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Summary 

 

The aerial hyperspectral imagery has a large information content and contains data not 

just only in the visible light spectra but in the near-infrared and the short-wave infrared 

spectra as well. Due to this, the technology is applicable to examine and detect 

preferences and conditions that visible identification is not possible or limited. During 

the last decade, hyperspectral imagery was successfully used for the analysis of 

vegetation, soil or minerals. During our research the AISA Fenix1K hyperspectral 

sensor of the Research Institute was used for data collection with the collaboration of 

experts from the Finnish sensor producer company near to Siófok. The collected aerial 

hyperspectral data and the ground spectral data as reference were compared and a 

spectral library of the examined materials was developed for future classifications. The 

ability to separate various materials was examined with statistical analyses with which 

we can determine the spectral separability of target objects. The analysis was fulfilled on 

the original and on transformed channels as well. According to the results we can 

conclude that the transformed channels are more applicable to separate these materials 

which was demonstrated on scatter plots too. 

 

Keywords: hyperspectral, airborne remote sensing, target detection, ground truth 

acquisition, separability 
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Introduction 

 

Hyperspectral imagery (HSI) may contain hundreds of continuous narrow spectral bands 

that gives the possibility to detect and separate various materials more precisely 

comparing with the traditional broadband multispectral imagery. HSI is suitable for 

various military and civil applications. During the last two decades the main aim of 

remote sensing was the detection of target spectrums (natural and artificial objects) that 

spectral characteristics were affected by the background. The advantages of HSI give the 

possibility to separate these and similar characteristics more precisely by using large 

spectral resolution. (Wei et. al., 2015). One of the main applications of aerial 

hyperspectral assessment is object exploration that can be a problem of reckoning among 

two groups (searched material or not). The spectral characteristics of each pixel indicate 

the presence of target spectra or the spectral characteristics of the background are 

deterministic. Many classification methods are available to solve this, for example the 

Support Vector Machine (Boser et. al. 1992) which algorithm gives good results during 

the classification of hyperspectral images (Gualtieri – Cromp, 1999; Melgani – 

Bruzzone, 2004). Researchers have used other directed classification algoritms to detect 

target spectrums as well (Yanfeng et. al., 2015; Leblanc et. al., 2014). The examination 

of spectral separability of target spectrums (materials) is essential to select the suitable 
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classification algorithm (Tobak et. al., 2012). The aim of this paper is a statistical 

analysis to prepare and support the determination of various target materials and target 

spectrums. During our research we examined the spectral familiarities and differences of 

various materials by using aerial hyperspectral imagery and on-field measurements.  

 
Material and methods 

 

Study site 

 

The study area is located in the southern shoreline of Balaton, nearby Siófok, 
Papkutapszta airport (LHPK) (figure 1) (46°52.266’ N, 18°2.419’ E). The investigated 
materials (22 pc.) were arranged on northern end of the runway, separated from each 

other. 

 

 
Figure 1: Location of the study site 

Source: Own editing, 2016 

 

Airborne hyperspectral data 

 

The images were taken by the AISA Fenix1k (www.specim.fi) hyperspectral sensor 

during the flight campaign. The data acquisition was done on 10.07.2015 between noon 

and 1 pm with light cumulus coverage. The given aerial data was applicable for further 

analyses because the study site was not affected by shadows of clouds. The sensor was 

implemented to a Cessna C206 airplane. During the campaign the altitude was 3350ft 
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(AGL) which resulted 70 cm ground resolution. The data was collected in 380-2450 

spectral range with 7 nm spectral sampling on 333 spectral bands. The sensor system is 

built together with a high precisions GNSS/INS system (Oxford OxTS3010) which is 

gives position and navigation data for georeferencing. The pre-process of data was done 

by CaligeoPRO v2.2.4 which works in the frame of IDL. The data was processed with 

ENVI 5.0 software. 

 

Ground-based hyperspectral data 

 

In the same time of the aerial data acquisition on-field data was collected with ASD 

FieldSpec3 spectrophotometer in the same spectral range as reference data. The accurate 

coordinates of the objects were collected with a DGPS to ensure the comparability of 

aerial and on-field data. A spectral library was built by processing the collected data of 

target objects. The set of examined materials on the study site is shown on figure 2.  

 

 
Figure 2: Test field targets 

 

Data processing 

 

The hyperspectral data was pre-processed with CaligeoPRO and processed with ENVI 

5.0. The noisy channels and (because of the effect of cumulus) the short wave infrared 

spectral range were removed from the aerial images which resulted that 92 spectral 

bands were involved during data process. The reflectance curves of on-field data and 

aerial images were compared and the typical spectral ranges were determined.  

The separability of materials was examined with Jeffries-Matusita (J-M) Distance which 

means the comparison of materials in pairs. (Matusita, 1966; Ersboll, 1988). During the 

method the distribution functions were compared. The values differed between 0 and 2, 

where 2 means large separability.  
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The values were calculated with the following equation: 

 

 

 
Where:  i and j = two signature (materials) being compared 

  Ci = covariance matrix of signature i 

  mi = mean vector of signature i 

  ln = natural logarithm function 

  |Ci| = determinant of Ci (matrix algebra) 

Source: Swain-Davis, 1978 

 

On the hyperspectral image signal amplifying and information increase were done by 

Minimum Noise Fraction (MNF) transformation. MNF transformation reduces the 

dimension-number of hyperspectral data while filters noisy fractions. This linear 

transformation contains two Principal Component Analysis (PCA) that follow each 

other. The first one removes the noisy and recalculate the data. This results unit variance 

of noise and linearly independent bands. The second one is a simple principal component 

analysis which is done on the image where the noise is removed. By further grouping the 

given MNF bands we can produce the required number of target spectrums 

(endmembers) (Green et al, 1988). The J-M distance values were calculated in the case 

of the original hyperspectral image and also on the transformed bands.  

 

Results 

 

Comparing the spectrums given by the aerial images and on-field measurements the two 

curves may show large differences. This is mainly resulted by the circumstances of on-

field measurements which is similar to the homogenous laboratory conditions - the 

detector is close to the examined material. In contrast with this, during aerial imagery 

between the detector and the examined material there was a 1100 m thick air (water 

vapour, dust particles, etc.) which influences the detected spectrums. These affects can 

be reduced with atmospheric correction. In these conditions, the minimum and 

maximum reflectance and absorption range of each material can be determined in both 

cases (aerial imagery and on-field measurements) (figure 3). 
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Figure 3: Spectrums of Tagint tarp surveyed by aerial hyperspectral technology 

and ground based measurement 

 

On the aerial images taken in visible the separation of examined materials (sodium 

hydroxide, ammonium carbonate, white tarp etc.) is limited or impossible. In the case of 

those materials which seemed similar on the RGB images we calculated the J-M distance 

and represented the results in matrix (table 1). 

 

Table 1: J-M separability measures between management materials (original 

bands) 

Materials 1 2 3 4 5 6 7 8 9 10 

1 0          

2 2.00 0         

3 1.99 2.00 0        

4 2.00 1.97 2.00 0       

5 2.00 1.94 2.00 1.80 0      

6 1.97 1.96 1.99 1.99 1.99 0     

7 2.00 2.00 2.00 2.00 2.00 2.00 0    

8 2.00 1.99 2.00 2.00 1.99 1.99 2.00 0   

9 2.00 1.72 1.99 1.96 1.90 1.96 2.00 1.99 0  

10 2.00 1.94 1.99 1.98 1.91 1.98 2.00 2.00 1.95 0 

1: Ammonium nitrate; 2: Fertilizer bags; 3: Ammonium carbonate; 4: Semi-transparent 

PVC-foil; 5: Sodium hydroxide; 6: Plastic canisters; 7: 80% white reference tarp; 8: 

TAGINT tarp; 9: White tarp; 10. Metal sheets with shiny surface 

 
Based on the original hyperspectral data the minimum separability was in the case of 

fertilizer bags and white tarp and the semi-transparent PVC-foil and sodium hydroxide 

which indicates the error during the classification of these materials. 

 

The separability of materials was examined in the case of MNF transformed channels as 

well. The result matrix is shown on table 2. The J-M distance calculation with the MNF 

bands showed larger separability of the examined materials which increases the accuracy 

of classification.  
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Table 2: J-M separability measures between management materials (MNF bands) 
Materials 1 2 3 4 5 6 7 8 9 10 

1 0          

2 2.00 0         

3 2.00 2.00 0        

4 2.00 1.99 2.00 0       

5 2.00 1.98 2.00 1.98 0      

6 2.00 2.00 2.00 2.00 2.00 0     

7 2.00 2.00 2.00 2.00 2.00 2.00 0    

8 2.00 2.00 2.00 2.00 2.00 2.00 2.00 0   

9 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 0  

10 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 0 

1: Ammonium nitrate; 2: Fertilizer bags; 3: Ammonium carbonate; 4: Semi-transparent 

PVC-foil; 5: Sodium hydroxide; 6: Plastic canisters; 7: 80% white reference tarp; 8: 

TAGINT tarp; 9: White tarp; 10. Metal sheets with shiny surface 

 

The matrix shown in table 2 can be abstracted graphically as a projection to the selected 

layout of the MNF transformed data. If the selected spatial classes are examined in this 

transformed spectral space, on a 2-dimensional scatter-plot, we can find and separate the 

classes with larger accuracy (larger spectral separability). In this intensity space, pixels 

with similar spectral characteristics can be found in one group. These groups can be 

segregated from each other (figure 4). 

 

 
Figure 4: Scatter plot of MNF1 and MNF2 bands 

 

Conclusion 

 

The aim of this research was the examination of applicability of aerial hyperspectral 

images to separate and classify various materials. To analyse this, the spectral library of 

these materials (based on on-field spectral measurements in the same time as the flight 

campaign) was prepared which can be used to detect these materials independently of 

their location. During the statistical analysis related to the spectral classification of these 

materials we concluded that the use of visual interpretation of original images and the 
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calculation of J-M distance do not give acceptable results in the case of two material 

pairs (fertilizer bag - white tarp, semi-transparent PVC-foil - sodium hydroxide). This 

means similar spectral characteristics of these materials which may indicate errors 

during classification. 

 

By increasing the information content of images with MNF transformation and using the 

given data, the separation accuracy of materials also increased. The examined materials 

can be classified spectrally which explains the use of transformed channels during target 

spectrum classification. The next step of our research is testing the applicability of 

various classification algorithms by using the determined target spectrums.  

The collected aerial hyperspectral images and on-field data is suitable for research on the 

field of agriculture, environmental management and atmospheric corrections. 
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