Tγ) = 1/(1 + zk

Tγ).                                                         (5) 
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If g ≈γ , then  t = ∑k∈S wkyk ≈ ∑k∈S dk(1 + zk
Tγ)yk would be randomization consistent 

under mild conditions.  This was first noted by Fuller et al. (1994) for the zk = xk case.    

 The form of the response model in equation (5) is unlikely, but it may be 

reasonable to assume a response (propensity) model of the form 

 

    pk  = ρ(zk
Tγ) =1/f(zk

Tγ)                                                           (6)        

                                                                               

where f(δ) is an appropriately-chosen monotonic and twice differentiable function.  

Subject to a set of mild conditions, if a vector g ≈γ  can be found that satistifes   

 
   ∑  dkf(zk

Tg)xk  = ∑  xk,                                                                 (7) 
                                          k∈S                           k∈U 
 

then using the calibration weights, wk =  dkf(zk
Tg), results in a randomization 

consistent estimator under the response model.  

 Folsom and Singh (2000) describe an iterative method for finding such a g 

when zk = xk.  Kott (2006) provides the obvious extension to a more general zk.  This 

extension allows the explantory variables in the response model to differ from the 

benchmark variables in the calibration equation.   Earlier work along this line in 

France is described by Sautory (2003).  

 Chang and Kott (2007) call f(δ) the “back-link function” because it is the 

inverse transformation of the link function in the generalized-linear-model literature.  

See, for example, see McCullagh and Nelder (1983).  They also call the components 

of zk  “model variables.”   

 When a g satisfying equation (7) can be found, t = ∑k∈Swkyk = ∑k∈S dkf(zk
Tg)yk 

is both quasi-randomization consistent (randomization consistent under the response 

model) and prediction-model unbiased for T under mild conditions.  The former 

property is defined with respect to the model in equation (6) and the latter to the 

model in equation (3).  Observe that only one of the two models need hold for t to be 

a nearly unbiased estimator for T in some sense.  This property has been called 

“double protection” or “double robustness” in the biometrics literature (see, for 

example, Bang and Robbins, 2005). 
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 Note that if the back-link function in the response model is incorrect, then g 

defined implicitly by the equation (7) bares no relationship to γ as defined in equation 

(6).  In fact, from a response-model-free point of view, γ is simply the limit of g as the 

sample size grows arbitrarily large.  Some may argue that taking such a limit 

assumes a quasi-randomization framework.  Perhaps, but the actual Poisson 

response probabilities need not conform to a known back-link function f (δ). 

 

2.3.  An example 

 The ratio estimator provides an example of a estimator that is (nearly) 

unbiased when either the response or prediction model holds even though the other 

may fail.  It is  
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This estimator is nearly unbiased under the response model where every element in 

the original sample is equally like to respond (since all zk = zk = 1) regardless of how 

yk and xk are related.  Alternatively, it is unbiased under the prediction model where 

E(yk|xk) = βxk  (since xk = xk)  for both respondents and nonrespondents even when 

response probabilities vary with xk.     

 

2.4.  Variance/Mean-squared-error Estimation 

 If the εk in the prediction model of equation (3) are uncorrelated, and 
2ε =( )kE 2σ ,k then the model variance of t (as a predictor for T) is approximately 

2 2( )k S k k kw w∈ − σ∑ .  The identity is exact when 2
kσ  = xk

Tλ for some λ.    

  For simplicity, we will assume here that Poisson element sampling was used 

to draw the orginal sample or that the original sample was a census as will be the 

case in the empirical example in Section 4.  A nearly unbiased estimator for both the 

prediction-model variance and quasi-randomization mean squared error of t (under 

the respective models) would be 
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   2 2( ) ,
∈

= −∑ k k k
k S

v w w e                                                                   (8) 

where    
  ek = yk − xk

T{ ∑  dj f1(zj
Tg)zjxj

T}-1  ∑  dj f1(zj
Tg)zjyj,                                   (9) 

                                                         j∈S                                   j∈S 
 
and  f1(δ) is the first derivative of  f (δ).  The f1(zj

Tg) terms in the definition of the ek 

assure the nearly unbiasedness of v as an estimator for the quasi-randomization 

mean squared error of t.  They are no more than arbitrary constants from the 

prediction-model point of view. 

 The relative (prediction-model) bias of v as an estimator of the prediction-

model variance of t is O(1/n) under mild conditions, while the relative bias of v as an 

estimator of quasi-randomization mean squared error of t is OP(1/n1/2) .  

Nevertheless, it is troubling that this prediction-model bias is positive when each 
2 2< σ( ) ,k kE e  as will almost always be the case.   

 Kott and Brewer (2001) describe a number of ways to sharpen the estimation 

of or for prediction-model variance.  One method replaces 2
ke  in equation (8) with  

 

  
2

2
1

1 11

.

( ) ( )
−

∈

=
⎧ ⎫

− ∑⎨ ⎬
⎩ ⎭

k
k

T T T T
k j j j j k k k

j S

e
r

d f d fx z g z x z g z

                            (10) 

 

Only on rare ocassion will this procedure remove the entire prediction-model bias of 

v, but it will usually remove most of it, and the bias of the resulting prediction-model 

variance estimator will have an ambiguous sign. 

 

3.   Nonignorable nonresponse 

 

 From a prediction-model point of view, when the variables in zk are not all 

deterministic functions of the xk, it may be desirable to replace the requirement in 

equation (4) with a weaker variant:  

 

   E{εk |( zj, Ij ; j∈U)} = 0.                                                              (4’) 
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Removing the conditioning on the xj in the above equation allows the possibility that 

the response mechanism is nonignorable under the linear prediction model,  

yk = xk
Tβ + εk, since the expectation of εk need not be zero when conditioned on xj,  

Ij ; j∈U.  In particular, E{εk |(xj ; j∈U)}, although zero on average when the model 

holds for the population, may differ between respondents and nonrespondents.  

 Some care is necessary when equation (4’) replaces (4), because g in  

wk = dkf(zk
Tg) is a function of the sampled xj.  As a result, the strict prediction-model 

unbiasedness of t becomes near unbiasedness under mild assumptions.  One such 

assumption is that the limit of g exists as the sample size grows arbitrarily large.  

Moreover, this limit, again called “γ,” is assumed not to be a function of the sampled 

xj.   

 As a result, even when the second equation in (6) does not hold, so long as 

g = γ + OP(1/n1/2), we have 

 
E[N −1(t – T) |{ zj, Ij ; j∈U}] = E{N −1∑ wkεk|( zj, Ij ; j∈U)}  
                                                     k∈S 
 
                                         = E{N −1∑ dk f(zk

Tg)εk|( zj, Ij ; j∈U)}  
                                                     k∈S 
  
                                         = E{N −1∑ dk f(zk

Tγ)εk|( zj, Ij ; j∈U)} + OP(1/n1/2) = OP(1/n1/2). 
                                                     k∈S 
 

 An example of a framework in which equation (4’) is sensible follows.  

Suppose the yk can be fit by this prediction model:  

 

 yk = zk
Tθ + τk,                                                                           (11) 

 

where E{τk |(zj, Ij ; j∈U)} = 0.  In addition, suppose the benchmark variables can be fit 

by a “measurement-error” model:  

 

 xk
T = zk

T Γ + ξk
T,                                                                       (12) 

 

where E{ξk |(zj, Ij ; j∈U)} = 0 (“measurement-error” is in quotes because this use of 

measurement-error modeling is idiosyncratic).   It is not hard to see from equations 

(11) and (12) that β in equation (3) is Γ-1θ, while εk is τk − ξk
T Γ-1θ.  If the (τk, ξk

T)T are 
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uncorrelated across the k, then so are the εk.  This is handy for prediction-model 

variance estimation as described in Section 2 and modified to allow the assumption 

in equation (4’) to replace that in (4).    

 Both the prediction model in equation (11) and measurement-error model in 

(12) assume the response and sampling mechanisms are ignorable conditioned on 

zk  rather than xk.  Indeed, the components of zk have become model (explanatory) 

variables just as in the quasi-randomization framework.   

  Equation (12) need not be a causal model.  Indeed, the components of xk are 

often frame variables determined before the sample is enumerated, while the 

components of zk can include survey values, perhaps even yk itself.  It is important to 

remember that our goal is to estimate T in a nearly unbiased fashion.  It is not to 

estimate θ, Γ, or β = Γ-1θ.   The estimation of model parameters is, at most, a means 

to an end.  

 Chang and Kott (2007) extend the quasi-randomization approch to calibration 

for nonresponse to situations where there are Q < P components of zk.  They show 

that under mild conditions finding a g that minimizes the objective function: 

  

 S = 2 1( ) ( ) ,− −

∈ ∈ ∈ ∈

⎧ ⎫ ⎧ ⎫− −∑ ∑ ∑ ∑⎨ ⎬ ⎨ ⎬
⎩ ⎭ ⎩ ⎭

T T T T
k k k k k k k k

k U k S k U k S
N d f d fx z g x Λ x z g x  

 

where Λ  is a positive-definite P x P matrix, will produce a randomization consistent  

t = ∑k∈S wkyk = ∑k∈S dk f( T
kz g )yk under the response model in equation (6).   

 For a given       ,Λ this means finding a g such that  

 

 2 1
1( ) ( ) ,− −

∈ ∈ ∈

⎧ ⎫− =∑ ∑ ∑⎨ ⎬
⎩ ⎭

T T T T T
k k k k j j j j

k U k S j S
N d f d fx z g x Λ z g x z 0                 (13) 

 

In some sense, the optimal choice for Λ  is the quasi-randomization variance of   

Q = (n1/2/N) ( )T
j S j j jd f∈∑ z xγ , but that variance cannot be estimated directly because 

γ is unknown.  As a result, Chang and Kott suggest replacing Λ  in equation (13) with 

Λ̂ (g), an estimator for the randomization variance of Q under the assumption that  
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γ = g.  This value, which is Λ̂ (g) = (n/N 2) 2[{ ( )} ( )]T T T
j S j j j j j jd f d f∈ −∑ z g z g x x  in our 

special case, gets revised in each iteration of the process used to find g.  

 From a prediction-model viewpoint, given a P x Q matrix A of full rank, we can 

transform the calibration equation in equation (2) into N − 1∑k∈S wkxk
TA =  

N − 1∑k∈U xk
TA.  In addition, as long as the matrix A is not a function of the sampled 

xj, we can replace xk
T 

 in equation (13) with  

 
      xk

T A = zk
T ΓA + ξk

TA   
 or 

             T
kx% = zk

T Γ%  + .T
kξ%                                                                     (14) 

 

The results of the prediction-model analysis then follow with x% k replacing xk, and  

N − 1
k S k kw∈ =∑ x%  1

k U kN−
∈∑ x% replacing the calibration equation.     

 Effectively, Chang and Kott set   

 

  1 1
1

ˆ ( )− −

∈
= ∑ T T

j j j j
j S

N d fΛ z g x zA ,                                                    (15a) 

or 

   

{ } 11
1

1
2

1

ˆ ˆ ( ) ( )

[{ ( )} ( )] ( )

−−

∈

−

∈ ∈

= ∑

⎛ ⎞
= −∑ ∑⎜ ⎟

⎝ ⎠

T T
j j j j

j S

T T T T TN
j j j j j j j j j jn j S j S

N d f

d f d f d f

Λ g z g x z

z g z g x x z g x z

A

 (15b) 

   

and ˆˆ T T
k k=x x A .  From this perspective, equation (15) simply restates the calibration 

equation as N − 1∑k∈S ˆT
k kw x A  = N − 1∑k∈U ˆT

kx A .   

Either version of Â  in equation (15) is a function of the sampled xj violating an 

assumption needed from a prediction/measurement-error viewpoint to transform  

E{ξk |(zj, Ij ; j∈U)} = 0  into the analogous E{ kξ% |{zj, Ij ; j∈U)} = 0.  We can get around 

this problem by letting A be the asymptotic limit of Â , which we assume to exist 

whether or not the back-link function in equation (6) is specified correctly.  Moreover, 

this limit is assumed not to be a function of the sampled xj.  Consequently, with some 
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work we can establish that t is nearly prediction/measurement-error model unbiased 

for T under mild conditions.  In addition, after xk
T  is replaced by ˆˆ T T

k k=x x A , when 

defining the ek in equation (9),  the prediction model variance of t can be estimated 

by v in equation (8).   Finally, although analogues to the sharpened version of 

prediction/measurement-error model-variance (or mean-squared-error) estimation 

described in and around equations (10) does not provide exact unbiasedness, it 

should lead to improvement over v.   

 

4.  Setting up an empirical exploration 
 

In this section, we create data sets from respondent data for the 2002 Census 

of Agriculture in South Dakota.  We will be interested in estimating total sales from 

these data sets.  When the data come from a census, the original sampling weight, 

dk, is 1 for all k.   

We will treat the entire South Dakota respondent data set with some 

additional created variables (and one extreme outlier removed) as a population of 

interest.  To explore sample-size issues, we will also treat a 20% random subsample 

of this respondent set as a population of interest.  We will refer to the two as the 

100% population and the 20% population.    

In Chang and Kott (2008), we estimated the following element response 

function for South Dakota:  

 

       pk = {1 + exp(− 6.085 + 0.5188 logtvp2k  − 1.2285 s97k)}-1,                   (16) 

 

where logtvp2k is the (natural) logarithm of element sales (in dollars) truncated to the 

range [1000, 100000], and s97k is an indicator of whether or not the element 

responded to any surveys within the last five years.     

 Equation (16) is a classic example of a nonignorable response mechanism in 

that response is a function of what we want to measure: sales.  We will use a 

truncated variant of this equation to generate independent subsets of respondents: 

 

pk = 0.001 + 0.998{1 + exp(−6.085 + 0.5188 logtvp2k  − 1.2285 s97k)}-1.       (17) 
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This restricts the range of the response probabilities between 0.001 and 0.999.  

 Sales are not known before enumeration.  That is why NASS used 

poststratification to adjust for nonresponse in the 2002 Census of Agriculture based 

on groups formed using a before-the-fact projection of sales, called “frame sales” 

(because it is known for all elements on the frame) and the s97 indicator.   

 Unfortunately, the element frame sales have not been retained on Census 

data sets.  Consequently, we use the actual sales reported from the 2002 Census as 

the frame sales for our two populations (100% and 20%) and generate the true sales 

for each element using the formula:  

 

                         true salesk = [.5 + {1+ exp(σZk)}-1] frame salesk,                            (18) 
 
 
where Zk is a random draw from a N(0, 1) distributions, and σ = 1.  Actual sales were 

often not recorded when less than 1000 because the element was deemed not to be 

a farm and therefore out of scope.  When that happened, we replace the missing 

value with a draw from the uniform distribution on [0, 1000).    

We generate five sets of true sales for each element in a population.  This 

gives us five 100% population sets and five 20% population sets.  Using equation 

(17), we generate 1000 respondent subsets for each of the 10 population sets.    

We use frame sales to create true sales because the former, which are in 

practice often based on previously reported sales data, exists before the latter.  

Thus, this is the more reasonable direction for the causality despite the 

measurement-error model assumed in equation (12).  Models in survey sampling are 

often little more than useful fictions.  One should always keep that in mind.      

We estimate total sales from each respondent subsample in basically two 

different ways.  One way employs simple poststratification, the most commonly used 

method in survey practice.  The population is divided into 10 mutually exclusive  

response groups by cross-classifying five size classes based on frame sales (having 

cut points at 1000, 10000,  50000, and 250000)  with the two realizations of  s97.  In 

our notation, the vector of benchmark variable, xk has ten components, each being a 

0/1 indicator of membership in one of the groups.  Poststratification assumes the 

model variables, the components of zk, are the same as the components of xk. The 

choice of the back-link function, f(δ) has no effect as long as 1/f(δ), is free to attain 
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the realized values of group response rates; see equation (6).  For simplicity, we can 

(usually) set  f(δ) = δ.   (We will explain the parenthetical limitation later in the 

section.)     

The quasi-random response model supporting this methodolgy is that every 

element in a particular “benchmark group” has an equal probability of response.  

That is not true with our data, since response is generated using equation (17).  The 

prediction model is that the true sales for every element in a particular benchmark 

group has the same expected value whether or not the element responds.  That is 

also not true, since we know from equation (17) that true sales and response are 

strongly related, and two elements in the same benchmark group can have farly 

divergent true-sales values (see equation (18)).   

In these evaluations, we know the true response model in equation (17), both 

its functional form and its arguments.  In real life, neither is likely to be the case.  For 

that reason, we now consider a vector of model variables, zk, the components of 

which are defined analogously to the components of xk, but with true sales replacing 

frame sales.  This can be viewed as a useful locally-linear approximation for the true 

response model in which the probability of response is the same for any two 

elements in the same model group, that is to say, two elements having the same 

value for each component of zk.   

The prediction model supporting this calibration stipulates is that each 

element in the same model group has the same expected value of true sales 

regardless of whether or not it responds.  Not quite true − since response is 

correlated with true sales, but close − since true sales do not vary by much within a 

model group.  The measurment error model is that the components of xk of two 

elements in the same model group have the same expected value whether or not 

they respond.  It is likewise close to being true.        

To perform the calibration, we would like f(δ) again to be δ.  If that were so,  

we would have wk = dk(1 + zk
Tg),  where g = (∑j∈S

 djxjzj
T)-1(∑j∈U xj  − ∑ j∈S dj xj) 

(although dk = 1 in this application, we write the weighting equation more broady for 

future use). Unfortunately, there is no guarantee that the components of g (and thus 

some zk
Tg) will be nonnegative.  That means that there is a possibility that some wk  

will fall below unity, implying an element  response probability greater than 1.  
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 That never happens with any of our 5,000 respondent subsets based on the 

100% population sets.  It does happen, however, with respondent subsets based on 

the smaller 20% population sets.  More details can be found in Section 5.   

In our calibration-weight determinations, we use the following truncated form 

of the logistic back-link function:  

 

f(δ)= 1+ e-δ + 
21

999

− δ

−δ
−

+

e
e

 =  1 + 1 999
999

−δ

−δ
+

+

e
e

                                                    (19) 

 

This restricts f(δ) to between 1000/999, which is slightly larger than 1,  and 1000 

(which is the restriction imposed on 1/pk by equation (17)).  

We conduct the following iterative search g:  

 
       g(r+1) = g(r) +  { ∑  dk f1(zk

Tg(r)) xkzk
T}-1 { ∑  xk  − ∑ dk f(zk

Tg(r))xk},                   (20) 
                                            k∈S                                           k∈U           k∈S 
 

where f1(δ) = ∂f(δ)/∂δ.   When no solution exists, usually because  

∑k∈S
 dk f1(zk

Tg(r))xkzk
T is not invertible, a model variable is dropped (which often 

corresponds to a zero or near zero in the diagonal of ∑k∈S
 dkf1(zk

Tg(r))xkzk
T) .  We 

then replace xk
T in equation (19) with ˆˆ T T

k k=x x A , where Â , defined in equation 

(15b), can change with each iteration.  

By truncating the back-link function in equation (17), we bound f(δ)2 − f(δ) 

away from zero and infinity.  This allows 2( ) ( )[{ ( )} ( )]T r T r T
j S j j j j j jd f d f∈ −∑ z g z g x x  in 

equation (15b) to be invertible as long as xj has full rank.   

Notice, however, by constraining f(δ) to be above 1, we force the estimated 

response probability in a model group to be less than 1.  This means that when the 

model and benchmark groups are (initially) the same, as is poststratification, using 

this back-link function would force the dropping of a component of zk when there is 

100% response among the respondents in a group.  
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5.   The main results 
 

In this section, we will call the model groups formed using true sales 

“response-guided response groups” and the calibration method based on them the 

“RGRG method.”   We will call calibration using the frame-defined benchmark groups 

as the response (i.e., model) groups “poststratification.”   

 

5.1.  The 100% population sets 

Although there are five 100% population sets, each have ten benchmark 

groups of population sizes 6001, 818, 685, 369, 52, 5507, 2116, 4658, 6728, and 

1013.  The smallest group is the one containing farms with the larest frame sales but 

no survey responses over the last five years.  

The five population sets have response-guided-response-group population 

sizes ranging from 50 to 6603.  The average response rate within such a model 

group ranges from 52 to 98%, and no group in any of the 5,000 respondent subsets 

is empty.  In fact, we are aways able to compute calibration weights using the one 

step procedure: wk = dk{1 + zk
T(∑j∈S

 djxjzj
T)-1(Σj∈U xj − ∑ j∈S djxj)} =  

dkzk
T(∑j∈S

 djxjzj
T)-1∑ j∈U xj = (∑j∈U xj

T)( ∑ j∈S
 zjxj

T)-1dkzk (since zj
Tλ = 1 for some λ,  

∑ j∈S djxj  = ∑ j∈S djxjzj
Tλ; the rest follows almost immediately). 

Scaling total sales to be 100, summary statistics averaged across 1000 

respondent subsets are displayed in Table 1 for each population set and across the 

sets.  They show that the absolute empirical bias from using the RGRG method is 

approximately 1/3 of that from poststratification.  The empirical standard errors (SE)  

are slightly higher using the RGRG method rather than its rival, but the empirical root 

mean squared error (RMSE) from using RGRG is roughly 2/3 the size.  

Since there is a definite bias when using incorrect models in the estimation, it 

is unclear whether equation (8) is supposed to estimate variance or mean squared 

error.  The table suggests it consistently underestimates mean squared error while 

overestimating variance slightly.  Using the “improved” version of the squared 

residuals suggested by equation (10) has very little effect on the standard-error/root-

mean-squared-error estimates, tipping the rounding upward in some cases (not 

displayed).    
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5.2.  The 20% population sets 

The ten benchmark groups in the 20% population sets have population sizes 

ranging from 9 to 1310.  The five generated populations have response-guided-

response-group population sizes ranging from 7 to1314 and response rates again 

ranging from 52 to 98%.  Although no response-guided response group ever 

contains no respondents, there are respondent subsets in which ∑k∈S
 dkf1(zk

Tg(r)) xzk
T

  

(for some iteration r),  and on rare occasion, ∑k∈S
 dkxkzk

T
 , is not invertible.  As a 

result, some component of zk  must be dropped.  

 One of the five populations, Population 2, produces all four respondent 

subsets where ∑k∈S
 dkxkzk

T
  is not invertible and 99 others where  

∑k∈S
 dkf1(zk

Tg(r)) xkzk
T

  is not.  The other four populations produce 0, 1, 15, and 10 

respondent subsets where  ∑k∈S
 dkf1(zk

Tg(r)) xkzk
T

  is not invertible, respectively.    

Perhaps the slightly larger empirical bias and empirical standard error for 

Population 2 under the RGRG method can be attributed to this pathology.  

Otherwise, the results for this set of populations is very similar to those for the 100% 

population sets.  The empirical biases are about the same.  The empirical standard 

errors are larger, as we would expect since the respondent subsamples have 

roughly 20% of their 100% counterparts, yet the model groups are the same for both 

(except when a component of zk  is dropped).     

The estimated standard error/root-mean-squared errors are even closer to the 

empirical standard errors than before.  Unfortunately, the “improved” variance 

estimates can not always be computed.  One reason for this is that the denominator 

in equation (10) can be negative.          

 

5.3 The respondent subsets for the 100% population under the actual response 

mechanism 

Before trying to salvage the “improved” squared residuals in equation (10) 

under our simulations, we return to five 100% population sets and generate 1000  

respondent subsets each using equation (17).  We then calibrate using f(.) =1/pk, 

where  

 

 pk =  0.001 + 0.998{1 + exp(γ1 + γ2 logtvp2k  − γ3 s97)}-1.  
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Again scaling total sales to be 100, the overall empirical bias is 0.00257 and 

the overall empirical standard error is 0.613 (none of these results are displayed).  

The overall average estimate for the latter based on equation (8) is slightly smaller,  

0.606.  The same rough relationship between the estimated and empirical standard 

errors holds for each of the five populations.   Using the improved squared residuals 

at most increases the estimated standard error by 0.001 (by s before rounding).  

There is little reason to investigate the squared residuals in equation (10) 

further.     

 
6.   Discussion 
 

The major result of the empirical investigation described in the last two section 

is that when response is a function of the variable of interest, using response-guided 

response groups rather than traditional frame-defined response groups can result in 

appreciable decreases in bias and root mean squared error even when neither the 

response nor prediction/measurement-error model fully justifying the methodology 

holds.   

Using the frame-defined response groups generally results in a slightly 

smaller empirical standard error than its competitor, but this advantaged is 

overpowered by the increase in empirical bias.  Similar findings (not displayed) result 

when the σ in equation (18) used to generate true sales from frame sales is 

increased from 1 to 10.     
 A noticeable amount of bias still remains relative to standard error for the 20% 

population sets even though sometimes the response-guided response groups are 

so small a model variable has to be dropped.  Recall that a model variable is 

dropped either when ∑k∈S
 dkxkzk

T
 is not of full rank and can not be inverted or when 

some wk = (∑k∈U xj
T)( ∑j∈Sdjzjxj

T)-1dkzk is less than 1.  The latter, which is more 

common, forces us to choose a form for the back-link function, f(δ) (e.g., equation 

(19)).  Otherwise, we can effectively set f(δ) = δ and compute the wk  in one step 

using wk = (∑k∈U xj
T)( ∑j∈Sdjzjxj

T)-1dkzk.      

As a practical matter, we suspect users will redefine their response-guided 

response groups (and corresponding benchmark groups) rather than be forced to 

select a nonlinear form for the back-link function and drop a model variable.  Since 

the groups vary considerably in size in our analysis, there is some flexibility here to 



 

18

form additional groups even for the smaller population size.  Clearly, however, the 

number of response-guided model groups that can be used with a particular 

respondent data set will usually be smaller than the number of analogous frame-

defined groups.  More empirical work is needed on forming response-guided 

response groups.  

 We are suprised that the Kott-Brewer method for improving variance 

estimates has little effect.  It may be that the distinction between an element’s 

prediction/measurement-error model error (εk = τk − ξk
T

 Γ-1θ) and its sample residual 

(ek from equation (9)) plays a smaller role in variance/mean-squared-error estimation 

than other small-sample factors such as the randomness of the wk due to their being 

functions of the random xj . 

The asymptotic variance estimator in equation (8) always does a good job 

estimating empirical variance in our analyses.  As an estimator for mean squared 

error, however, it works better the smaller the bias – better for the RGRG method 

than for poststratification.  

Things will become more complicated when it is not a census that suffers 

nonresponse but a randomly selected sample from a population U.  We noted in 

Section 3 that the prediction model in equation (11),  yk = zk
T

 θ + τk, and 

measurement-error model in equation (12), xk = zk
T

 Γ + ξk, combine to yield the 

standard prediction model in equation (3), yk = xk
T

 β + εk.   

It is often reasonable to assume E{εk |(xj; j∈U)} = 0 whether or not k is in the 

sample, even though this equality does not hold when conditioned on whether k 

responds.  Thus, in the absence of nonresponse, it makes more sense to calibrate 

using the components of xk as both the model and benchmark variables rather than 

having the component of zk, with their unknown population total, serve as the model 

variables.  This suggests calibration, even when involving mutually exclusive groups, 

should be done in two steps, the first to calibrate the full sample to the population 

using only benchmark variables, and the second to calibrate the respondent sample 

to the full sample or population using response-guided model variables.  We explore 

that suggestion below.  

Using the 100% population set described in the preceeding two sections, we 

create five populations using equation (18) with σ =1 to generate the total-sales 

values.  We draw 25 simple random samples from each population and then 40 
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random subsamples of respondents from each original using the response 

probabilities in equation (17).    We estimate total sales using a (pure) response-

guided response-group method with benchmark and the response-guided response 

groups determined as in the previous sections.  All the dk are set equal to the 

population size divided by the original pre-nonresponse sample size.  Label this 

value N/n.    

We also estimate totals sales using only poststratification to the benchmark-

group population sizes.  Since a realized post-nonresponse sampling fraction, label it 

rp/Np for an element in group p, could equal or exceed the original sampling fraction, 

n/N, we use the simple poststratification weights, Np/rp,  to compute these estimates 

rather than the approach described in earlier sections.  

Finally, we estimate total sales by first poststratifying the original sample using 

the benchmark groups and then using the response-guided response groups to 

calibrate for nonresponse.  After the first step, the calibration weight for every 

element in benchmark group p is Np/np,  where np  is the original sample size in the 

benchmark group.  The second step uses the response-guided response groups as 

described in the previous section with dk  set equal to Np/np  for elements in 

benchmark group p.   

The results are summarized in Table 2.  Notice that we often had to drop a 

model variable for ∑k∈Sdkxkzk
T

  to be invertible or for all f(zk
Tg) to be greater than 

unity.  This happens nearly half the time when using the pure response-guided 

response-group method.  Even the poststratified estimator could not always be 

calculated because one of the rp was zero.  Almost always, using the method 

involving two calibration results in the smallest empirical biases and root mean 

squared errors, although not by much.  

A theoretical variance estimator is needed for such a two-stage calibration, 

especially with a more complicated calibration of the original pre-nonresponse 

sample.  In this particular case, however, variance estimation can be done by setting 

dk = Np/rp  = 1/πk for respondents in benchmark-group p and then using equation (20) 

in Chang and Kott (2008). 
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Table 1.   Comparing the two methods  (Total sales scaled to equal 100) 

 
          Response-guided reponse-group method       Poststratification method 
   

        Empirical  Empirical Empirical Estimated    Empirical Empirical Empirical  Estimated           
        bias            SE  RMSE  SE (RMSE?)    bias            SE  RMSE  SE (RMSE?) 

 
 

Population 1    - 0.25  0.46      0.52     0.47       - 0.74  0.44      0.86     0.44     
Population 2    - 0.23     0.51            0.56      0.52                 - 0.73     0.49            0.88      0.49 

100%  Population 3    - 0.26  0.53   0.60     0.54       - 0.73  0.52   0.89     0.52 
Population Population 4    - 0.25      0.39          0.46      0.40            - 0.72  0.37   0.81     0.38    
Sets  Population 5    - 0.24      0.55    0.60     0.55       - 0.73  0.53   0.90     0.53 

Overall          - 0.25         0.49   0.55        0.50       - 0.73  0.47   0.87     0.48 
 

Population 1    - 0.26  0.66      0.71     0.65       - 0.79  0.63      1.01     0.61     
Population 2    - 0.27     0.73            0.78      0.71                 - 0.81     0.68            1.06      0.65 

20%  Population 3    - 0.27  0.65   0.70     0.66       - 0.79  0.61   1.09     0.61 
Population Population 4    - 0.21      0.71          0.75      0.72            - 0.82  0.65   1.04     0.63    
Sets  Population 5    - 0.25      0.63    0.68     0.64       - 0.82  0.59   1.01     0.58 

Overall          - 0.25         0.68   0.72        0.68       - 0.80  0.63   1.02     0.62 
 

Empirical Bias  = ( )1= −∑R
rr t T / R,   where tr  is the estimate for response-set r of R ( = 1000 or 5000).   

Empirical SE    = ( ) ( )
2

1 1 1R R
r sr st t / R / R .= =⎡ ⎤− −∑ ∑⎣ ⎦                                Empirical RMSE  = ( ) ( )2 2Empirical Bias Empirical SE .+    

Estimated SE  = 1=∑R
rr v / R ,     where vr is computed using equation (8).      
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Table 2.   Comparing three methods under simple random sampling  
                 (Total sales scaled to equal 100) 
 
   Percent of 

cases where  Empirical Empircal Empirical 
                      a variable       bias  SE  RMSE 
                      was dropped 
 
Pure response-guided reponse-group (RGRG) method  
 
Population 1       40.4  -0.25  2.01  2.02          
Population 2       41.9  -0.38  2.02  2.05 
Population 3       47.1  -0.28  2.14  2.16 
Population 4       40.7  -0.54  1.72  1.80 
Population 5       42.3       -0.45  1.64  1.70 
Overall       42.5  -0.38  1.91  1.95 
 
Poststratification method 
 
Population 1           *  -0.68  1.92  2.03          
Population 2           *  -0.77  1.93  2.08          
Population 3           *  -0.69  2.00  2.12          
Population 4           *  -0.91  1.64  1.88          
Population 5           *  -0.85  1.52  1.74          
Overal l           *  -0.78  1.81  1.97          
 
Poststratification of the original sample followed by the RGRG method  
 
Population 1        3.8  -0.15  1.99  1.99           
Population 2        3.4  -0.29  1.96  1.98           
Population 3        9.7  -0.17  2.16  2.16          
Population 4        5.0  -0.43  1.68  1.74                 
Population 5        5.3  -0.34  1.63  1.66          
Overall        4.6  -0.27  1.89  1.92          
 
* We excluded from these analyses the one case per population where a benchmark 
group had no responding elements in the sample.   
 
 
 
 


