

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

ANNUAL SHELF

NOT FOR QUOTATION

GIANNINI EOUNDATION OF AGRICULTUEAL ECONOMICS LIEGARY

The King Crab Industry of Alaska: 1953-1969:
an Economic Analysis
by
Sybil T. W. Beale
with
assistance of

James A. Crutchfield

November 1971

File Manuscript No. 159
THE KING CRAB INDUSTRY OF ALASKA: 1953-1969:an economic analysis
by
SYBIL T. W. BEALEwithassis tance
of
JAMES A. CRUTCHFIELD
*This is a report received by the Economic Research Division as part of a contract No. 14-17-0007-1118 (BCF) with the University of Washington. This is only one technical section of the report and a more integrated "final" report is expected in the near future.

Table of Contents

Page No.
List of Tables and Figures 11
Introduction 11i
Chapter I Biology of the King Crab. 1
Chapter II Economic theory of the Fishery. 6
Chapter III The Industry 10
The Processing Sector 28
The Boats and Gear 34
Regulations of the Fishery by the State of Alaska 43
International Regulations 46
Chapter IV Conclusion 51
Partial Bibliography 57

List of Tables, ligures and Map

Table
No.Title
1 King Crab Landings and Ex-Veasel Value by Area, 1953-1969Page :lo.11
2 Percentage Chan!es in King Crab Landings and Value byArea, 1953-196913
3 Output of Processed King Crab, 1953-1968 16
Sumary: All-Frocess Cutput and Valuc, 1953-1958 22
Sumary: Percentages of Cutput and Value for all Types of Processed King Crab, 1953-1968 23
4 Wholesale Prices, Real Prices, and Percentage Changes, 1953-1968 24
5 Ex-Vessel Prices, Area and All-Area Averages, 1953-1969 26
6 Industry Shares, Canned and Frozen King Crab, 1953-1969 29
7 Numbers of Fishermen in the King Crab Industry, 1959-1969 35
8 Numbers of Pots in the King Crab Industry, 1959-1967 35
9 Numbers, Total and Average Gross Tonnages of Vesselsand Boats in the King Crab Industry, 1960-197036
10 Length Frequency of Kodiak Area Vessels, 1960-1970 37
Flgure
No.
1 Landings per Vessel and Boat and per Fisherman, 1959-1969 3
2 Alaska King Crab Landings, 1955-1969 12
3 Per Cent Change in Landings, 1953-1969 14
4 Per Cent Change in Real Wholesale Prices, 1953-1968 25
5 Per Cent Change in Ex-Vessel Prices, 1953-1969 27
Map King Crab Pot Sanctuary in the Eastern Bering Sea 50

BIOLOGY OF THE KING CRAB

Paralithodes camschatica (Tllesius), the king crab, is a large, slow-growing demersal species found only in the North Pacific Ocean, the Bering Sea, and in Asian waters. Its bathymetric range is wide (it has been found at depths of $1,000-1,200$ feet, though most commercial fishing is at depths no greater than 900 feet); its lateral range is narrow (200 miles is the known maximum, with an average of about 25 miles). The species is exploited in several discrete geographic areas, with little apparent intermingling of crabs between areas (e.g., Cook Inlet, Kodiak Island, Bering Sea, the south side of the Alaska Peninsula, and possibly a separate stock about Adak).

The fertilized eefs of the king crab begin developing while still carried by the mother durine the approximately eleven months from fertilization to hatching, at the time the adult female molts. Immature crabs live a solitary, pelagic life for about two months, gradually moving lower in the water column. At approximately two years of age they form eroups, or pods, living in about thirty to sixty feet of water. The pods disperse at sexual maturity. After that point male and female crabs come together only during the moltimemating season. Adult males tend to segregate according to size; mature and immature crabs are rarely found together.

In late winter or early spring (later in the Bering Sea), adult male crabs move inshore from their feeding grounds, followed by the females, tho

[^0]molt on the breeding grounds prior to mating. After mating, which is only possible for a period of about thirteen days after the female molts, the crabs migrate back to offshore feedine erounds. They are bottom-feedere, preferring muddy to rocky conditions.

The king crab may live up to slxteen years. it reaches recruituent age, that age at which it is first available for catch by the commercial fishery, at six to eight years. This vide rance of estimates illustrates one of the major problems in the study of a species which is of creat commercial value and which may or may not have been seriously depleted as a result of fishine effort. It is net yet possible to ace the kine crab accurately. Mature females molt annually throughout their lives, but males may molt biennially or perhans every three years after maturity. Estimates of recruitment, growth rates, and natural mortality rates are consequently even more difficult than usual to derive. Knowledge of the natural mortality rate is crucial to an accurate estimate of the weight loss to the biomase from fishicg. The king crab appears to have a relatively low natural mortality rate in the midale years of its life. If thie is true, it might succest that a larger legal minimum size is more appropriate. Yied-per-recruit theory sucgeste that a lareer minimum size inft would increase yield; i.e., that the weignt increment generated by the delay in catch is less likely to be lost to the fishery due to natural mortality until a greater age/size than is now thought to be the case.

Whatever the theoretical questions, the evidence of declining catches is overwhelming; catches have been falling steadily since 1966, and catch per unit of effort (CPUE) has declined. Average weight per crab has
$1_{\text {Guy Powe11, Alaska Dept. of Fish and Game, Informational Leaflet No. 135; }}$, Brian J. Rothschild, et al., ADF\&G Informational Leaflet No. 147; Eldridge seminar, March 1971. The sophisticated CPUE measure used by Professor Rothschild has been used only in the Kodiak area. In most cases a much cruder estimate must be used. CPUE has been variously defined in terms of catch per trip, per pot, or per fisherman.

Figure 1

ω

Source: Table I-3(b), Basic Economic Indicators, King and Dungeness Crabs (Bureau of Commercial Fisheries, Division of Economic Recearch, May 1970), p. 5. 1969 figures are not available; 1969 figures derived from lable 1 herein, and effort data in Ch. 3.
fallen as well, and the catch now contains a far higher percentage of recruits than in earlier years.

Just what real damage has been done to the king crab stocks is hard to determine. The fishery came upon a stock almost untouched, with several year-classes beyond recruit age available for catch. This weight may have been taken without damage to the stock; greater fishing effort, evidenced by smaller average weicht per crab, might peel a stock back to a lower level without damaging its reproductive capacity in any way. It is not known whether or not the stock was in a state of biological equilibrium when heavy exploitation began, which makes assessment of possible damage difficult.

What is perhaps a more serious warning signal is the increasing numbers of barren females in some areas, a possible indication of impaired fecundity of the species. Estimates of the number of females which a male can normally service range from three to seven per season; the femals-male ratio appears to be much higher than this in some areas. Some biologists have also suggested that smaller males may not be as successful in servicing the larger females, and that old-shelled males (who haven't molted on the way to the breeding erounds) may be more virile than the younger, smailer males debilitated by molting. This may be another reason for the suggestion of an increased minimum legal size--to enable the larger crabs to service the larger females. At has also been proposed that, since adult crabs generalīy move in single-sex groups, it would not harm the reproductive capacity of the species if barren females were taken by the commercial
${ }^{2}$ Powe 11, ADF\&G Informational Leaflet No. 135, p. 16 . This may be due to changes in fishing effort as well, rather than solely to a change in the character of the stock. The necessity to use the commercial catch as a basis for research may lead to blased findings. Sce p. 512 for a discussion of some of the differing interpretations which have been made of the same data.
fishery. ${ }^{3}$
Factors which control recruitment are not yet fully understood. The record catch of 1966 has been attributed to an atypically large recruitment from several years earlier. Conversely, the low catches of 1968 and 1969 are said to reflect low recruitment in years prior to the heavier fishing effort of the mid-1960's, and thus may not reflect overfishing. ${ }^{4}$

It is possible that large year-classes of recruits occur in a cyclical pattern, or even randomly. If the pattern is cyclical, the question then is what effect "lopping off" the peak of such a cycle through heavy fishing might have on future recruitment cycles.

Careful analysis of the mix of blological and economic factors that surrounds a valuable commercial species is never easy. In the case of the king crab the analysis concerns a species in apparent disequilibrium and an industry in a similar state of disarray. To an overcapitalized indistry faced with steadily declining catches, these problems are more than academic. Until they are much nearer resolution it is extremely difficult - and perhaps dangerously misleading - to assess the merits of alternative regulatory systems.

[^1]Economic 'ineory of the Fishery
The competitive model of textbook microconomic theory predicts that (1) in equilibrium, fuctors of poduction coployed in each sector will be used in their least-cost combinations for the civen level of output, and that each will earn a rate oi return in its given use equal to that which It could carn elsewhere in the economy; (2) in a disequilibrium situation, those factors earning less than the competitive return will shift to sectors where greater than competitive returns are being earned, until the mareinal value products of factors in the (formerly) lower-return uses are equal to those in the (formerly) hicher-return sector, and equilibrium lavels of output ard factor return are re-established in all secto:s.

The implication of the model--that there exist self-correctine forces which will push toward competitive equilibrium, does not hold in the kine crab Industry, or indeed in fisheries in general. Tho assumptione of the model, one explicit, one usually left implicit, are violated: factor mobility, and property rigits in the resource. Factor mobility in a lishery has two facets. Labor is frequently hiehly immobile, in georaphicsocial terms, and unskilled in alternative employments. Capital in modern fisheries tenas to become increasinely specialized, with fow alternative uses other than in another fishery, which is likely to be similarly overcrowded.

Ease of entry combined with difficulty of exit from an inductry is not unique to tisheries. in a Hishery, however, the acymotry between eatry and exit is encouraced and perpetuated by the comon-property charactoristic oi the resource. Here a scarce rescurce comands a ront which increases as the value or the resource cises in response to demand. In the absence of ownershin :iehts, the rents canot be made explicit as a cost of
production. Allocation of optimal amounts of capital and labor to the resource under such conditions is thus made more difficult.

Assume the exletence of a fishery, recently developed, where returns to existing units are ereater than the competitive level; these inframarginal units are capturing rent from the resource. An individual, viewing access to a common-property resource as costless, enters. The fishery expands, and will continue to expand, so lone as individual entrants can cover their costs. Each entrant views only his own immediate costs and his opportunity, as he sees it, to capture as many fish as units already in the fishery. Entry ima poses costs on the entire industry not seen by the individual unit, in the form of increasing costs per unit of catch with the ereater pressure on the stock of fish. ${ }^{1}$ Real production costs to the industry, and real returns to factors, are hidden from the individual entrant. The common-property character of the fishery results in an externality affecting all units (the mareinal social cost of additions to the fleet). Inefficient amounts or capital and labor applied to produce the catch impose in turn a cost on the rest of society in the form of forecone alternative production.

Increased fishing pressure on a given stock will result in catching more, but smaller fish; increased production may result in lower prices. A private owner of the resource faced with either of these situations would - have the option of foregoine production for a time, investing instead in increased future returns (in the form of the weight increment of fish not caught in the present period), and the expected increase in price as well in the case of low prices, equating the discounted value of expected future returns with those to be Eained from present harvest. ${ }^{2}$ This option is
$l_{\text {There }}$ is also a potential crowaine externality in eeogeaphically concentrated species as entry continues beyond the eificient level.
2 It is assumed that level of effort can be varied within and between ceasons at relativel.y smill cost.
meanincless to units operatine on a common-property resource. There is no incentive to invest in future erowth or hicher prices which the investor cannot capture. There is instead the prospect that when incroments to erowth do occur--as the result of a conservation protram, for example--the increased returns will be dissipated by further entry. ${ }^{3}$

Satisfaction of the criterion of economic efficiency in a fishery is one part of a dual-equilibrium problem. The second part, the biolocical constraints, must be satisfied as well. 4
$3_{\text {The possibility }}$ of biological extinction is not treated here; economic extinction is the fiore likely to occur. Heavy pressure on a species may cut back the basic stoct, resulting in lower average weicht per ifish, after some point in lower numbers of fish--in extreme cases, in damage to the reproductive capacity of the species. Hovever, increasine costs could drive the industry to a point where no price will allow units to cover costs, and the industry is ecor:omically extinct while the species survives. The futility or conservation efforts by individual units is analytically the same as the investment case--the revards aren't capturable by one unit unless all participate.

4There is a disparity between economic and biolocical "ideal" conditions, and between both of these and the likely situation in the real world, which is illustrated below. Assume a yield function of the following Eorm, converted to a total revenue curve by tie assumption of perfectly elastic demand at a given price. (inis is an idealized curve--the yield curve of the kine crad cannot yet be drawn accurately; nor coes the assumption of perfectly elastic demand exactly square with my stated assumptions about the demand curve for king crab in particular. it does serve to demonstrate the reasons for overutilization which characterize a common-property rosource. The validity of the eeneral conclusions is not impaired.) The ordinate is similarly converted to a dollar basis by multiplying yield by price per pound. A linear total cost function is assumed.

K1, maximum sustainable physical ylelu (the diolo, ical icuai); x2, ided $0:$ the cometitive akdel; where mare inal coct por

 $\therefore 3$, the evertual resi-nueli mointion, iven aroo ent:y. at Aly, ic = rix, sho:t oi $\therefore 1$; beyoni $:$,
 at maximum suctabam biycical
 …, ut il. at 33 , tiatal

The individual unit in a fishery has no control over the resource, yet it enters as a parameter in his decisiounaking. Utilization of a particular stock of fish is a complex form of stock-flow process, made more so aince knowledge of the stock and its reaction to pressure is difficult to obtain and nomally Inoxact. In addition, the stock is subject to biological forcos unrelated to the effects of fishing effort.

This analysis applies to the economics of fisheries in general. The American king crab industry is almost a textbook case of the path taken by most of the world's fisheries. Only the speed at which it passed through the stages of developuent, overexpansion and near collapse is unusual--fewer than twenty years were needed to bring the industry to its present state.

King crab is one of a group of luxury seafoods for which the demand is assuned to be price inelastic-a good consumed by persons whose income level leaves them relatively indifferent to changes in price. The sharp price declines which would have resulted had the increased supply faced a given demand curve were partially offset as demand shifted upward with successful introduction of the product during a period of generally rising incomes; for a time both units in the fishery and their catch increased sharply. When the record catches proved nonsustainable, the industry was left with a greater degree of excess capacity than would have been the case had demand not increased so dramatically, sustaining prices fairly well, given the major Increases in supply.
revenue equals total cost; marginal revenue is negative at this point, and decreased flshing effort would actually increase both physical and cconomic yield. Rents are viewed as the difference between total cost and totial revenue curves. At $X 1$, rents do acerue to the finiramarsinal units, thousi loss than at $X 2$, where optimal allocation of factors resulta in maximur rent to the resource. As more units enter and costs are driven upward, rents erode until they are diesipated entirely ac X, a point of decinias physica y yold and the onset of nesative total revenue. With restricted entry, and real costs made explicit to the remainins units, the resulatory ayency could capture tio rents through differential license fees, a tax per uatt of catah, or--in the case of an auction of fishing rights--in the price bid therefor,

- The king crab industry had its beginnings as an off-season, inshore fishery conducted in small seniers or salmon-fishing vessels using tangle nets and otter trawls. Before World War II, production was minimal. The modern industry dates from the early postwar period, when a fleet of trawlers and a floating freezer-processor fished successfully in the Bering Sea. Freezing continues to be the dominant method of processing.

Production expanded in the Kodiak Island and Cook Inlet areas as large stocks were discovered and exploited. The catch increased fairly slowly at first, due more to market limitations and technical problems of processing than to lack of crabs. By the late 1950's and early 1960's, the number of entrants into both fishing and processing had expanded rapidly. In 1960, $28,570,016$ pounds of crab were caught by 201 vessels and boats and converted by nine ${ }^{1}$ processors into $5,034,435$ pounds of processed crab. Total wholesale value reached $\$ 5,294,866$, with an average price of $\$ 1.05$ per pound. In the peak production year of $1966,159,201,700$ pounds of raw crab, captured by 247 vessels and 135 boats, were converted by twenty-eight processors into $46,168,009$ pounds of product valued at $\$ 44,367,875$, with an average price of $\$ 96$ per pound.

The catch has dropped every year since 1966, but numbers of vessels and their average size have continued to increase, and there has been little exit of processors. ${ }^{2}$ Wholesale prices climbed through 1968, then broke

1ihis is the figure from Pacific Fisherman Yearbook 1961, which rarely agrees with lists compiled by ADF\&G. It probably understates the number of processors.
2"Exit" frequently means a switch to processing some other product, not complete cessation of production. A processor may be inactive in king crab processing in one year and return the next. Many of the smaller processors are specialty, custom-processing firms. In either case, there is presently a degree of under-utilized or unutilized capacity that changes from season to season, and which would be difficult to measure solely in terms of king crab processing capacity.

Table 1
King Crab Landings and Ex-Vessel Value by Area, 1953-1969

	Southeast		Central		Western		Total	
		Total		Total		Total		Total
Year	Pounds	Value (${ }_{\text {\% }}$)	Pounds	Value (\$)	Pounds	Value (\%)	Founds	Value (3)
1953	-----	-----	2,614,277	297,570	1,993,932	201,561	4,613,209	547,432
1954	-----	-----	6,356,827	603,999	2,514,243	276,567	3,971,070	
1555	-----		5,951,120	565,356	2,211,800	243,293	3,10́S, 220	Soj, 654
1950			6,899,795	655,480	1,896,227	203,535	8,736,0こ2	954, 05
1957	-----		12,483, 231	999,050	583,434	47,075	13,076,565	1,046,125
1953	-----		11,211,554	895,924	-	-075	11,211,554	E-5, $3+$
1959	----		13,93],470	1,477,980			13,839,470	1,477,930
19 O	3,424	810	27,379,630	2,230,290	697,962	55,036	23,570,016	2,230,135
1961	429,600	42,960	33,354,500	3,499,290	4,127,200	371,450	43, 411, 6.00	3,913,100
1502	1,299,500	128,950	44,653,000	4,405,300	6,839,600	633,960	52,752,200	5,270,210
1,03	1,112,200	111,220	50,796,600	5,050,410	26,841,500	2,415,730	79,740,300	7,607, $5=0$
1564	¢20,500	82,050	51,638,600	5,020,600	34,261,600	3,033,540	86,720,700	3,130, 1\%0
1905	579,300	57,930	94,505,500	9,375,150	36,535,600	3,290, 250	131,6070,700	12,729,300
10 ¢́白	105,900	11,649	117,305,100	11,730,509	41,790,700	3,928, 327	159,201,700	15,673,435
1500	599,100	83,571	33,010,700	9,593,163	44,106, 100	5,292,734	127,715,900	14,059,703
$1 \geqslant 55$	2,199,772	791,918	37,559,513	10,516,655	42,273,206	10,569,55?	82,037,4,5	21,273,135
1903*	1,675,125	502,533	25, ט55,246	7,705,574	28,477,121	8,543,136	55,337,492	16,751,243

Source: 1953-1067, Fishery Statistics of the U.S.; 1968, Alaska Department of Fish and Game, Leaflet Mo. 17; 1969, tentative, comanication from Juneau, Alaska office of National Marine Fisheries Sarvice.

Values given are in current dollars.

ALASKA KING CRAB LANDINGS, 1955-1969

Source: Based on Rothechild, et al., ADF\&G Informational Leaflet No. 147, p. 4.

Table 2
Percentage Changes in Kine Crab Landinf:s by Area, 2953-1969

From	S.E.	c.	K,	Total
53-54	----	$1 \times .5$	Es. 7	2.2
54-55	-..--	-6. 3	-12.0	-7.9
55-56	----	15.9	-14.2	7.7
56.57	----	80.\%	-68.9	43.6
57-53	----	-10.2	----	-14.2
58-59	----	63.0	----	68.0
59-60		47.3	---	51.6
60-61	124:16.7	39.3	499.9	51.9
61.62	200.1	14.9	65.7	21.5
$62-63$	-13.7	13.7	292.4	49.2
63-64	-26.2	1.6	27.6	10.1
64-65	-29.3	33.0	6.0	51.9
65-66	-31.7	24.1	1.4	20.9
$66-67$	465.7	-29.2	5.5	-19.7
67-68	26.7	-54.7	-4.1	-35.7
68-69	-23.3	-31.6	-32.6	-31.9

Source: Table 1, and sources cited therein.

Figure 3

In early 1969 and fell, though more slowly, through the rest of 1969 and into 1970. ${ }^{3}$ Ex-vessel prices have risen steadily since 1966, with wide intraseasonal shifts. The fleet of 247 vessels and 135 boats which caught nearly 160 million pounds of crab in 1966 had increased to 381 vessels and boats in 1970-71, restricted to a preliminary quota of 47.5 million pounds in a much shorter season. (The quota was raised during the season in two areas; the estimated catch is about 50 million pounds, down about 10 percent from the preceding year.)

The balance of this chapter is divided into three parts: the processing sector; the fleet and its changing character; and fishery regulations as they relate both to economic performance of the industry and behavior of the resource on which it rests.

3
It has been suggested by Professor Crutchfield that the price break in 1969 was perhaps a "hump!" in the demand curve, some price above which demand turns more elastic. A smiliar notion was expressed by one industry representative, who feared the increased prices were just enough to curtail a budding European export market. Evidence for the price break is based on partial data from Chicago and New York for 1969 and 1970, and complete Seattle price data for the two years.

Table 3
Output of Processed King Crab (Frozen)

Table 3 (continued)

Table 3 (continued)

Year Area Meat				Sections		Whole, in Shell	
1905	S.E.	112,540	Value	Pounds	value	Pounds	Value
	C.	11,345,756	109,347 $11,139,113$	12,173 $7,622,279$	5,067 $4,079,396$	71,006	34,120
	$\mathrm{H}^{\text {. }}$	3,010,670	2, 307,773	7,022,27.9	4,079,396	4,775,567	2,3;3,925
	cotal	14,365, 366	14,106,233	7,634,457	4,084,463	-4, 34,6,573	2,433,045
1965	S.E.	- 32,300	33,973				
	C.	10,325,637	11,023,118	5,619,337	2,752,097	4,693,564	1,54, $\begin{array}{r}15,012\end{array}$
	W.	$14,355,732$ $25,213,779$	14,943,179	123,769	- 92,830	1,160,941	$1,5+4,310$ $5,90,020$
	Sotar	25,213,779	26,000,275	5,593,105	2, 314,927	5,8344,830	2,13j,343
1967	S.E.	276,513	414,722	48,748	30,246		
	$\stackrel{\mathrm{C}}{\mathrm{C}} \mathrm{H}$.	7,461,443	8,944, 336	2,272,772	1,233,493	2,643,926	1,3:55,122
	Total	$9,200,362$ $16,939,323$	$11,599,031$ $20,953,039$	1117,597	47,033	66,221	1,3,5,753
			-0,953,039	2,437,117	1,310,777	2,710,147	1,440,575
1963*	S.E.	253,851	502,026	99,700	265,230		
	$\stackrel{\square}{\text { c }}$	4,534,082	11,027,593	3,397,729	3,837,434	2,062,370	3,150,253
	Total	$3,190,830$ $7,733,493$	29,951,037	157,020	6,60,508	3,164, 364	7,016,230
		7,30,493	21,570,001	3,644,449.	4,163,222	5,379,441	11,636,334

Table 3 (continued)

		Canned			Cold-Packed		Fresh:	Meat	Sectior.s		Fihole	
$\frac{185}{185}$	Area	Pounds*	Cases	Value	Pounds	Value	Pounds	Valus	Pounds	Value	Pounds	Value
	C.E.	--	--	----	----	----		----	----			
	${ }^{\mathrm{C}} \mathrm{H}$.	-----	----	----	---,	----6			-	---	129465	75,j24
	Total	r.a.	n.a.	n.a.								
1954	S.E.	----	-	---	----	----	----	----	----	----		
	c.	----	23,667	374,753	--	--	----		----	----	4.7,419	$20,+36$
	Y.	--.-	6,350	140,000	2,292	2,429	----	----	----	----		
	Total	----	35,017	1,014,753								
1955	S.E.	--	-	--	----	----						
	C.	272,454	-	376,325	---	----	9,935	6,592	109,996	$43,-721$	137,445	51,351
	hi.	78,279	----	106,495	47,628	52,558	----					
	Total	350,733	--	483,320								
1956	S.E.	---	----	----	----	----	----	--	----			
	$\stackrel{C}{ }$	599,547	----	791,337	----	----	----	-----	----	-----	37,535	12,338
	W.	100,269	--	137,192	-	--	-	--	---	--		
	Total	693,316	-	923,529					--	--	----	
1957	S.E.	--	----	----		----	----		---	----		
	c.	792,393	---	1,060,232	28,180	31,732	20	50	-	--	3,300	2,798
	$\stackrel{1}{ }$	53,939	-	109,251	----	-.--	-..--		----	----		
	rotal	931, 322	--	1,169,483								
1953	S.E.	--	---	----	---	---			----	----		
	c.	873,319	45,042	1,079,019	28,509	32,164	----	---	--	---	257	105
	h.	--	---	----	---	---	----	---	----	-.---	-..--	
	Total	378,319	45,042	1,079,019								
1959	S.E.	----	---	----	----	----			--			
	C.	1,073,6б2	55,316	1,437,990	346,626	415,412	688	725	9,000	3,029	45,694	15,354
	Yi.	----	----	----			----			-	----	----

Table 3 (continued)

		Canned			Cold-Packed		Presh:**Meat		Sections		Fhole	
Year	irea	Pourids*	Cases	Value	Pounds	Value	Pounds	Jalue	Pounds	Value	Pourds	Value
1500	S.E.	----	---	---	---	---	----	----	----	----	3,4<4	1,533
	c.	1,552,043	100,015	2,950,105	----	----	----	----	----	----	26,226	10,312
	V.	--	--	----	----	----	----		----	-..--		
	Total	1,55, 048	100,015	2,950,105	----	----	----	----	----	----	23,650	12,195
1961	S.E.	41,000	2,104	70,210	2,400	3,540	----	--.-	----	--.-	----	----
	0.	2,934,200	150,469	4,500,100	66,300	72,900	----	----	----	----	40,200	50,040
	h.	2,300	146	4,670			----	---	--	----		
	Total	2,973,000	152,719	4,574,930	68,700	76,440	----	----	----	----		
1962	S.E.	13,700	703	29,790	***		5,500	7,590	13,300	7,730	600	350
	C.	3,635,000	186,409	5,177,160			45,100	34,600	21,100	8,220	21,700	9,570
	H.	---9,	----	----			----	---1	----	---	----	
	Total	3,044,700	187,112	5,206,950			50,600	92,190	34,400	16,000	22,300	9,950 0
1963	S.E.	239,200	15,350	235,370			----		----	----	100	30
	c.	60,0,000	45,973	702,200			930	700	200,000	30,000	2,200	330
	h.			----			----	--.-	----	----		
	Total	27,200	61,949	1,047,570							2,300	850.
1964	S.E.											
	c.	4,599,900	$235,893$	$5,939,300$			100	70	312,200	156,090	200	30
	Total	4,601,400	----	----1, 25				----	-		----	

Table 3 (continued)

Source: $\frac{\text { Fishery Statistics of the United States, }}{\text { lo. } 17}$, through 1967; 1968 estimates, ADF\&G Statistical Leaflet

* Pourd equivale:ts of standard case of $481 / 2 \mathrm{lb}$. cans, each containing $61 / 2 \mathrm{oz}$. meat.
** in most years the Central area total was also the state total, so no total figure is given in those years. ***: $:$ o further production after 1961.
**** After lyb this production was included in frozen-output statistics.

Summary, Table 3

All-Process Output and Value, 1953-1,63

Year	Pounas	*otal value
1953	$1,138,152 * *$	952,009
1954	$1,503,33 * *$	$2,290,094$
1955	$2,055,105$	$1,755,343$
1956	$1,623,603$	$1,566,750$
1957	$3,803,944$	$3,504,321$
1953	$3,279,355$	$2,709,813$
1959	$3,999,546$	$3,145,704$
1960	$5,034,435$	$5,294,366$
1961	$9,639,000$	$9,625,500$
1962	$10,577,300$	$11,361,300$
1963	$12,339,100$	$10,302,340$
1964	$22,997,300$	$21,262,340$
1965	$34,020,803$	$31,470,332$
1966	$46,158,009$	$44,367,375$
1967	$29,398,230$	$36,943,037$
1965	$19,344,135$	$42,520,686$

Source: Derived from Table 3.

* Fleures are in current dollars.
** No fisure for pounds or value for canned crab in 1953, none for pounds of canned crab in 1954.

Summary, Table 3

Percentages of Output and Value for All Types of Processed Kine Crab 1953-1903

	(all trozen		Canred		Cold-Pack		$\begin{gathered} \text { Fresh } \\ 11 \text { types) } \\ \hline \end{gathered}$	
Year	output	$\begin{gathered} \text { ín } \\ \text { value } \end{gathered}$	Ontrut	value	Outnut	value	outout	value
1953	41.5	53.7	nou.	n.a.	7.0	5.5	il. 3	7.0
2954	n.a.	54.4	n.a.	44.3	n.a.	0.1	n.a.	2.1
1955	68.1	63.6	17.0	27.5	2.3	2.9	12.4	5.8
1956	54.7	39.9	42.9	59.2	2.3	-	2.3	0.7
1957	75.8	65.6	23.1	33.3	0.7	0.9	0.2	0.2
1958	72.3	58.9	26.7	39.8	0.3	1.1	0.2	0.2
1959	70.9	57.0	26.9	41.4"	0.7	0.9	1.4	0.5
1960	60.6	44.0	38.7	55.7	0.7	0.	0.5	0.2
1961	64.1	51.3	34.4	47.5	0.7	0.7	0.5	0.3
1962	64.4	43.8	34.4	43.8	----	----	1.0	0.9
1963	90.8	89.5	7.5	9.6	----	----	2.6	0.7
1964	78.6	71.3	20.0	27.9	-...-	--	1.3	0.7
1965	80.6	65.5	19.7	34.4	----	----	0.5	0.6
1966	79.4	69.3	18.3	29.5	-.-.	----	1.4	0.6
1967	73.9	64.1	26.0	35.3	----			
1968	90.5	87.8	9.4	12.1	----			

Source: Derived from Table 3 .
Totals do not always sum, because of rounding.

Table 4
Wholesale Prices, Real Prices and Percentage Changes,

Source: Derived from Table 3 . Real prices were derived by dividine current wholesale price by the finolasale Price Index for meats, poultry and fish for the appropriate year, on the base 1957-1959:100.

Percentaces changes in real price are positive except where otherwise indicated.

Figure 4
Per Ceut Change in Real Wholesale Prices, 2953-1968

26

Table 5

Ex-Vessel Prices, Area and All-area Averafes, 1953-1969

Year	S.E.	C.	W.	Averame
1453	--	11.0	14.0	11.3
1954	----	9.4	11.0	9.9
1955	----	9.4	11.0	9.9
1956	----	9.4	11.0	9.9
1957	----	7.9	8.0	7.9
1958	----	7.9	----	7.9
1959	----	7.8	----	7.8
1960	20.7	7.9	7.9	8.0**
1961	10.0	9.0	9.0	9.0
1962	9.9	20.0	10.0	9.9
1963	9.9	10.0	8.9	9.6
1964	10.0	9.7	8.9	9.4
1965	10.0	9.9	9.0	9.7
1966	11.0	9.9	9.4	9.8
1967	13.9	11.5	12.0	11.7
1968	36.0	23.1	25.0	26.6
1969*	30.0	30.0	29.9	30.0

These are annual avorage pricos and, particularly for the later years when thore vere wide intrascasonal price shifts, do not reilect area differences that may have existed as a result oi nefotiations prior to the beginning of the season.

Source: Derived from Table 1.

* Preliminary.
** The wide variation between the S.E. area and average (for all areas) price is aue to the iact that in the weichted avorace the pounds sold at trat price were quite insienificant.

Figure 5
Per Cent Changes, Ex-Vessel Prices, 1953-1969

Table $5 a$
Percentage Chances in Ex-Vessel Value of Landings,

$$
1953-1969
$$

From		$\begin{aligned} & \text { दChange, } \\ & \text { prise ger lb. } \end{aligned}$
53-54	טj. ${ }^{\text {a }}$	-10. $\%$
54-55	-8.1	-1.0
55-56	6.5	-19.3
56-57	21.0	0.0
57-58	-14.2	-1.2
58-59	64.7	2.5
59-60	54.6	12.5
60-61	71.1	10.0
61-62	34.8	10.0
62-63	44.1	-3.0
63-64	7.6	-2.0
64-65	55.4	3.1
65-06	23.1	1.0
66-67	-4. 4	19.3
67-68	4É. 1	127.3
65.69	-23.4	12.7

The Processing Sector

King crab, both frozen and canned, is sold nationwide, and the demand is apparently devoid of seasonal characteristics. There are strong regional aspects to the demand, however. As of late 1964, about 57 percent of the product was sold on the eastern seaboard. Another 19 percent was sold in the Chicago-Great Lakes area. Of the balance, about 20 percent was sold in the rest of the United States, and 4 percent exported. ${ }^{4}$ Slightly over half of the frozen product was sold to instutitions (hotels, restaurants, and airlines) while a much larger proportion (about 90 percent) of canned production was sold for home consumption.

Although developments in the late 1950's and early 1960's led to a considerable increase in technical efficiency of the industry, and a higher minimum level of necessary capital equipment, it remains a relatively labor-intensive process. ${ }^{5}$ The initial phases of canning and freezing are the same, both for king crab processing and processing of other shellfish as well.

On the selling side of the market, the present king crab industry is best described as a weak oligopoly. Output in both canned and frozen processing is dominated by a few large firms. Entry, either by new firms or sideways entry by firms already established in production of other seafoods, has been relatively easy, however. If number of firms is a valid criterion, there are no significant barriers to entry.

The firms which were first dominant in both types of processing have

Shether or not fuether labo:-avina, capital equipment is techaicully feasible is untnow. Given relative coste on labor ind canital, honevor, the rationality of lather capatalization at thas time is doubtive.

Table 6
Industry Shares，Camed and Frozen Kine Crab，1953－1969

 numbers of puoceseore citud there are consistently lower then output shown in Fishery Statistios of tho 1.3 ，but they are the only available source or data on prouluctici zy pocessor．

ADFEG Statistical learlets list processors by plant；I have counted the multi－plant firms as one，and their totals still exceed those listed above．
＊There is sone duplication．There seems a slight terdency for dominant cannery processors to have a hisher per cent or frozen output than domi－ nant freezing processors have of canned output． y＊＂Misc．＂is credited with 0.2 per cent or the pack in this year．

In a comparison econg Yearbook firures，ficherg Statistice rifures，and the ADFRG list ot procesco：v，die discrepancies in irozen prounction，for example，are as tollows：

No．Procensore			Outnut		Discrenancy	
	Yearbook．	\because	Yearboct	Uich．State．	Oいたッら（1as．）	Procerecms
1964	10	－	11， 107,07	E，ju，ibj	－，¢л，joj	$\underline{1}$
1966	20	23	29，521，672	50，01，714	7，170，042	3
1907	15	23	17，963，333	22，037，547	4，101；，254	13
1963	25	35	15，353，231	17，107，333	1，647．102	10
2869	21	23	10，679， 30	a．u．	n．a．	7

It is impossible to allot shares or this unaccountedion oroduction． It this could be dom，it is dubtiul it relstive industry rositione，of the major producers at any rate，would be much arrected．
declined in importance relative to total industry output. As Table 6 Indicates, both the direction and rate of change of the percent of output controlled by the first three firms have shifted markedly over short periods of time in the past few years.

Control ofarelatively large share of industry output by a few firms does not imply a high degree of market power on the selling side in the king crab industry. Entry is not difficult, and potential output over time is subject to wide variations outside any processor's control. The leading firms have established some degree of product differentiation through heavy promotional campaigns. When prices fell in 1962, with increasing production and the beginning of heavy price competition by smaller firms seeking an expanded share of the market, the better-known firms suffered relatively less from the price drop than did the smaller firms. ${ }^{6}$

Processors' cost functions vary widely, depending on size of plant, location, and other factors. Firm size varies from small, one-plant operations with minimal capital equipment to multi-plant firms, some of which operate almost as "company" towns, and whose costs include nonproductive services. 7 Processors operatine in the Aleutians face generally higher costs than do firms operating in less remote areas.

There are no data available on employment in the processing sector; the statistics list only cmploymant in "shellfish processine."; it seems likely, however, that the labor supply curve to the processing sector is quite elastic.
$6_{\text {Miller, "The ilasta King Crab Industry...", p. } 14 \text {. Much of the smaller }}$ firms' outnut is sold to wholesalers, and may bear any ol a number of retallers' labels. The larer liras may conetin output to a wholegaler, but more often cell throukin their own sales torees.
7^{7} one industry representative stated that some processors provide some school and medical facilities with their plants in remote areas.

The spectre of idle plant, with fixed costs continuing, has led firms which originally canned or froze only one or two species in a given season to begin processing others as well. The number of processors handling only king crab reflects the changing fortunes of the industry. In 1964, fourteen of twenty-two firms were in that category, and in 1966, twenty-two of twenty-eight confined their activities to king crab. By 1969, only seven of twenty-eight firms processed only 8 king crab. Processing of tanner (snow) crab, scallops, shrimp, dungeness crab, and clams accounts for the change.

On the buying side, the industry can be described as an oligopsony which has been weakened somewhat in the years ince 1966. In the years of ample catch, ex-vessel prices were decided at meetings of the United Fishermen's Marketing Association in Kodiak with a major buyer (one or another of the top three processors). A price for the season, or occasionally for two seasons, was negotiated, and was then accepted by 9 processors throughout the state.

Roughly 90 per cent oi the kine crab boats have some form of association with a particular processor. These associations rance from formal con-tracts--which seem to be rairly rare--to informal "eretlemen's acreements." The processor agrees to take a boat's catch, the boat to deliver to that processor, at the foing price. There is sometimes an adaitional bonus, calculated on the basis of tonnage and yicld. In the earlicr years or the fishery, some processors were whole or part-omers of vessels, but
$\Im_{\text {ADFSG Technical aulletines, }}$ Hos. $12,14,16,18$.
9The marketine association is a coonerative o: boat omers and fichermen, both o: whom have vother ri,hts ia the melotiationc. apparently it fuactions in many respectes as 1 it were a unnon.
this practice has declined. Procescors may also advance workine cupital, or assist with financine purchase of a vesscl. Boats affiliated with a particular processor tend naturally to register in an area adjacent to that processor's plant (or in the casc of floatine processors, the area that plant will be working). This is, generally, the area of residence of the boat skipper and crew (with the obvious exception of the Seattle-based boats and boats operatine in the Aleutians and Berine Sea). Loyalty is thus a matter of mutual convenience. Further, since area registration was instituted in 1960, a boat must fish in the area of registration throughout a given season. Differences in the stringency of quality requirements of different processors also tend to tie particular boats to particular buyers. Two factors contributed to the breakdown of the statewide negotiating system. First, the fishery expanded westward to higher-cost fishing areas fished largely by boats from Seattle, whose connection with the Kodiak area is Imited. Second, marketing associations in other areas southwest and northeast of Kodiak have developed since 1966, and they now negotiate independently of the Kodiak group. In 1968-1969 the negotiated price system broke down. During that season, ex-vessel prices in Kodiak went from $\$.13$ to $\$.50 \mathrm{a}$ pound, and processors in other areas tended to follow. Some processors throughout the state were left with large inventories on hand when the wholesale price jumped sharply in response. Others simply ceased
processing crab after a time. In 1970-1971, prices were again negotiated by the leading processors and the Kodiak association, and were accepted with some reluctance by the western area processors. Kodiak prices beean to climb from the original level of $4.251 / 4$ (5.25 in the vestern areas), and reached $\$.39$ a pound by the end of the seacon. iNost mofor buyers ceased buying at $亠 巾 .30$ a pound (a 20 per cent lnerease over becitinine prices), and
the "Kodiak effect" did not operate to the same degree as it had in earlier seasons. 10

While the ability of a few major central Alaska processors to negotiate ex-vessel prices for the state for an entire season or even two has been diminished, a good deal of market power clearly still exists. In the more remote areas in particular, boats face fewer alternative buyers, even if a skipper were tempted to break his agrecment with a processor for the chance of a higher price elsewhere. ${ }^{11}$ There is no legal restriction against selling one area's catch in another, but increased runnine costs, the increased risk of dead loss, and loss of time on the fishing grounds-weighed against the possibility of a higher price--work against the practice. (Some boats may sell the season's last load to a conveniently located processing plant along the route home. In mid-season, however, a boat would be required to return to its area of registration to continue fishing.) Thus a single processor or small group of co-operatine processors could maintain a price, isolated in the more remote areas from the influence of competing offers. ${ }^{12}$
$10_{\text {This }}$ effect occurs when small processors, perhaps for one or two loads, bid higher than agrecd prices, which are then met by larger processors. These firms, as good oifopsonists, should lat the smaller firms pay the higher price for that smail share of the market they can absorb and maintain a lower price for the balance--in short, let the small fry have the ir share without reacting.
${ }^{11_{\text {To }}}$ what degree affiliated boats honor their commitments, and for what reasons other than personal integrity, is not known. One firm uses the bonus as an end-oi-season ravard for staying out the season. There may be costs in the form of ereater difficulty of making future agreements, but this is unknown.

12 Durine the 1970-71 scason, the initial Adak price hold through the seacon, as did the Seluovia price. Prices in some other areas besides Kodiak did rise from 20% to 40, over initial prices.

The factual material on price-setting policy was gathered throuph personal interviews and corremordence with orifcials of Elnmear \& Wendt, Vita Seatoods, and hakerield Fisheries.

Beginuing with a fleet composed larecly of small vessels desiened for other fisheries, the king crab fleet expanded and undervent substantial change as demand grew.

The fishery remained an inshore operation until the development of shipboard live tanks, since the crab must be kept alive until it reaches the processor. Nost of the earlier vessels equipped with such tanks were conversions from other uses. Later, newly constructed vessels especially designed for crebbing were added to the fleet. Some were combination crabber-seiners, but many of the larger ones are purely crab-fishing vessels.

Types of gear employed during the initial phases of the fishery were either tangle nets or otter trawls. Both were inerficient; they snaged on debris on the bottom, damaced some of the crabs, and were indiscriminate in catch. Large converted dungeness crab pots were the next technical improvement, followed, in the late 1950 's, by the rectangular pot especially designed for king crab fishing. Its size has increased over the years (from $6 \times 6 \times 21 / 2$ feet, still in use by smaller vessels, to pots either $7 \times 7 \times 3$ or $3 \times 8 \times 3$ feet, and it is the standard unit of catchine eear for the fleet. Better pot-haulins devices were developed as well. As the larger vessels ranged farther out along the Aleutians and into the Berine Sea, they were equipped with sophisticated navigational aids and depth finding eear.

The degree to which the industry expanded in the late 1950's and 1960's can be seen in the statistics on numers of vessels and boats, fishermen, and pots for those years.

Table 7
Numbers of Fishermen in the Kine Crab Industry, 1959-1969

	On		
Year	Tessels	Un Boate	Total
	3959	389	54
1960	750	94	383
1961	1,023	106	580
1962	1,020	190	856
1963	941	171	1,213
1964	607	257	1,103
1965	750	285	1,112
1966	1,249	76	864
1967	n.a.	n.a.	1,065
1968	n.a.	n.a.	1,325
1969		n.a.	$1,226 *$
1970			$1,067^{*}$

Source: To 1967, Fishery Statistics of the U. S.j estimamates for numbers of fishermen in 1969 and 1970 derived by multiplying known total numbers of vessels and boats by 2.8 , the average numier of fishermen per vessel in 1966.

Table 8
Numbers of Pots in the King Crab Industry, 1959-1967

Year	Notal No. Fots
1959	5,655
1960	8,375
1961	10,076
1962	13,700
1963	16,000
1964	22,000
1965	24,350
1966	41,340
1967	28,771

Source: Compiled from data published in Fishery Statictics of the U.S.

Table 9
Numbers，Total and Average Gross＇ronnages of
Vessels and boats in the King Crab industry，1960－1970

Year	Area	$\begin{aligned} & \text { ilo. } \\ & \text { vess: } 1 \mathrm{l} \end{aligned}$	Cotal Gross ＂ommare	Áverage ＇onmane	ivo． Boats
1960	S．E．	1	13＇	35.0	－－－
	C．	193	5，125	26.6	47
	V．	2	37	18.5	－－
	Total＊	201	5，247	26.1	47
1961	S．E．	14	430	30.7	－－－
	C．	272	7，424	27.3	53
	H．	9	617	68.5	
	Total＊	285	3，461	29.34	53
1952	S．E．	27	922	34.15	5
	C．	256	10，274	40.13	90
	W．	32	2，291	71.24	
	Total＊	315	13，477	42.73	95
1963	S．E．	9	291	32.3	10
	C．	256	13，352	52.16	27
	W．	25	2，702	108.05	7
	Total＊	265	16，345	61.65	44
1964	S．E．	14	618	44.14	4
	C．	223	12，770	57.26	73
	h ．	37	4，001	168.14	5
	＇Total＊	268	17，389	64.31	82
1965	S．E．	6	200	33.3	7
	C．	176	11，233	63.82	107
	W．	44	4，92，	111.98	19
	Total＊	184	16，360	83.91	119
1966	S．E．	12	439	40.75	3
	C．	235	14，474	61.59	120
	H.	45	5，145	214.33	12
	Total＊	247	20，108	31.41	135
1967	S．E．	13	520	40.0	－－
	C．	275	20，803	72.0	20
	h ．	57	7，913	139.8	12
	Total	345	29，236	84.74	32
		n．a．	n．a．	n．a．	n．a．
1969	T＇otal	438＊＊	n．a．	n．a．	n．a．
1970	Total	381＊＊	n．a．	n．a．	n．a．

Source：Fichery Statictics oi the U．S．；avorages derived therefrom． ＊t＇otalie coctueive ó rupilicaiion．
＊＊Totals outained irom lyビッ， 1070 nova recictration lists， and include boats as well as vescels．

Simple ficures on numbers of boats, eear, and fishermen give littlc indication of chancing real capacity. Given the fragmentary data available, only the roukhest estimates are possible. For example, composition of the Kodiak area rleet changed markedly in the direction of larger vessele over the period from 1760 to 1970 . as indicated in Table 10 below. Table 10

Length Frequency of Kodiat. Area Vessels, 1960-1970

Ye:ar	2:-	-	-	$\frac{10-16 i}{}$
1960	00.0	3.45	0.7	$0.0,0$
1961	92.5	6.76	0.63	0.0
1962	81.5	15.4	2.05	1.03
1963	68.0	20.4	7.8	3.9
1964	66.4	22.1	7.4	4.2
1970	52.8	25.0	18.0	4.16

Source: Pacipic Fisherman, June 1965, p. 41; 1970 figure from lylu-fladifrocistration list. The Kodiak area ileet as per cent oi total registrations is as followe: 1760, $56.2 \Gamma ; 1361,49.6$; $1062,55.0 \%$; 1963, 60.7"; 1764, 63.5\%;...1570, 37.7". Eoats in the Kodiak area averace smaller than in other areas, except perhaps the boats in the southeastern area.
In the fleet at large, there was a marked increase from 1960
to 1970 in the percentage of vessels over sixty feet in length.

 1970 rieuze irom airu Eeristration list. *This does not court any vescels in this category which might be reistoreci : : southeastern area. Euince William Sound, and Cook Inlet, which were not given. The percentage of boats over 60 feet is probably understated.

Of the thirteen vessels known to have been added to the flect in $1: J 00$, the averace length was gl. 38 fcet. (Ficherman's dewe, d'ebruary 1970.)

A better indication of real capacity is cubic carryine capacity: the rumber of live crabs per trlp a etven vessel is capable of carryire. One estimate made on this basis suldests that increased capacity from conversions, $1965-1970$, was about 400,000 cubic fect of carryine capacity. At two and one-halr seven-pound crabs per cubic foot, conversions added 7,000,000 pounds-per-trip capacity to the f'leet. Assuming two seven and one-half-pound crabs per cubic foot, conversions added 6,000,000 pounds of pertrip capacity. liew vessels constructed in the same period added about 267,000 cubic feet per trip carryine capacity. On the two sets of assumptions used above, new construction aded from 4,672,500 to 4,005,000 pounds oi per-trip capacity to the fleet. 13

As usual, the ability to assess the economic performance of the king crab industry is severely hampered by the lack of complete, easily accessible data on which to base an estimate of real costs of and returns to resources in the industry. Fragments are all that have yet been accumulated.

One estimate gives costs and returns per season for the years 1966, 1967, and 1968 for a sample of 21,28 , and 35 vessels respectively. After fixed charces (i:iterest, insurance, taxes, depreciation), trip expenditures, boat and cear mantenance, and all share expenses wore deducted, average net returns belore taxes were $\$ 11,013, \$ 0,619$, and $\$ 10,133$ for the $\mathfrak{i v o n}$

13lir. Allen a. Enie, iarine Construction and keoin Co., Seattle, furaished the coswersion and ww conetruction estimetes, which he states are by monans
 than by twinat or veesel herath, should the data ever become availabl.. It should de roted that this is in no sense an astiade of net additions tu capucity.
years. ${ }^{14}$ Per-man shares for the three years are fiven as well, and ure contracted with average wages in U.S. manuracturine. ${ }^{15}$ Any attempt to apply the opportunity coet doctrine fails for lack of data, however. No inforination is given in efther case on total money incomes, i.e., income from other surces such as employment in other fisheries, or from transfer payments; nor are such factors as differine costs of living included. For these reasons, no comparisons of real returns to participants in the fishery relative to returns in other employments can yet be made.

Costs per unit of output for the same three years are diven, and are separated into their component parts. For each year the figures are (in cents per pound): $1966,3.54 ; 1067,10.74 \frac{4}{4} ; 1763,27.254$. The rising trend of these costs is evident, even, apart from the element of labor cost, which, under the shore system, is a function catch size and price per pound.

Costs and returns for a swall sample of existine units in the fleet can be contrasted with the costs of new entry and the required level of returns implied by these costs. On the basis of current assumptions about construction costs, interest rate, and depreciation rate, it is estimated that a vessel costing $\$ 350,000$ in 1969 ($56-94$ fect average lencth, 5,000 cu. ft. carryine capacity) would earn a net return of about $\$ 1,300$ with a seasonal catch of 900,000 pounds of crab.

Fixed Charges:	
	irterest (100) 35,000
	Depreciation (10 years) 35,000
	insurance ($5 ; 0$) 17,500
	Gear Replacument (1.25\%) 4, 375
	Repairs, daintenaree ($3.75{ }^{\text {a }}$) 13,105
	4105,200

${ }^{14}$ Sas j.c :eon:omic iniicators, p. 2. The sample covered boats from Seattle
 be representative of vescels $2: a$ the size ranie $30-95$ tect. No data were avallable for lentith oi tripe, numers or traps, or time at sea.

Grocs: 900,000 1.br. at $\$.25 / 1 \mathrm{~b} . \quad \$ 225,000$
Boat Share (60\% of (roes) 135,000

Crew Shure (40j, of croos) 90,000
Captain's ehare (10 ol boat share) 13,500 Fuel C_{c} Bait (paid from boat share) $1 ;, 000$

Net Boat Share 4106,500
Fixed Charees $\frac{105,200}{\$ 1,300}$
Net Returns
Hote on cources: The eross boat share, crew ehare, and cantain's share are quite standard. in sonik cases, the boat furnishes food ana charges a set fee per man; in others, crew wembers pay directly for food. The "ruel a Bait" figure is suspect; it obvionsly derends on leneth of trip, time spent to catch a eiven amount, etc., but it is the only one available at the moment.

A catch or 900,000 pounds would represent 1.3 per cent of the total allowable catch set in 1970. 15

That part of the increasing cost of a vessel which results from eeneral increases in the price level and from rising interest rates is exocenously determined, and not part of the increased fishing costs which result from the pressure of an expanded fleet on the stock (except perhaps as differential interest rates way reflect the cost of capital to more risky ventures). It is assumed that the increasing construction costs are a result of Eeneral economic conditions, not that increasing demand for fishing vessels has introduced a scarcity factor into the costs of construction. it might be argued, however, that the sreater cost of a larcer, more seavorthy and efficient vessel (even with constant unit construction costs) is one or the increased search costs of a unit forced to range farther and fish harder for a given catch.

In 1966 a registered American fleet of 247 vessels and 135 boats caught 159,201,700 nounds of king crab for a total ex-vessel value oi $\$ 15,070,435$

[^2](annual average price per pound was 9.3¢). Had a flect of efficient vessels of the $36-94-$ foot class existed in that year, how many such vessels could have taken the catch (assuming good fishing and no scasonal limitations), and what would their returns have looked like compared to those or such a vessel entering the ilishery today?

A vessel of 5,000 cubic feet carrying capacity, hauline two crabs of 7.5 pounds each per cubic foot, could carry 75,000 pounds of crab per vesseltrip. Assumine thirty trips per year at ten days per trip, such a vessel could have caucht $2,250,000$ pounds of crab annually. Dividing the total 1966 catch by this estimate cives a ileet size of seventy-one vessels.

Alternatively, with the same carrying capacity, a vessel carrying more but smaller crabs (2.5 crabs per cubic foot at 7 pounds per crab) would have had an annual catch of $2,625,000$ pounds of crab, at thirty trips per year and 97,500 pounds per vessel-trip. Again dividing total 1966 catch by catch per vessel, there results a fleet size of sixty-one vessels, assumine that each vessel fished to capacity.

Mote on sources: Tize per trip was estimated by owners of Seattle-based boats of the 36-4-soct rame, who traitionally tich the western areas. However, slightly more than 73 per cent of the total 1965 catch was taken In the central area of alasis, a the estimate may be biased upward. found trip is derined as time to cuicth a load, deliver it, and return to the fishing erounds.

I have attempted to keep the catch-per-trip estimate fairly conservative. Vessel cwars in Seattle claim to have hauled in loade of from 100,000 to 200,000 pounds per trip in a 5,000 cubic-foot tant with no more than $1-2$ per cent dead lose. insse estimates would or course iniply a still smaller fleet capable of taking the record catch.

The itaure for number of crabs per cubic foot was furnished by a shipbuilding rirm and contired by vessel owners as a conservative estimate.

Construction cost of an afficient vessel in the above size range in 1965, so that it was ready to ilish in 1006 , is estimated at $; 300,000$.

Fixed chares are estimated as rollows:

Flxed Chareos：	
luterest（ 7 \％	\＄21，000
jepreciation（10 yenrs）	30，00）
lncurunce（\％）	15，000
Goar inplucement（1．as，${ }^{\text {a }}$ ）	3，750
Repairs \＆inditenance（ 3.75% ）	11，250
＇i＇otal Fixed Charges	\＄31，000

Abstract

i discou：t of appreximately $7: \ddot{n}$ ner year has been applied to conctruction costs；iatercet rate qucted was that chareed by a comercial oank which makes this sort oi louro＂sar replacement und repuir charpes are the same sent construction．Since it is here assumed that such a vessel rould iish under luje coriditiors－oplestioul su！ply of crabs，no seasonal rostrictione－ these estimates may uncerstate the repalf and maintenance charges wiaich heavier lishing wouli make necessary．

Average returns to a vessel in the seventy－one－vessel flect would be as follows：

Gross（2，250，000 lbs．at $3.3 ¢$ per pound）	すご○，711
	132，426＊＊
Captain＇s Share（lof oi loat Share）	13，242＊
Crew Share（ 49 Of Gross）	88，234＊＊＊＊＊＊＊＊＊
Fuel and Bait	11，720＊＊
Net ioat Share	107，46：
Less Fixed Charges	31，000
Net Return（atout 3．3\％）	20,40

[^3]if the fleet in ly 06 had been composed of sixty－one vessels，each with an annual catch of $2.625,000$ pounds，for the same rixed charces its returne would have been：

Gross（2， $225.000 \mathrm{lbs} .$, at 9.3% per pound）	2056， 303
Boat Share（ 5% or Gross）	154， 135^{*}
Captann＇s Shars（lut of \＃oat Share）	15，$+13^{*}$
Crew Share（40\％or Grose）	102，727＊＊
Fuel and bait	11，720＊＊
Det Boat Share	LT， 0
Less pixed Charges	31．000
let Return（about 15．3i\％）	40,000

[^4]It would be roollsh to interpret the above estimates as other than rough approximations. They contain some restrictive acsumptions, and are based on meager data. What they do demonstrate is that there is a staceefine degree of overcapacity in the king crab industry, and has been for some time. They further demonstrate the futility of attempts to acsess real returns to resources in the fishery in the absence of the sort of coherent, comparable cost and accounting data which more mature fisheries seem to have accumulated.

Regulation of the Pishery by the State of Alasta
Very little was known about the biolcey of the king crab at the time the industry becan to expanä. Knowledge -accunulated oniy slowly, and was far from complete when the catch first declined in 1967, although some blologists had been concerned in the early 2960 's that, Eiven the lack of information, the industry wifht well be overfishing without realizine it. If regulations prior to 1967 were made in ignorance or impending trouble, the post-1957 reculations are attempts at remedial action based on a somewhat lower level of lenorance, amidst politically-based quarrels.

Other than outlawing the tandle net in 1955 and otter trawl in 1900 (both were uneconomical as well as damaeine to females and undersized males returned to the sea), the industry was subject to few restrictions until after 1966. Hinimum lekal size, which was raised to 165 mm . carapace wiath (about $61 / 2$ inches) in 1349 , remainod at that level until 1069 , when it was raised to 175 mm . (about 7 inchos).

Area registration was instituted in 1960, though numbers of registrants were, of course, not controlled. Some limited movement between areas was permitted.

The industry began as an off-season, fall-winter fishery. As demand expanded and larger catches taken, there was some fishing almost yearround, except for the moltine-matine period (which occurs at slichtly different times, dependinf, on the particular area). In 1967 the first official closed season, corresponding roughly with this period, was instituted. ${ }^{17}$ in 1969 a more extensive closed season was defined: rishing was limited to a period of rouchly five months, becinnine in late summer. Area seasons were redefined in 1.070 , with stacered opening anc closine dates. ${ }^{18}$

A maximum allowable catch lavel was established for the iirst time in 1970, with the quota divided into separate area subquotas, with provision for intraseasonal adjustments. "'wo such adjustments were made? at Dutch Harbor and Adak. The origiaal overall gucta was 47.5 willion pounds. Regulations Covernine the 1971-72 season provide for lowering the fodiak Island area (Area K) guota to 10.2 million pounds from 14.0 million pounds, with other area guotas unchanged. 19

Pot limits, which had been instituted in certain areas in the late 1950's and early 1960's and abandoned in 1964, were reinstituted in 1969. The regulations for 1971-72 provide for further chances: Area 0 pot liuit has been raised to 90 pots; in all other areas the limit has beea raised to 75

17 The closure was partly illusory, as crabs close to the oreedine frounds eat less and are less subject to captire. 'heir neat is less thevorful, and their welcht drops durint this time.
${ }^{13}$ Since a vossel could listi only in its area oi registration, it vas prevented from movin, to another area which mitht still we open. inis irustration
 eiricient operation of the lurer vessels ia parieicular.

 availability ia publiched iom.
pots per vessel. ${ }^{20}$ a airficult regulation to enforce at best, the pot limit is cluined to heve aderse efliciency crifects on the larger vecoule. al

Perhaps the most controvesial of the $1 \% 70$ mereacy regulations hat the increase in ninimum legal size for Beri:t, sea crabs from $53 / 4$ inches to 7 inches across the carapace for the perlod iron September $/$ throush the end of February. For the rest of the year it was to reain at the lower linit, the same as that imposed by international aereement on the Javanese and Sovict fisheries. 'ihe regulation was challenged in the Federal courts on the loounds that (1) it was in conflict with Federal law, and (2) it icnored the biological peculiarity that Berine Sea kine crabs are charactorictically smaller at maturity than those found in other Alaskan Waters. It was further claimed that the regulation made fishine uneconowical lor the larger vessels, whose normal fishirif sequence had been to operate it the Bering, Sea prior to the opening of the western areas south of the Aleutian islands and Alasisa Peninsula. (Since the Berine Sea was a nonrefistiation, nonquota area, this sort of interarea movement was permissible.) They claimed that the ereater miniuum size lialt irom September i until the opering of Areas 0 and l from six weeks to two worths later worked an undue hardsin on their operations. the requlations for 19772 have removed the basis for the quarrel, however. Mininum legal size for

$20_{\text {ibid. }}$

21 There is some fecline that the pot limit dces hamper efforts of the lurger vessels in the western areas, wiere they may +1-100-120 pote at timec. Some or the vessels use "extra pots foe exploratory ioshing.
if the rot limt whs humur the larier vescels erleiency, the roculation woulu owrute to reduce inustry eiriciency toward the heve ui uie smaller units. Giver. ioth pot limit und tiveresuricted quotac, veceele are
 point of ortiun bilization. hare is a cariy aureow rame oi afficiost

Bering Sea king crabs for the ensuing year is set at $61 / 4$ inches from June 1 to October 31; from November 1 to March 31 it will be $61 / 2$ inches, and the months of April and May have been declared a closed season. Minimum legal size in Areas 0 and R has been lowered to $61 / 2$ inches as well. It remains 22
at 7 inches in the rest of the Alaska fishery.

International Regulations

American participation in the king crab fishery prior to the early 1950's was minimal. Both Japan and the Soviet Union had exploited the species since the early $1930^{\prime} \mathrm{s}$, with the exception 9 the period of World War II and the early postwar period, both in Asian waters and in the eastern Bering Sea.

As the American fishery expanded into the Bering Sea, it became apparent that some sort of interuational regulation was reguired, both for reasons of biological conservation and as a basis ior settlement of disputes over access to the fishine erounds and occasional quarrels over reputed trespaes and wrecked or damaged gear.

The Soviet Union is a signatory of the United iations Convention on the Contirental Shelf (1958), under which the king crab is defined as a resource of the continental shelf over which the coastal nation has sovereig rifits for exploitation and exploration. Japan, which is not one of the signatories to the U.A. Convention, continues to claim that the kine crab is a hich ceas fishery resource, and that its rationals may continue to exercise the le "historic lishing richts" in the eastern Beriag Sea.

In 1964 the first U.S.- Soviet Union and U.S.-Japanese agreements, were signed governing access to the eastern Bering Sea and setting quotas for both nations, for the years 1965 and 1966. With slight modifications,

22 nuterviewe with attorncy ior plaintit: veseul omers, and A. Hadsen.
the agreemonts have been renewed bleminally; the lutest renewals were iecotiated in late 1970 and early 1971. in summary, they include the followine provisions:

Size Linits: Until the lutest agrecments, minimum legal size limit was 24.5 cms. (about $53 / 4$ inches) for the years 2971 and 1972 it has beeu raised to 15.3 cms. (about $61 / 4$ inches) for the Japanese fishery. The lower limit will continue for the Soviet fishery durine 1971 and 1972, durine which time that fishery is expected to shift eradually from the use of tangle nets to pots. No female crabs, soft-shelled, or undersized male crabs are to be taken.

Gear: Only tangle nets or pots may be employed. There is no sucbestion in the U.S.-Japanese agreement that the latter fishery will not cortinue to use tancle nets (of mesh size not less than 50 cms .), but the U. 5 . is apparently planning to push for the gradual discontinuance of this form of cear on the erounds that it is destructive of crabs. ${ }^{23}$

Quotas: The quotas for both Japanese and Soviet fisheries have been steadily lowered since 1964. The quotas (in numbers of cases, each contai-. ning 48 1/2-pound cans) are:

King, Crab	Javan	U.S.S.R.	Tarnex Crab	Japan	U.S.S.R.
1905, 1.706	15,000	115,000	---	---	-.-
1967, 1963	163,000	100,000		---	---
1959, 1970	35,000	52,000	1309, 1970	---	40,000
1971, 1972	37,500	12,300**	1971, 1972	14,600,000*	35,000

*Numbers of crabs, not cases.

* The oricinal aerement listed a Soviet quota of 23,000 cases of king crabi 严 was changed to the lower figure in a letter attached to and maie part of the agreement.

Restricted Areas: The most recent U.S.-Soviet acrecment defines the

[^5]allovable area ior Soviet kine crab fishine as "that portion of the coutheastern Berine sea lyiag seaward of the rine-mile zone contifuous to the territorial sea of the United States west or $160^{\circ} \mathrm{W}$. longituric." Ine agrecment with Japan states that: "IThe fisheries for king and tanner crab by nationals and vessels of Japan in the eastern Bering Sea will continue in and near the waters which have been flished historically by Japan;..." Although the wording of the agreement with Japan is vaeue, it is understood that Japanese vessels will not lish on the continental shelf adjacent to the nileutians on the northern side. Neither Japan nor the Soviet Union may Iish for kine crabs south of the Alaska Peninsula or 24

Restricted Areas (Pot Sanctuary): Both U.S.-Japenese and U.S.-Soviet agreements contain a provision restricting an area north and west of Unimak Island and the western Alaska Peninsula as an area where only pots way be used in king crab ilishine. (See map, p. 50.)
in 1966, with strong encouragenent from the U.S., and with that country acting as intermediary, a bilateral agreement was concluded between the Japanese and Soviet governments on the allocation of kine crab fishing rients between the two countries in the areas of the eastern Bering Sea to which both countries have access. Allocation was made through a series of alternating latitudinal corridors, beginning at the rorthern boundary of the pot sanctuary. The Japanese corridors are twelve miles in wiath, the Soviet corridors ten, with tho-mile-wide buifer zones between them. In the 1,06 abreement, the corridors were in efiect slid northward slichtly when the pot sanctuary was enlarced.

How well the ee arranements have worked in practice is not known. there have been clalms of violations oi dimerican lishlne waters by both Soviet and

[^6]Jupanese vesseln, but their number und degrec relative to total fishing effort. can only be gucssed at.

Clearly, the level of Soviet ${ }^{\text {fiching effort }}$ is declining sharply, relutive both to its own former level and to the level of Japanese fishlne. Quotas for both countries have been contiauously reduced since 1964. In contrast, the imerican king crab ilshery in the Bering Sea is under no quota restriction. The one-jcar experiment with a 7 -inch minimum size limit has been abandoned; the lareer vessels plan to move increasincly into the Derine Sea. 'There may be lone-run eirfects from these chances--in terms of increasing pressure on the Berine Sea stocks and in the changing relative sureacths of the three national fleets operating in the area.

Eastern Bering Sea King Crab Pot Sanctuary

Source: Map prepared Lofig, Bureau ot Comarcial Fisheries, Juneau, Alaska.

Conclusions

The king crab industry at present is in the anomalous condition of decrepit adolesence. From meager beginnings, it rose in about a decade to a position second only to the salmon fishery in commercial value in the Northwest. It is now overcapitalized for any sustainable level of catch that seems likely, and some biologists feel that present regulatory measures may drive the catch to even lower levels.

Ideally, economists and regulatory bodies attempting to formulate policies for a fishery work from a foundation of accepted biological information. Intelifgent policies are difficult to achieve even when there is agreement, function relating yield to effort and the reaction of a given stock to exploitation. There is at present apparertly no such consensus among biologists studying the king crab.

Support for any hypothesis about the effects of fishing effort on the population necessarily rests on evidence drawis from the comercial catch. Depending or how the evidence has been interpreted and what evidence was considered, widely varying conclusions have been reached. The large catches of the mid-1.760's have been attributed to unusually good recruitment (as evidenced by large numbers of small crabs in the catch and by increasing CPUE). Alternatively, increased ilshine etifort in terns of both numbers, size, and efficiency of vessels, and the shift in both locational and seasonal patterns oi fishire have been cited as causes.

Failure to consider and weifh all the variables could lad to some skewed resulcs. Suppose, for example, a ileet selectively fiched ior lurger crabs. This was actually the case in the early 1960 's, when a fleet composed largely of vessels incapable of fishing deeper waters in the winter morths concentrated on groups o: larger males mierating inshore to breed.

Apparent recruitment, a judeed by the resulting commercial catch, would be lower than if the lleet had worked the areas where smaller crabs appear to have concentrated at that time. Coriversely, a hieh level of recruitment coult be inierred irom a catch with a hich proportion of small crabs, when fishine patterus had shifted to areas where the smaller crabs predominated as the concentrations of larcer crabs were depleted. (The crabs tend naturally to segregate by both sex and size.) : In both of these cases urveighted evidence from the commerial catch would incorrectly reflect the real level of recruitment.

There are other unsettled questions. One is the issue of whether a single year-class of recruits (now defined to include crabs 145-163 ma. carapace leneth) may actually include crabs irom several different year-classes because of the crabs' variable molting rate. It has been sugecested that use of this derinition may result in overestimates of the size of an enterine year-class. Another issue centers about the lowered minimum legal size for the Bering Sea and western areas and the possibility or lowerine the biomass through adverse effects on the breedine population, as well as the prospect of sienif'icantly lower yield per recruit at the lower size limit.

So long as questions oi such importance remain unsettled, further biological research is a first requirement. The issues can only be resolved by biologists, but until some agreement is reached both economists and regulatory agericies qust work on shifting eround. ${ }^{1}$

The options available to a decisionmaker operatire, in the real worla of a fishirg industry are limited at best. Bioloeical conservation reeutations that are suctessiul oiten achicve their goal at the cost oi econonic efirciency. Thesc latter criteria are rarely concidered, or even clearly

[^7]understond, by wost reculatory bodies. Dart of the reason is that questions of economic efiliciency are not viewed in relation to the cocial wel:are problem of an lumobile labor rorce that ic endemic to overcrowded ifeheries. ${ }^{2}$ Another reason tor the rejection of econonlc efficiency as one of the criteria of a fishery's pertormance is that the concept of a fishery as a comoonproperty resource is so deeply imbedded, in custiom if not in law.

The theory of a commor-property resource predicts that, in the absence of property richts or some other method of makine explicit the costs or access to a natural resource, no seli-correctins forces exist. to nush an Industry based thereon in the direction of equilibrium with efficient use of capital and labor. Declining catches in the king crab industry may temporarily divert vessels to other fisheries; some obsolete or destroyed vessels may not be replaced or repaired. Stable or incressing catches, however, would again induce entry, again driving down returns to participants in the fishery. So long as entry to the fishery is unrestricted, this pattern is unlikely to chanje.

Any plan to place the king crab fishery on an efficient rootine (in the static microeconomic sense) must also deal with weliare aspecte which are inextricably linked to the economic problens. Such a plan, then, wust at least attempt to satisiy the following criteria:
(1) It should provide for the reduction of efrort (vessels, gear, min) to that level at which the marcinal value product of a resource in the iishery equals its marginal value product in other uses.

Proposels for reducing eftort in a fishery where many of the units (rar ticularly the smaller, less erificient ones) participate only on a part-ticis basis, turning to other risheries in the ori-seasons or when catches drop, are a form of partial equilibilum analysie. To the extent that vessels
$2_{\text {This }}$ is complicated in Alaska by beine in part an ethnic problem as well
leave one fishery only to enter another, efficiency may be achieved in one at the expense of (o ossible) more costlv disequilibrium elsewhere.
(2) There should be no uncompabated "losere" as a result of the reduction of effort. This is perhaps the most difilicult of the economic-social questions, since the "losers" are olten the immobile, relatively untrained participants in the fishery who have few alternative employment opportunities.
(3) Sirice normal catches may vary widely over time, quite apart from the effects of fishine efiort, optimal flect size is more probably a rance of capacity rather than a sincle level. A fleet large enough to take a so-called normal catch might be inadequate for a larger yield. Marginal costs of eeneratire intormation about size and location of potential catch are very high, however. There is a point at which the incremental returns from additional catch are outweighed by the increasing marcinal costs oi in-formation--at which the gain foregone irom iish uncaught would be less than the avoided costs O_{i} an inefficiently larie fleet.

Two solutions for rationalizing the fishery might apply to the king crab industry. One, oricinated in another context by Professor J. A. Crutchfield, involves direct limitation of fleet size through restrictive licensing. Brierly, it would provide that an optimum number of vessels be licensed to operate in the fishery, with the licenses transterrable as a right. Provision would be made for retirine inactive and obsolete vessels, with compensation to their owners. Afferential license fees or a tax per unit of catch would oxerate to encourage efficient operation, and to make-
$3_{\text {An area-wide solution, in the form or simultancous rationalization of a }}$ number of :leets, merits investiation. it would involve the constraints of providinf ior simultaneous anafor sequental harvesting oi various spe-
 vessels. However, the series oi bood "second-best" solutions likely to cmerge would be pucicrable to the present conaitions, or a piecomeal aioproach.
explicit to units in the fishery the real costs of catch. 'The rent on the scarce resource would then be captured by the reculatory acency rather than being dissipated through increacing mareinal costs to all purticipants, us unrestricted entry imples. The losers would be compensated irom fees. so collected.

A second pronosal is based on the concept of an auction of rights to fish. ${ }^{4}$ Assuming the establishment of an overall quota and area subquotas based on accurate biological data, rights to fish for part of the quota (in units of, say, several thousand pounds), woulid then be sold at auction. Fishing riehts so purchased would be transfierrable within the period covered by the right. At the end of that tima, whatever its length, all richts would revert to the regulatory authorlty to be auctioned off again.

It has been claimed that part of the problem or an immobile, underemployed labor force in a fishery is overstated--that such persons derive a utility fron their way o: life which renders alternative employments less desirable. The auction system could provide a test of the real utility of their "way or life"--the acount they would accent to five it up. All or part of an area quota of inshing richts could be reserveci to this element of the fishery, with the holders oi these reserved richts having the option to sell or retain and use them.

Auctions held annually would discourace exit, and would make the acguisition of appropriate gear and innuncing more diailicult and costly. On the other hand, too lone an interval between auctions could make necessary changes in size and area comesition of allowable catch more diricult to implement.

[^8]Under certain conditions, fishing-right owners (and Iicense-holders as well) could capture increasing rents during the periods between auctions or renewal periods for licenses. For example, the holder of either sort of right acquired before increased demand raised ex-vessel prices would capture the increased rents accruing during the remaining period of his right. Vere he to sell his rights, this increased value would be reflected in the purchase price as the capitalized value of the rents expected to accrue over time. Alternatively, the increased value of the richt would be reflected In higher bids at a subsequent auction, and the returns to the next pur- . chaser, cet. par., would be no more than competitive. Obviously, the reverse process would decrease the value of fishing right or license.

A rational bidder would offer an amount equal to his estimate of the value of access to the resource (i.e., a bid such that expected catch times expected price per pound minus fixed and variable costs 2). Real costs or access to the resource can thus be made explicit to the units in the fishery. Efficiency would be encouraged since, for given ex-vessel prices and fized costs, net returns will be the Ereater as costs per unit of catch are lowered.

This brief discussion must obviously leave out of consideration a number of technical and procedural problems which would occur in the implementation of such a plan. 5 it is presented as a proposal worth Iurther investigation and analysis, not as a complete outline.

5 For example, there are the questions of how the rents cuptured by the rerulatory agency micht be allocated--to regulutory costs, research, reti:enat of inactive or obsolete vessels, etc., and how inter-anction chances couid be accompliehed.

IVo mention is made of nossible erfects of the processine side of the industry. It is possible that unareinal processors mifht be at a aisudvan-
 vessels In order to cecure ample sunplies oi crav.

References

U.G. Dept. of Interior, Fish and Wildife Snrvice, Bureau oi Comercial Fisherics, armey milleti:1 10.200 (Weber and Miyahara, 1965).
-----, Fieheries statiatice of the Unitsd States, 1953-1967.
-----, Bureau of Comacrejal Fisheries, Hivision of Ecotomic Gesearch,

Alaska, State of . Separtment of rish and Game.

Informational Leailets Hos. 92, 106, 126, 135 (Powell), 137 (Jackson and Manthey), 347 (Rothschild, et al.).

Statistical Leaflets Nos. 3, 12, 14, 16, 13.
Leallet, No. 17 (prepared for Market News Service ofifice).
Fisherman's fievs, various issues for 1969, 1970.
Miller, M. Graham, "The Development of the King Crab Industry in Alaska up to $1904, "$ unpublished li.S. thesis, University oi Alaska, $1 \geqslant 65$.

North Pacific Fishing Vessel Owners Association, et al. vs. H . H. Noerenbere, Comissioner of Alasha Department oi Fish and Game, in U. S. District Court for District of Alaska (Complaint and other pleadines).

Paciric Fisherman, June 1965.
Pacific Fisharmn Yearbooks, 1753-1967; National Fisherman Yearbooks, 1963, lycy; actic achers mort, 1970.
U. S. - Japanese and U. S. - Soviet Agreements dealing with king crab fishery, lor the years 1904 (1965,1960), 1966 (1967, 1963), 1965 (1969, 1970), 1970 (1971, 1572).

Japanese-Sovict $3 i l a t e r a l$ igreement relating to allocation of fishine Erounds.

[^0]: *Grateful acknowledement $1 s$ made to Peter Elaridge of the College of Fisheries, whose seminar presentation and personal help have been invaluable in the preparation of this section and parts or the conclusions.

[^1]: ${ }^{3}$ It is tempting to suggest that this unfortunate ratio is a severe externality imposed on the crabs by the fishery.
 4Powe11, ADF\&G Information Leaflet No. 135, p. 17, and p. 51-12 below.

[^2]: ${ }^{25}$ Conetructio: costs are estimated to have risen at an annul rate oi u to 3 per cent over the pact ilve y:ars. Conversion costs rambed witely, irom
 None of the custs fiven incluass fear for the vessels.

[^3]: ＊ileures do not sum due to roundine．
 ＊＊The same discount ：icure as described above wis applied to the fieure for fuel atd bait．－i should be treated with caution．

[^4]: ${ }^{*}$ ：igures yo not sum，uite to rotranim．

[^5]: 23U.S. -Soviet and U.S. -Japanese acreements for the stated years. The statement ubout U.S. mhars to rush for outhwing the tangle net, on the basis of evidence of its destructiveress, was made by dr. Larkhas, Mational Miri:e Ficheries Scrvice, Seattle.

[^6]: Service, Juncali, ilasizu.

[^7]:

[^8]: ${ }^{4}$ Professor Arlon russine, Unive:sity oi Alaska, ic the originator of this proposed solution. Sines thers hus bees no oprocturty to discues it wist hla, what lollowes are my views o: how such a beoporal mifht hurk. Any si:as oi omission or commission the ambsis are mine alone.

