

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

NOT FOR QUOTATION

gianniníaundation or
 AGRICULTUEAL ECONOMICS LIBbaRy
 OCT $8 \% 975$

A User's Guide to Anchovy
A Sịmulation Model of the Northern Anchovy Fishery

Appendix A
M. F. Tillman

June 23, 1972

University of Washington

File Manuscript No. 166-3

A User's Guide to ANCHOVY
 A Simulation Model of the Northern Anchovy Fishery
 Appendix A

M. F. Tillman

6-23-72

The Basic Model: SIMPLE ANCHOVY

Purpose

ANCHOVY is a FORTRAN simulation model of the fishery for northern anchovy, Engraulis mordax Girard. This model provides the means of determining the biological and economic consequences of changing the regulations governing areas and seasons in the reduction fishery. Furthermore, through this model may be examined the sensitivity of optimal harvestingprocessing systems to changes in biological parameters and models. Essentially, each sensitivity experiment will simulate the decision-making problem wherein a manager assumes that a given biological situation is true and plans to meet it but then encounters a completely different situation. This unexpected biological situation would then yield catches and economic returns either greater or smaller than anticipated.

SIMPLE ANCHOVY simulates that fishery for which the following simplifying assumptions have been made: Only a single stock of anchovy, the central stock, contributes biomass to the Southern California fishing area. The availability of anchovy in the fishing area varies monthly according to a strictly deterministic pattern. A single harvesting group, the Wetfish fleet, operates upon anchovy. Harvesters and processors do not change capacities during
the course of simulation experiments but maintain optimal level.s throughout.

Gencral Description
SIMPLE ANCHOVY is formulated in terms of GAMES (see Appendix 1), the general-purpose simulator of resource use systems developed by Gales (1972). This Fortran IV program has been designed to simulate the activities of major sectors involved in the harvesting and marketing of renewable resources. The sectors modelled by GAMES include locations, stocks, harvesters, processors, regulators, products, and markets,

The anchovy fishery (Figure 2) is modelled by indicating through appropriate inputs the number of entities in each sector and their logical linkages. The user must also provide the values of parameters used to define system processes and structures and the initial values of variables used to. describe systems behavior (see Appendix 2 for a list). Through appropriate control values the user may specify that certain built-in decision routines be used or else may provide algorithms of his own design by adding subroutines or by modifying existing ones.

As currently modified, the main SIMPLE ANCHOVY program resembles the partial listing given in Figure 3. The Labelled COMMON BIocks reserve sections of memory for storage
Miarket-
Products
of the values of parameters and variables used in common by the 11 subroutines. Subroutine TAPEIN is called first and reads in the injtial values of these parameters and variables, including the starting and ending years of simulation, NYEARI and NYEAR2. The following 10 subroutine call statements are imbedded within a double "do-loop" which is indexed by month and year. This double loop is the principal timing mechanism of the program; months are of equal length, containing about 30.5 days. Hence, each of these 10 subroutines is executed once a month in the order indicated and simulates a component of the system, their interactions, or else produces output.

Subroutines PROCS, HARVS, and REGLS make programmed monthly decisions for the system's respective processors, harvesters, and regulators. REGLS monitors monthly harvester and processor decisions concerning the number of days spent harvesting, $\operatorname{HDELT}(H, S)$, the number of harvesting units committed, EFFD(H,S), the gear efficiency per unit, FPWD(H,S), and the processing capacity committed, OPLEVL(P,S). These decisions are compared to standards (regulations) supplied by the user or else determined by the routine. If regulations are "broken", the subroutine then makes appropriate adjustments of the values of these variables.

Subroutine stocks simulates the monthly growth of the exploited anchovy resource and apportions mortalities to

PROGRAM MAIN

(Labelled COMMON Blocks)
CALL TAPEIN
DO 110 YEAR=NYEARI, NYEAR2
DO $100 \mathrm{MONTH}=1,12$
CALL PROCS
CALL HARVS
CALL REGLS
CALL STOCKS
CALL HRVST
CALL RMARKT
CALL PRCES
CALL CMARKT
CALI STATS
CALL SMSTAT
100 CONTINUE
110 CONTINUE
(Coding for Subroutines)

Figure 3. Partial listing of the main ANCHOVY program.
their appropriate sources. Described further in an ensuing section, it feeds catch values to HRVST, the subroutine which then simulates the monthly harvesting process. HRVST determines the catch of each stock by a harvester, QUANTH (H,S), his harvest proportional costs, HVCOST(H), and the cumulative catch taken from each stock, CCATCH(S;L). RMARKT then simulates the sale of the harvesters! catches to the processors. Quantities not purchased are assumed to be dumped. Subroutine PRCES then transforms these newly purchased raw materials into finished goods, which are added to the processors' inventories, INVNT (P,D). Subroutine CMARKI then simulates the sale of these products on the open market to final consumers. The quantities demanded are determined from a user supplied demand curve and sales price.

STATS then computes and outputs financial statements for the processors and harvesters. It also provides cumulative physical reports describing through key variables the activities of the harvester, processor, and stock sectors. Subroutine SMSTAT provides an alternative means of obtaining cumulative physical reports. Although all reporst may be provided at monthly intervals, printout typically is suppressed until the year's end.

Subroutine s'TOCKS
STOCKS main job is to solve the catch equation and pass the result on to subroutine HRVST. The catch in numbers of each age group is first calculated for each harvester and stock:

$$
\begin{aligned}
& C N(S, A, H)=\frac{F(S, A, H)}{Z(S, A)} * \operatorname{CENSUS}(S, A, L) * \operatorname{EXP} \\
& \text { where } \operatorname{EXP}=1-\mathrm{e}^{-\mathrm{Z}(\mathrm{~S}, \mathrm{~A}) *(\mathrm{DT} / \mathrm{NCYCL})} \\
& F(S, A, H)=\text { instantaneous rate of fishing mortality } \\
& \text { for a given stock, age, and harvester } \\
& Z(S, A)=\text { instantaneous rate of total mortality } \\
& \text { CENSUS }(S, A, I)=\text { total numbers alive at start of month } \\
& D T=1 \text { month }
\end{aligned}
$$

The accuracy of this solution depends on the parameter NCYCL; typically NCYCL is set at 4 , yielding an effective DT of about I week. Catch in weight of each age group is then simply determined as follows:
$\mathrm{CW}(\mathrm{S}, \mathrm{A}, \mathrm{H})=\mathrm{CN}(\mathrm{S}, \mathrm{A}, \mathrm{H}) * W E I G H T(\mathrm{~S}, \mathrm{~A})$
where WEIGHT $(S, A)=$ weight at age of an individual. CW (S, A, H) is the value ultimately passed to HRVST.

Within each month, then, the order of operations is as follows: Following the combined adjustments of PROCS, HARVS, and REGLS, the harvesting and capacity variables for the various fleets are passed to STOCKS:

$$
\begin{aligned}
& \operatorname{EFFD}(H, S)=\text { fishing effort (number of boats) } \\
& \operatorname{FPWD}(H, S)=\text { fishing power } \\
& \operatorname{HCAPAC}(H, S)=\text { capacity (MT/boat/day) } \\
& \operatorname{HDELT}(H, S)=\text { fraction of a month fished. }
\end{aligned}
$$

These variables are used to calculate equivalent standard effort, $F(H, S)$, in terms of boats fishing the entire month instead of a fraction of it, and the total harvesting capacity per harvesting interval, $\operatorname{CAPAC}(H, S)$.

Next, the age structure is updated. Fish in each age group have some probability of transferring to the next age group in each month, MARK (S, M). These transition fractions are applied to each age group. Recruits due to enter in the current month are added to the first age group, and fish leaving the last age group disappear. Within each age group, the size of individual fish is computed as a weighted average of the sizes of newly entered and residual fish. From these adjusted sizes and numbers at age, the biomass of the population is then computed, BMASS (S, L).

Contribution to spawning is then calculated for the current month. The number of females eligible to spawn is determined by the proportion of females in the population, FRFEM(S), and by a maturity at age schedule, FRMATF (S,A). Of these mature females the fraction which actually spawns
during the month is given by FRSPAWN (S,M). Their egg production is computed by a fecundity at age schedule, $\operatorname{EFEM}(S, A)$. The results of this procedure are additions to the number of eggs deposited on the stock's spawning ground, EGG (G).

Instantaneous total mortality rates are then computed for each age group in the stock. Each age group may be subjected to a different total mortality, depending on natural mortality rate, NMORT (S,A), catchability coefficient, $\operatorname{QCATCH}(S, A)$, and availability factor, $\operatorname{AVFR}(S, L, M)$. In this model it has been assumed that catchability is age specific, that natural mortality may be constant or age specific, and that availability fluctuates monthly. Letting FF denote total units of standard effort operating in the stock's location during the month, instantaneous total mortality rates are calculated for each age group as

$$
Z(A)=Q \operatorname{CATCH}(S, A) * \operatorname{AVFR}(S, L, M) * F F+\operatorname{NMORT}(S, A)
$$

Giiven these mortality rates, the catch of anchovy by the harvester may then be computed subject to the constraint that the total catch may not exceed the total or assigned capacity of this harvester during the interval, $\operatorname{CAPAC}(H, S)$. As previously indicated, the harvester and natural mortality at first compete exponentially to determine the number of fish each would take if harvesting capacity were unlimited.

The harvester's catch in weight, $C W(S, H)$, is then temporarily computed as the product of the number of fish taken and their weight at the beginning of the harvesting interval.

If this catch in weight exceeds the interval harvesting capacity, i.e.
$\mathrm{CW}(\mathrm{S}, \mathrm{H})>\operatorname{CAPAC}(\mathrm{H}, \mathrm{S})$,
it and the harvester's fishing time are reduced accordingly. Firstly, an adjustment factor is calculated, $R C=\operatorname{CAPAC}(H, S) / C W(S, H)$, and applied to catch in numbers and to fishing time:
$\mathrm{CN}(\mathrm{S}, \mathrm{H})^{\prime}=\mathrm{RC} * \mathrm{CN}(\mathrm{S}, \mathrm{H})$
$\operatorname{HDELT}(H, S)^{\prime}=R C * H D E L T(H, S)$.
The harvester's catch in weight is then recalculated from this adjusted catch in numbers and his fleet is made inactive for the remainder of the fishing interval. Fish credited to the harvester in excess of capacity,

$$
\operatorname{XTR} \dot{A}(S)=(1.0-\mathrm{RC}) * \mathrm{CN}(\mathrm{~S}, \mathrm{H})
$$

are then subjected to natural mortality and returned to the population. Once the catch cycle has been completed, the number of fish remaining, $\operatorname{CENSUS}(S, A, L)$, is determined from the numbers caught and the numbers taken by natural mortality. Growth in length which has occurred during the interval. is then computed by a Von Bertalanffy equation. It has been assumed that growth is not density dependent. New
individual weights at age are then computed by a cubic weight-length relationship.

Finally, future recruitment is calculated from the number of eggs deposited on the stock's spawning ground and the egg to recruitment survival rate. Recruitment is assumed to be density dependent and the model, therefore, adjusts egg survival in a compensatory manner according to usersupplied survival multipliers. The proper multiplier to be applied during the month is determined by the ratio of present biomass, BMASS (S, L), to the average or equilibrium biomass, WINF (S,L). This procedure determines the number of new recruits, $\operatorname{RECRT}(S, G, M)$, which will be available to the population after a delay of a number of months specified by $\operatorname{RECINT}(S, G, M)$.

Input
As indicated in Appendix 2, input cards are prepared in the English language free-field format described by Gales (ibid.) for GAMES. In general, an identifying keyword, usually the variable name, must occur in the first 8 columns of each card. This is followed by any combination of words and numbers which describe the variable and its subscripts; subscripts must occur in their proper order from left to right. Lastly, the value of the variable (if required) is indicated in the remaining card columns. For example,
the data card indicating the maximum age of stock I would be prepared as follows:
col $1 \quad 9$
AGEMAX MAXIMUM AGE FOR STOCK $1=7$
All 80 columns of the data card may be used. Decimal points must be punched only to indicate decimal fractions; otherwise they are not required.

In addition to single values, users may also specify ranges or sequences of values for each of several parameters (subscripts or variable values) on a card. Ranges are specified by the keyword *TO* and sequences, by the keyword $* * *(\ldots .$.$) .$ In effect when input routines encounter either of these 2 keywords, the same data card is read several times, and on each succeeding read a new parameter value is assigned from. among. those delimited by a given range or sequence.

The *TO* keyword assigns an initial value to a parameter and then increments it by one for each succeeding read of the card until it equals or exceeds the terminal value. The initial and terminal values immediately precede and follow, respectively, the keyword *TO*. For example, the data card specifying the fraction of the population which is female for stock 1 would be prepared as follows when that value remains constant over all ages:

FRFEM FRACTION FEMALE S I, AGE 1 *TO* $7=.56$ In this manner, a single card replaces the seven normally required to define $\operatorname{FRFEM}(1,1)$ through $\operatorname{FRFEM}(1,7)$.

The *** (....) keyword encloses a sequence or list of values. Each read of the card assigns a new element of the list, from left to right, to the same parameter until the list is exhausted. For example, the data card specifying initial population size for ages $1-3$ of stock 1 would be prepared as follows:

CENSUS NO. FISH S I, AGE 1 *TO* $3=* * *(0,228.85,76.18)$ Note that the left and right parentheses, respectively, must be followed and preceded by a single space. This single card is equivalent to the following 3 cards:

CENSUS NO. OF FISH S 1, AGE $I=0$
CENSUS NO. OF FISA S 1 , AGE $2=228.85$
CENSUS NO. OF FISH S 1 , AGE $3=76.18$
Data cards prepared in this manner then are organized into the 10 data blocks indicated in Appendix 2. All of the variables listed must be included to run experiments with SIMPLE ANCHOVY. The 10 data blocks must occur in the order given and each, including the last one, must end with a a. blank card. The variables within a given block may occur
in any order desired by the user. Cards beginning with the letter C are comment cards which may be inserted to provide additional information about the input; they are ignored by the input routines.

Before examining these data blocks in detail, the following comments should be noted. The derivation of values for all listed variables is given in Tillman's (1972) analysis of the northern anchovy fishery. The following subscript abbreviations have been used:

S-Stock	M - Month
A- Age	G-Spawning Ground
L - Location	K - Table Value

Stock subscript 1 refers to the central stock of northern anchovy, and age subscripts 1-7 correspond to real anchovy. ages 0-6.

Data block 0 controls the printout of input values. Due to the length of this listing and since only a few values will be changed from one experiment to the next, this printout has been suppressed.

Data block 1 controls the length of simulation and the form and frequency of financial and physical output reports (which are described in an ensuing section). The statements Iisted in Appendix 2 request that financial statistics be
accumulated on an annual basis over a 20 year period. Printout of such annual reports is suppressed until the last year simulated, year 20. Physical reports for the stock, harvester, and processor sectors are to be printed out at the end of month 12 of year 20. If the user desires more frequent reports, say, every 5 years, the following alternative statements might be used:

CUMULATIVE FINAN REPORTS PRINTED YEARS *** ($5,10,15,20$)
PHYSICAL REPORTS ARE PRINTED YEARS $* * *(5,10,15,20)$ Biannual stock reports for the above years could be obtained by using the following statement:

STOCK REPORTS PRINTED MONTHS *** (6,12)
Data block 2 is a verbal description of the system portrayed in Figure 2. The number of entities in each sector of the fishery and the logical linkages between entities in the different sectors are indicated. Note that in SIMPLE ANCHOVY the small vessel fleet, pet food, and jack mackerel have been removed from the description to simplify the model. The statement

PRODUCT 1 *TO* 2 SOLD ON MARKET 1 *TO* 2
may be interpreted as product 1 is sold on market 1 , product 2 on market 2 .

In data block 3 are defined, for financial report purposes, the sets to which harvesters and processors
belong. Variables NHSET and NPSET are used to define the elements respectively comprising each harvester or processor set; e.g.

NHSET HARV SET 2 ENTRIES 1 *TO* 3, CONTAINS HARVESTERS *** $(2,3,5)$

The financial statements for all elements in a given set are summed together and printed out as a single report. These summed harvester and processor reports themselves may be summed together and printed out as a single financial report. The variable NHPSET is used to define these harvesterprocessor entities. The statements in Appendix 2 request that the financial reports of the harvester and processor in the simple anchovy system be amalgamated into a single annual report. The last statement of datablock 3 requests that both the combined report and a separate report for the harvester and processor be printed out. To get only the combined report or only separate reports; the user should use, respectively, the following statements:

CBONLY PRINT OUT COMBINED REPORT ONLY
SPONLY PRINT OUT SEPARATE REPORTS ONLY
In data block 4 , values are assigned to the following marketing parameters:

ALPHA, BETA, GAMMA - See Appendix 1 for a description of these. Since marketing is not examined and since
perfectly elastic demand curves are used, the values assigned these parameters are not vital.

TRANS - These define the conversion factors indicating how efficiently raw materials (anchovy) are transformed into finished goods (fishmeal and oil) by processors.

PDC,QDC - These define the price and quantity axes of the perfectly elastic demand curves for fishmeal and oil (quantities in terms of $\mathrm{MT} /$ month).

Variables in data block 5 describe the initial state of processors in the fishery:

MSHARE - Since in the simple model processors are amalgamated together into one processing entity, the user need not worry about market shares since that entity controls all of the market.

PCOSTU - The cost of a new plant, excluding the cost of land.

PTOTPE - The total value of all plants initially available (number x PCOSTU).

PUCAP - The processing capacity per doliar of equipment (capacity per month in MT/PTOTPE) is used to calculate the new operating level when capacity of a certain value is added to the present total plant value.

PFXDXP - The total fixed cost of operating all plants in terms of cost per month. Includes an opportunity return on total investment.

POPERX - The variable costs of operation depend on the kind and amount of raw material processed. Value in terms of cost per MT of anchovy. PLOCX - The x and y coordinates of the processor's location.

Variables in data block 6 describe the initial state of harvesters in the.fishery:

HCOSTU - The cost of a new vessel.
HTOTPE - The total value of the fleet. (number x HCOSTU).
HFXDXP - The fixed cost of operating a single vessel.
Unlike processors' fixed costs; the total fleet cost is calculated internally by the program. HVRCPE - The day-proportional cost of operating a vessel (cost per day of fishing).

HRCOST - The harvest-proportional cost of operating a vessel (cost per MT of anchovy captured).

HPLOCX - The x and y coordinates of the fleets initial location, relative to the processor's location.

In data block 7 values are assigned to variables used by the stock sector of the model. The variable names listed in Appendix 2 correspond to those used in the previous section describing subroutine STOCKS. For further description of these variables, the user should refer to pages 10-11
of Appenaix 1, the writeup for GAMES. The values assigned in Appendix 2 are taken from Tillman (ibia.).

In most cases Appendix 2 is self-explanatory, and a detailed description of variables in data block 7 thus will not be made. It should be noted, however, that variables FFISH, FEGGS, FRECR, and FCOEFF act as nultipliers and are used to scale values of the variables imnediately followint. Hence, they must precede the variables that they multiply: respectively CENSUS, EFEM, RECRT, and QCATCH. Further expanation also is -equired for the following variables:

WINF - This is the equilibrium biomass of the virgin stock, not the maximum biomass. SMULT - The values listed define a Beverton and Holt stock-recruit relationship.

LMULT - This is set equal to one since growth in length is not density dependent.

MARK - These values define the fraction of the population which ages (has a birthdate) in the given month. WF - This vector converts catch by age into total catch. Data block 8 reads in processor decisions. These decisions, as well as those for harvesters and processors, remain in force throughout the length of a simulation experiment:

OPLEVI - The operating level or total plant capacity to be devoted to processing anchovy, in MT/month. PURPRI - The purchase price offered to harvesters for their catches (price per MT of anchovy).

PRICES - The selling price desired for finished products (price per MT of meal or oil).

Data block 9 reads in the following decisions for harvesters:

EFFDI - The number of vessels operating on anchovy.
HCAPAC - The capacity in MT of an average vessel.
FPWDI - The harvesting efficiency or relative fishing
power of the average vessel.
DYSTRP - The average trip length in days.
HLOCX - The x and y coordinates of the fishing location which indicate the distance in miles from the initial harvester location.

Data block 10 reads in the following decisions for regulators:

XI - A control variable indicating which of the builtin seasons is to be used: 1 - 8 month season, summer closure (15 Sept. - 15 May). 2 - 8 month season, winter closure (1 May - 31.Dec).

3-12 month season.

NAUT - A control variable indicating whether or not quotas are enforced:

1) Not enforced

NAUT $1=1$
NAUT $2=1$
2) Annual quotas enforced

NAUT $1=0$
NAUT $2=1$.
Set the quota as follows:
CQUOTA S $1 \mathrm{LI}=$ \# MT/year
3) Monthly quotas enforced

NAUT $1=1$
NAUT $2=0$
Set the quota as follows:
CMQ S I L $1=$ \# MT/month
OPLL - The maximum allowable operating level or processing capacity. If not a constraint, set an arbitrariiy high value. In terms of MT/month.
EFFL - The inaximum allowable number of vessels.
RDELT - The maximum allowable number of days of fishing per month, up to 30.6 days.

FPWL - The maximum allowable fishing power or harvesting efficiency.

Using SIMPLE ANCHOVY

To use SIMPLE ANCHOVY most expeditiously, the program deck, a compiled version of the program, and the previously defined data deck are all placed on a tape (\#625 at the Center for Quantitative Science in Forestry, Fisheries and Wildife, University of Washington). These three entities or decks comprise three sequential files on that tape (6-8 on tape 625). By utilizing a tape, the user avoids the necessity of carrying around several boxes of cards and, as will be seen, facilitates the manipulation of values in the data deck. To execute a simple experiment with the data as listed in Appendix 2, the following setup (using files 7 and 8 of tape 625) is.required:

Job card (Set core requirement 55000 and time 60)
REQUEST,TAP,VRN=625,FILES=7-8,IN,HI,DI.
MAP (OFF)
COPYBF (TAP,PROG)
COPYBF (TAP, DATA)
REWIND (PROG,DATA)
SETCORE.
PROG (DATA)
6-7-8-9- card
All cards begin in the first column.

More complex experiments involving the manipulation of values in the data deck make use of the UPDATE system provided by the CDC 6400. UPDATE is a general system for manipulating or editing files of information placed on a tape. By means of a special control card and a special data deck, the user may indicate which file is to be edited; which statements or cards are to be changed and what specific changes are to be made. To change values in the SIMPLE ANCHOVY data deck (file 8 of tape 625) and then run an experiment, the following setup is required:

```
Job card (CN55000,T60)
```

REQUEST,TAP, VRN=625,FILES $=7-8, I N, H I, D I$.
MAP (OFF)
COPYBF (TAP, PROG)
COPYBF (TAP, PROG)
REWIND (PROG , DATA)
UPDATE ($\mathrm{P}=\mathrm{DATA}, \mathrm{W}, \mathrm{D}, 8, \mathrm{Q}$)

SETCORE

PROG (COMPILE)

$$
7-8-9 \text { card }
$$

Text Manipulation Cards

$$
6-7-8-9 \text { Card }
$$

The UPDATE card requests that the data file be changed temporarily as indicated by the deck of text manipulation
cards and that this new version be placed on a file called COMPILE. The experiment then is executed unsing COMPILE as the data source. Since the changes made are not permanent, the data file effectively is restored to its original version after the experiment is run.

Before setting up the text manipulation cards, the user should first observe that every data card in Appendix 2 is followed by a name, DATAl, and a number. When the UPDATE system initially is used to place this data file on tape, these identifying tags are appended to the right hand side of every card. Thus, in any manipulation, a specific card in this data file may be referenced by its identifying tag, using the format DATAl.m where m is the specific card number.

The following statements comprise a Text Manipulation Deck used to change the enforcement of annual quotes and the frequency of reports:
*IDENT CHDI

* COMPILE DATAI
*DELETE DATAI.138
NAUT $1=0$
NAUT $2=1$
CQUOTA S 1 L $1=1$
*DELETE DATA 1.13 , DATA 1.14
CUMULAATIVE FINANCIAL REPORTS ARE PRINTED YEARS *** (5,10,15) PHYSICAL REPORTS ARE PRINTED YEARS ***(10,20)

Note that several changes may be made at one time, that they may occur out of order in the manipulation deck, and that all statements begin in column l. The *IDENT statement provides an identifying tag for the new data cards included in the manipulation deck. Tags other than CHDI may be used but cannot exceed 7 characters in length, and DATAl cannot be used again. The *COMPILE statement indicates that the new version of DATAl is to be written onto the COMPILE file.

The *DELETE statements in effect cause the named data card or range of caras to be erased. If any data cards follow the *DELETE statements in the manipulation deck, then these new cards are inserted in place of the erased card (s). Thus, in the above example, data card 138 is erased and 3 new cards are inserted in its stead; then data cards 13 and 14 are erased and 2 new cards inserted.

To simply insert new data cards without any erasures, the *INSERT statement is used:
*INSERT DATAI. 136
SLIMITS $1 \mathrm{~L} I=10 \mathrm{~cm}$.
The above example would insert a size limit regulation into data block 10 immediately after data card 136. (The programming mechanisms to handle such a regulation are available but not used in the simple model.)

In the simulation experiments Tillman (ibid.) conducted with SIMPLE ANCHOVY, the following manipulations were required:

1) Changing stock-recruit curves for the $M=1.10$ model:
*DELETE DATAI. 96
SMULT - use either of the 2 alternative tables provided by Tillman (ibid.).
2) Changing mortality models from $M=1.10$:
*DELETE DATAI. 79, DATAI,80
CENSUS - initial population size by age, 2 cards
*DELETE DATAI. 95
SURVN - egg-recruit survival
*DELETE DATAI. 96
SMULT - egg-recruit survival multipliers
*DELETE DATAI. 99
RECRT - initial numbers of recruits
*DELETE DATAI. 107
NMOR' - natural mortality
*DELETE DATAI. 106
QCATCH - coefficient of catchability
3) Changing seasonal regulations:
*DELETE DATAI. 137
XI - season code
4) Changing areal regulations:
*DELETE DATA.l. 106
QCATCH - use coefficient for the inshore area
5) Changing efficiency of operations in the inshore area:
*DELETE DATAI. 47
TRANS ($1,1,1$) - conversion factor for fishmeal.
Output
The results obtained from each experiment will depend upon which output reports are requested in data blocks 1 and 3. In general, however, a financial report will provide the net economic returns (before taxes) obtained by harvesters, by processors, and/or by the combined harvester-processor entity. Appendix 3 provides an example of a combined harvester-processor financial report; this report indicates the economic performance of the total system during year 10 . The physical reports for stock, processor and harvester sectors will include the variables indicated. in Appendix 3. Additionally, a report of the average annual biomasses obtained during each.year of simulation will precede the financial report(s); these biomass values will provide an index of how population size varies during the course of experiments.

Alternative ANCHOVY Models.

Stochastic Availability Model
As an alternative to the deterministic model used by SIMPLE ANCHOVY, Tillman (ibid.) offers an hypothesis that monthly availability of anchovies follows a stochastic pattern. Assuming that availability is distributed normally about the average value for each month, this stochastic pattern is portrayed in Figure 8. In this. figure the hatched line represents the pattern of mean monthly values and the 2 solid lines, the patterns of 2 standard deviations above and below each monthly mean.

To implement this model, special coding must be inserted into the SIMPLE ANCHOVY program. since this program is on tape, these insertions can be done on a temporary basis with the UPDATE system just as they were for the input data set. Furthermore, both a program update and a data update can be made on the same computer run. The program update must precede the data update. The setup to carry out both of these updates just before the execution of an experiment is as follows (using files 6-8 on tape 625): Job card (CM55000, ${ }^{\text {T60) }}$

REQUEST, TAP ,VRN=625,FILES=6-8,IN,HI,DI.
MAP (OFF)
COPYBF (TAP, OLDP)
COPYBF (TAP, OLDB)

Higure $8-S t o c h a s t i c$ pattern of searonal avallabilley
Som noreham anchoty.

```
COPYBF (TAP, DATA)
REWIND (OLDP, OLDB , DATA)
UPDATE ( \(\mathrm{P}=\mathrm{OLDP}, \mathrm{W}, \mathrm{Q}, \mathrm{L}=0\) )
FORTRAN ( \(I=\) COMIP ILE \(, M O D E=G, B=O B J, L=D U M M Y\) )
REWIND (OBJ)
COPYL (OLDB, OBJ ,NEWB)
UPDATE ( \(P=\) DATA \(, W, D, 8, Q\) )
SETCORE.
NEWB (COMP ILE)
7-8-9 Card
Text Manipulation Deck for Program. Update
7-8-9 Card
Text Manipulation Deck for Data Update
6-7-8-9 Card
```

The first update card. and the 3 control cards following it request that SIMPLE ANCHOVY be changed as indicated in the first manipulation deck and that a compiled version of this newly changed program temporarily be written on a file called NEWB. The data set is updated using the second update card and manipulation deck and then NEWB, the new program, is executed using COMPILE, the new data set. The original versions of the program and data set will still be on the tape after the experiment has been conducted.

The Text Manipulation Deck for the program update must contain the following statements:
col. 1
*IDENT STOCH (or some other name)
*COMPILE MAIN
*INSERT NEWG. 28
col. 7

$$
\text { DUMMY }=\text { RANF }(.247)
$$

*COMPILE STOCKS
*INSERT STOCKS. 282
col. 7

$$
\begin{aligned}
& \operatorname{RI}=\operatorname{RANF}(0) \quad \$ \quad R 2=\operatorname{RANF}(0) \\
& Z V=\operatorname{SQRT}(-2.0 * \operatorname{ALOG}(R 1)) * \operatorname{COS}(2.0 * 3.14159 * R 2) \\
& \operatorname{AVFR}(S, L, M)=\operatorname{AMAVFR}(M)+\operatorname{SDAVFR}(M) * Z V \\
& \operatorname{IF}(\operatorname{AVFR}(S, L, M) . \operatorname{LT}, 0.0) \quad \operatorname{AVFR}(S, L, M)=0.0 \\
& \operatorname{IF}(\operatorname{AVFR}(S, L, M) . G T, I .0) \quad \operatorname{AVFR}(S, L, M)=1.0
\end{aligned}
$$

The cards to be inserted are FORTRAN statements and thus must begin in column 7. The first insertion, involving the MAIN program, is used to change the sequence of random numbers generated in subsequent runs. If the value .247 is not changed, the same sequence of random numbers will be obtained in every experiment. However, jf a different 3 digit decimal fraction is used each time, a new sequence will be obtained in each run. The second insertion, involving subroutine

STOCKS, utilizes these sequences of random numbers, the monthly mean availabilities (AMAVFR), and their standard deviations (SDAVFR) to calculate the vallue of fractional availability applicable during a given month. The method used is described further by Tillman (ibid.). Data statements indicating the mean availability and standard deviation for each month are already built into the simple model and need not be added again. Note that monthly availability values have been constrained to fall within the range ($0, I$). Market-Industry Growth Model

According to Tillman (ibid.), the addition of i-2 new plants to the present system would not be an unlikely event given that favorable market circumstances prevailed. On the other hand, a decrease of capacity might occur if a disaster such as the marketing of a new low cost protein substitute occurred. If subroutine PROCS is modified appropriately, it will simulate these patterns of change in processing capacity. The user sets the number of UNITS to be added (or removed) from the initial number of plants and the year, N, in which the gain (or loss) occurs (takes effect the beginning of that year). Because of the indivisible nature of these large capital inputs, capacity grows incrementally at rather long periods. Hence, growth (or a loss) occurs in the middle of a 10 year simulation period, typically at $N=6$.

The harvesting fleet should also grow (or decline) in response to market conditions. Given appropriate modifications, subroutine HARVS will simulate patterns of change in fleet size. It has been assumed that the fleet grows more quickly than does processor capacity, that growth is a constant function of time, i.e. a constant number of vessels is added each. year, and that yearly additions to the fleet enter at the start of a season. The user indicates HINCR, the number of units added in each year (zero for the static.model) and, if processing capacity steps down, he also enters NSTOP, the year in which growth stops, and HDECR, the number of vessels lost each year following a market-disaster.

As might be surmised, the above required changes in subroutines PROCS and HARVS are induced temporarily by means of the UPDATE system. The exact control card setup used for the Stochastic Availability Model is also used for this model. Of course, a new Text Manipulation Deck is required for this program update. The following statements must be included in this new manipulation deck:
*IDENT GRW
*COMPILE PROCS
*DELETE CHNT3.176
col. 7
DATA UNITS/-2.0/
DATA N/6/
*COMPILE HARVS
DATA HINCR(1)/4.0/
DATA NSTOP/7/
DATA HDECR (1)/-5.0/
The specific values on the 5 DATA cards will, of course, change depending on which market-industry growth situation the user wishes to simulate. The above values describe the situation wherein 2 plants are lost in year 6 and the fleet size follows a triangular growth pattern, adding 4 vessels per year until year 7 and losing 5 per year thereafter. The following generalized table indicates the values to be entered on these DATA cards for different growth situations:
UNITS N HINCR NSTOP HDECR

1) Add plants in year +R I<l0 +R I>IO 0 N, constant fleet growth
2) Add plants in year $+\mathrm{R} \quad \mathrm{I}<10 \quad+\mathrm{R} \quad \mathrm{I}<10 \quad 0$ N , stop fleet growth at NSTOP
3) Lose plants at $N, \quad-R \quad I<10 \quad+R \quad I<10 \quad 0$ stop fleet growth at NSTOP
4) Lose plants at $N, \quad-R \quad I<10 \quad+R \quad I<10 \quad-R$ triangular fleet growth
5) No change in plants, $0 \quad I>10+R \quad I>I 0$

0 constant fleet growth

Where $R=$ whole real number (punch decimal)
$I=$ positive integer number
$0=$ zero
Concerning the data set update which may accompany the program update, the following caveats are made: The length of simulation runs should be shortened to 10 years to agree with the time scale used by PROCS and HARVS. If the user intends to start at some harvester-processor configuration other than the one already on the data file, he must change the following initial values for processors to match his initial number of plants: PTOTPE; PFXDXP, OPLEVI. And for harvesters, EFFDI must be changed to indicate the new number of vessels with which he intends to begin.

Mixing. Stocks Model
Tillman (ibid.) derives an alternative stock structure model in which a mixture of two stocks occurs in the southern California fishing area. He hypothesizes that both the southern (stock 1) and central stocks (stock 2) contribute some fraction of their respective biomasses to the fishing area. The logical representation of this Mixing stocks Model is given in Figure 11.

Market -
Products

Regulators

Harvesters

Stocks

Location

Figuro 11 - Grapisc ropresentation of tho logeal relainonships tetseen elemants or tho nixiris ctooks modos.

Biomass in the fishing area is assumed to be 5.0 million tons. Given a contribution by each stock to this same area, biomass is determined by

$$
\begin{equation*}
\text { FBMASS }=\sum_{i=1}^{2} A_{i} * \text { BMASS }_{i} \tag{7}
\end{equation*}
$$

where $\mathrm{BMASS}_{1}=1.0 \mathrm{milli}$ on tons, $\mathrm{BMASS}_{2}=5.0 \mathrm{million}$ tons, and A_{i} defines the fraction of each stock which is available to the fishery. Since these fractions are unknown, a variety of possibilities might be derived in order to examine the consequences of mixing. Given A_{1} fixed, A_{2} is found by rearranging (7) and substituting the known biomasses. This porcess yields the following pairs of availability factors considered by Tillman (ibid.) :

Southern Stock Contribution

.25
.50
.75

Northern Stock Contribution
.95
.90
.85

Simulating this system requires that an identical dummy harvester be set up for the central and southern stocks: each having the same number and type of vessels, catch coefficients, and seasonal effort patterns. The fishing power of each, FPWDI, then is adjusted by its above respective availability factor. The catch of each dummy harvester thus represents the contribution of the available part of each stock to the
fishery and the sum of these catches, the total catch taken in the fishery area by the U.S. fleet from the given mixture of stocks.

Such extensive changes of SIMPLE ANCHOVY are required to accomodate this model that temporary updates are no longer economical. Comparison of the program listings given in Appendix 4 and 5 will show that changes mainly involve the dimensions of the COMMON Blocks used for storing variables. Appendix 5 is a listing of the program obtained following a permanent update of SIMPLE ANCHOVY. This program, its compiled version, and an appropriate data deck are all placed on a tape to facilitate use of the Mixing Stocks Model (files 9-11 on tape 625). To use the model, the following setup is required (using files 10 and 11 on tape 625): Job card (CM60000,T60)

REQUEST , TAP, VRN=625,FILES $=10-11, I N, H I, D I$. MAP (OFF)

COPYBF (TAP, PROG)
COPYBF (TAP, DATA)
REWIND (PROG, DATA)
UPDATE ($\mathrm{P}=\mathrm{DATA}, \mathrm{W}, \mathrm{D}, 8, \mathrm{Q}$)
SETCORE.
PROG (COMPILE)
7-8-9 Card
Text Manipulation Deck for Data Update
6-7-8-9 Card

Note the change in core requirements, from 55000 to 60000. For every change in the mixture of stocks, the following statements must be included in the Text Manipulation Deck in order to change the data set appropriately (see Appendix 6 for a listing of current values):
*DELETE DATA2. 62
PUCAP PROC 1 STOCK 3 = desired value
PUCAP PROC I STOCK 1 = desired value
PUCAP PROC 1 STOCK 2 = desired value
*DELETE DATA2.122, DATA2.123
QCATCH STOCK I AGE 1 *TO* $7=* * *$ (desired value (s))
QCATCH STOCK 2 AGE 1 *TO* $7=* * *$ (desired value (s))
*DELETE DATA2.149
OPLEVI PROC I STOCK 3 = desired value
OPLEVI PROC 1 STOCK $1=$ desired value
OPLEVI PROC 1 STOCK 2 = desired value
*DELETE DATA2. 157
FPWDI HARV 1 STOCK 1 = desired value
FPWDI HARV 2 STOCK 2 = desired value
The derivation of appropriate values is as follows:

1) Recall that the A_{i} 's, the availability factors applied to each stock's biomass, are also used to adjust fishing powers of the dummy fleets:
$\operatorname{FPFDI}(1,1)=A_{1} * 1.726$
$\operatorname{FPFDI}(2,2)=A_{2} * 1.726$
where 1.726 is the fishing power of vessels having 191 MT capacities. Given $\left(A_{1}, A_{2}\right)=(.25, .95)$,
$\operatorname{FPWDI}(I, I)=0.432$
$\operatorname{FPWDI}(2,2)=1.640$
would be the values entered above.
2) OPLEVI (1,3) is the processing capacity which is allocated to anchovies in general. However, since 2 different stocks of anchovies actually are being taken in the fishing area, the program requires the processors allocate this total capacity over both stocks. Assuming an allocation which is proportional to the fraction each stock in the fishing area is of the total biomass in that area, i.e.,
$P_{i}=A_{i}$ BMASS $_{i} /$ FBMASS
then $\operatorname{OPLEVI}(1,1)=P_{1} * \operatorname{OPLEVI}(1,3)$
$\operatorname{OPLEVI}(1,2)=P_{2} * \operatorname{OPLEVI}(1,3)$.
Given $\left(A_{1}, A_{2}\right)=(.25, .95),\left(P_{1}, P_{2}\right)=(.05, .95)$.
And if $\operatorname{OPLEVI}(1,3)=30576$ (see Appendix 6),
$\operatorname{OPLEVI}(1, I)=1528.8$
$\operatorname{OPLEVI}(1,2)=29047.2$
would be the values entered
3) Recall that PUCAP is defined as

OPLEVI/PTOTPE.
Thus, given the above values of OPLEVI and PTOTPE $=1.2$ million, the following values of PUCAP would be entered:

$$
\begin{aligned}
\operatorname{PUCAP}(1,3) & =0.02548 \\
\operatorname{PUCAP}(1,1) & =0.001274 \\
\operatorname{PUCAP}(1,2) & =0.024206
\end{aligned}
$$

4) The appropriate QCATCH values for a given set of A_{i} s are indicated in the following table for different areal. restrictions (see Tillman (ibid.) for derivation) :

Mixture of stocks		Coefficient when	Coefficient when
of stocks	Age	Inshore closed (10-3)	Inshore open (10^{-3})

Mexican Entry Model

If the user examines Figure ll closely, he will find that Mexican entry into the anchovy system can be simulated by the Mixing Stocks Model. By changing the data set appropriately, one can activate a second harvester which operates exclusively upon the southern stock (stock 1). Thus, it has been assumed that Mexican vessels fish only on the remnant of the southern stock which does not migrate north into the Southern California fishing area.

To implement this model, one uses the control card setup previously discussed for the Mixing Stocks Model.

In addition to the statements listed in the Text Manipulation Deck for that model, the user also must include the following statements:
*DELETE DATA2.160
EFFDI HARV 4 STOCK $1=$ no. of vessels
*DELETE DATA2.162
FPWDI HARV 4 STOCK $1=$ adjusted value
The adjusted value of FPWDI is determined as follows from
the value of A_{1} applied to the southern stock:
$\operatorname{FPWDI}(4,1)=\left(1-A_{1}\right) * 1.726$
Given $A_{1}=.25$, the appropriate value would be $\operatorname{FPWDI}(4, I)=1.294$

Literature Cited

Gales, Lawrence E. 1972. NEW GAMES: a multi-purpose interactive resource management program. Quant. Sci. Paper 32. 40p.

Tillman, Michael F. 1972. The economic consequences of alternative systems: a simulation study of the fishery for northern anchovy, Engraulis mordax Girard. Unpub. Ph.D. Thesis, University of Washington. 204p.

Appendix I User's manual for GAMES

Quantitative Science Paper No. 32*
2. NEW GAMES: A MULTI-PURPOSE INTERACTIVE RESOURCE MANAGEMENT PROGRAM

Programmed by
Lawrence E. Gales
CENTER FOR QUANTITATIVE SCIENCE IN FORESTRY, FISHERIES AND WILDLIFE

University of Washington
Seattle, Washington 98195

February 1972
*A series prepared under the general sponsorship of the Quantitative Ecology and Natural Resource $\frac{\text { Management Program supported by Ford Foundation }}{\text { Grant Number } 68-183 \text {. }}$

I. Introduction

GMMES* was a first attempt at writing a really large multipurpose simulation program. It was conceived as a set of processes which could be linked together through input cards in order to model a specific system. However, GAMES proved far from easy to use in practice, mainly due to the large amounts of input and output and to the need to re-program in order to meet differing storage requirements.

New GAMES is an attempt to ease these problems. It incorporates programming philosophies and software packages of quite general applicability, and can be thought of as a system in which one may embed a simulation program. It is designed to handle the most characteristic (yet overlooked) features associated with simulation: those that stem from the fact that the real world is inherently complex, possesses many parts, and continually changes. These features are of necessity reflected in the computer program which tends to be large, complex, and contains a very large number of subscripted variables. The very size greatly aggravates the problems of input, output, and code modification, and dictates a nev programming approach.

These problems are usually overlooked by the programmer who concentrates attention on the simulation algorithms and leaves I / O ancl code modification as an afterthought. Normally, it is the unfortunate user who realizes the inadequacy of this approach after searching through 28 pages of output to find six relevant numbers. Just as computers were forced to evolve from "bare brains" with peripheral (i.e., "unimportant"). I/O devices, to large systems where the central processor is a small part of the whole, so the difficulties in usage require that large simulation programs be embedded in a flexible I/O system designed with the user in mind, and attended by a program editing system.

Specifically, large simulation programs should include the following features:

1. Modular Structure.

It is essential to split a large program into a number of independently compiled blocks. This technique not only reduces costs because parts of the program can be altered without recompiling and relisting the whole, but it also enables the programmer to isolate logical units so they can be understood and changed without knowledge of the entire program. A useful device is to write the main program usinç only "if statements", "do-loops", and subroutine "call" statements. Then the overall structure of the program is evident at a glance.

[^0]2. Global Variables with Variable Dimensions.

Global variables are needed to pass information from one independent subroutine to another. Common blocks, as occur in Fortran, are inadequate because the programmer must redeciare and redimension dozens or hundreds of variables in dozens of subroutines. Variable dimensions are also needed to allow for storage needs that depend on the particular system being modelled.

Global variables are simulated in new GAMES by means of a set of routines that replace the symbolic dimensions of variables in labelled common blocks with user-defined numeric dimensions and which insert the resulting common blocks in programs wherever they are referenced by name.

3. Array Protection.

The most mysterious "bugs" in all of programming arise from the use of subscripts that lie outside the range permitted by the associated dimension statements. These "bugs" may wipe out. data, parts of the program, I/O buffers, or even parts of the operating system and are often exceedingly hard to find because the effects may become evident long after the cause. This problem is greatly magnified in simulation programs because a) the program tends to be quite large, b) the large number of subscripted variables implies a large number of potential causes, and c) the ranges of subscripts must be set by data cards in order to maintain program generality, hence input values can cause the program to exceed dimension limitations even when the program is thoroughly. debugged.

There is no satisfactory software solution* to the problem because of the very large amount of input that would have to be examined and the large number of instances in the program where subscripted variables occur.

4. Editing Systems.

Because of the great size of the prograin and the need for frequent changes, the programmer needs automatic means of lociting and redefining variables, inserting blocks of code, changing dimensions, etc.

A fev of these functions may be accomplished by the routines described in section two above.
5. A User Oriented Input Package.

The input must be visible, self-documentary, position tolerant, self-scheduling, must override previous input, and must possess default values. It is visible if the user has the option of printing out the input for each run; it is self-documentary if the data are embedded in text that define it to the user and keywords that define it to the program; it is position tolerant if a card can be inserted anywhere within a block; it is selfscheduling if a block is read at a time determined by parameters given on the first card of a block; it overrides previous input

[^1]if the values of variables associated with data cards of a certain format are decermined by the most recently read cards of that format; it possesses default values if an encire input setup can be stored on tape and then selectively overriden by input cards at execution time. The above input package is fully implemented and is described in detail in later sections.
6. A Selective Output Package.

A large simulation program may generate mountains of output, most of which is useless at any given time. The package must allow the user to select the output which meets his current needs and suppress the rest (this is especially important if he is running from a remote terminal). Therefore the output package should provide output in the form of relatively.small labelled blocks which can be manipulated by the user through a command language in the input data. The commands, which should be flexible and self-explanatory, should allow the user to specify the form, frequency, and destination of output, and should allow him to create new output blocks or modify existing ones. For example, if $C \not / S T(1,1), \operatorname{C\emptyset ST}(1 ; 2)$ and $R E N T(3)$ are existing output variables, the user should be able to print out

$$
\operatorname{C\not CST}(1,1)+\operatorname{C\not ST}(1,2)+\operatorname{RENT}(3) .
$$

A limited version of this output package is implemented and is described later.

II. General Description

New GAMES is a Fortran IV program designed to simulate the activities of major sectors involved in the harvesting and marketing of renewable resources. The sectors simulated by the program are: products, markets, processors, harvesters, regulators, stocks, and locations. A specific resource system is modeled by stipulating through input data to the program the number of entities in each sector and the links between them.

The following figure illustrates the conceptualization of a specific system. The names on the left are the sectors, the numbers in the boxes.are the lst, 2nd, 3rd, etc. entiたies in that sector, and the arrows are logical links specified by the user. In this example there are 1 product, 2 markets, 2 processors, 1 regulator, 2 harvesters, 1 location, and 2 stocks.

A GAMES model may be used either with or without the active participation of players. Players may assume the role of certain of the entities in the system, making periodic decisions for each of the processors, regulators, and harvesters. In this case, monthly decisions for these entities are input to the program through data cards. Alternatively, periodic decisions for these entities may be obtained from user-generated subroutines. All major components of the computer program are coded as separate subroutines so that alterations to the basic operation of the progran can be made easily should that be required by the peculiarities of a specific system to be modeled.

The general operation of the model is as follows. The stock sector "grows" the resources and.determines the amount of each stock wich is available for harvest in each location. Harvesters operate in locations of their choosing and collect a portion of the available stocks. Harvesters sell quantities of the stock which they have collected to the processors which are offering to buy these stocks. The processors convert the stocks which they have purchased into finished goods and offer them.for sale in the markets which are available. Demand and the marketing activities of the processors determine sales by each processor of each product in each market. The regulators impose restrictions of various types on the activities of the processors and harvesters. During the operaiion of the model, the program compiles statistics on the operation of the system and prints out summaries of these statistics as desired.

Figure No. 1

The entities that make up each sector are briefly described below. A product is any material sold by a processor. It may be linked to any market. A market is an outlet for products produced by processors. Associated with each product in each market is a demand curve that determines the amount of potential demand generated for a product offered at a given price. Each demand curve may be shifted left or right by marketing decisions made by the processors.

A processor is a managerial entity that operates in one physical location (that is, a location specified by a pair of x and y coordinates). Processors buy stocks (raw materials) from harvesters, transform them into finished products, and sell them in markets. Each processor has a share of the market for a product that depends on his previous market share and his marketing expenditures and product price relative to the marketing expenditures and product price of other processors linked to the same product and market. The principal variable costs of a processor are the direct labor costs, costs of buying raw materials, operating costs, and direct cost of sales. A processor may be linked to any market and to any product.

A harvester is a managerial entity that operates in one physical and logical location. Fach harvester may own a number of harvesting groups, where his i th group harvests stock i and stock i only (for that reason the terms "harvester group" and "stock" are sometimes used interchangeably). Each harvesting group operates as a semi-independent unit constrained only by links to a location and one set of processors. At the start of each month, a group moves from its initial location to the harvesting location. The group harvests there for a specified number of days and then sells its stock to the processor which results in maximum profit to the group. If the processor cannot absorb the group's total supply, the group sells what it can and then travels to the next most profitable processor, and so on. A group may only sell to that set of processors linked to the harvester that owns the group. Any harvest unsold at month's end is recorded and discarded and has no economic value. Each harvester group starts off each month with zero catch (that is, harvesters cannot accumulate a stock suppiy for more than a month's time). The harvesting time for each group is limited not only by harvester and regulator decisions, but by the group's harvesting capacity. If it starts to exceed capacity during a trip its harvesting time is automatically reduced. The primary operating costs for a harvester are distance costs, time costs, harvest proportional costs, and license fees. A harvester may be linked to any processor or stock and to any one location at a time. It may alter its physical and/or logical location from month to month but it may never be linked to more than one location at a time.

A regulator is an agency that imposes restrictions or fees on the activities of harvesters or processors. A regulator may set
(1) Iicense fees,
(2) annual harvesting quotas,
(3) size limits,
(4) gear efficiency limits,
(5) effort limits (i.e., no. of harvesting units),
(6) operating limits for processors,
(7) harvesting seasons,
(8) monthly harvesting quotas.

All regulations are set for a given stock in a given location except (6) which is for a given stock for a given processor. A regulator automatically reduces any quantities (e.g., gear efficiencies, number of harvesting units, harvesting season, etc.) if the values exceed the regulator determined limits or if the projected annual or monthly catch is too high. A regulator may be linked to any processor or harvester.

A stock is any type of renewable resource (e.g., a species of fish). A stock may be linked to any location, meaning that it may exist in that location. The quantity of each stock available in each location is calculated and, at any given time, it is this quantity which is available to the harvesters.

Detailed Description
This section describes the purpose and organization of the main program and all of its subroutines, and includes a subset of the fortran vocabulary. The following subscript conventions are used throughout the remaining sections:

$$
\begin{aligned}
& d=\text { product } \\
& m=\text { market } \\
& p=\text { processor } \\
& r=\text { regulator } \\
& h=\text { harvester } \\
& s=\text { stock } \\
& l=\text { location } \\
& a=\text { age }
\end{aligned}
$$

For example, INVNT $(p, d)=$ the number of units of inventory of product d possessed by processor p.

The main program consists of a number of labelled common blocks followed by a string of subroutine call statements embedded in a double "do-loop" indexed by month and year. Each subroutine in the double loop is executed once a month and reads input, simulates components or interactions between components, or produces output. The double "do-loop" is the principle timing mechanism of the program. All months are of equal length and are about 30.5 days long.

The following is a partial listing of the main program with the purpose of each subroutine indicated opposite the statement that references it:

D $\ddagger 110$ IYEAR $=1,1000$

CALL TAPEIV : reads in the default input from TAPEI
CALI CARDIN : reads in the input from data cards
CALI PRØfCS : makes programmed monthly decisions for the processors
CALL HARVS:: makes programmed monthly decisions for the harvesters
CALI REGLS : makes programmed monthly decisjons for the regulators
CALL STACKS : simulates monthly growth of resources
CALI HRVST : harvests stocks for one month
CALL RUARKT : sells raw materials to processors
CALL PRCES : transforms resources into finished goods
CALL CMARET : sells finished goods to final consumers
CALL STATS : outputs physical reports
CALL SMSTAT : accumulates and outputs cumulative physical reports

100 C历NTINUE
110 CあNTINUE

Subroutine TAPEIN and subroutine CARDIN (an entry point in TAPEIN) are responsible for handing all input. The input is in an English language free-field format* and determines some of the structures and relationships in the model, the characteristics of the major components, the monthly decisions for processors, harvesters, and regulitors, and the form and frequency of output. The input is divided into blocks that correspond to logical units in the program. Iny input may be changed on a monthly basis but all previous input remains in effect until it is specifically overridden by new input data. Thus, in any given month, the user may change all, some, or none of the input. The input structure corresponds ea:actly to the "user oriented input package" described in the introduction.

TAPEIN reads the default input from a file named TAPEl and CARDIN reads the same type of input from cards. The organization and sequencing of the input system are fully explained in section IV. Here, we will only illustrate the block structure of the input and define the variables whose values are assigned by it.

Block 0 : controls the printout of default and card input.
Block 1 : controls the form and frequency of financial and physical output.

Block 2 : controls the number of entities in each sectior and the links between entities in different sectors.

Block 3 : defines the sets to which processors and harvesters belong (the financial statements for all elements in a set are summed together and printed out as a single processor or harvester), and determines the processor and harvester sets whose financial statements are summed together and printed out as a single processorharvester entity.

Block 4 : assigns values to the following marketing parameters: ALPriA (d,m) - a parameter that controls the sensitivity of iarket shares to changes in marketing expendicures;
BETA (d, m) - a parameter that controls the sensitivity of market shares to changes in the price of a product listed by a processor, GAMAA (d, m) - a parameter that controls the sensitivity of the demand curves to changes in marketing expenditures,
$\operatorname{QDC}(d, m, n), \operatorname{PDC}(d, m, n)$ - the x and y coordinates of points on the demand curves, TRANSP (p, s, d) - a two dimensional mairix for each processor that transforms raw materials into finished goods,

[^2]TgTiRR (d, m) - total value of: the manlect,
Thring $(d, \mathrm{~m})$ - total marketing expenclitures.
Block 5 : assigns values to the following processor parameters:
MiShare (p, d, m) - market shares,
INVINT (p, d) - no. of units in inventory,
DIN (p, d) dollar value of inventory,
PTgTPE(p) - total plant and equipment in dollars,
PC\&STU(p) - cost per unit of plant and equipment,
PCASH (p) - initial cash,
PRTAIN(p) - retained earnings,
PBL $\%$ AN (p) - bank loans,
PUCAP (p, s) - processing capacity per dollar of plant and equipment,
$\operatorname{DLCRAN}(p, d)$ - direct labor cost per unit of finished goods produced by processing raw materials,
PDRATE (p) - depreciation rate,
PFXDXP (p) - fixed (or administrative) costs,
PINTRS (p) - interest rate,
PCAPTL(p) - capital,
PLZCX $(p), \operatorname{PLYjCY}(p)-x$ and y coordinates of the processor's location,
PLTLIB(p) - long term liabilities,
P\#PERY (p,s) - operating cost per unit of raw materials processed.

Block 6 : assigns values to the following harvester parameters: HPLOCX (h), HPLOCY (h) - the x and y coordinates of a harvester's location at the start and end of each month,
HCASH (h) - initial cash, HT/FTPE (h) - total plant and equipment, HC\&STU (h) - cost per unit of plant and equipment, HBI耳NN (h) - bank loans, HCAPTL (h) - capitai, HDRATE (h) - depreciation, HFXDXP (h) - fixed (or administrative) costs, HINTRS (in) - interest rate, HRTAIN (h) - retained earnings, HLTLIB (n) - long term liabilities, HVRCPE (h, s) - direct operating cost per day per harvesting unit,
$\operatorname{HVRDST}(h, s)$ - cost per unjt distance traveled per harvesting unit,
HRC, $\operatorname{DINT}(h, s)$ - direct harvesting cost per unit harvested,. DINH (h, s) - dollar value of inventory.
Block 7 : assigns values to the stock sector of the model. The following variables are used with the Peruvian anchovy model; in general different stock models will use
different variables. Some of the input parameters act as multipliers and are used to scale the values of other parameters. They are marked with a 't' and must precede the parameters they multiply.
AGEMAX(s) - the number of ages for stock s, NDGGRD (s): - the number of spawning grounds for stock s, SPGRiVD (s,l) - the index of spawning grourds for stock s in location ℓ,
RECRTLT(s) - length of recruits for stock s. (in cm.). SURViN(s) - the normal egg survival rate,
RECINT(s) - the interval from spawning to recruitment, in months,
$\operatorname{AVFR}(\mathrm{s}, \mathrm{l}, \mathrm{mo})$ - the fraction of fish that are available for harvesting in month "mo",
NM\&RT(s,a) - naturai mortality rate,
LINFN(s) - asymptotic length,
VBK (s) - a von Bertalanffy equation parameter,
TZERD(s) - a von Bertalanffy equation parameter,
$\mathrm{VB} \cap(\mathrm{s})$ - a length weight multiplier,
ALNGTH (s,a,l) - length of an individual fish (in cm.),
WEIGfT (s, a, ℓ) - weight of an individual fish (in metric tons),
LMULT(s,k) - length increment multiplier,
$\operatorname{WINF}(s, \ell)$ - maximum stock biomass in metric tons,
FRMATFL ($5, k$) - length of females as a function of sparming fraction,
FRMATML (s, k) - length of males as a function of spawning fraction,
FFISH^{+}- a factor which multiplies the numbers of fish (CENSUS, SPFEMN),
FEGGS ${ }^{+}$- a factor which multiplies the numbers of eggs (EFEM),
FCØEF ${ }^{+}$- a factor which multiplies the coefficient of catchability (OCATCH),
FRECR^{+}- a factor which multiplies the numbers of recruits (RECRT),
$\operatorname{FECRT}(s, g, m o)$ - the no. of recruits in spawning ground g, in month "mo",
NCYCL (s:mo) - the number of times per month to cycle the stock sector of the model,
$\operatorname{SPFEMN}(s, g, m o)$ - the maximum number of spawning females in months "mo".
MARK (s,mo) - the marking fraction,
CENSUS (s, a, l) - the number of fish,
$\operatorname{FRFEM}(s, a)$ - fraction which is female,
FRMATf (s,a) - female mating fraction,
FRMATM(s,a) - male mating fraction,
$\operatorname{EFEM}(s, a)$ - eggs per female,
WF (s,a) - weighting vector,
FRSPANN (s,mo) - fraction of spawners that spawn in a given month,
QCATCII (s,a) - coefficient of catchability, SMULT (s,k) - egg survival multipliei.

Block 3 : reads in the following processor decisions: gpLEVI (pis) - input value of operating level, PADDPE (r) - additional plant and equipraent, PRANDD(p) - reseasch and develoment expenditures, MRKCNG(p, d, m) - marketing expenditures, PURPRI (p,s) - purchase price of rav materials, PRICES (D, d,m) - selling price of finished products, PRL何N (p) - loan repayment.

Block 9 : reads in harvester decisions:
HADDPE (h) - additional plant and equipment,
HRANDD(h) - research and development expenditures,
EFFDI (h, s) - the number of harvesting units,
FPWDI (h,s) - the average harvesting efficiency per unje,
HDELI (h,s) - the number of days per month spent harvesting,
HCAPAC (h,s) - the maximum capacity per harvesting unit per trip,
DYSTRP (h,s) - the time in days for each harvesting trip, HRL\%AN (h) - loan repayment, HLøCX (h), HLDCY (h) - the x and y coordinates of the harvesting location.

Block 10 : reads in regulator decisions:
C@UøFA(s,l) - annual harvesting quota,
$\operatorname{HLIN}(s, \ell)$ - license fees for harvesters,
SLIMIT (s, ℓ) - size limits in terms of $c m$ for harvested stock (that is, stock below a certain size may not be harvested),
EFFL (s, ℓ) - harvesting effort limit,
FPML (s, ℓ) - harvesting efficiency limit,
RDELT (s, ℓ) - harvesting season,
XI $(5, \ell)$ - a set of multipliers to be applied to the catch quotas,
$\mathrm{CHQ}(\mathrm{s}, \ell)$ - monthly harvesting quota,
\%PLL(p,s) - maximum operating levels for processors, NAUT(1) - a parameter that determines whether or not the annual harvesting quota is enforced; if NAUT(I) $=0$ it is enforced, if NAUT(l) $=1$ i.c is not,

NAUT (2) - if NAUT (2) $=0$, the monthly harvesting quota is cnforced; if NAUT(2) = 1 it is not.

Subroutine pRfld makes (programmed) monthly decisions for the processors. In the current model; pryCS does nothing since all processor decisions are obtained from cards.

Sulbroutine finRVS makes (programmed) monthly decisions for the horvesters. In the current model, Hindvs does nothing since all harvester decisions are obtained from cards.

Sulbroutine REGLS makes (progranmed) monthly decisions for the regulators. It computes

HDELT (h, s) - no. of days per month spent harvesting, $\operatorname{EFFD}(\mathrm{h}, \mathrm{s})$ - no. of harvesting units, $\operatorname{FPVD}(h, s)$ - gear efficiency per unit.
It computes HDELT (h,s) as follows: First, it sets DELTAT(s,l)= RDELT (s, l). Then it determines the total current harvesting effort. Based on current eff: wt and harvesting season it predicts the harvest for the current month. If the predicted harvest exceeds the annual or monthly quota, it reduces DELTAT (s, ℓ) by the appropriate amount. Then it sets

$$
\operatorname{HDELT}(h, s)=\min (\operatorname{HDELI}(h, s), \operatorname{DELTAT}(s, \ell) \times X I(s, \ell))
$$

for each harvester operating in location 2 . It computes EFFD (h,s) and FPMD (h, s) as follovs. Let the phrase " h in ℓ " mean "those harvesters operating in location ℓ ". Let

$$
t=\sum^{h} \operatorname{EFFDI}(h, s), \text { for } " h \text { in } \ell ", \text { and } f=\operatorname{EFFL}(s, \ell)
$$

If $t>f$ then
$\operatorname{EFFD}(h, s)=(f / t) \times \operatorname{EFFDI}(h, s)$, for $" h$ in ℓ ".
If t sfthen
$\operatorname{EFFD}(h, s)=\operatorname{EPFDI}(h, s)$, for "h in ℓ ".
Also $\operatorname{FPND}(h, s)=\min (\operatorname{FPWDI}(h ; s), \operatorname{FPNL}(s, \ell))$ for $" h$ in ℓ.

Subroutine STGCKS simulates the growth of different stocks (renewable resources). The main parameters it needs from the rest of the model are EFpi(h,s) (the number of harvesting units), HDELT (h,s) (the harvesting time), $\operatorname{HCAPAC}(\mathrm{h}, \mathrm{s})$ (capacity per unit per harvest group per trip), $\operatorname{FDVD}(h, s)$ (harvesting efficiency), and $\operatorname{NCYCL}(s, m)$ (the number of times per month to cycle a given stock). The output is the harvest matrix CATCH (s,a,h) which gives the harvest by stock, age, and harvester in tons. The nature of stycks depencis heavily on the type of resource veing simulated and so rill not be described here.

Subroutine HRVS'r computes the following arrays:

$$
\begin{aligned}
& \text { QUANTF (h,s) - quantity (in metric tons) of stock s ob- } \\
& \text { CCATCH (s,l) - harvest accumulated from the month of } \\
& \text { JVC历ST }(h) \text { - harvest proportional costs, }
\end{aligned}
$$

where

$$
\begin{aligned}
& \operatorname{QUANTH}(h, s)=\sum^{a}(\operatorname{CATCH}(s, a, h) \times \ln (s, a)), \\
& \operatorname{CCATCH}(s, l)=\operatorname{CCATCH}(s, l)+\sum\left(\sum \operatorname{CATCH}(s, a, h)\right), \\
& \operatorname{HVCDST}(h)=\sum(\operatorname{SUANTH}(h, s) \times \operatorname{HRC} / / \operatorname{ST}(h, s)) .
\end{aligned}
$$

The array CATCH (s, a, h) is the harvest (in metric tons) of stock s, age a, taken by harvester h, and WF (s, a) is an array of weighting factors. The array CCATCH is set to zero at the beginning of each January.

- Subroutine RMARKT simulates the sale of raw materials to the processors in the following manner. Each harvester group acts as a semj-indepencient unit, constrained only by those links to a location and a set of processors established for the harvester that cwns the group. At the start of a month, a group moves from an initial location to the harvesting location. . It harvests there for a specified number of days and then sells its stock to the processor which maximizes the profit for the group, where

$$
\text { profit }=p \times q-c
$$

and $p=$ purchase price offered by the processor per unit of stock, $q=$ QUANTH (h, s) $=$ quantity of stock currently possessed by the harvester group, and $c=$ the cost of travel from the group's current location to the processor's location. If the processor cannot absorb the group's full supply, the group sells what it can and then travels to the next most profitable processor, and so on. Each sale reduces the harvest matrix QUANTH (h,s) and increases the processor-stock matrix QUANTP (p, s), by the number of units sold. If the profit on the above transaction is negative or zero, the group does not sell.

The subroutine also keeps track of the distance covered by each harvester group. HDISI' h, s) is the distance covered by group s in movirg from the initial location to the harvesting location, to the location in turn of each of the processors buying stock from giroup s, and back to the initial location. Thus a group always starts and ends a trip in the same place. The total distance covered by group s of harvester h in one month is $n \times \operatorname{HDLST}(h, s)$, where n is the number of trips per month.

- Subroutine PRCSS transforms the rav material obtained by the processors into finished goods. It does this by multiplying the mw materials matrix Quninte (p, s) by a transformation matrix TRAMS (b,s,d) and adding the result to the inventory matrix INVIV(p, \bar{i}). That is,

$$
V+V+\Omega \times T(p)
$$

where $V=\operatorname{INVAT}(p, d)$,
$Q=$ QUANTP (p, s),
$T(p)=\operatorname{TRANSP}(p ; s, d)$, the transformation matrix for processor p.

Subroutine CMARKM sells the finished goods to the final consumers. This process is sinulated in the following manner. Steps A. through E. are executed for each product and each market.
A. Shift the demand curve.

There is a quantiicy-price demand curve (with "price" as the ordinate and "quanti=y" as the aioscissa) for each product in each market. The curve is shifted by the amount \triangle where

$$
\Delta=\lambda\left(\frac{\text { change in total marketing }}{\text { total market }}\right)
$$

and where λ is the array GAMA (α, m) input in the subroutine TAPETN.
B. Compute weighted average price.

Weight. Ave. $\operatorname{Pr} .=\{$ (prices) (market shares)
where the summation is over the processors.
C. Compute the change in market shares for each processor.

$$
\operatorname{share}_{t}=\operatorname{share}_{t-1}+\Delta 1+\Delta 2
$$

where

$$
\begin{aligned}
& \Delta 1=\alpha\left(\frac{\text { marketing by this processor }}{\text { ave marketing }}-1\right) \\
& \Delta 2=\beta\left(1-\frac{\text { price set by this processor }}{\text { Weighted ave. price }}\right)
\end{aligned}
$$

and where α and β are the parameters $A I P H A(d, m)$ and $B E T A(d, m)$ input in the subroutine TAPEIN.
D. Oftain the total demand from the demand curve based on the weighted average price.
E. Compute potential of demand for each processor based on the total demand and the processor:'s market share.
F. Since some processors may not have sufficient inventory to meet their share of the domand, we must distribute some of the cucess demand to other processors. Thjs is simulated by a three step process that is executed for each product in turn:
J. Reduce the demand share of those processors lacking sufficient jnventories. 'remporarily store the excess demand in a pool for each market.
2. Distribute the excess demand in each market pool to those processors having excess inventories, in proportion to thej.r market shares.
3. Now go back and reduce the demand share of those processors who just increased their inventories by absorbing some of the demand in the market pools, if their augmented demand exceeds their current inventories.
G. Reduce the total demand by the amount that cannot be filled for lack of inventory.
H. Compute the new market shares, inventories, and total market values based on the re-computed (actual) demand shares.

Subroutine STATS computes and outputs reports covering the physical and financial activities of various sectors in the nodel. The physical reports cover the activities, for the current month, of individual entities in the stock, market, processor, or harvester sectors. The financial reports contain an income statement, statement of cash flow, and a balance sheet for each processor set, harvester set, or processor-harvester set, where the financial statistics for harvesters or processors in each set are summed together.

Among the statistics computed by STATS are the variable costs for processors and harvesters. The principle variable costs for processors are:

$$
\begin{aligned}
& \text { direct labor cosi }=\sum^{d}(G(d) \times C(p, d)), \\
& \text { cost of buying raw materials }=\sum(\Omega(p, s) \times p(p, s)), \\
& \text { operating cost }=\sum^{S}(\Omega(p, s) \times(p(p, s)), \\
& \text { direct cost of sajes }=\sum_{\text {d }}^{\mathrm{m}}\left(A(d) \times \sum_{S} S(p, d, m)\right),
\end{aligned}
$$

where
$G(d)=$ the increase in inventory for product d from buying and transforming rav materials,
$C(p, d)=$ the labor cost per unit output of finished goods produced by processing raw materials,
$\Omega(p, s)=$ quantity of stock s possessed by processon p,
$P(p, s)=$ purchase prico offered by processor p per wit of stock s,
G $\{\mathrm{p}, \mathrm{s})=$ operating cost per unit of raw materials processed,
$A(d)=$ average value of an item of product d in the processor's inventory,
$S(p, d, m)=n o$. of items of product d sold in manket m by processor p .
The principle variable costs for a harvester are:
distance costs $=\sum^{S}(D(h, s) \times P(h, s) \times \mathbb{N}(h, s) \times H(h, s))$,
time costs $=\sum^{S}(T(h, s) \times N(h, s) \times C(h, s))$,
harvest costs $=\sum^{S}(Q(h, s) \times R(h, s))$,
license fees $=\sum^{S}(N(h, s) \times L(h, s))$,
where
$D(h, s)=$ distance covered per trip by group s of harvester h,
$P(h, s)=$ number of trips per month (group s, harvester h),
$N(\hat{n}, s)=$ number of harvesting units (group s, harvester h),
$H(h, s)=c o s t$ per unit distance traveled (group s, har-
vester h),
$T(h, s)=$ number of days spent harvesting (group s; harvester h),
$C(i, s)=$ cost per day (group s, harvester h),
$Q(h, s)=$ quantity harvested (group s, harvester h),
$R(h, s)=$ cost per unit harvested (group s, harvester h);
$L(h, s)=$ license fee (group s, harvester h).

STATS calis the subroutines FNDSET (which locates the sets to which harvesters or processors belong), FivACC (which accumulates the-financial statistics), and PRNSTA (which pients out the financial statements). The parameters which control the frequency of output and other characteristics are explained in section V and the output format is illustrated in appendix V.

Subroutine stims prints out monthly reports on the activities of the stock, market, processor, and harvester sectors. The output is sent to the printer and (optionally) to a disk file named TAPE2 for further use. The frequency and format of output are explained in section V and illustrated in Appendix IV.

- Subroutinc SMGTA'I selects user-specified variables from the stock, market, procossox, and harvester sectors, combines them into user-specified groups, accumulates them over userspecified times, and prints them out in tabular form. The frequency and format of the output are explajned in section V.
- The following routines are also in the program:

TABLE: a function that linearly interpolates between points in . the function $Y=Y(x)$.
SETDCT, INPTC, CDPARS: three subroutines that make up the English language free-field input package used for all input. For a complete description see
KEYWRD: A FREE FIELD INPUT PACKAGE, Program No. FRG 721
IV. Inpit
lhe input package should be seif-documentary, position tolerant, selfwscheduling, must override previous input, and must posscss defauit values. These features are all present in the following default and card input package.

- The default part reads the following input from a file named Threl:

```
{Group 1.}
-header card for group 2-
{Group 2}
-header card for group 3-
{Group 3}
-header card for group n-
{Group n}
End-of File
```

where $n \geq 0$ (if $n=0$, there is no default inpui). The header card that precedes each group (except group l) is of the form

DEFAULT INPUT F\&R GíNTH a AND YEAR b
and specifies the (simulated) month and year in which the group is read. The data cards that appear in the current default group override data cards of the sane type that appeared in any previous default or card input group. Each group in turn is divided into l 0 blocks as follows:
\{Block l\}
-blank card-
\{Block 2\}
-blank card-
\{block 10\}
-blank card-
Each block contains a comment card to identify the block, followed by any number (including zero) of data cards belonging to the block. For example, blocks 9 might be punched as follows:

C ---------BLZCK 9 : HARVESTER DECISI\%NS.
 HCAPAC CAPAC. PER BGAT PER TRIP, FOR HARV 1, STZCK $1=500 \mathrm{~T} / \mathrm{ANS}$

A comment card is indicated by a "C" in column l followed by a blank in column 2. Comment cards may be present anywhere in a block. The position of cards within a block does not normally mat:cex. A block with no infornation is represented by the identifẏng coment card only:

C
BLGjCK 10: REGJLAT\&R DECJSIgNS.
Except for block 1 , all data cards are of the form:
Cols. 1-8 : the name of the input variable to be affected, left ađjusted,
Cols. 9-80: free form tes.t and numbers punched accordirg to the rules of the KEYURD package.

Block 1 specifies the output options and is entirely free form.

- The card irput part resds the following input from the scandard input file:

```
{Group 0}
-blenl= card-
{Group i}
-header card for group 2-
{Groun 2.}
-header :ierd for group 3-
{Group 3}
-header sard for jroup m-
{Groun m}
End-of-File
```

where $m \geq 1$. Group 0 controls the printout of default and card input and may contain any number of comment cards plus the following two control cards:

PRINT //UT DEEAULT INPUT
(or SUPPRESS PRINTGUT DE DEFAULT INPUT)
PRINT GUUT CARD INPUT
(or SUPPRESS PRINTGUT GF CARD INPUT)
The header card. that preceies each group (except group 0 and group l) is of the form

CARD INPUT FJR M\&NTH a AND YEAR b
and specifies the (simulated) month and year in which the group is read. Except for group 0, all groups are identical to the defaulit groups in form and content.

The input sequence is as follows:

1. card group 0 (must be present).
2. default group 1 (if present)
3. card group 1 (must be present)

From then on the program reads whatever group, card or default, is scheduled nezt. If a default group and a card group are scheduled to be read at the sane time (i.e., the header cards for both groups contain the same month and year) then the default group is read first. The program stops when it encounters an end-of-file in the card input stream or winen it exceeds the termination date specified in the output control cards of block 1.

The user should note that the program will stop at the start of the second month if he failed to follow card group 1 with a header card for group 2 even if card group 2 is absent. This is because the program pre-reads the first card of the next group in order to know when to read the rest of the group. If the header card is absent the program will read an end-of-file and stop. Therefore, the user must always follow his last card group with a suitably dated header card.
V. Output

The output package should provide output in the form of relatively small Jabelled blocks which can be manipulated by the user through a conmand language in the input data. The comands, which should be flexible and self-explanatory, should allow the user to specify the form, frecuency, and destination of output, and should allow hin to create nes output blocks or modify existing ones.

In new GNiES, the labelled blocks are financial statements and physical reports. The user can control the form only to the extent of specifying when to restore pages before printing; the frequency by specifying the years and months in which to print each individual block; the destination to the extent of directing some or all of the physical reports to a file named TAPE2 as well as the printer; and he can create new blocks by summing the financial statements for specified harvesters or processors, and by summing together specified variables in the physical reports. fith one exception, all output controls are specified in block 1 of the input.
A. Financial reports.

1. Honthly reports.

Financial reports consist of an income statement, statement of cash flow, and a balance sheet for all processor sets, harvester sets, and processor-orned harvester sets for a specified month (for the definition of processor, harvester; and processor-owned harvester sets, see F. below). The usex specifies the printout times through data cards of the fom:

FINANCIAL REPGRTS ARE PRINTED FHR YEARS <list of years> FINAECIAL REPDRTS ARE PRIMTED FOR WGTHS <list of months>
2. Cumulative reports.

Cumulative reports sum together all the monthly reports for one or more years at a time. To accunulate reports for one year only, the user includes the following cards in block l:

FINAN. STATS. ARE ACCUMULATED FGR DNLY TNE YEAR AT A TIME CUMULATYVE FIMAG. STATS. ARE PRINTED IN YEAR(S) <list of years>
To accumulate reports from the time of last cumulative pirintout, he includes the following cards in block 1 :

FINAN. STATS. ARE NCCUMUIRTED FROM TEME OF LAST PRINTCOUT CUMULATIVE FINAN. STATS. ARE PRINHED IN YEAR(S) <list of years>
B. Physical reports.

1. Monthly physical reports.

The physical repurts describe activities in the stock, market, processor, and harvester sectors. The user may direct the progran to print out any or all of the four reports in any month or yeax by including the following cards in block $1:$

PHYSICAL REPGRTS ARE PRINTED FGQ YEARS <list of years>

STGCK REPGRTS ARE PRIETED FGR WHTHS <list of months>
 PROCESSGR REP多RTS ARE PRINTED EGR WGUTIS <list of months> MARVESTER REPGRIS ARE PRINTED F'GR MGTIS <list of months>
2. Cumulative physical reports.

Cumulative physical reports sum together user-specified variables in the stock, market, harvester, and processor sectors for one or more years at a time.

To accumulate reports for one year only, the user includes the following cards in block $1:$

PHYSICAL REPøRTS ARE ACCUM. FØR GNLY $\not \mathrm{CNE}$ YEAR AT A TIME CUMUL. PHYSICAL REPYRTS ARE PRINTED F $\not \subset R$ YEARS <list of years>

To accumulate reports from the time of last cumulative printout, he includes the folloring caras in block l:

PHYSTCAL REPGRTS ARE ACCUM. FR/S TIME OF LAST PRINTOUT CUMUL. PHYSICAL REPGINS ARE PRINTED FGR YEARS <list of years>

The user selects subscripted variables and combines them into groups. Ile assigns a unique number to each variable and a group number to each subset of variables, where the subsets need not be disjoint. The input is of the form:

VARIABIE 1 IS <variable name> (<subscript list>)
VARIABLE 2 IS <variable name> (<subscript list>)
VARIABLE 3 IS <variable name> (<subscript list>)

GRKOP 1 CMABINES VARIABLES <list of variables in lst subset> GR\%UP 2 CGIBINES VARIABLES <list of variables in 2nd subset>

The program sums together the variables within a subset and prints out tables of the form:
///YEAR: year /// MNUAL SUMAARY TABLE FOR PHYSICAL REPORJ'S

GROUP	JTN	EEIS	HER	- DEC	ROW SUIT	ROW AVE
GROUP 1.	--	-	\div	-	-	-
GiROUP 2	-	-	-	-	-	-
-						
GROUF 10	-	-	-	-	-	-
COL SUK	-	-	-	-	-	-
COL AVE	-	-	-	-	-	-

at user specified times. The maximum number of groups is l0. The following table defines the variable names that may be used. The subscripts, which are given symbolically in the table, must be punched as numbers on the data cards.
variable name
meaning

CEMSUS ($s, a, 2$)
WEIGHT (s, a, d)
MLNGTH (s, a, z)
CATCH ($\mathrm{s}, \mathrm{a}, \mathrm{l}$)
TSTMRK (d, m)
TGTMNG (d, m)
SUANP (p, s)
FGવ̈q̌DS (p, d)
$\operatorname{INVNT}(p, d)$
PSALES (p, d, m)
PRICES (p, d, m)
MSHARE ($\mathrm{p}, \mathrm{d}, \mathrm{m}$)
inRTNG (p, d, m)
SONTH (h;s)
HSALES (h,s,p)
QUANH (h,s)
$\operatorname{EFPD}(\mathrm{h}, \mathrm{s})$
$\operatorname{TDIST}(h, s)$
$\operatorname{HDELT}(h, s)$
population of fish of stock s, age a, loc. l weight of fish of stock s, age a, loc., , in metric tons length of fish of stock s , age a, loc. ℓ, in cm catch by weight of fish of stock s, age a, loc. ℓ total value of market for product d in market m total marketing expenditures for product d in market m tons of stock s bought by processor p tons of product dadaed to processor p no. of inveitery units of product d possessed by proc.p no. of units of product d sold by proc. p in market m selling price of prod. d, in market m, by proc. p share of mark. of proc. p selling piod. d in mark. m mark. expend. by proc. p fo: prod. d in mark in units of stock s harvested by harvester h units of stock s sold by harv. h to proc. p units of stock s left unsold by harv. h no, of harv. units for harv. h, stock s dist. traveled by harv. h fishing for stock s no. of days spent harvesting by harv. h for stock s

Examples:

VR,RTABLE		CENSUS $(1,1,1)$
VARIEBIE	2 I.S	census 1
VARTIECE	3 IS	CWisus ($1,1,3$
VRRIABIE	4 IS	Catch ($2, \ldots, 1$
VARIABLE		Cnteli ${ }^{\text {a }}$ 2,2,1
VAKIABLE	6 Is	CATCI: $(2,3,1$

VARTABLE	7 IS EPED	
Vfrctele	8 TS EFED（ 2,1	
VagLivLe	9 IS ITID（ 3	
G1\％गP 1	Cgnbmbis varimbies	$1 * T \% * 3$
GRपU？ 2	Combenes variabies	＊＊＊（ 1,3
GR\％UP 3	CGEABTNES VARTMBLES	4 㹁が＊
GRQUP 4	CDMBINES VARITBLES	$7 * T \not \subset * 9$
GRTUPP 5	CSABINES VARIAbLES	＊＊＊（ 7，8
Grgtue 6	C M M INES VARIABLES	＊＊＊（7，9

C．Graphical output（not yet implemented）．
Currently，the user may print out any or all of the physical reports on a file named TAPE2 by including any of the following cards in block $1:$

STGCK REPøRTG ARE PRINTED ఫN TAPE2
MARKET PEP（JRTS ARE PRINTED ØN TAPE2
PROCESS $\varnothing R$ REPøRTS ARE PRINTED $\overline{\text { AN TAPE }} 2$
HARVESTER REPØRTS ARE PRIJTED Ø＇N TAPE2
The purpose of TAPE2 is to save the output for use by other programs which will scan it in order to generate tables or graphs．The mechanism for writing the reports on TAPE2 is in the program now but the programs to process it are not yet available．

D．Page restore．
The user may restore a page before printing any output bloctay including the following cards in block l：

RESTGRE THE PAGE F $\neq R$ EACH REPDRT F $\not \subset R$ YEARS＜list of years＞

E．Zeroing out output controls．
It was previously stated that all input could be changed on a monthly basis by cards that appear in a later group． However，for block l it is best to zero out the output con－ trols and follow with all new controls．This can be done with the card：

F．Processors，harvesters，and processor－owned harvester sets．
Processors and harvesters may be combined into sets and printed out as a unit．Harvester sets and processor sets may also be combined under the heading processor－owned har－ vester sets．The financial statements for all entities in a set arc sumed together．Ail processors and harvesters must reside in at least one set but the sets need not be disjoint．The user defines sets by including cards of the form：
 NISER HANU．SET 2，ENTRY $1, C$ CHTAING HARVESTER 3 NHESET HARVESTER SET 2 IS GWNED BY PRYC．SET I
in block 3 （not block l）．
VI. Varimble Dimensions

Giobal variables with variable diamesions are desirable because of the large number of subscxipted variables in the prosram and the reed for frequent dimension changes. Since the Foriran language lacks this feature, we must implemant it by means of a preprocessor.

Consider the format of a typical Fortran subroutine:
Subpgutrme name (<argument list>) \{any number of labelled common biocks\} \{code\}
RETURN
END
Each common block is of the Ecam:
CMMM/AN/name/<list of variables> <type declarations>(if any)

In large programs, the argument list is usually enpty and all non-local variables are in comon.

It would be nice if we could inolude comon blocks in subroutines merely by listing their names without their associated variables, dimensions, and type deçarations. Foy eamoler supoose subl is a suibroutine using variables in tivee comon blocis named Cbil, Chin, and Chim3. Then SUBi could be phmohed as follows:

SUBROUTINE SUBI
B CकM1, Cgin, Cgin \{code\} RETURN END

Where the "B" in column 3 denotes a non-Fortran type statenent. Such a language extension vould greatly reduce the problem of dimension changes since dimensions need appear but once in a program.

The following preprocessor* provides such capabilities and more. It is written for the CDC 6400 in Fortran and SNOBGE and transforms a symbolically dinensioned set of conmon blocks and a pseudo-Fortran program into a legal Fortran program with suitable dimensions. The preprocessor requires four things:

[^3]1. a list of all comon blocks used in the program (henceforth called the Variable Dimension Block) with some or all dimemsions in symolic form. Nay type declarations fo: variables in a block must immediately follow the block, e.g.
 REAL TR,NUA
2. a list of equivalences (henceforth called the Equivalence Block) between symbolic dimensions and the numeric dimensions currently desired, e.g.
$S=10 \quad \$ \quad A=5$
$\mathrm{H}=4 \quad \$ \quad \mathrm{H}=12$
3. the pseudo-Fortran program with all common blocks replaced by statements of the form:
B namel, name2,..., namek
where "namei" is the name of a common block, e.g.
 Such a program is incorrect as it stands and would never compile.
4. a set of four routines, ALTER, $4 M M A C, M A C R \emptyset$, and MGDFgR which are stored on tape and activated by a catalogued procedure call. ALTER is a CDC control card prosram that directs the sequence of program executions; MKNAC is a Fortran program that reformats the Equivalence Block and merges it with the Variable Dimension Block in a form suitable for input to MACRO ; $\operatorname{MACR\varnothing }$ is a SNØBDDL program that replaces those symbols in the Variable Dimension Block which also appear to the left of an equal sign in the Equivalence Block with their right hand numeric equivalents; and M\%DE!R scans the pseudo-Fortran program for "B" statements, replaces them with the appropriate common blocks, and writes out a legal Fortran program with the dirensions currently desired.

Actually, the system just described is much more general in that it can modify and inser:t named blocks of code (not just labelled common blocks) and can carry out macro substitutions with parameter transfers. However, a descrivtion of its other capabilities would only serve to complicate the discussion.

In practice, the pseudo-Fortran program is usually replaced by an UPDATE correction deck. The UPDNIE deck contains. directives to delete cards in the Fortran deck followed by the appropriate "B" cards. The correction deck is modified by HDDEGR and mexged with the program via the UPDATE system. This appioach has two advantages:

1. it is faster since $H \neq D F \not \subset R$ need scan only the UPDATE deck which is far smaller than the program,
2. one can modify an existing program by deleting the existing: common blocks and inserting the appropriate "B" cards in the UPDATE correction deck.

The setup needed to redimension a program is:
\{CDC control cards\}
7-8-9
\{Equivalence Block\}
7-8-9
\{Variable Dimension Block\}
7-8-9
\{UPDATE correction deck\}
6-7-8-9
where the control cards contain requests for a) the tape which contains the programs ALTER, MKMAC, MACR \varnothing and MøDFgR, b) the tape that contains the program to be redimensioned, and c) the tape on which the redimensioned program is to be written. The setup needed to redimension GAMES is given in Appendix II.

APPENDIX I.

Whe modifications made to old GAMES include minor changes in computation ard program structure and majos: changes in I / D.
A. Error corrections.

1. the statement STATS. 200 was changed from

to

2. the statement STØCKS. 206
$30 \operatorname{CAPAC}(H ; S)=\operatorname{EFFD}(H, S) * \operatorname{HCAPAC}(H, S) * \operatorname{HDELT}(H, S)$
*DITS/NCYCL $(S, M) \div 1.0 E 6$
was removed and replaced by the statements TRPNGS=HDELT (H,S)/DYSTRP (H;S) $\operatorname{CAFAC}(H, S)=\operatorname{EFED}(H, S) * \operatorname{HCAPAC}(H, S) * T R P N \varnothing S / N C Y C I(S, M)$ 30 CøNTINUE
3. the statement FEB71.3 was removed
4. the statement $G=\operatorname{SPGRiND}(S, L)$ was inserted after ST\&CKS. 289
B. All constants associated with subscripts were replaced by variables in order to fecilitate automatic redimensioning.
C. All weight measures were converted from grams and metric tons to metric tons only.
D. Structural changes.
5. the main program was replaced by the one displayed near the beginning of section II.
6. the input routines RDSTRU, RDPARA, RDINTL, RDPLAY, STKINP, CGNSTN, ANPRDC, ANHARV, and ANREGL were replaced by subroutines TAPEIN and CARDIN.
7. the subroutines STATS2 and SMSTAT were added.
8. the decision routines PRZCS, HARVS, and REGLS no longer read input but are reserved for programmed decisions made by the processors, harvesters, and regulators.
9. the following routines were deleted: DIJK, DIJ, X XUT, PRøC, PRCSI,...,PRCSIO, HARV, HRVT1,....,HRVITIO, TAKER, and NNPTS.
10. all input may now be changed on a monthly basis.

IPPENDIX II

The setup needed to rodjmension GMES is:
<job card with CM=:1000008>
REQUES' , TAP, VRN=aaa,IN,HE,FTIES=x-(x+3), DI.
REQUEST, TAP2, VRTI=Bb, IN, HI, FLLES=Y, DI.
REQUEST,TAP3; VRN=CCC, OUT,HI,FILES=Z,DT.
BEGIN (ALTER;TAP, TAP, INPUT, INPUT, INPUT, OUTX)
REDUCE.
RFL (60000)
REWIND (OUTY)
UPDATE ($\mathrm{P}=\mathrm{TAP} 2, I=O U T \mathrm{X}, \mathrm{W}, \mathrm{L}=0, \mathrm{~N}=\mathrm{TAP} 3$)
REWIND (TAP, TAP2,TAP 3)
7-8-9
$\mathrm{H}=4$ \$ $\mathrm{S}=3$ \$ $\mathrm{P}=4$ \$ $\mathrm{D}=2$ \$ $\mathrm{M}=2$
$\mathrm{R}=2$ \$ $\mathrm{L}=5$ \$ $\mathrm{A}=7$ \$ $\mathrm{N}=8$
$\mathrm{MO}=12$ \$ $\mathrm{MPH}=4$ \$ MDS=3
$\mathrm{G}=10$ \$ $\mathrm{K}=10$
7-8-9
C COMMON BLOCKS FOR ANCHOVEY GAMES
COMMON/ACCNTI/MSHARE (P,D,M), PRICES (P, D, M),MRKTNG (D, D, M)
REAL MSHARE, MRKTNG
COMHON/ACCNT2/INVNT (P, D) , TOTMRK (D, M) , TOMMNG (D,M) ,DIN (P, D)
REAI INYTNT
COMHON/MHODIF/ALPHA (D, M), BETA (D, M), GEMMA (D, M)
COMHON/DCURVE/QDC(D,M,N), PDC (D,M,N),NPTSDC(D,M)
COHMON/NSCTRS/EPROD, NMARK, NPROC, NREGL, NHARV, IVLOCN, NSTOK
COMMON/ACCNTP/PRAMDD (P) , PINVST (P) , PNRKNG (P) , OPLEVL (P, S) , PURPRI (P, S
I), $\operatorname{OPLEVI}(P, S)$

COMON/PECONI/PSALES (P, D, M), PFXDYP (P), POUTLN (P), PTOTPE (P)
COMAON/PECON2/PCASH (P), PTOTDP (P) , PCAPTL (P), PRTAIN (P), PCTLIB (P), PDR ICST (P), PCOSTU(P)
COMAON/PECON3/DLCRAN (P, D), PDRATE (P) , PORERY (P, S) , PINTPS (P)
COMMON/PECONA/PBLGAN (P) ,PADDPE (P) , PRLOAN (P), PUCAP (P, S)
COMSON/HECONI/HSALES ($\mathrm{H}, \mathrm{S}, \mathrm{D}$) , HPXDXP (H), HOUMLIN (H), HTOTPE (H)
COMMON/HECON2/HCASH (H) , HTOTDP (H) , HCAPTL (H) , HRTATN (H) , HLTLIB (H) , HVC
IOST(H), HRCOST(H,S), HFXCPE (H), HVRCPE (H,S), HVRDST(H,S), HCOSTU(H), HOP
2CST (H)
COMMON/HECON3/HAVCST (H), HDRATE (H) , HOPERY (H) , HINTRS (H)
COMMON/HECON $4 / \mathrm{IIBLOAN}(\mathrm{H})$, HADDDPE (H) , HRLOAN (H), DINH (H, S
COMHON/ACCNTH/HRANDD (H), HIMVST (H) , HLOCAT (E $)$
COMMON/SECTRS/SECTOR (IO), NHSET (H,H) ,NPSET (P, P) ,NUPSET (MPH,MPH) , MON
IACC , CBONLY, SPONLX,SPCO:HB, PL (4, MPH, 15) , CF (4, MPH, 15) , EL, (4, MPH, 15)
INTEGER SECTOR
LOGICAL CBONLY, SPONLY, SPCOMB
COMMON/LTNKS/SI, LINK (S,L), HLLLNE (H.L), RHLINK (R,H),HPLINK (H, P), PMLIN
IK (P, M, MPLTMK (D, M) , PPLISK (P, D) , $\operatorname{HSLINK~(~} H, S$) , RPLINK (R, P)
LOGICAL SILIINK,HLLINK,RIILINK,HPLINK, PMLINK, MIPLINK, PPLINK
LOGICAL HSLINK,RPLINK

COMON/PARSVAL/LOCEC (40), LNGTH (40), VALUE (40), ITEF
COAGON/DTCION/N, DCTNRY(40),FP (40),RPT (181), INSNRD
IMreger dCTMRy
COMMON/PLAY/NYEARI, NYEAR2, YEAR,MONTH, NTAPE, NPRND, NPRNC, NREAND,NCFS 10,NCPRO, HONACI, IOC, IOCON (100), NTP $2(4), \operatorname{NRESTR}(2), \operatorname{NAMSCR}(50,5)$, GROUP 2(10;12), DAONTH, DYEAR, CMONTH, CYEAR
IITEGER YEAR, DMONHH,DYEAR, CMONTH, CYEAR
COMAON/COSTAC/TOTSLS,DIRCST, MEXPNS, ADMINC,TAMIIC,DEPRTE, RANDD, INTR IST, TCURXP,NETTNC, BLOANS, TOTCPV, DLCOST,PBUY, OPCUST,ADDPE,RLOANS,TOT 2CO, CASHFL, CASH, INVTRY, TOTCAS, TOTPE,TOTDP,TOTFAS, TOTAST, OUTLN, LTLIB 3,TOTLIB, CAPTL, RTAIN,TOTNW, TOTLNW REAL MEXPNS, INTRST,NETINC,INVTRY,LTLIB

COMMON/QUNDST/QUANTP (P, S) , QUANTH (H, S) , DYSTRP (H, S) , HDIST (H, S) , FGOOD IS (P, D) , SQUTH (H, S)
COMMON/LOCATN/PLOCX (P), PLOCY (P) , HLOCX (H), HLOCY (H) ,CHLOCX (H,S), CHLO ICY (H, S) , HPLOCX (S) , HPLOCY (S) COMMON/TRAN/TRANSP (P, S, D)
CONMON/FISHES/CENSUS (S,A,L), FRFEM (S,A), FRMATF (S, A), FRMATM (S, A) , FRS IPAFN (S, MO) , EFEM (S, A) , SPGRND (S, L) , SMULT $(S, K), R E C R T(S, G, M O), A V F R(S, L$ $2, \mathrm{MO})$, DCATCH $(S, A), C A T C H(S, A, H), N M O R T(S, A), \operatorname{LMULT}(S, K), A L N G T H(S, A, I)$, 3WEIGHT (S, A, L), WINF (S, L), SLIMIT (S, L) , FRMATFL (S, K) , FRMATML (S, K) , NCYC 4L (S, MO) , MARK (S, NO) a SPEENT ($\mathrm{S}, \mathrm{G}, \mathrm{MO}$)
REAL NMORT, IMUITT,MARK
INTEGER SPGRID
COMMON/FLIFE/AGEMAX (S) ,NOGRND (S) , RECRTLT (S) , SURVN (S), RECINT (S) , TIN
IFN (S) , VBK (S) , TZERO (S), VBQ (S) , RATIO2 (K)
REAL LINEIV
INTEGER AGEMAX,RECINT
-FSHY- SHOULD NOT BE PUT IN ANY ROUTINE EXCEPT -STOCKS-
COMMON/FSHY/F (H, S) , BMASS (S,L) , X (K) , SPFEM (G) , SPIAAL (G), TWINF (S, G) , EG $1 G(G), \operatorname{CAPAC}(H, S), \operatorname{CATCHN}(A), N D E A D(A), F M(10), X T R A(A), F 2(H), Z(A), Z 2(A)$ $2, \mathrm{CN}(\mathrm{A}), \mathrm{CW}(\mathrm{H}), \mathrm{XN}(\mathrm{A}), \mathrm{HDELTA}(\mathrm{H}, \mathrm{S})$
REAL NDEAD
COMHON/RRCSS/TFEC (S , L) , DLT (S,L) , DELTAT (S,L) , DMD (P) , CNH (H) , HP (H, P) ,
 2MDS) , GAIN (P) , SPL (15) , SCF (15) , SBL (15) ,TDIST (S) , CCH (A) , OPLL (P, S LOGICAL HP
COMMON/REGLAT/COUOTA (S,L), $\operatorname{EPFD}(H, S), \operatorname{FPND}(H, S), T E E(S, L), C C A T C H(S, L)$ $1, W \mathrm{~F}(\mathrm{~S}, \mathrm{~A}), \operatorname{HCAPAC}(\mathrm{H}, \mathrm{S}), \operatorname{HDELT}(\mathrm{H}, \mathrm{S}), \operatorname{HLICEN}(\mathrm{H}, \mathrm{S}), \operatorname{EFFL}(\mathrm{S}, \mathrm{L}), \mathrm{FPVL}(\mathrm{S}, \mathrm{L}), \mathrm{NA}$
 3. HLIN (H, S)

7-8-9
*IDENT VNRDI
*DELETE MAIN. 4 , MAIN. 59
B ACCNTI,ACCNT2, MHODTF,DCURVE,NSCTRS, ACCNTP, PECON1, PECON2
B PECON3, PECON4, HECOHL, HECON2, HECON3, HECON4, ACCN'IH, SECTRS
B LINKS, INREC, PARSVAL,DICION, OUNDST, LOCATIN, TRAN, PLAY
B FISHES,FLIFE,FSHY,RRCSS,REGLAT, COSTAC

```
*DBIENE NEDG.50,NENG.115
B ACCINT,ACCYT2,MODIF,DCURVE,NSCTRS,ACCHID,DECONI, MECON2
B reCON3, DECON4,HECON1,HECON2,HECOH3,HECON4,NCNNTH,SECTRS,RRCSS
B LINKS,PLAY,DICTON,QUNDST,,TRAN,FISHES,FLIEP,REGJ,AT
B LOCAFN
*DELETE REGLS.19,REGIJS.43
B FISIES,FLIFE,REGLAT,PLAY,RRCSS,JIINKS,NSCTRS,ACCNTP, PECONI, PECON4
*DEJETE HRVST.18,HRVST.46
B FISHES,FLIFE,REGLAT,LINKS,NSCTRS,QUNDGT,HECON2,PLAY
*DEIETE RMLRKK..29,ivEUG.854
B LINKS,HECON1,HECON2,QUNDST,LOCATM,ACCNTP,NSCTRS,REGLATT
B FISHES,RRCSS
*DELETE PRCES.16,PRCES. }2
B ACCNT2,QUNDST,TRAN,NSCTRS,LINKS
*DELETE PRCES.16,PRCES. }2
B ACCNT2,QUNDST,TRAN,NSCTRS,LINKS
*DELETE CMARRT.22,CHIARKT.35
B . ACCNT1,ACCNT2,MMODIF,DCURVE,DECON1,PECOH2,INSCTRS,RRCSS
B LINTS
*DELETE STATS.45,STATS.96
B ACCNSH,ACCNTI,ACCNT2,ACCNTP,QUNDST,SECTRS;IINKS,PECONL
B PECON2,DECON3,PECON4,HECCN1,HECON2,HTCON3,HECON4,TRRAN
B FISHES,ELIFE,RRCSS,REGLAT,NSCTES,PLAY,COSTAC
*DELETE FNDSET.l7,FMDSET.19
B NSCTRS,SECTRS
*DELETE FINACC.9,FINACC.15
B SECTRS,COSTEC
*DELETE PRINSTA.8,PRNSTA.11
B SECTRS,PLAY
*DELETE STATS2.8,STATS2.39
B .. ACCNNL,ACCNT2,DCURVE,DECON1.HECONL,LINKS,INSCTRS,QUNDST
B TRAN,FISHES,FIIEE,REGLAT,PLAY,RRCSS
*DETETE NEWG. 1220,NENG.1253
B ACCNTI,ACCNT2,DCURVE,PECON1,HECONI, LTNKS,NSCTRS,QUNDST
B TRAN,FISHES,FLIFE,REGLNT,DLAY
*DELETE NENG.1399,NESIG.1403
B PLEY
:DEEETE STOCKS.lIE,STOCKS.16G
B PLAY,IINKS,MSCTRG,FISHES,REGLAT,FSIIY,FIIEE,QUNDST
6-7-8-9
```

The routines ALTER, HK:iAC, MACR \varnothing, and MMDFGR are on filles $x, x+1, x+2$ and $x+3$ of tape "aaa", GAMES is on file " y " of tape "bbb", and the redimensiuned GAmes is written on file "z" of tape "ccc". The "BEGIN" conerol card scans the file "TAP" for the pjocram ALTER, which initiates and controls the activities of the other three routines. The latter read in the Equivalence Block,
the Vatiable Dinension Block, and the UPDATE correction deck from the standard input file, and write out the modified UPDATE deck on a filo named gUTX. GU'TX is subscquently used to update the version of gines on tape "bib".

The Equivalence Block is jetween the first pair of '7-8-9' cards and defines a particular configuration (a maximum of 2 harvesters, 3 stocks, 4 processors, etc.) which a user can change sjimply by punching different numbers to the right of each equals sign. The Variable Dimension Elock is between the second pair of '7-8-9' cards and the UPDATE correction deck is between the third '7-8-9' card and the '6-7-8-9' card.

The Equivalence Block is the only thing a user changes in order to redimension GAMES. The necessary symbolic dimensions are defined in the following table:
symbolic
dimension
mearing
no. of harvesters
no. of stocks
no. of processors
no. of products
no. af markets
no. of regulators
no. of locations
no. of ages
no. of points on the demand curve +1
no. of months per year (usually=12)
the maxinum of P and H
the maximum of D and S
no. of spawning grounds
a dimension lised in the STOCKS program which currently equals 10

APPENDIX III

GAMES was intended to be as general as possible, but no program can anticipate all situations. A user who intends to model a complex system must be prepared to interpret some system components in non-standard ways and to make minor programming changes by means of the UPDATE system.

Example: a harvester and a set of stocks and locations are linked as follows:

The above configuration is illegal in GADS because a harvester may be linked to at most one location in a given month (however, he may move to another location in the succeeding month). The user can simulate the configuration by means of three harvesters, each of which is linked to a single location, provided that all three are assigned to the same harvester set (see section V, part F). Then most of the output statistics are summed together and treated as a unit. In general, the logical constraints of the program may require a user to introduce additional entities (harvesters, processors, stocks, etc.) in order to represent a single entity. Fortunately, one can usually combine the output statistics by means of the set and group constructs in the firnancial and physical reports (section V, parts B.2 and F). The variable dimension feature of GAMES can be extremely useful here.

Example: a harvester is linked to a single location and to several stocks, and allocates fishing effort according to stock biomass. This goes beyond the available logic in GAMES in that fishing effort EFFD (his) is obtained from data cards. However, the user may use the UPDAIE system to insert code in the routine HARVS which computes $\operatorname{EFFDI}(h, s)$ (the input value of $\operatorname{EFFD}(\mathrm{H}, \mathrm{S})$) as a function of biomass, where biomass=CDSSU (sta; ℓ) *WEIGH T(s,a, ℓ).

Example: a user wishes to create output categories that cannot be implemented within the rules of the current output package. This is possible by inserting UPDATE corrections to the routine SHSTAT which assigns values to one or more of the groups defined in section V, part B. 2 . The general for of the correction deck is:

[^4]In general, the user may insert any code in susmat provided it does not conflict with the rest of the routine (for example, any statement number should exceed 300).

For example, a user may observe monthly biomass for the
subset consisting of Eish of stock 1 , age 1 , in location 1 , and fish mi stock 2, age 1, in location 3, by means of the following UPDATE deck:

* INSERT METVG. 23?4
$\operatorname{GR\not GUP}(1, \operatorname{MgNT})=\operatorname{CENSUS}(1,1,1) * \operatorname{VEIGHT}(1,1,1)+\operatorname{CENSUS}(2,1,3)$ * FNEIGRT $(2,1,3)$

In this case, the biomass is assigned to group 1 but it could be assigned to any group n where $I \leq n \leq 10$. The expression to the right of the equals sign may involve any variable from the following common blocks: ACCNTI, ACCNT2, DCURVE, PECØN1, HECØNI, IINKS, NSCTRS, OUNDST, TRAN, FESHES, FLIFE, FISHES, REGIAT and PIAAY. The variables in the above common blocks are displayed in APPENDIX II.

The keywords in block 0 ，blook 1 ，and a few in block 6 are underlined；all others are punched left justified in colums 1－8． Some of the keywords of combinations initiate mutually erclusive actions and cannot be included in the same sample input：these are listed below．

Block 0：
SUPPRESS GUTPUT GF DEFAULT INPUT SUPPRESS ØUUTPUT $\varnothing F$ CARD INPUT

Block 1：
FINAN．STATS．ARE ACCUM．FRGM TIME $\varnothing \mathrm{F}$ LAST PRTNTDUT PHYSICAL REPKRTS APE ACCUM．FRØM TIME DF．LAST PRINTDUT ZERめ OUT PREVIøUS ØUTPUT CタNTRめLS

Block 2：the user may＂delink＂components that were linked by previous data cards by means of the keyvord DELINK，e．g．
 SLLINK STGCK 1 IS DELINKED FRめN LgCATIタNS 1 ＊Tめ＊ 3

Block 3：only one of the following three keywords may appear in block 3 at any one time：CBøNLY：SPCZMB，SPGNLY

INAN INVENTOFY FCF PROCESSOR 1, PRCOLOT $1=130 J O J$ LNITS

JIA JJLIR VALEE OF EBVEHTORY FUR PROS 1 PROD $1=50300$
JIN JOLA: VALUE OF INVETOKY FOK.FROC 2 PROD1 =750003
JI: JOLIAR VALUE OF INVANTORA FOR PROC 3 FROD $1=1000$ OMO

PTOTDE PLANT ANJ ECUIP。FOR FRCRESSOR E $=45000500$
P
$2005 T U$ OOST PER UNIT OF PLANT AHD EQUIF. FOR PROC $1 * T O^{*} 3=100$

PRTIE: ? ETAEIEO EARNIHGS FCR PRJCESSOR 1 FTOT $3=6$

PI:TRS IUTEREST KATE FOL FROCESSOR $1 * T O * 3=.1$

?LOER LCOATION FOR FROCESSURS 1 *TO* $3=(1,1)$

PDPERX 2AA 1ATERIAL CP. COSTS FUR PROC 1 *TO* 3 , STJOK 1 , = 1
= ---------3LOCK 5 : HAZVESTER STRUCTURE

नTOTO TOTAL PLA IT ANU EUUPMENTFGR HARVESTER $1=1$ OUEJJO
HTOTZ E TOTAL PLAAT GHD EOUIPMENT FOR HARVESTER 2 = 110 CJJGJ

H:OSTU OOST PER JHIT OF PLANT ANO EQUIP FOR HARV. 1 *TO* $3=100$

HETAIH JETAIAEC EARSINGS FLR HARVESTERS 1 *TO* $3=0$

HVOJ JIPEOT OJ. COST PER UNIT H PER DAY,H 1 *TO* $3,51=1.500$

A $V F R$

i

PADOJ 1 ODITIONIL FLART ANJ EQLIP. FCR PROC. 1 ־TOF $3=0$

 PRICES JELLI:GG PRICE FOR PROC 1 *TO* 3,P 1, 11 $1=133$
PRLOAN REPAYAENTUF LOAISEY FRUCLSSORS 1 +TO*-3=0
C -- $-\cdots-3$ OCK G HASVSTER DECISIDNS
HADDE ADJITOHI-FLAHT ANOEOUIP. FOR HARVESTERS 1 *TO* 3 = 0

HEAPIC SAPAEITY PER $30 A T$ PER TFIP PER H1 +TO $3, S 1=500$ TONS

HOELI JO OF CHYS PER 10HTH KAQV PLANAEOBYH 1 *TU* $3, S 1=20$
 EFFDI UJ. OF HAJJESTING UIITS LSED BY HAZV 1 *TO* 3 , STCLK $1=50$
 HLOCX HARVESTIV LOCATICN FOR HARVESTER $1=(11,11)$ HLOCX HARVESIG LOCATINFCR HARVESTER $2=(1,1)$ -LCCX HRPVESTIUS LOCATICMFUR HA FVESTER $3=(1,1)$

```
O-------OCK 13: FEGULATOR DESISIOWS
CJUOTA OATOHOUJTA FOSSTOEX 1 INLOC 1 +TON 3=125EOUO TONS
```



```
OUT ----SHTJTE OATCH QUCTA
    \AUT-1*TU 2 =1
    DPLL 1AXIMUV JPEATING LEVEL FJR PROC. 1 *TJ* 3,STOCK 1 = 30COTC
    SLIAITT SIZE LINTFFCNSTUCKI, LOCI *T0#Z =AGE1
    RDELT FISUTHS, EASCH FOR STOCK 1 LOC. 1 *TO% 3 = &J DAYS
```


APPENDIX V: Sampie Output

The following sample output was generated by the sample input given in Appendix IV.


```
----------
---------
```



```
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { TTA MAरKET } \\
& \text { YRK } 1
\end{aligned}
\] & \[
\begin{gathered}
0<0 j 1 \\
\therefore+3 E+4 b
\end{gathered}
\] & PROD 2 & ¢ 20 & 3 & PPOD 4 & PROO5 & PR门易 & PrıJ i & ¢こう \\
\hline TOTM＿MARKETI：JG
\[
\because R<\div 1
\] & － 23001 & PROD 2 & P200 & 3 & PROD \({ }^{\text {＋}}\) & FROD 5 & PRJJ 6 & PRY1 & 2397 \\
\hline
\end{tabular}
```



```
\because:O:ITY AXIF 1.5.7:+34 3.50EEt`4
```

\because:O:ITY AXIF 1.5.7:+34 3.50EEt`4
POICE NXIS
POICE NXIS
P
P
1.5.j7+24 3.50tE+?4
1.5.j7+24 3.50tE+?4
5.303E+[4.7.01005+14
5.303E+[4.7.01005+14
150 M20 - 90.0

```
150 M20 - 90.0
```


JHTV HARVESTED STUCK 1 STOOK 2 STOCK 3 STOCK 4 STOCK 5 STOEK G STUSK 7 STJEK

इY HPVESER 2 $\quad=1178+j 5$

र.Fy 1 To p37e $3.235 E+94$

	FLEST1	$F L E E T 2$	FLEET 3	FLEET	FLEET 5	FLEET	-	E
3r arester ${ }^{\text {a }}$	$=.06$			-			FLE-	-
H-アveste?								

Qस?


```
#rPPDCESSOR 1 O.25SE+14
3YPS0CESSUR 2 - 117L+05
3Y PRCCESSOR 3 \.j53E+U4
F\!IS:UEO GOUJS AJOEC P:RCO 1
1 F
FRCG 2 PROD 3 PROD 4
PROC 5
PR.J 6
6 pरि20 i
FRCG }
PROC 5
PRJJ 6
アズコン
T.J アर.JESSOR 1 1.bj7E+j4
TJ P?OC=5S0Q 2 2.233E+04
```



```
-N,jE IVENTJR UNITS
```



```
F
FORO2OOES50? 2 1.+34E+i5
```



```
PNOC 1 IN \AZK
```



```
JMIT SALES PRICE 3Y F
```



```
//MOWTH-Y FEPOFT, PEAR19O, MOUTH 7/1/
HRUESTER SET_1
-ESE-STREOT COST CF SGLES S 3.1709E+jS
```



```
    OUNTS, AOOVERMEAE S E.775OE+CS
```



```
    0EPEOIATON * 2.9407E+J5
```



```
    I.\TEZこST F &T0
```


「ETIVOTE
$5-7.9096 E+66$

``` TUTAL SALES STATEMENT OF CAOHFLOM， IIEW LDANS
TOTAL CASH FRJVIJEJ \(\therefore \therefore\) \(\therefore\)
``` \(\qquad\)
```

LESS－OIPECT LAJOR COST 5 ．
COST UF PAA MATERIALS $\because \because$ CFEPATILG COSTS $\dot{B O T O T E}$ MARRETIMG XP：UTITUPミS ADMINS：AMD OVEXEAD E E•TIF： LICENSES A ID TAXES FESELRCA $\mathcal{E}$ DO DEVEL INTEREST PAID ミ？ ADOL PLAIT A！EQUIP． 3 ． TOTAL GASH DUTLAY
NET CASH FLCH

```

\(\qquad\)
\(\sqrt{35}=15\)

．PALAMCE SHEET．．

TOTAL DUREEINT ASSEIS S
\(\qquad\) E \(1.6795 \equiv+98\)

```

LCANS QUTSTENEING

```
```

－$\ddagger 0$
LOAMS UUTSTANCING シF．
total Liátitios

``` \(\qquad\)
``` ミ．
```

F゙ロ

 TOTALFEYEJEESETS

$1.413=70$

NET WORTH

EAPITAL

$3-9 E+5 E+9 E$
RETATMEO EARNNGS
－-50416467
TITAL NET HORTH
TOTAL LIABILITES ANO NET DRTA
$3.1135+7$ $5 \mathrm{~B}+5 \mathrm{BF}$

	$\begin{array}{r} A G E 1 \\ 2.7 j E+1 \end{array}$	$A G E 2$	$\begin{gathered} A G E 3 \\ 1.332 E+11 \end{gathered}$	$\begin{gathered} A G E 4 \\ 3.020=+10 \end{gathered}$	$\begin{array}{ccc} A G E & A G E 6 \\ 1.731 E+16 & 4.121 E+3 \exists \end{array}$		$\vec{a}=1$	1FS
		$\therefore 142 E+11$						
jiOO＜i I：C LJC 2	3．4う1E＋1u	1． $4312+11$	$1.0592+11$	$7.337 \equiv+10$	$2 \cdot 1050+16$	$5 \cdot 152+29$		
STOCK 1 INLJO 3	$=235 E+3$	$2.5315+10$	$3.325 E+10$	1． $5=45+10$	4． 319 ¢＋ 69	$1.025+53$		
\therefore ESTT OF FISH $0=$	4901	AGE 2	AG： 3	$A G E \quad{ }^{\prime}$	AGE 5	AF： 5	かに，	4\％
ラ丁𠃋㇒⿺丄 1 In Lón 1	$7.033-196$	9．530－jo	1． $075=-05$	1．274 20.65	1．527E－C5	$2.673-5$	$4 \mathrm{SO}=1$	\％
§TOOS 1 INLOC 2	$7,537 E-06$	$3 \cdot 37 E$ E－ 90	1． $275 \equiv-05$	1．274E－55	1．E2SE－C5	2．673－－5		
570＜－INLOC＊	7.02760	$308530-5$	1． $575=-45$	$1.2745-35$	1． 2 Cb － 5	2．670－ 55		
LTGT OF FIEM CF	AGE 1	2GE\％	AGE 3					
STOCS 1 I LJo	16.1	11.1	11.4	$12 \cdot 0$	$\begin{array}{r} A G E \\ 13.1 \end{array}$	$\begin{array}{r} A G: 6 \\ 14.2 \end{array}$	LuE i	$\therefore G \ddot{ }$
डTuck 1 in los？	$1 \div \cdot{ }^{\text {c }}$	11.1	11.4	12.0	13．1	14.2		
ミTOく $\dot{1}$ INLJC 3	$1: 1$	11，1	11.4	12.0	13.1	14.2		
SDTEX OF	$A G E 1$	AGE 2	$\triangle G E 3$	AGE 4	AGE 5	AGE 5	mis ？	
3 SOO 1 In luO 1	$2.934 E+j 3$	1．657E＋ 5	C． $171 \pm+54$	1．2．4E＋54	$4.571 E+15$	1．473＋23	$20=7$	－
ST0CS 1 In LJO 2	3．j39 5 ＋j3	2．173 +94	2．329E＋ 2.4	1．507E＋04	3． $3+E E+0.3$	1． $\mathrm{c}_{12}=+43$		
3 T00 1 in 30 －	305	3．19 $0=+33$	$\because 114=+5$	$2.2515+c 3$	35\％	1．7j		

FRJOESSOR SET 1

\qquad

.. EALAHIOE SHEET..

ASETS

Appendix 2 - Listing of initial input values

```
C SOUTHERN CALIFORNIA A HHOVY HODEL
    DATAI 2
    STHOLE stOC< HODEL
        SUPODESS VEFAULT INPUT, DEFAUT ANU GARD OUTPUT CONTROLS
        Sumbess ghad IMPUT
        --.-n--.---2LOCK 1- IAPUT-OJTPUT CONTRCLS
        THE SIMULATION RUNS FROH YEAR 1 TO 20
    FInHoIAl ?EPORTS ARE ACCUGUlATED ONLY ONE YEAR AT A tIME
    GUQJLATIVE GIGAHOIAL REPORTS ARE PRINTED YEAR ZO
    OHOSICAL agPORTS A RE PRINTEO YEARS 20
    ST0ES REJRTS PRINTEO HOMTHS 12
    :4ZधESTES Q&DRTS PPINTED :OATHS }1
    FZOOESSOR REPORTS PRINTEO :HOMTHS 12
C
    000
```



```
    O- ? %MPETS
    つ*:0 1 foocejsors
    :REJL I FEOULATOR
    A6tay 1 HA=VE3TER
:B05:1 1 LODATION
    :STSK & STOCR
    OLY:4 zOOCESJOR 1 SELLS PRODUCTS 1 FTO%2
```



```
    Pagiar pageESSc? 1 JELLS TO HARSET 1 %TO* 2
APE!K d!zyESTE? & SLLLS TO PROCESSO? 1
2:4I!! כECU!ATOP 1. COMTROLS HARyESTER 1
```



```
S!?:4 STone y %omu Tu locarmonq
```



```
A!5!r RECOMfO? 1 COHTROLS PRORESSOR 1
\begin{tabular}{|c|c|}
\hline datal & \\
\hline d.atal & 3 \\
\hline Datil & 4 \\
\hline datal & 5 \\
\hline DATAL & 5 \\
\hline OATAL & 7 \\
\hline OSPa & 8 \\
\hline Datal & 9 \\
\hline OATA 1 & 1 \\
\hline Dital & 11 \\
\hline Gutal & 12 \\
\hline Ontal & 13 \\
\hline DATA & 1'\% \\
\hline Datil & ij \\
\hline DATA: & 15 \\
\hline Datid & 17 \\
\hline Datas & 13 \\
\hline D, T4. & 12 \\
\hline 09T41 & 20 \\
\hline Data\% & 21 \\
\hline 0atad & 22 \\
\hline 0ATSI & 23 \\
\hline Dictici & 27 \\
\hline Dathi & 25 \\
\hline Quita & ? 0 \\
\hline ONTAL & 27 \\
\hline Datal & 23 \\
\hline datai & 29 \\
\hline C4TA1 & 35 \\
\hline OATAL & 31 \\
\hline Uatai & 32 \\
\hline 0, TSi & , 33 \\
\hline Clial & 3\% \\
\hline CaTAi & 35 \\
\hline OATA1 & 33 \\
\hline
\end{tabular}
```

```
C
    --------DLOCK 3 - HARV,PRJC,PROC-HARV SETS
    DATA1
    :TSET PROGESSOR SET 1, ENTRY 1, CUNTAINS PROCESSOR 
    \becauseS.T HAEYESTER SET 1, ENTRY 1, COMTAINS HAPVESTER 1
    GHPEET HAPEESTER SET I OHNEO BY PROEESSOR SET I
    SPCJMB PREGT OUT SEPARATE ANO COMBIMED REPORTS
```



```
APHA( 1 *TO: 2,1 *TO* 2 )=0.1
BT:(1 *T0*2,1 *T0*?)=0.1
sinial 1 % ro: 2,1 *T0: 2 1=0.1
PESS( i,i:1)=0.20 HA IHTO MT OF MEAL
TRA!S( 1, 1,2 )= 0.01 NA INTO M TONS. OF OIL
OJO PROCE AXIS FOR PROO 1 IN MARK 1 = 250
OJC RUARTITY 4XIS FOR PRODUCT 1 IN HARKET 1 = 10000000
OC PRIOE OISFOR PROD 2 IH MARK 2 = 110
OSE SJ:NTTY AXE'S FOR PROOUCT ? IN MARKET 2 = 10000000
C O--...----MLOCK 5 - PROCESSOR STRUCTURE
ASARE IARK SHARE FOR PROC 1, PRJD 1 FTOF 2, IN GARK 1 *TO* 2 = 1.00
GQTU COST PER UNIT PLAIT.-EQUIPAE:TT PROC 1 = 3000J0.
```



```
GAO SASOITY PER S OF DLANT FOR DZOC 1 STOCK 1 = 0.02548
R%O%D FIXOO COST FRON 1 = 5igocol
OORRK RA: UATERIAL OPGRATIHG COST PROC 1 STOCK 1 = 5.50/ HT
```



```
C
G O.....---BLSCK 5 - HARVESTES STRUCTURE
IOOTU COST FE? JIIIT OF PLAHT AUO EJUIPFOR HARVESTER 1 = 279300
HTOFPE TDTILPLIHT-ENUTPMENT FOR HARVESTEP }1=2122680
-Fy%% FIGESOSST HAQVESTER 1 = 1215. PER VESSEL PER HONTH
```



```
&-------NLDUK 7-STOCK IVPUT FOR SINGLE STOCK MODEL OATA1 71
STOE< co%positION
C
```



```
\thereforeIR :HAX STEOK SIZE FOR STOCK 1 IN LOCATION 1 = &550000
```



```
    DATA1
    DATM1 72
    0&TA1 73
    DATA1 7%
    CATA1 75
```



```
GE!US :O OF FISH, S 1, AGES %TO% 7,L 1=%%%(2.81,0.94 )
    SP品:ING
```



```
FEGjS :%OMITUDE JF EGGS DER FEMALE = 10U0.0
```



```
HGRND #UNEER OF SPAWHIHG GROUNDS STOCK 1 = = 1
DATA1
DATA1
SPE#:OU IADEX OF SPAMNING GROUND STOOK 1 LOC 1 =1
3
    OEORULT:B!!T
```



```
    DATA1 %
    DATA1 g1
    DATA1 B?
%
0AT:I
0ATAi gj
```



```
oATA1
```



```
O
C !!OPTILITY
```



```
DAT:I j% %
DATAI LJi
D4TAL 1.?
, DAT&!
```



```
OAT泊! 唯%
```



```
***(0.14,1.37,9.04) 0AT直1 140
```



```
DATA1 1:7
```


Appendix 3 - Typical financial and physical output reports

[^0]: * S.ee Quantitative Science Paper $\$ 17$.

[^1]: * However, the new SCOPB3.3 Extended fortran now offers this capability.

[^2]: * See kEYwRD: A FREE FIEID INPU'T PACKAGE, Program No. FRG 721

[^3]: * FRG 736 : ALTER - n code Modification Program.

[^4]: *INSERT NEG. 1324

