

# This document is discoverable and free to researchers across the globe due to the work of AgEcon Search. 

## Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

## NOT FOR QUOTATION



# The Resource Misallocation Costs of Inefficient <br> Regulation of the Pacific Coast Halibut <br> Industry: A Preliminary Discussion 

by

Herbert Mohring

File Manuscript No. 145

Apri1 1973

The Resource Misallocation Costs of Inefficient Regelation of the Facific Comst lalibut Industry: A Preliminary Discusaionts
by

Herbert Mohzing
*This is 0 rough draft of a preliminary final report on a research grant, No. 14-17-0007-993 from the U.S. Department of Comerce, Netional Marine Fioheries Service, to the University of Mnnesota. It is preliminary in the sense that it does not report on some research currently in process that will be included in the final draft. It is rough in that it probably contains factual errors, and fails either to describe accurately or, indeed, to acknowledge the related work of ochers. Coments and corrections would be greatly appractated.

It hac long been racogniged that a fiohory to which access io unrootricted vill inevitably be exploited inofficionely. This inefficioncy may involve ofther a "trong" level of output or "wrong" input combinations, or boch. Ao for output level, if demnd for a fishery's product is modest (in a sense to be defined more exactly in Section II) relative to ite productivo capacity, it vill be used to produce fish at too high a rate. That iso output from it will axpand to a leval at vhich the total coat of producing an addiciomal pound of elich exceed the value of that pound to those who conoune it. Ragarding input coanbinations, unrestricted exploitation can (but not necossarily will) lead to eituations in which tho costs incurred by fiohẹran excecd those at which the output levelo they achiove could have been produced. The avidence (cea Section III) strongly auggeato that auch a atate of affaire arioted in the Pacific balibut fioherios at least through the carly 1940®.

By ouitably restricting the behavior of fiohsmen, regulatory bodios could virtually aliminate both borto of inafficiency. The controls currantiy faposed by regulatory bodios undoubtedly reduced chece inofficionclas to nowe dograe. Unfortunately, homver, currant control devicas auceeed in redueing the inefficicney aosociated with unrestricted caploitation onily by introducing a cocond cet of inafficiencies. These controle-limitations on for expmle, bat size, aeason length, port curn-arcund tim, fiohing gens employed, and areas in which fish may be caught-auccoed by incroasing the corcs of catching any givon quantity of fish to a lovel greater than the miniran cose at which that quanticy can ba caught. ${ }^{2}$ In ascesoing the effoctivenocs of carrent

[^0]regulatory procedures, these latter incfficiencies together with the costs of regulation mast be balanced against the inefficiencics of unrestricted exploitations.

This, then, is the basic task to wiilch this study has been directed: determining the nature of optimal regulatory procedures for the Pacific halibut fisheries and dev:loping quantitative comparisons of the results that could be anticipated from applying them with those of (a) current regulatory procedures and (b) unresticicted exploitation. To this end, Section II discusses the biological process trat takes place in a fishery, the way in which the long run bio-economic equilibrium of that fishery can be inferred from this biological process, the nature of e:1 efficient regulatory procedure, and the resource costs resulting from inefficient or no regulation. Section III describes the procedures used to infer the functional forms and specific paramenter values for some of the relationshi:s required to quantify the inefficiencies discussed in Section III and the reiults of this work. Section IV deals with the future research necessary fully to compare the optimal regulation, current regulation, and no regulation alternatives. This additional work falls into two categories: some would rerfuire : very modest extension of the work described here-the algebraic aualysis and computer programing requiring at most a few additional weeks effort. Much of this work is either currently in process or could be undertaken before writing the final draft of this study. The second category involves analysis that would require considerably more substantial affort and therefore mast awist the availability of both more time and more money.

II long Run Egi, ilibrium of a Fishery and the Losses Involved in Its Inefficient

## Exploitation

For thri purpose at hand, the biological process that transpires in a fishery cas be sumarized by a simple differential equation:

$$
\begin{equation*}
d S / d t=g(S)-h(E, S) \tag{1}
\end{equation*}
$$

This equation sage that the instantaneous growth rate, ds/dt, of a seock of Eish, $S_{0}$ equals the rate at which fish would grow in the absence of esploitation, $\mathrm{E}(\mathrm{S})$, minus the rate at which thay are caught, $h(E, S)$. This later function indicates that the catch rate depends on both the effort, E, expended by fisherman and the atock of fish.

Two distinct lines of analysis can be identified in the blologicol 12terature regarding the nature of the growth function, $g(S)$. In one, the eumetric theory developed initially by Beverton and Holt, $S$ is a vector ( $S_{1}$, . . $S_{n}$ ) vhere $S_{i}$ is the weight or blomass of $i$ gear old fish. at least in its simpleat form, this theory assumes the grouth rate of $S_{i}$ to be a function only of 1 . That is, an age cohort has a percencage growth ratem-an own-rate of intereat--that is indopendent of the gize of aither the age cohort or of all other age cohorts. In the absence of exploitation, an age cohort'a ornsate of intorest equals the rate at which gurviviag Eish grow minus tha rate af which fish are loot through natural mortality. Encopt poosibly at the youngest atages, the cun of these two grouth ratoo diataiohes rith age and ultinately beconee negative when the slow rate of growth of surviving older Eleh 18 more than offect by their natural mortality.

In a sacond line of analysis associated with, Q.g. Schactfer, $S$ is ragazdad as a aingle number, the biomase of an antire floh populacion. In thio 1ina of analyais. the net grouth rate in a function of two offseting forces. On the one hand, the larger the biomang, the greater is the number of fioh breeding and growing. On the other hand, the greater the biomaos, the grentar is the presoure on the linited eapacier of tha fichory co oupport liec. thon tho biomaso is cmall, the fosmar forco dominateo and the growth rate is an ineroasimg function of S. Bayond sem point, hosovor, the expactey of tha Elohory to oupport
life comes to dominate and the growth rate declines with increases in biomass until some large population size- $M$ in subsequent analysis-the biomass no longer grows, i.e.g dS/dt is zero.

Both lines of reasoning seemed to have merit. Contrary to the implications of the Schaeffer approach, young fish do grow more rapidly than old fish. On the other hand, contrary "o the implications of the Beverton-Holt approach, the capacity of a fishivg bank to suatain life is limited. An initial goal of this study was to syncherize these two approaches. That is, it was hoped that it would prove poss!ble to develop and test a model in which growth depends on both the total blonass and the age distribution of the fish population. Unfortunately, data, time, and intellectual reatrictions made it impossible to achieve this goal. It proved possible to work only with variations on the basic Schasifer model.

For purposes of this section, it is useful to work only with long run equilibrium relationstips. That is, it is useful to consider fisheries in which the instantaner us catch rate equals the instantaneous natural growth rate and in which $d S / d t$.s therefore zero. In such an equilibrium, the following equalities hold:

$$
g(S)=h(E, S)=C
$$

where $C$ represfats the equilibrium catch rate. If $g(S)$ is a reasonably well behaved funci:on, the relationship $g(S)=C$ can be inverted to yield $S \equiv G(C)--$ a relationerip giving equilibrium stock as a function of equilibrium catch. ${ }^{2}$ Using thfs relationship to replace $S$ in $h(E, S)=C$ and again inverting yields

As wifi be developed below, the function $h$ is not, in general, single valued. Excer ${ }^{\text {a }}$ where $C$ takes a value equal the maximum sustained yield of a fishery, any given catch rate can be sustained at either of two stock levels. The aame corsideration applies to each of the additional relationships discussed in the reainder of this paragraph.
$\mathrm{B}=\mathrm{H}(\mathrm{C})$ - the affort leval required to yieid the' equilibrium catch. Finally, the equilibrium coot of catching $C$ pounds of fioh is a function, $f(\mathbb{E})$, of effort level. That is, $f(E)=f[B(C)] m P(C)$.

To illustrate these calculationc it is useful to employ tha oimploot formulation of equation (1) that has been analyzed in thio exiotablo acaciocical worls described in Section III:

$$
\begin{equation*}
d S / d t=G(M-S)-q \mathbb{S} S \tag{2}
\end{equation*}
$$

In this expression $G$ is a growth rate coefficient, $M$ is the maximam oustainable atock of fish-the biorass wich the Eishery vould appraach if laft unarploitaiand $q$ to a "catchability cocificient"-wthe fraction of the aristing fioh stock that a single unit of effort would catch. It should be notod that tho catch rate Eunction in equation (2) irpplies what could bo tertad "inscantoncous conotane recurns to acale for flshing effort." That is, it fraplies that tha porcencege o: the existing fish atock that would be caught by an additional unit of offort is independent of the level at thich effort is applied. Instantamers dimenching teturns to effort-a atate of affaire in which auccesgive equal insramanta to the effort level would yiald successively asslier incremente to total eareho right cema a more plausible asmuption. The poscible exiocance of dionnishdes returns to cffioft is one of the phenomens tested in the statistical analyois doccribed in Section III.

If equation (2) does describe the functioning of a fishery, thon in equilibrim:

$$
\begin{equation*}
C=G(M-S)=G E S \tag{3}
\end{equation*}
$$

Differcnefacing $C$ with respect to 8 and astting the result equal to wio reveslo that the wastime equilibriug yisid-wore commonly tarmed the masiman castainad yicld-is achieved when capital $S$. M/2. Subetuting M/2 for $S$ in $C=G(M-8) 8$ Fiolds $\cos ^{2} / 4$ as the razimun eustainable glald. $C$ Eax ${ }^{\circ}$

Solving $=G(M-S) S$ to determine $S$ as a function of equlibrium catch yields:

$$
\begin{equation*}
S=M / 2=\left(M^{2}-4 C / G\right)^{1 / 2} / 2 \tag{4}
\end{equation*}
$$

This relationship can be simplified by expreasing equlibriun catch as a fraction, a of maximum sustained yield. Substituting $C=a G y^{2} / 4$ into equation (4) yield

$$
\begin{equation*}
S=\left[1 \pm(1-a)^{1 / 2}\right] M / 2 \tag{5}
\end{equation*}
$$

Equation (4) and (5) indicate that, except for the maximum sustained yield, any level of output can be achieved at either of two stock levels. One of these is greater and the other less than that which would maximize the gustained yisld.

If $C=a C_{\text {max }}=q E S$ the effort required to catch $C$ pounds of fish a year is $E=a C_{\text {man }} / q S$. That 18 , required effort is inversely proportional to equilibrium stoch. Thase, the effort required to produce aC ${ }_{\text {max }}$ pounds of fish a year would be smaller at the higher of the two equilibrium stock levals given by equacions (4) and (5). Spacifically, substituting acmax $=a \max ^{2} / 4$ and equation (5) into $E=a C_{\text {mas }} / q S$ Fields:

$$
\begin{equation*}
E=a G M /\left[2 q\left(1+(1-a)^{1 / 2}\right)\right] \tag{6a}
\end{equation*}
$$

and

$$
\begin{equation*}
E=a G M /\left[2 q\left(1-(1-a)^{1 / 2}\right)\right] \tag{6b}
\end{equation*}
$$

as the required effort levels when the blomass is respectively greater than and less than $M / 2$. If effort is costly, it would clearly be desirable to produce any given quantity as fish with the least possible effort. Production of $a_{\text {max }}$ pounds of fish at the affort level given by equation (6b) would be inefficient. Indead, it can be shown ${ }^{3}$ that, if a fishery is in long run equilibrium under the conditiona implied by equation (6b), a decrease in

[^1]the equilibrium effort level would lead to an increase in equilibrium yield. That.is, under equation (6b) cost conditions, the marginal product of fishing effort is negative.

Suppose that effort can be regarded as a composite input to fishing that is supplied by a competetive industry at a price that is independent of the rate at which fishing activity takes place. Then the units in which effort and $q$ are measured can be specified so that one unit; of effort costs \$1. With units specified in this fashion, equation (6a) alad (6b) give the total coste in long run equilibrium of catching $a C_{\text {max }}$ fish par year when, to repeat the equilibrium stock of fish is respectively grea'sar than less than $1 / 2$. Division of equations $6 \mathrm{by} \mathrm{aC}_{\text {max }}=\mathrm{aGm}^{2} / 4$ yiells the average cost of $a$ pound of fish as a function of output level while differentiation of (6a) respect to $\mathrm{aC}_{\text {max }}$ ylelds the associated marginal cost:

Efficient average cost $=A C=2 /\left[q M\left(1 *(1-a)^{1 / 2}\right)\right]$
Inefficient average cost $=A C^{\prime}=2 /\left[q M\left(1-(1-a)^{1 / 2}\right)\right]$
Efficiant marginal cost = KC

$$
\begin{equation*}
=A C+a /\left[q M\left(1+(1-a)^{1 / 2}\right)^{2}(1-a)^{1 / 2}\right] \tag{8}
\end{equation*}
$$

These sehedules are listed in Table 1 art are ploted in Figure I. The data plotted in Figure I form the basis $\operatorname{tir}$ Figures II-vI albeit with changed values on the horizontal and verticala azes.

Suppose the fish demand schẹdule is $A B C D_{1}$ as shown in Figure II. Efficiency would then dictate producing $O X$ jorads of flah a year- $70 \%$ of maximum sustainable pield. At this output level the marginal cost of the effort required to produce a pound of fish equals be price a marginal consumer would be willing to pay for it. At an putput of $0 .{ }^{\circ} \mathrm{C}$.ax , the marginal and average costs of fish are respectively $\$ 1.82 / \mathrm{qM}$ and $\$ 1 \mathrm{q} / \mathrm{qM}$. The authority responsible for the fishery could induce Eishermen to atriy the effort level


FIGURE 1


Table 1: gM Timea Average and Margianl Costs of Fish at Alternative Ratios of Actual Catch (c) to Maximum Sugtained Yields ( $\mathrm{C}_{\text {max }}$ )

| c/ $C_{\text {zaxx }}$ | gM Times |  |  |
| :---: | :---: | :---: | :---: |
|  | $\begin{gathered} \text { Efficient } \\ A C \end{gathered}$ | $\begin{aligned} & \text { Inefficient } \\ & A C \end{aligned}$ | Efficient MC |
| 0 | \$1.00 | $\infty$ | \$1.00 |
| 0.1 | 1.03 | \$40.00 | 1.06 |
| 0.2 | 1.06 | 18.20 | 1.12 |
| 0.3 | 1.09 | 12.12 | 1.20 |
| 0.4 | 1.13 | 8.70 | 1.29 |
| 0.5 | 1.17 | 6.83 | 1.41 |
| 0.6 | 1.23 | 5.40 | 1.59 |
| 0.7 | 1.29 | 4.42 | 1.82 |
| 0.8 | 1.38 | 3.64 | 2.23 |
| 0.9 | 1.53 | 2.90 | 3.17 |
| 0.95 | 1.64 | 2.52 | 4.48 |
| 1.0 | 2.00 | 2.00 | $\infty$ |

necessary to produce this output level in a variety of ways. However, the most straightforward technique would be to impose a tax of $\mathrm{BE}=\$ 0.53 / \mathrm{qM}$ per pound of fish caught.

Efficient utilization of the fishery under these circumstances vould generate a net benefit to society with a dollar value equal to the area ARF. This area can be broken into two parts: first is a consumer's aurplus, ABP which equals the sum over all OX pounds of fish of the difference between the price some consumer would be willing to pay for each pound and the price, 0 p he actually does pay for that pound. Second is that, for a more normal production process ${ }^{4}$ would be termed a rent or producer's surplus PBF. It equals the difference between the total revenue, $O P B X$, received from the sale of 0.7 $C_{\operatorname{maz}}$ pounds of fish and the cost, OFBX(mOMCX) of the fishing effort raquired for annual production of $0.7 \mathrm{C}_{\text {max }}$ pounds of fish. $A \in$ in any other production process, this rent/producer's surplus would reflect the value of the marginal product of a fized input-in this case, the limitad capacity of the fishery to grow fish. If annual output is restricted to $0 X$ pounds through the imposition of a tar, this rent would accrue in the form of tass collcetions entirely to the regulatory authority and hence the oociecy in whose interests it presumably operates.

A brief asida is in oxder regarding the way in which the conclusions reached in the preceding paragraphs would ba affected if, contrary to the ascumptions underlying figure I fioh growth rates depend on their age diatribution as well as their total reight. As Turvey and perhaps others have noted, if the own-rate of interest of a fish decreases with increases in ita age, a tan based simply on pounds of fish caught mould not, in general, rasult in

[^2]efficient exploitation of a fishery. Rather, efficiency would require additional incentives to avoid caking amall, high growth rate fish. Turvey suggests the appropriate incentives to be restrictions on fishing technology such as limf.tetions on hook or mesh size. Such restrictions undoubtedly would do the erick. Lowzver, a tax schedule under which the rate per pound for a fish is inversely related to its aize would, at least in principle, be perhaps even more effective.

Reverting again to Fifure $1 I_{\text {, suppose that no restrictions are imposed on }}$ the exploitation of the fialrefy. Output would then expand to $O Y=0,8 C_{\text {max }}$ a year. At this level, the sost incurged in catciaing a pound of fish, $\$ 1.38 / \mathrm{qM}$, equals the market price for Eish. At this outpul: level, the consumer ${ }^{\text {'s }}$ surplus generated by the fishery ircresses from ABP to ASG. However, this increase in consumer benefit is more thim offset by the facs that equilibrium at of pounds per sear yields zero rent et the fishery.

To put the matcer diffe sently, expangion of output by $0.1 C_{\text {max }}$ from OX 50 OF ylelds Elsh on whili consureers place an aggregate value of XBCY. Howsuer, the additional cost: incurred in producing theses fish equals XBDY. Thus, the cost of output exminsion exceeds the resulein! benefits-the decrease In fishery rent exceeds the increase in consuraer surplus.-by an anount equal tho area BCD in Figure II. lo suggest che orders of maguitude tnvolved, as demsind curve $A B C D_{1}$ is drawn $B C D$ has an area of approximately $0.043 C_{m a x} / q M$. The market value of fich (wich equals the costs incurred by fishermen) OGCY at an output of 0 per year. is $1.38 C_{\text {max }}$ fqM. Hence, the loss involved in increasing from output fror OX to OY amount to $0.043 / 1.38$ or $3.1 \%$ of total outlays on fish in the irfeticient equilibrium.

Suppose, now, that 5 ie demand for fish is as shown in Figure III, GiJd ${ }_{2}{ }^{\circ}$ Efficiency vould then dbeate an output level of $02=0,92 C_{m a x}^{\circ}$ As with the

efficient equilibrium associated with demand schedule $A B C D_{1}$ in Figure II, $0 Z$ is the output level at which demand intersects marginal costs. At this output level, the marginal and average costs per pound of fish are respectively $\$ 3.47 / \mathrm{gM}$ and $\$ 1.59 / \mathrm{gMM}$. A tax of $\$ 1.88 / \mathrm{qM}$ per pound would therefore be required to induce fishermen to supply the efficient effort level. In ehis equilibriumo the net beneftt of the fishery to society would be the area FJG in Figure III. As before, this benefit can be broken into two parte. First is a consumer's surpius of GJQ; second is a rent or producer's surplus of $F J Q$ ( $=Q J K N$ ).

In the absence of restriction:3 on entry, the fishery would reach equilibrium at H in Figure III. As when demard schedule $\mathrm{ABCD}_{1}$ in Figure II was assumed to be in effect, equilibriwm at H ifsolved equality of che cost incurred in pro-
 circumstances, the only benefit lerived from exploitation of the fishery would be GRr, the consumer's aurplus f,emerated when $O Y$ pounds if fish are consumed at a price of $\mathrm{YH}=\$ 3.64 / \mathrm{qM}$ per pound.

The difference betseen the benefics reaulting from equtlibrium at H and thoge posaible with cifichint exploitation of the fishery is the area
 comsumer surplus, LHJQ, resuring from consumption of 0 Y pounce of fish at $\$ 3.64 / \mathrm{qM}$ per pound rather chsis OZ pounds at $\$ 3.47 / \mathrm{qM}$. Second is the loss in rent on the flshery, QJF (EQTRA).

The 1038 associated w?:1h equilibrium at $H$ can be interpreteif in an alternative fashion. The totsl cost of producing of pounds of firh can be interpreted as 07 times he average cost associated with that outp:at level or altarnacively as the area between 0 and $Y$ under the marginal coet of producing schedule. This being the ease, area OGCY in Figure III equals area OPDY. Hence, area LiJF-fisk logs associaced with production at: E rather than at J-m
is equal to area LHJDCG. This latter area can be broken into two parts: first is LHCG, the additional cost of the fishing effort required to produce of pounds of fish inefficiently sather than efficiently. The second part is the area HJD. It equals the additional benefit that could be derived from increase in fish output from $O Y$ to $O Z$ if these two output levels were produced at minimum cost. To put the matter in different terms, LHCG is the loss associated wieh using an inefficient combination of inputs (i.e., an inefficient combination of fioh stock and effort) while $H J D$ is the loss resulting from producing an inefficient level of output.

This latter interpretation of the $108 s$ associated with producing at $H$ rather than at $J$ in Figure III can be used to interpret the $108 s$ resulting from a third possible type of equilibrium depicted in Figure IV. In this Figure, an efficient allocation of resources will require producing 0 X pounds of fish at a marginal cost of BX. Total beacfits from exploiting the fishery would then equal the area ABF. With unrestricted entry, the fibhery would be in equilibrium at C. The loas involved in operating at thic equilibrium rather than at B can be furarprated as the sum of arcas HCDG and BCJ. The lacter area is the loas resulting from producing on output level (OY) different from that (OX) at which price equels merginal cost. Area HCDG ts the lobs resuiting from producing this (inefficient) equilibrium output at a cost (CY) greater than that (DY) at which it could be produced.

To sumarize briefly, unrestricted acceso to a Eishory can lead to inefficient seource allocation of two sorts. ${ }^{5}$ First, use of reatricted access will almost certainly result in an inefficient output rate, 1.e., an output rate different from that at which, givan miniman cost production price equols

[^3]

Figure 4
marginal cost. Second, given interrelationships betweon demand and average cost schedules of the sort depicted in Figures III and IV, unrestaicted acceas can result in wastaful production of whatever level of output mertat forces gettle upon. That is, urestricted entry can result in the state of affaire in which it would be possible to produce whatever level of outpat is cettied upon at (perbapa oubstantially) lower costa than those wich are actually incurred.

Any of a variety of controls could ba adopled to eliminate sheco inafficiencies. At least conceptually, the oimpleat contral devico would be to lovy a tas equal to the difference botwaen the rargizal and the average cost of fish at that output rate af which demand and meginal coot schedular intersect. If the growth rate of a fish population depend! only on its bicmess, the appropriate taz per pound would be independent of the aize of fish caught. If the population's growth rate depende on ite nti distribution as well as its biomases the appropriate tasirer pounds eould mry invergely uith aise of fieh.

Regulatory bedies do, of rourse, control exceoc to many fishorios. Howaver, there is no fishery (at least no fiehery of whicil an awser) in which controls sale the form of tases on outpist. Rather, undor cine eypical control oyotem, output is regulated by allowisg free accese to ing Eiehing voosel that abides by reacrietsons on euch things aus vasel and crew size, sear employed, longeh of season, area fished, and port turn-around tire. Bscept for those gear restrictions thich serve effiniently to limit, catch to alow groaing aga groups, all of these control devices are effective is rostricting output only to tho estant that they gaise the long run avarage sose of cieching any givon quantity of Eleh. Isposition of season length limitationo, for exipic, reoule in cicher vassels, gear, and crews ajending more idlo tima in poi, then they ochervice would or in the leas apselalised vascelo and duplicate ave of gear maccepary co exploit different fieh populacions during the open scasons or
them.
The geometry of Figures II-IV can be used to suggest the effects of cost lacreasing restrictions on the beuefits derived from fishery exploitation. Suppose, Efrat, chat a fishery is an inicial equilibrium with uncestricted entry of the gort depicted in Figure II. Specifically, annual catch is of pounds in figure $V$ while $0 Z$ is the catch at which marginal cost and demsad sckedules intersect. In this equilibrium, the loss due to over-exploitation of the bank of the area ACE. Suppose that a cost increasing restriction is imposed on fishernen that leads to a new equilibrium output of $O X$ and equilibrium costs per pound of $X G$. At this new equilibrium, resources yalued af XbCy are releaned for production elsewhere in the economy. Since the fich produced by these rescurces are valued at only XGEY, the output reduction ylelds a saving of bCEG. It docs zo, however, only at the expense of making the totml cost of producing $0 X$ pounds of fish per year HGFJ greater than the minimur coat, OSFI, at which thia quantity of figh could be produced. In Figure $V_{0}$ BGEG is cleasly sariler than JGFJ. Imposition of che reatriction sherefore would result in ant loss. In spacific gituations, cost and demand elasticities could be such that the counterpart of BCEG would exceed that of
 V takse no account of the costs incurred by the regulatory body in imposing the restrictions fivolved in reductag output from of to $O X$. These costs could wall aliminate whatever gain Figure $V$ would suggest to result in a specific situmeion.

In brief, if the equilibrium associated with unrestricted entry to a Eishory ia the sort depleted in Figures II and V-an equilibsium in which the oaly lose involted is thet associsted with producing an output in excess of that which would aquate demand and marginal cost-and if the only way in


FIGURE 5
which output can be reduced is to impose cost increasing restrictions on fishermen, then it seems unlikely that the gains to be derived from restrictions would be morth the costs of imposing them.

Ir seems safe to assert, however, that it is equilibria of the sort depicted in Figures III and IV that typically if not variably evoke fishery regulation, not equilibria like those in Figures II and V. That is, it seems safe to assert that regulation is typleally evoked when, in ita absence, the equilibriva effort level wouli be one in which the marginal product of effort is negative. In such circumstances, although cose increasing restrictiona are inevitably less beneficia." than other controls would be, they almost certainly yield greater benefiles to fishery exploitation than would eventuate with unreatricted expioitation.

Figure VI depicts what aerms to be the sypical situation. In the absence of controls, equilibrivm in a flechery would involve producing $O X$ pound of fish a year at a cost of BX per pound. Exploitation at this level would yield a net benefit of $A B H_{\text {, }}$ the consumer's gurplus generated by $O X$ pounds of fish. Imposition of a tax per rovad of GE would lead to efficient exploitation of the fighery and genaract a net bagafic of ACF. Being unable to levy such a car, the regulatory bory in control of the Eishery imposes restrictions designed to marimize the sustained sield. is successful in this aim, output would increase to $O Z$ at a cost of $D Z$ par pouad. This cost per pound is $D G$ greater than the minimum cost, $C$, at which the inximum sustained gield could be produced. Nevertheless, equi..ibrium at D does gemerate net benefits to exploiteation of the fishery equal to ABJ-man amount equsl to HDBJ greater than the benefits sesulting from unreatricted access.


FIGURE 6

II Statistical Estimation of Growth and Catcli Relationship in the Pacific
Halibut Fishery

The assumption that a fishery is a long-xun equilibrium is a convenient device for drawing long-run cost curves and describing the losses that result from failing to exploit it efficiently. The assumption that observations are drawn from aystems in long-run equilibrium is common-perhapo almost univeroalin otatigtical analyaes of fishery behavior. Although common, such an aosumption seems highly auspect in attempting to estimate the relationship discuocod In Section II from data on the operations of real world fisheries.

This section first develops a general procedure which doas not require assuming long-run equilibxium for astimating the functionsl formo and opecific parameter values of the differential equation

$$
\begin{equation*}
d S / d t=g(S)-h(E, S) \tag{1}
\end{equation*}
$$

which formed the basis of the cost functions discussed in Section II. ${ }^{6}$ It then describes the results of applying this procedure to data from the Pacific halibut fiaheries. Since the data required-annual serise on catch, effort, and length of season-are modest, the procedure may prove uccful in analyming other fisheries.

To provide an overview of the procedure, suppose, for the moment, that exploitation of a fishery is allowed only for an instant of time on January 1st of each year. Immediately prior to the beginning of the season in year $i_{\text {, }}$

[^4]the stock of fish in each square mile of the fishery is $S_{1}$ where $S_{1}$ is, unforcunately, unknown. The fraction of the stock in any given square mile caught In year it is a function, $F\left(E_{i}\right)$ of the effort, $E_{i}$, expended on the given square mille by the fishing fleet during year 1 . That is,
\[

$$
\begin{equation*}
c_{i}=F\left(E_{i}\right) S_{i} \tag{9}
\end{equation*}
$$

\]

where $C_{1}$ is catch per square mile in year 1 . The stock of fish in the square mile under examination at the end of the instantaneous fishing season in year $i$ is $S_{i}-C_{i}$. Berween the end of this season and the beginning of the season in year $x+1$, the stock of fish grows. Specifically,

$$
\begin{equation*}
S_{i+1}=G\left(S_{i}-C_{i}\right) \tag{10}
\end{equation*}
$$

In this system, $C_{i}$ and $E_{i}$-or rather $C_{i}$ and $E_{i}$ times the number of square miles in the fishery--sre obzerved. However, neither $S_{i}$ nor the specific functional forms of $F$ and $G$ are known. Nevertheless, with luck, equations (9) and (10) can be employed to infer which of several alternative specifications of the functional forms and specific parameter values of $F$ and $G$ are most nearly compatible wich the available catch and effort data.

Assume a specific functional form and parameter values for $F$. Then an estimate, $S_{i} \#$, of the pre-season stock in year $i$ can be obtained from equation (9):

$$
\begin{equation*}
S_{i} *=C_{i} / F\left(E_{i}\right) \tag{11}
\end{equation*}
$$

Assume also a functional form for $G$ 。 Substituting $S_{i} *$ for $S_{i}$ in equation (2) yields an estimate, $S_{i+1}{ }^{* *}$, of the pre-season stock in year $i+1$ :

$$
\begin{equation*}
S_{i+1}{ }^{* *}=G\left(S_{i}^{*}-C_{i}\right) \tag{12}
\end{equation*}
$$

Inserting $E_{i+1}$ and the estimate of $S_{1+1}$ ** obtained from equation (12) into equation (9) yields a prediction of catch in year $i+I_{0} C_{i+1}{ }^{*}$, which can be compared with the actual catch in that year, $C_{i+1}$. The objective of the game ${ }_{0}$ then, is to select those functional forms and specific parameter values for

F and G vhich minimize,

$$
\begin{equation*}
\sum\left(c_{i} n-c_{i}\right)^{2} \tag{13}
\end{equation*}
$$

To elaborate on this procedure, the instantancous rate, $\mathrm{dS} / \mathrm{dt}$, at which the weight, $S$, of the fish population in a square mile of a fishery grows dapends, among other things, on attributes of its environsent, its current vieight, ${ }^{7}$ and the rate at which its members are caught. The rate par oquare mile at which fish are caught depends on the rate par aquare mile at which effort, $B$, is expended by fishing boats and on the stock of fish. Thus, to repeat:

$$
\begin{equation*}
d S / d t=g(S)-h(E, S) \tag{1}
\end{equation*}
$$

The available data provide information only on total fishing offort and total catch for the entire seasons (1.e., $\int E$ dt and $\int h \mathrm{dt}$ ), not on inotantaneous affort or catch rates. In what follows, the value of E in each fishing soason will therefore be treated as a constant aqual to the average affort rate:

$$
E=\int E \mathrm{dt} / \mathrm{t}^{\star}
$$

uhere th is the length of the season. Also, in each of the spocific exmaploo. to be dealt with, the ingtantaneous effort rate par equare nile uill be aosumed to determine the proportion of the current stock in oquare wile that is caught. That $i s, h(E, S)$ will be assumed to equal $f(E) S$. Making thio subbtitution in equation (1), rearranging terms, and integrating gicida:

$$
\begin{equation*}
\int[g(S)-f(B) S]^{-1} d S=t+k \tag{16}
\end{equation*}
$$

wherc $k$ is a constant of integration.
If $g(S)$ is a "nice" function, the integral in equation (14) can be cevaluated and the equation can be rearranged to yield, bay,

$$
\begin{equation*}
S=S(f(E), t+l C) \tag{15}
\end{equation*}
$$

[^5]In turn, equation (15) call be sulystituted in i

$$
\begin{equation*}
C=\int_{0}^{t^{*}} f(E) S d t=f(E) \int_{0}^{t} s d t \tag{16}
\end{equation*}
$$

where th is the length of the fighing season and $C$ is the total catch from a aquare mile of fiskery. $J f S=A(f(E), t+k)$ is also a nice function, the Integral in equation (16) can be ppsiuated and used to determine the constant of integration in quation (i5). (In ingerting this value of $k$ and sertigg $t$ equal to 0 , the estimated leval of tha stock of Eish at the beginning of the fishing season results. This estirate is the equivalent of that given by equation (11).

Fusthermore, stcting t equel to th in equation (11) yieids that estimated Ievel of the Elshing gtock at the sud of the fizhing aeason. This end of season scock level san be used so determine the constant of integration in the solution to equrtion (14) when $\mathrm{f}(\mathrm{E})$ is get equal to 0 . The resulting expression can then be Beed to extrapolate the gtcik so the beginuing of the following Beabou. This extrapolacion iz the equivalent of that given by equation (12). Final:y, fhis estimete of fishing stocl at the beginning of the followiug season soctea to decemine the constant of insegration, $k$, when the level of effort correspoading to the following seaso: ta inserted in equation (16). The reault 18 an estimate of catch in the followig year based oneffort in that year and catch and effort in tine preceding year.

Two opposing forces eppear sc affe:s the fincantaneous growch rates of unerplolted fish populationg. Un the ow hand, tho greater the population, the more fish there are to breed nad to grow, On the othre hand, the larger the population, the greacex is comperition for food and posaibls other amenities of the environment. At low prpulations, the first of thest forces dominates. The instantaneous growth rate increases aibeic at a decreasing rate with

Increases in the Eish atock. Beyond soms critical otock levol, howisoor, the occond force comos to dominate. The instantancous grouth rate daclinaa with further increases in the stock. Soveral ralationshipo arhibiting thio property have been used in the ifterature on this subjoct. The one co which most attontion has so far been davoted in this atudy in:

$$
\begin{equation*}
\mathrm{dS} / \mathrm{dE}=\mathrm{G}(\mathrm{M}-\mathrm{S}) \mathrm{S}-\mathrm{B} \tag{17}
\end{equation*}
$$

of B oquals goro in equation (17), H is the maximm suatainabla Eloh otocle. Having B equal to zero implios that the population of a fiohary will grow ao 1ong as it contains at least two fish of oppositc oaras. Undar auch cifcurotancos, it rould be impossible to fioh the population to eritinction. Hich B equal to zero, however, there is some miniman otock below which the fioh population uill not reproduce itself. Hith B groatar than saro, unroateiceod cosploitation of a flahery could result in comploto dootruction of ito population:

$$
\begin{equation*}
\mathrm{dC} / \mathrm{dt}=\mathrm{qBS} \tag{18a}
\end{equation*}
$$

The constant of proportionality in this expression, $q$, io sometions rororrod to as the "catchability coefficient."

It cooss claar that instantaneous constant roturns to acalo could ene pasd for all offort levals. If it did, an affort rata of $1 / 4$ yould rooult in fnotantancous oblitoration of a fish atock. Ingtantancoun conntant returas to offose rould claarly not hold if, at eone instant of tima a represontative fioh io sora botwan biting a hook from ona boat and biting a hook for anothar. That Eioharion cvar gat so crowded that this condition prevallo cooms implauoible. Seill, tho poocibility of ingtantancous disinishing roturns cooss vorth toleing into account. Tha olmploot way of doing so would seam to ba:

$$
\begin{equation*}
d C / d t=q E^{b} S \tag{18b}
\end{equation*}
$$

vhara $0<b \leq$
Satting $B$ s 0 in equstion (17) and donoting tho ight hond oldo of camation (18b) by $f(E) S=E S$, the solution to equation (14) can be vritten:

$$
\begin{equation*}
S(t) m H /[G+K \exp (-H t)] \tag{19}
\end{equation*}
$$

where $S(E)$ is fish stock at time $t, H=G M-f_{, ~} K$ is a transformation of the constant of integration, and $\exp (-H t)$ denotes $e^{-H t}$ where $e$ is the base of the natural logarithm, 2.71828. . . Inserting equation (19) into equation (16) and using the solucion to eliminate $K$ from equation (19) yields

$$
\begin{equation*}
S *=S(t *)=H[1-\exp (-G C / E)] /[G(1-\exp (-H t *))] \tag{20}
\end{equation*}
$$

where $S^{\boldsymbol{t}}$ denotes stock at the end of the fishing season during year 1 and $C$ is total catch during that year. betcing $t=t * f=0$ in equation (19) and solving for the constanc of integration yields

$$
\begin{equation*}
E_{*}^{*}=G\left(M / S^{*}-1\right) \tag{21}
\end{equation*}
$$

Substituting equation (21) for $K$ in equation (19) and letting thre denote the interval between the end of the fishing season in yaar 1 and the beginming of the geason in year $1+1$ yields

$$
\begin{equation*}
S *=S\left(t^{*} \sharp\right)=M /\left[1+K * \exp \left(-G M t^{*} \hbar\right)\right] \tag{22}
\end{equation*}
$$

as the fish gtock at the beginaing of year $1+1$. Again setting $t$ equal to zero in equation (19) and solving for the constant of integration gields

$$
\begin{equation*}
\text { Kita }: ~(H-G S=4) / S 太 \% \tag{23}
\end{equation*}
$$

where $H$ reflects the effort level during year $1+1$. The solution to equation (16) can be written:

$$
\begin{equation*}
C=(I / G) \ln \left[\left(G \operatorname{est}\left(H t^{*}\right)+K\right) /(G+K)\right] \tag{24}
\end{equation*}
$$

where In[] denotes the natural logarithm of [ ] On inserting in this expression, equation (23) for $K$, the affort level in year $1+1$ in $f$ and $H$, and the length of seabon in year $1+1$ for $c *$ a prediction of catch in that year reaulta.

With $f(E)$ set equal to $q E$, the gystem defined in the preceding paragraph has three paramaters: a growth rate coefficient (G), the marimum poscibla stock (M), and the catchablilty coefficient (q). In using gtandard non-linear
least oquares regression programs, initial approrimations mat be provided for the paramater values being estimated. Spelling out the procedure used in the case at hand may prove of value to someone intereated in applying the procedure employed in this study to estimate relationships for other fisheries.
harimieing oustained fields seems to be a comon goal of fishery regulatory bodies. If a fishery is in a long run - maximum custained yield equilibrium, the folloring equalities hold (oee Section II):

$$
\begin{equation*}
c=q E M / 2=G M^{2} / 4 \tag{25}
\end{equation*}
$$

Inspection of the data (see Table 2 below) suggests that the onnusl cacch and effort derias werc reasonably stable between 1952 and 1968, the loot yoar for which data were available. Inserting average annual valueo during this pariod for $C$ and $E$ in equations (25) provides two equations. To find the nocoosary third equation, Tominson and Pella indicate that tuna, a fact groving fioh, boe an own-rate of interest somewhat in excess of $100 \%$ a year. Halibut apparantly are a slow growing fish. An annual grouth rato of 332 thoroforo seenad as reasonable an assumption as other. If the total annual grouth of the fish otock in a long-run maximum sustainad gield equilibrium io $\mathrm{CA}^{2} / 4$, ito parcentage growth is 100GM/2. The third equation ueed to find initial approztoations, then, was $33=100 \mathrm{Gm} / 2$.

Table 2 contains the basic data employed in the analyoio. Theac are catch, offort, length of season, and interval betweon oeasons for cach of the thece fishery areas defined by the International Pacific Ralibut Comiooion (IPHC) in which fishing occurred during aach of tho yoars 1929-68. Area boundarice have changed slightly from time to time. Bosically, hevoror, the Aras 2 data cover the Pacific coast from Willapa Bay, Haohington to Cape Sponcor, Aleska. Area 3A extende from Cape Spencer to tho Shamin Iolanda. Arca 35 rasches from theee islands to $175^{\circ}$ east longitudo.


|  | Aree 2 |  |  |  | Area Sa |  |  |  | APEa 28 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Effort | Catch |  | T＊ | Effort | Cstch | \％ | T＋ | f．ffors | Catat | T＊ | Ten |
| 1929 | 620.3 | 24.565 | 37. | 105 | 404.7 | 2；0030 | 273 | 133 | CS， 2 | 2.076 | 273 | 105 |
| 1.730 | 618.1 | 21．36 | 200 | 194 | 370.5 | 24．707 | 260 | 100 | 30.8 | 2．475 | 260 | ios |
| 193： | 535.3 | 21.627 | 242 | 103 | 271．7 | 14．367 | 244 | 108 | 33.8 | $2.59 \%$ | 24.4 | 10？ |
| 1932 | 446.0 | 21.988 | $2 \times 9$ | 191 | 254.3 | 20.022 | 258． | 93 | $1 \mathrm{i}=3$ | 0.896 | $25 \%$ | 93 |
| 1953 | 437.5 | 22.530 | 206 | 16 ？ | 276 | 23.1897 | 268 | 125 | 503 | 2 s 4.10 | 268 | 185 |
| 8934 | 410.9 | 22.638 | 172． | 224 | 269.8 | 23．097 | 241. | －155 | 24.2 | 0.198 | 241 | 135 |
| 1935 | 305.7 | 22．017 | 159 | 198 | 239.5 | 2？．408 | 270. | 80 | 1．4 | 0.143 | 280． | 60 |
| 1936 | 458.8 | 24.911 | 140 | 211 | 2.43 .4 | 2．3．300 | 235 | 132 | 1．9 | 0.147 | 233. | 132 |
| 1937 | 430.9 | 20.024 | 13\％ | 246 | 208．5 | 23．182 | 210 | 163 | 2.2 | O． $0^{\text {in }}$ | 218． | 105 |
| ¢938 | 363.0 | 24.975 | 120 | 245 | 210.0 | 24.233 | 212 | 1；3 | 2.2 | $0.32:$ | ？ 12 | 153 |
| 1939 | 452.1 | 27.354 | 120 | 246 | 198．1． | 23.000 | 211 | 135 | i．${ }^{\text {a }}$ | 0．2ys | 211 | 255 |
| 1945 | 439.1 | 21．6：5 | 104 | 261 | 229.0 | 25.345 | 175 | 123 | 3.6 | 6.568 | 175 | 206 |
| 1541 | 4256 | 2t．tう | 91 | 299 | 217，E | 26．20s | 110 | 233 | 2．0 | 0．E） 9 | 10？ | 213 |
| 10ヶ？ | 370.2 | 24．321 | 75 | 290 | 196.0 | 36．20．5 | i 35 | 202 | 0.2 | 20：4 | 135 | 202 |
| 1943 | 345： 5 | 25．311 | 6e | 133 | 20¢． 2 | 26．495 | 145 | 2 St | 7，8 | Ecois | 140 | をう＊ |
| 1984 | 312.7 | 23.517 | 51 | 295 | 27？．8 | 24.566 | 195 | 158 | 13.8 | 2． 227 | 185 | 153 |
| 1945 | 392.8 | 24．378 | 46 | 319 | 201.9 | 25.547 | 64\％ | 210 | 83：0 | $3-195$ | 268 | 20 |
| 1845 | 358.2 | $29^{9} 680$ | $4{ }^{\circ}$ | 323 | 32：．a | 25.884 | 1！1 | 254 | 23.4 | 3.555 | 121 | 294 |
| 1947 | 333.6 | 20．0552 | 35 | 327 | 224．4 | 25.805 | 100 | 25 | 12． | 1.757 | 859 | 257 |
| 194． | 312.2 | 23.408 | 32 | 333 | 21500 | 24．0．E | 72 | 233． | 2： 2 | 3.043 | 78. | 283 |
| 1949 | 29\％．0 | 20.942 | 34 | 33： | 243－85 | ＜u．2n | 74 | 298. | 19.5 | 2， 2 ¢ 5 | 73. | 295 |
| 1950 | 282.3 | 27.045 | 32 | 333 | E82， 0 | 27.959 | Let | 599 | 87.5 | 2．211 | \＄6 | 397 |
| 1951 | 318.8 | 36.640 | $2 \%$ | 351 | 227.4 | 2tas 3c ${ }^{\text {a }}$ | 54 | 323 | 9.4 | 8.016 | 56 | 303 |
| 8 | 260.5 | 32.803 | 2.6 | 342 | 224.5 | 29．863 | 64. | 308 | i？${ }^{\text {ce }}$ | 1．293 | 15 | 351 |
| 1953 | 240．6 | 33.007 | 24 | 340 | 137．7 | 25.564 | 52 | 312 | 8.5 | 10.30 z | 25 | 25c |
| 2954 | 244.2 | 36.598 | 4 |  | 240.0 | 33，834 | 68 | 293 | 8.2 | O． 417 | 9， | 365 |
| 1955 | 214.7 | 24．74 | 31. | 442 | 223.3 | 27．900 | 93 | 286 | 12.5 | B．TY： | 216 | 256 |
| 1950 | 263．1 | 25.412 | 45 | 309 | 214，6 | 30.614 | 10\％ | 240 | $44_{4} 8$ | neti3 | 125 | It？ |
| 1951 | 283.6 | 39．624 | ． 5 | 214 | 225.0 | $2 \mathrm{~A}, 931$ | $14{ }^{4}$ | 2 z | 80.5 | 3．352 | 162. | 16 L |
| 1958 | 275.5 | 30．554 | 68 | 295 | 207．09 | 20.831 | 11.4 | 24.0 | ir ${ }^{\text {\％}}$ | 2，3\％ | E99． | 103 |
| $155 \%$ | 277，3 | 30．504 | 7 | 290 | 16：．9 | 30.257 | 9 s | 273 | 41.2 | Exa 26 | 348 | 567. |
| 1960 | 280.5 | 31.807 | 98 | 275 | 190.7 | 24．958 | 2．${ }^{4}$ | －208 | 28.0 | 4.238 | 128 | 190 |
| 1961 | 270.9 | 2H．gat | 124 | 243 | 223．8 | 33.901 | 108 | － 258 | 20．6 | 2.544 | 15\％ | 898 |
| 1802 | 30.3 .9 | 20．003 | 12\％ | 242 | 264.2 | 34．0．98 | 9！ | 270 | 35.7 | $4 \cdot 214$ | ists | 3.00 |
| 1963 | 238.3 | 26.151 | 205 | 152 | 270.5 | 32.973 | e2 | 215 | 35.8 | ？．958 | 189 | 173 |
| 1964 | 214.0 | 15．510 | 135. | 227 | 28C． 3 | 23.134 | 110 | $25 \%$ | 46.8 | 4.752 | $1: 12$ | 178 |
| 1965 | 252．08 | 24.349 | 127 | 235 | 315.2 | 33.557 | 11. | 255 | 44.5 | 3.491 | 171 | 199． |
| 1906 | 245－4 | 23.435 | 108 | 256 | 305.2 | 34.426 | 98 | 266 | 31.8 | 3.036 | 141 | 244 |
| 1567 | 207.7 | 20.719 | 159 | 201 | 275．8 | 50．948 | 158 | 201 | 18.3 | 20157 | 190 | 16.8 |
| 1964 | 660．0 | 16.038 | 104 |  | 241.3 | 27.215 | 164 |  | 27.1 | 3.06 ？ | 194 |  |



During each of the yeare 1951-60, one or more of these Elshories operated with aplit soasons. Thus, in 1951, Area 2 was open betwaen ligy 1-28 and again between July 26 and August 4. No attempt wos misde to perform the algabra neceseary to take this fact into account in the statistical analysio. Rnthor, for the years with split seasons, the intorval between eacoons wan determinad on the asounption that fiohing began on the opening date of the firot part of the season and ertended for a continuous period equal in length to the oum of the lengthe of the two periods. Thus, for Axea 2 in 1951, the conson uas troatod as the 38 day interval beginaing May 1 and coding Juna 7.

Encept for the effort series, the data veen aclf-auplanatory. The beaic unit of affort appears to be "standardired skato-soak." A pkaco-saak io a obnte placed in the water and withdrawn aftar a pariod of tim on tha ordar of two days in length. A skate, in turn, fo a long ( 1,800 or corc foct ) lino onto which shorter lines with bated hooke are attached at varying intorvala. The deaign of hooks discriminates against and fioh and apparontly has aut changed significantly during the period atucied. For moot of thio pariod. the atandard interval between side lines was $13^{\prime}$. Hovavar, $9^{\prime}$ vac cotwon during the jears inmediately following 1929 and intorvalo an groat a0 $24^{\prime}$ have cons increasingly to be used aince about 1960. Rocant date atrongly cuggest that catch per hook increases with the space betwoen aide linas. Unfortunately, the data do not take this face into account. In convorting an actual skate into a standard skate, the inplicit osouption ade io that tho intorval between lines in excese of $13^{\prime}$ zas a earo anginol product. Thus, a atandard skate is effectively a acandard number of batod hooko.

To repeat, in the work undertaken eo far, it has beon nocusod that the catch data in Table 2 are generared by a differential equation that, to chamge notations silghty, can be written:

$$
\begin{equation*}
d s / d t=g(m-s) s-q e^{b} \tag{26}
\end{equation*}
$$

In thịs equation, 3 and $m$ are actual and maximum attainable stocks respectively. They have dimensions pounds/square mile. The growth rate coefficient, g, has dimensions 1/day. The catchability coefficient, $q$, has dimensions of (say) 1/hook-day while effort, $e$, has diraensions hook-days/square mile-day. The exponent, $b$, is dimensicnless and should have $a$ value in the range $0<b=1$.

Catch and effort data are, of course, reported for an entice fishery, not per square inile of fishery area. Multiplying equation (26) through by A (for ares) yields:

$$
\begin{equation*}
\text { Ads/dt }=\mathrm{dS} / \mathrm{dt}=(\mathrm{g} / \mathrm{A})(M-S) S-\left(q / A^{b}\right) E^{b} S \tag{27}
\end{equation*}
$$

Where capital letters denote values for an entire fishery rather than for an individual square mile. This relationship says that the number by which ( $M$ - S)S is multiplied can be interpreted as the estimated growth coefficient for a square mile of a fishery divided by the size of the fishery. Similarly, the number by which $\mathrm{E}^{\mathrm{b}} \mathrm{S}$ is rultiplied can be interpreted as the catchability coefficient for a flshery divided by the area of the fishery to the power b.

Three separate specifications of equation (27) have so far been investigated in the statiscical analysis. In the first, $b$ was set equal to 1 and values of $g / A, M$, and $q / A$ were estimated. Denoting the value of $q / A$ obtained from the firgt specification by $Q^{*}$, the second involved estimating $g / A, M$, and $b$ in

$$
\begin{equation*}
\mathrm{dS} / \mathrm{dt}=(g / A)(M-S) S-(Q * E)^{b} S \tag{28}
\end{equation*}
$$

The final specification involved estimating $g / A, M, k / A^{b}$, and $b$ without further restrictions. The results of these calculations are shown in Table 3. Perhaps the first thing worth noting about this Table is that the basic Schaffer model does appear to fit the data reasonably well. Depending on area, the models underlying Table 3 account for $60-90 \%$ of the variance in the catch data

Table 3: Paraceter Estimates for Basin Halibut Pishory
Differential Equation: $\left.d S / d t=(g / A)(M-S) S-) q / A^{b}\right) B^{b} S$

| Area | $\mathrm{G} / \mathrm{A} \cdot 10^{-4}$ | M | $q / A^{b} \cdot 10^{-2}$ | $b$ | Adjustad $\mathrm{R}^{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | $\begin{gathered} 0.1094 \\ (-0.0506-.2693) \end{gathered}$ | $\begin{gathered} 176.1 \\ (47.14-305.1) * \end{gathered}$ | $\begin{gathered} 0.1008 \\ (0.0187-0.1828) \end{gathered}$ | $1.000 \%$ | 0.642 |
| 3A | $\begin{gathered} 0.1702 \\ (0.0291-.3113) * \end{gathered}$ | $\begin{gathered} 136.5 \\ (80.54-192.4) * \end{gathered}$ | $\begin{gathered} 0.1742 \\ (0.0948-0.2537) \end{gathered}$ | 1.0008 | 0.762 |
| 38 | $\begin{gathered} 0.9122 \\ (0.0083-1.816) * \end{gathered}$ | $\begin{gathered} 20.45 \\ (11.01-29.88) * \end{gathered}$ | $\begin{gathered} 0.9200 \\ (0.4220-1.418) \end{gathered}$ |  | 0.898 |
| 2 | $\begin{gathered} 0.0988 \\ (-0.0068-2043) \end{gathered}$ | $\begin{gathered} 185.4 \\ (88.79-282,1) * \end{gathered}$ | 0.1008 \# | $\begin{gathered} 1.011 \\ (0.9173-1.105) \end{gathered}$ | 0.625 |
| 3A | $\begin{gathered} 0.1992 \\ (0.0728-.3256) \end{gathered}$ | $\begin{gathered} 126.2 \\ (85.65-166.8) \end{gathered}$ | $0.1742 \#$ | $\begin{gathered} 0.9823 \\ (0.9242-1.041) \end{gathered}$ | 0.743 |
| 3B | $\begin{gathered} 0.6343 \\ (0.1893-1.079) \end{gathered}$ | $\begin{gathered} 24.36 \\ (16.75-31.97) \end{gathered}$ | 0.9200\% | $\begin{gathered} 1.039 \\ (0.9745-1.104) \end{gathered}$ | 0.874 |
| 2 | $\begin{gathered} 0.1287 \\ (-0.0596-.3171)= \end{gathered}$ | $\begin{gathered} 161.7 \\ (27.43-295.9) \end{gathered}$ | $\begin{gathered} 0.1062 \\ (0.0226-.1898) \end{gathered}$ | $\begin{gathered} 1.021 \\ (0.8189-1.222) \end{gathered}$ | 0.625 |
| 3 A | $\begin{gathered} 0.1567 \\ (0.0210-.2923) \end{gathered}$ | $\begin{gathered} 142.3 \\ (81.54-203.1) \end{gathered}$ | $\begin{gathered} 0.1774 \\ (0.0931-.2617) \% \end{gathered}$ | $\begin{gathered} 0.931 \\ (0.8232-1.040) \end{gathered}$ | 0.748 |
| 3B | $\begin{gathered} 0.9900 \\ (0.0634-1.917) \% \end{gathered}$ | $\begin{gathered} 19.37 \\ (11.00-27.74): \end{gathered}$ | $\begin{gathered} 1.079 \\ (0.4558-1.702) \end{gathered}$ | $\begin{gathered} 1.077 \\ (0.9861-1.168) \end{gathered}$ | 0.875 |

analyzed. Why the Model's performance differs so substantially from area to area is something of a mystery. Fishery 3B appears (see below) to be considerably smaller than fishery 3 A which, in turn, appears smaller than fishery 2. Differences in correlation coefficients might therefore reflect differences among fisheries in the variability of conditions within an individual fishery. The ratio of the standard deviation of annual catch to average catch is 0.752 in Area 3 but only 0.163 and 0.145 in Areas 2 and $3 A$ respectively. That there is considerably more relative variability to be explained in Area 3B may partly account for the high correlation coefficient obtained for it. But these are ad hoc hypotheses. To repeat, why the model's performance differs so substantially from Area to Area must remain a mystery at least for the time being.

The next thing worth noting about the Table 3 results is the unhappy fact that individual parameter estimates are generally surprisingly highly correlated. To take the most extreme ammple, when $b$ is set equal to 1 , the correlation between the estimated values of $g / A$ and $M$ for Area 2 is m0.9977. That between $g / A$ and $q / A$ is 0.9744 while that between $M$ and $q / A$ is $\mathbf{- 0 . 9 7 3 5}$. Such high correlations have the same sort of implication for a non-linear estimation problem as do bigh correlations between independent variables in a linear regression problen. That is, if the parameter estimates shown in the first line of Table 3 were respectively increased, decreased, and increased by 10\%, the result equation system would predict catch in Area 2 almost as well as do the numbers actually shown in this line. With high correlations among parameter values, little reliance can be placed on the specific value estimated for any particular parameter-thus the very large $95 \%$ confidence intervals for parameter value estimates shown in parentheses in Table 3.

Allowing the exponent of hook days/square mile-day to differ from one adds nothing to the explanatory power of equation (28). For any given area, the correlation coefficient between actual and predicted catch adjusted for degrees of freedom actually declines when the additional parameter, $b$, is introduced into the system. Furthermore, for two of the three areas, the eatimated value of $b$ is greater than 1. Taken at face value, ouch parameter eatimates imply that an increase in the instantancous effort rate is associated with an increase in the rate per hools day at which fish are caught-a clearly implausible finding. Thus, while it would seem reasonable to assume that, as a general proposition, effort is subject to a las of diminishing instantansous returns, it also seems reasonable to assert that, in the halibut ingheriec, the range of effort levels that has been experienced is one in which the effects of operation of this law are not discernible. Thio being the cace, subsequent discussion will be restricted to the reaulta of the first opecification of the system analyzed, that in which $b$ was set equal to 1.

To repeat, because of high correlations, the estimated values of individual system parameters are unreliable. Still, it seems vorth ignoring this fact for a moment to explore some of the implications of the eotimated paramater values for sirailarities and differences among the three fiaheries atudicd. Among the parameters involved in equation (28), it seems plausible to ouppoee that the catchability coefficient, $q$, is iikely to vary least among fioheries. Suppose, therefore, that $q$ has the same value in oach fishery and that $b$ oquals 1 in all fisheries. Then the estimated value of $q / A$ for fiohery $i$ can be written $q / A_{1}$ and $\left(q / A_{1}\right) /\left(q / A_{2}\right)=A_{2} / A_{1}$-the ratio of the area of fishery 2 to that of fishery 1. Nultiplying the value of $M$ for fiohory 1 by this ratio would then give the maximum suatainable fiah atocli in fiohery 1 if that fiohary had the same area as does fishery 2. That ib,

$$
\begin{equation*}
M_{i}\left(A_{2} / A_{i}\right)=m_{1} A_{i}\left(A_{2} / A_{1}\right)=m_{i} A_{2} \tag{29}
\end{equation*}
$$

Differences in this expression awong fisheries would reflect differences only in $m_{i}$-maximuin $\varepsilon$ ustainable density per square mile. Stmilar conclusions would apply to the ratio of the estimated value of $g_{i} / A_{i}$ to $\left(q / A_{i}\right) /\left(q / A_{2}\right)=A_{2} / A_{i}$. That is, if the catchability coefficient is independent a fishery, the result of the iivision would equal $g_{i} / I_{1}-$-a value which differs from fishery to fishery only to the extent that $g_{i}$ differs. The results of these calculations are:

| Area | $m_{i} A_{1}$ | $\mathrm{~mA}_{1} / \mathrm{M}_{1}$ | $\mathrm{~g}_{2} / \mathrm{A}_{1}$ | $\left(\mathrm{~g}_{1} / \mathrm{A}_{1}\right) /\left(\mathrm{g}_{1} / \mathrm{A}_{1}\right)$ |
| :---: | :---: | :---: | :---: | :---: |
| 2 | 176.1 | 1.000 | 0.1090 | 1.000 |
| 3A | 235.9 | 1.340 | 0.09895 | 0.904 |
| 3B | 186.6 | 1.060 | 0.0999 | 0.917 |

If ${ }^{8}$ these numbers can be taken ar face value, it would appear that the mazimum austainable deasities in Areas $3 A$ and $3 B$ are respectively 34 and $6 \%$ greater than those in Area 2. On the other hand, growth rates in areas $3 A$ and $3 B$ are respectively 9.5 and $8.6 \%$ less than those in Area 2.

As was suggested in Section 2, with the formulation of the basic fishery differential equation currently under examination, the maximum sustainable gield from a fishery is obrainable when the stock of fish equala m/2, i.e.. half the level toward which the fishery would approach in the absence of exploitation. Since the daily rate at which fish would grow is ( $g / A$ ) ( $M-S$ ) S, annual growth with a stock of $M / 2=365(g / A) M^{2} / 4$-the maxinum sustainable gield, $C_{m a x}$. Dividing $100 C_{\text {max }}$ by M/2 yields the percentage rate of growth of a fish stock-its own rate of interest. Since total catch equals ( $q / A$ )ES, catch per unit

[^6]of effort under maximum sustained yield conditions would be ( $q / A$ ) $M / 2$. The results of these calculations are: ${ }^{9}$

| Area | $\begin{gathered} M / 2 \\ (\text { million lb.) } \end{gathered}$ | $\underset{\left(m+1110 \operatorname{Tan}_{10}\right.}{C}$ | Own Rate of interest |  |
| :---: | :---: | :---: | :---: | :---: |
| 2 | 83.05 | 30.96 | 35.2\% | 88.75 |
| 3A | 68.25 | 28.94 | 42.4\% | 118.89 |
| 3B | 10.23 | 3.48 | 34.0\% | 94.07 |

These numbers suggest that the costs of axploiting fishery $3 A$ are conoiderably lower than those for the remaining two fiohorico. Becauge of the apparently hfgher density of its population, the effort requirad to catch a pound of fish under maximum sustained gield conditions is a bit less than $75 \%$ of that associated with Arsa 2.

It is of interest to compare these figures for mazimum sustained gield conditions with the historical data from the individual fisheries exhibited in Tobles 4A, 4B, and 4C. A few words of explanation are in order about the data in these Tables. In the process of predicting catch in year $1+1$ fron data on catch in year $i$ and efforts in years $i$ and $1 \neq 1$, it was necesaary to obtain, among other things, an eatimate of the stock of fish laft in an individual fishery at the end of the season in year 1 and the level to which that remaining stock had grown by the beginning of the season in year $1+1$. Eotimated stock at the beginning of the season in yoar $1+1$ together with the effort level in that season yield a prediction of catch in year $1+1$. These numbers are raspectively reproduced in the $S O H, S$ and $F$ columa of Tables 4. The column iablelled $C$ gives actual catch during gear $i+1$ while the value

[^7]

| Predicted |  |
| :---: | :---: |
| $F=$ | 22.9 |
| $F=$ | 18. 10 |
| $f=$ | 18.56 |
| $F=$ | 21. |
| $F=$ | 22 |
| $F=$ | 22. |
| $F=$ | 28. ${ }^{1} 3$ |
| $F=$ | 24.05 |
| $F=$ | 23.43 |
| F: | 31.5 |
| $F=$ | 26.70 |
| F: | 26. 95 |
| F= | 2\%.96 |
| Fs | 23.80 |
| F\% | 25. |
| Fss | 26.43 |
| $F=$ | 29.48 |
| Fz | 28.6. 7 |
| Fam | 27.581 |
| Fs | 27. 882 |
| Fa | 26. 537 |
| $f=$ | 30.881 |
| F: | 26.45 |
| $F=$ | 27.62 |
| $F=$ | 31.285 |
| $F=$ | 29.970 |
| $F=$ | \$2.864 |
| F* | 34. 796 |
| $F=$ | 29.712 |
| $F=$ | 30.33 |
| Fz | 30.865 |
| F | 30.43 |
| F: | 32.56 |
| fix | 28.34 |
| $\mathrm{F}=$ | 20.35 |
| F | 25.134 |
| Fa | 24.891 |
| Fa | 21. |
|  |  |


|  |  | F-C |
| :---: | :---: | :---: |
| C= | 21.387 | $\mathrm{R}=1,596$ |
| Cx | 21.637 | $\mathrm{R}=-3.528$ |
| $C=$ | 21.988 | $R=-30420$ |
| $6=$ | 22.530 | R=-0.73 |
| $\mathrm{C}=$ | 22.838 | $\mathrm{R}=0.232$ |
| C= | 22.817 | $R=m 0.276$ |
| Cx | 24.911 | $R=4.024$ |
| C | 26.024 | $R \pm-1.969$ |
| $\mathrm{C}=$ | 2.4 .975 | $R=-1.541$ |
| C: | 27.354 | $R=4.885$ |
| C= | 27.615 | $R=-0.908$ |
| C= | 26.007 | 只 $=0.944$ |
| Cs | 24.322 | 8 x (0. 14.8 |
| C= | 25.318 | $8=-1.503$ |
| C= | 26.517 | R $=-\frac{1}{2} .369$ |
| $6 \times$ | 24.378 | $8=2.052$ |
| Cx | 29.678 | $R=-0.232$ |
| C= | 28.652 | R\% 0.022 |
| $\mathrm{Ca}^{1}$ | 28.409 | $R=-0.828$ |
| Css | 26.942 | $R=1.040$ |
| C= | 27.046 | $R=-0.509$ |
| C | 30.640 | $R=0.268$ |
| C* | 30.893 | $R=-4.439$ |
| Cx | 33.007 | $R=-5.378$ |
| c | 36.599 | 最 $=5.5 .414$ |
| C= | 28.744 | $R=1.226$ |
| Co | 35.412 | $R=-2.540$ |
| C. | 30.626 | $R=4.170$ |
| C= | 30.558 | $R=-0.846$ |
| c | 30.804 | $R=-0.467$ |
| C= | 31.809 | $R=-0.944$ |
| $\mathrm{C}=$ | 28.349 | $R=8.588$ |
| C= | 28.663 | R=3.899 |
| C= | 26.151 | $8=2.193$ |
| Ca | 19.610 | $R=0.743$ |
| C= | 26.349 | $\mathrm{R}=0.785$ |
| 6 | 23.435 | $R=1.456$ |
| C. | 20.019 | $\mathrm{R}=1.860$ |
| c= | 16.637 | $\mathrm{R}=1.808$ |

 $d S / d t=(\mathrm{g} / \mathrm{A})(\mathrm{H}-\mathrm{S}) \mathrm{S}-(\mathrm{q} / \mathrm{A}) \mathrm{RS} \mathrm{S}$

| Year $(1929+1)$ | End of Season |  | $\begin{aligned} & \text { Beg } \\ & \text { Thi } \end{aligned}$ | ining of 8 Season | Predicted : |  | Actual |  | P-C |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $1=1$ | SOH= | 36.184 | $5 \times$ | 43.026 | Fx | 25.151 | $\mathrm{C}=$ | 24.700 | $\hat{R}=1.451$ |
| $1=2$ | SOHE | 31.649 | S= | 38.021 | F= | 17.458 | C | 18.967 | $R=-1.509$ |
| I= 3 | SOH= | 38.656 | $5=$ | 45.964 | F= | 19.922 | C= | 20.622 | $R=-C .700$ |
| $1=4$ | $5 \mathrm{CH}=$ | 45.429 | $5=$ | 52.192 | $\mathrm{F}=$ | 24.185 | $C=$ | 23.097 | $R=1.088$ |
| $1=5$ | SOH= | 45.766 | $S=$ | 54.972 | F= | 24.274 | C= | 23.097 | $R=1.177$ |
| $1=6$ | SOHx | 46.520 | $S=$ | 58.095 | $F=$ | 23.618 | $\mathrm{C}=$ | 22.858 | $R=0.720$ |
| $1=7$ | SOH2 | 53.762 | $\mathrm{S}=$ | 59.919 | F= | 24.439 | $C=$ | 23.7 C0 | $R=0.739$ |
| $1 \times 8$ | SOH= | 51.933 | $S=$ | 62.087 | $F=$ | 21.665 | C= | 23.182 | $R=-1.517$ |
| $I=9$ | SDH= | 60.977 | S* | 73.851 | $F=$ | 25.355 | $\mathrm{C}=$ | 24.238 | $R=1.117$ |
| $1=10$ | SCHz | 62:722 | S= | 74.811 | $F=$ | 24.533 | C= | 23.080 | $R=1.453$ |
| $1 \times 11$ | SOH= | 63.446 | $\mathrm{S}=$ | 75.688 | F= | 26.493 | $\mathrm{C}=$ | 25.345 | $R=1.148$ |
| $1=12$ | SOH= | 60.858 | S= | 75.537 | $F=$ | 28.068 | $\mathrm{C}=$ | 26.206 | $R=-0.138$ |
| $1=13$ | SUHE | 62.961 | S= | 79.715 | F= | 25.077 | $\mathrm{C}=$ | 26.105. | $R=-1.020$ |
| $\mathrm{I}=14$ | SOH= | 69.332 | S= | 85.549 | F= | 27.458 | $\mathrm{C}=$ | 26.495 | $R=0.963$ |
| $1=15$ | SOH: | 67.199 | $5 \times$ | 86.839. | F* | $2 \% .459$ | $C=$ | 24.566 | $R=-0.107$ |
| $\mathrm{I}=16$ | SOH= | 77.493 | S= | 88.921 | F= | 28.113 | $\mathrm{C}=$ | 25.947 | $R=2.168$ |
| $1=17$ | 50 Hz | 67.000 | Sx | 83.982 | Fs | 29.391 | C | 26.974 | $R=1.417$ |
| $1=18$ | SOH= | 61.272 | $S=$ | 81.211 | $F=$ | 27.732 | $\mathrm{C}=$ | 25.508 | $R=2.124$ |
| $I=19$ | SOH= | 57.576 | S= | 77.786 | $F=$ | 25.430 | C.s | 24.331 | $\hat{R}=1.049$ |
| $I=20$ | SCHz | 55.721 | S= | 78.708 | $F=$ | 28. 862 | $\mathrm{C}=$ | 26.201 | $R=2.051$ |
| 1=21 | SDHE | 50.635 | Sa | 73.353 | $\mathrm{F}=$ | 27.906 | $C=$ | 27.959 | $R=3-0.053$ |
| 1=22 | SOH= | 50.664 | S= | 73.935 | $F=$ | 24.956 | C | 24.399 | $R=0.557$ |
| 1=23 | SOH= | 52.199 | $\mathrm{S}=$ | 77.428 | F= | 25.881 | C | 29.863 | $R=-3.982$ |
| $\underline{I}=24$ | SOH= | 64.581 | S= | 88.362 | $F=$ | 25,232 | C= | 25.589 | $R=-0.357$ |
| $I=25$ | SOH= | 88.063 | S= | 91.776 | For | 32.408 | C | 32.836 | $k=-0.833$ |
| 1=26 | SOHE | 65.422 | $5=$ | 88.046 | Fra | 30.143 | C= | 27.700 | $R=2.263$ |
| $1=27$ | SOH= | 60.531 | So | 82.469 | $F=$ | 28.837 | C | 30.0614 | $R=-1.777$ |
| $1=28$ | SOH= | 65.430 | S= | 84.144 | $F=$ | 29.210 | $\mathrm{C}=$ | 28.931 | $R=0.287$ |
| $1=29$ | SOHE | 85.579 | S= | 83.006 | $\mathrm{F}=$ | 26.716 | $\mathrm{C}=$ | 29.731 | $R=-3.085$ |
| $1=30$ | SOH= | 72.413 | S= | 90.719 | $F=$ | 26.343 | C= | 30.257 | $R=-3.916$ |
| $1=31$ | SOH= | 81.239 | S= | 100.294 | $F=$ | 30.267 | $\mathrm{C}=$ | 29.958 | $\mathrm{R}=0.309$ |
| $1=32$ | SOH= | 75.429 | S= | 96.471 | Fr | 32.462 | $C=$ | 33.9 Cl | $\mathrm{R}=12.439$ |
| $1=33$ | SOH= | 74.779 | S= | 93.912 | Fis | 36.048 | C= | 34.608 | $R=1.436$ |
| $I=34$ | SOHE | 62.605 | S= | 83.769 | Fa | 32.915 | C= | 32.973 | $R=-0.058$ |
| $\boldsymbol{I}=35$ | SOH= | 58.091 | S= | 76.922 | $f=$ | 32.301 | C | 33.134 | $R=-0.833$ |
| $1=38$ | SOḢ | 56.577 | S= | 76.544 | For | 34.465 | $\mathrm{C}=$ | 33.697 | $R=0.760$ |
| $!=37$ | SOHm | 50.111 | S= | 69.869 | $F \mathrm{~F}$ | 30. 527 | $C=$ | 34.426 | $R=-3.899$ |
| $1=38$ | SOH= | 52.502 | S= | 73.280 | For | 30.543 | $C=$ | 30.948 | $\mathrm{R}=-0.405$ |
| I=39 | SOH= | 55.872 | S= | 71.656 | $F$ | 20.97\% | $\mathrm{C}=$ | 27.215 | $R=-0.241$ |

Table 4C Eetimated Stock sind Catek Tin ate 3E frow isjut a $(g / A)(1-s) S=1 / A)$ is

| $\begin{aligned} & \text { Year } \\ & (192+1) \end{aligned}$ |  | ck (mx) |  |  | Catce (allionith.). |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | tiod ot Last |  | beginning of This Seamon |  |  |  |  |  |  |
|  | Seas |  |  |  |  | cted | Act |  | $F-C$ |
| $1 \times 1$ | $504=$ | 8.199 | $S=$ | 9.176 |  |  |  |  |  |
| $1=2$ | SOH= | 8.921 | Sit | 9.924 | F:3 | 2.530 | $\mathrm{C}=$ | 2.4875 | 820.055 |
| I $=3$ | sur: $=$ | 8.175 | $5=$ | 9.171 | $\mathrm{F}_{*}$ | 2. 1.074 | $\underline{=}$ | 2. 5 - ${ }^{2}$ | $0=0.384$ |
| $1=4$ | SuH= | S. 960 | $5=$ | 10.75 | $\mathrm{F}=$ | 1.054 | $\underline{C=}$ | 0.976 | R=0 Onu゙a |
| $1=5$ | SOH= | 9.443 | ¢¢ | 10.633 | Fs | 0.236 | C- | $0 \times+10$ | $9=0.162$ |
| $1=5$ | SUH= | 10.326 | S= | 12.274 | $F=$ | 0.172 | C- | 0.198 | $R=0.030$ |
| $1=7$ | SOH= | 12.291 | $s=$ | 13.01: | $\mathrm{E}_{3 x}$ | 0.179 | $\mathrm{C}=$ | 0.143 | $R=0.029$ |
| $I=8$ | SUH= | 12.421 | S: | 13.584 | $f=$ | C. 290 | $C=$ | 0.717 | $R=0.0232$ $R=-0.027$ |
| $1=9$ | SOHE | is. 225 | S= | 17.153 | F-x | 0. 354 | $\mathrm{C}=$ | 0.321 | $R=-0.027$ $8=0.033$ |
| $1=10$ | SOH: | 16.380 | S* | 17.231 | $F=$ | O. 295 | $\mathrm{C}=$ | 0.276 | $R=0.033$ |
| $1=11$ | SOH= | 17.219 | Sm | 17.328 | $F=$ | 0. 596 | $\mathrm{r}=$ | 0.569 | R. 0.0 .027 |
| $1=12$ | SOH= | 17.345 | $5=$ | 18.153 | Fx | 0.436 | $6=$ | 0.519 | $P=-0.083$ |
| $i=13$ | SCM, | 21.200 | $S=$ | 20.985 | Fa | 0.038 | C= | 0.047 | $\mathrm{R}=-0.009$ |
| $i=14$ $i=15$ | $50 \mathrm{H}=$ | 24.025 | $5=$ | 23.141 | $F=$ | 1.552 | $C=$ | 1.615 | $\mathrm{R}=-0.0053$ |
| $1=15$ $I=1.6$ | SOH= | 21.709 | $5=$ | 21.215 | $\mathrm{F}=$ | 2.514 | Cx | 2.227 | $R=0.297$ |
| $1=1.6$ $i=17$ | SOH: SOH= | 17.035 15.458 | $s=$ $s=$ | 17.762 | F\% | 3.193 | $c=$ | 3.187 | $R=-0.000$ |
| $!=18$ | SCH: | 15.148 | $s=$ | 16.630 16.790 | $F_{\text {F }}$ | 3.333 | $6=$ | 3.550 | $R=0.223$ |
| $1=19$ | SOH= | 15.669 | $s=$ | 17.198 | Fs | +162 | C-* | 1.751 | $R=0.005$ |
| $i=20$ | SOH= | 13.901 | 58 | 16.068 | $F=$ | 2.883 | $\underline{C}$ | 3.0.3 | $R=0.138$ |
| $1=21$ | SOH= | 1.1.754 | S* | 14.308 | $F=$ | 2.170 | Cx | 2.245 2.211 | $P=0.43 .37$ |
| $1=22$ | SOH: | 1?.933 | 5= | 15.343 | Fx | 8.302 | crimer | 2.211 3.066 | $R=-0.0481$. |
| $1=23$ | SOHiz | 11.383 | $5 \times$ | 14.078 | $\mathrm{F}=$ | 1. 56.9 | $\mathrm{cra}^{1}$ | 1.233 | $R=0.286$ |
| $1=24$ | SOH= | 10.598 | S* | 13.789 | Fis | 2.045 | $\mathrm{C}=$ | 1.308 | R 20.256. |
| $1=23$ | SOH= | 10.154 | S. | 17.587 | F* | 0.987 | $\mathrm{C}=$ | 0.381 | $R=-0.263$ |
| $l=26$ | SOH= | 15.923 | $\mathrm{s}=$ | 17.431 | F\% | 1.781 | $\mathrm{C}=$ | 1.727 | $\mathrm{R}=0.070$ |
| 1×2\% | SOH= | 16.204 | $s=$ | 17.590 | $f \times$ | 0.710 | $\mathrm{C}=$ | O.6. | R"0.010 |
| $1=28$ | SOHz | 15.302 | S. | 15.700 | $F_{*}$ | 1.527 | $c=$ | 1.352 | $R=0.097$ $R=0.175$ |
| $1=29$ | SOH= | 14.532 | $\mathrm{S}=$ | 15.745 | $F=$ | 2.397 | $\mathrm{C}=$ | 2.391 | $R=0.875$ $R=0.006$ |
| $1=30$ | SOH= | 14.749 | S= | 15.931 | $F=$ | 5.284 | $c=$ | 5.261 | $R=0.006$ $R=-0.077$ |
| $1=31$ | SOH= | 14.213 | Sx | 15.475 | $F=$ | 4.813 | C: | 4.238 | $R=-0.977$ $R=0.575$ |
| $1 \times 32$ | SOHz | 10.995 | $5=$ | 12.754 | $F=$ | 2.310 | $C^{*}$ |  | $R=0.575$ $R=-0.3$ |
| $1=33$ | SOH= | 12.988 | $5=$ | 14.644 | F* | 4.305 | $C=$ | 4.214 | R $2=-0.234$ |
| $1=34$ | SOH: | 11.543 | $5=$ | 13.353 | $F=$ | 3.987 | $c=$ |  | R=0.098 |
| $1=33$ | SOH= | 10.936 | S= | 12.546 | Fa | 4.726 | Ca | 3.928 | $R=0.029$ $R=-0.026$ |
| =3s | SCH= | 9.677 | 5* | 11.369 | $F=$ | 4.110 | $c$ |  | $R=-0.026$ $R=0.210$ |
| = 3 \% | SOH= | 8.440 | 5 \% | 10.318 | F: | 2.795 | $c=$ |  | $R=0.218$ |
| $1=38$ | SOH= | 9.719 | S* | 12.020 | $\mathrm{F}=$ | 2.004 | $c=$ | 3.386 2.157 | $R=-0.291$ $R=-0.152$ |
| $1=39$ | SOH= | 12.531 | $S=$ | 13.885 | F: | 3.326 | C: | 3.687 | $R=-0.153$ $R=-0.341$ |

in the R column equals the difference between predicted and actusl catch. Thus, the numbers in the first row of Table 4A indicate for Arca 2 an cstimated and of season stock in 1929 of 35.269 million pounda. By the begianing of the season in 1930, the stock had grown to 41.322 milition pounds. This atock together with the effort level in 1930 from Table 2A yielded a prodictad catch of 22.983 million pounds in 1930. The difforenca between this prediction and the astual 1930 catch of 21.387 million pounds is 1.596 million pounds.

Tablen $4 A$ and $4 B$ clearly suggest that Areas 2 and $3 A$ ware both heavily over-exploited at the baginning of the pariod atudiel. Thus, in 1930, tha average of the beginning and end of season catimated stocko was (s1. $322+30.756) / 2=36.089$ million pounds. The cotimsted marrimun custainod yield atock for the fishery is the substantially greater niuber, 88.05 million pounds. The analysia of Section II indicates that, with dS/at $=(B / A)(M-S) S$ in the absence of exploitation, any given long sun equilibrium atch othor then that requirad for $C_{\text {max }}$ could be supported with ofther of tevo equilibrium otock levels, one above and the other bolow that required for mariman cuatainod yicld. Specifically, equilibriua stock can bo uritton:

$$
\begin{equation*}
S(C)=M / 2 \pm D(C) \tag{vo}
\end{equation*}
$$

suare $S(C)$ and $D(C)$ are reapactivaly the equilibrium otock and the deviation fron the mamimum austainad giold otock, M/2, ascocintod with an cquilibrim catch of C. Inderting 36.09 and 88.05 million pounds reapactivaly for $S(C)$ and $3 / 2$ in equation (30) yields a deviation of ainus 51.96 milizion pounds. A suotained yield equal to the 1930 catch could therefore aloo be obtaluod with a stock level of approximately $88.05+51.96=140.01$ aillion pounds of fioh. Since the effort required to achiove any given sustained yicid io proportional to the equilibrium stock with which it io aocosiatod, theoe calculations suggest that the effort exponded on Eiohary 2 in 1930 uno
140.01/36.09 $=3.88$ times that at which a sustained yield equal to 1930 catch could have been obtained. Similar conclusions apply to Area 3A. However, while Area 3B also appears to have been over-fished during the early 1930s, the difference between average and maximum sustained yield stock was modeat.

Regulation of the halibut fisherles does appear to have succeeded in reducing and ultimately eliminating their over-exploitation. If maximizing the $u$ ustained yield is, in fact, the objective of the IPHC, it seems to have come very cloge to meeting that objective at least aince about 1950 in Areas 2 and 3A and since about 1959 in Area 3B. The Comission took a substantial amount of time to achieve this objective, however. In the years following 1930, the average of the estmated beginaing and end of year stocks in Area 2 increased steadily. By 1944, the estimsted begiming of season stock increased to a lovel slighty in excess of that required for masimus sustained jield. And, from about 1948 on, the average of the astimated beginning and end of year atocto almost invariably exceeded the level required for maximum sustained yield. The corresponding adjustments took place more rapidly in Area 3 a and more rapidiy atill in Area 3B. As for 3 A , estimated begiming of season stock first care to exceed cotimated maximum sustained yield stock in 1938 and eatirated average atock during the geason exceeded this level during most of the years since 1942. In Area 3B, the correspondiag years are 1933 and 1934.

Inspection of the catch data in Tables 4 suggest that soma additional tinkering with the escimeting relationships may be in order. In Area 2, negative differences between predicted and actual catch prevail in the earlier years studied while positive differences predowinate in the later yearb. The reverse pattern characterizes Area 3A. Furthermore, in all but one of che years oince 1957, catch in this area has exceaded its estinated parimum sustainable yield, typically by $10 \%$ or more. The basic biological
model used doas not preclude the possibility of catch occasionally criceading maximum austained fiold. That this phonomenon could occur consistenciy for a decade does seem bothersome, however.

## IV Euture Hork

A. Tise Imediate Future

Tro eatenoions to the work discusesd in Section III can be undertaken with a modest amount of additonal effort. The first involves Iinited furthor exploration into the nature of the diffarental cquation from which eatch predictions are genarated. Implicit in the oyotem analymed in Scetzono II and III is the assumption that, if two fish of opposito ooseo remin in a fiobery, they bill find each other and reproduce. Under ouch circuacancon, it would be virtually imposeible to axploit a fiohary to artinction. An altornativo posoibility is that a fish population will be unablo to oustain itoolf if ofuc falls below aome minimum levels aubstantially greatar than two fich. Datorrining exprassions to predict catch as wall ac boginning and ond of conoon ofocks while allowing for the possibility that thare is a nindman otock balor which a fichery will die out requires a fairly comsidorable amount of algobraic bull worti. This work is currently in prograoc.

The cocond eatenaion of the anolyols described in the proceding caceiono that can be undertaken with a limited amount of additional nork involvoo tho detormining the number of skates-soaks that varc, in offoct, wated betweon 1930 and 1968. Two sorts of waste can be takon into account: thooc sooulelies from the oub-optimal atocks that characterisod tho halibut fichasy durias tho easly years of the period and those reaulting from the ohort soacous that havo bean lmposed to restrict catch. To elaborato, guppose that else 1930 fioh otocis in Aroa 2 was the highar of the two levalo for chich tha cotch in chat goor
would have been in long run equilibrium-an average of 140 million pounds rather tham the actual 36 million pounda. To obtain the 1930 catch from the higher atock would have required gubstantially leas effort than that which was actually expended. Further, etarting with an initial 140 million stock would have led so substantially higher stock from which to cake the followirg year's catch. It would be a fairly easy matter to determine the approsimate effort that would have been required to achiesf the actual catch in eaci gear studied had the Area 2 stock been 140 gillion or any other number of pound that migit be of interest: The difference between the effort levels determined la this fachion and those actually expended can be regarded as a measure of waste cifort. In addition to theze wasces, had effort been epplied at lower instantaneous races but over longer seasons, actual catches could have been obtained with a emaller number of skate soaks. By following a procedure gimilar to thet suggested above, it would be a fairly easy fob to estinate the redustions in cotal effort that longer geasons would have made possible.

## B. The Lomger Rum

The relationship dS/dt $=(q / A)(H-S) S$ is symetrical sbout the line $S=M / 2$. There is no blological reason to suppose that such aymmetry prepails in real world fisheries. Worining with the one aspmetricel relationahip I have encountered in literacure-that suggested by Tosalinson and Pellapresents some umpleasant algebraic problems. To predict caich according to the procedures sketched out in Section III requires that a differential equation giving dS/dt as a function of other pariables and parameters be intograted to obtain a ralationship of the general form

$$
\begin{equation*}
S=S\left(E_{,} t+k\right) \tag{31}
\end{equation*}
$$

To determise the constant of sntegration, $k$, in this relationship requises
solviag a second differential equation which can be written

$$
\begin{equation*}
\mathrm{dC} / \mathrm{dt}=\mathrm{h}(\mathrm{E}) \mathrm{S}(\mathbb{Z}, t+\mathrm{ts}) \tag{32}
\end{equation*}
$$

Elile the grovth relationship suggested by Tomilnoon and Pella can be solvod to determine the equivalent of equation (31), it does not appear poacible to colva the equivalent of equation (32) to which this stock equation givas rios. Numerical methods do, of course, exiat for obtaining approrimate valuon for arprascions that cannot be integrated exactly. Since the initial purpoac of solving equation (32) is to detemine a conscant of integration rathor than tho (knorn) value of a definite integral, applying mumarical integration eochniquas io likely to prove quite messy. Additional worls io in ordar to find oithor solutions to this algebraic mese or a more tractablo aoymiocric growth zelationship.

Fully to deternine the welfare losse8 remultiag frow non-optimn or nomcaistont fishery regulation would, requires in addition to analyoio of tho nort described in Section III, information on or eooumplono about fioh domard rolationships and the conditions under which affort io ouppliad to fichorioglu particular, short and long run supply echedules, the anturo of the dynaric adjuotment process invoived in moving frow one long run aquilibrium to anocher, and the additional costs incurred by applying a given total amsut of offort over a short rather than a long geason. By mking judiciouc asousiptiono obout the nature of the functional relationships involved and oaperimaneing co docaraining the effects of changing different paramster valueo, it would bo pooolblo to procaed with this sort of analysis without boing dopendent on adicional dato. Alternatively and preferably, it wisy be poosibla to cdapt to tho eaok dnta Erou Crutchfield and Zollner's pioneering study of the halibut fiohorioo togethor with inforeation from the study of halibut and othar fichorioo that Grutchileld and others are currantly conducting at the Univereity of Hoohington. Doeh full....
determination of welfare losses and the development of optimal regulatory rules would require, in addicion to this information, adaptation of recent work by plourde and others on the dynamic properties of fishery optimization-a task requizitag mathematical skills which I should acquire by do not presently possess.

Finally, there remains a task which I had initially hoped this study vould accomplish: marriage of the eumerric and logistic theories of fishery biodynamics. I expect this marriage can be performed. There is some doubt about whether the data existe which would make it possible actually to apply the reaulting theory. Still, an attempt to develop the theory would aeem to 0 to be well worthwhile.


[^0]:    $1_{A}$ qualificacion is in ordar: tho long rum offect of gosr restrictions may not an balance be to Increase Eishing cobera Sec Scetion II.

[^1]:    3 By differentiating equation (6b) with respect to $A$ and re-arranging terme.

[^2]:    That is, one for which a single producer aupplies both fized and variable inpute.

[^3]:    ${ }^{5}$ In addition to the losses that may result from catching fish at 800 young an age if the percentage growth rate of a fish declines with its age.

[^4]:    ${ }^{6}$ The procedure used in this study is, I find, quita similar to that employed by Toulinson and Pella to analyse the Pacific tuna induatry. There are two basic differences between the Tominson-Pella approach and that used in this analyais: first, I incorporate length of fishing season into the analysia. Second, they use an estimate of fish stock at the beginning of the time series analyzed to estimate catch in all subsequent time periods whereas I mploy a recurrsive relationship which generates an estimate of catch in time period $i+1$ from data on catch in time $i$ and effort in period $i$ and $i+1$.

[^5]:    $\overline{7}$ imap quite alkely, its age distribution as mell. Ao han olrandy bean noced, data rastrictions make it imposeible to take the offocts of ago diotribution sunco account.

[^6]:    Once more, given the high correlations among parameter values, this is a very big "if."

[^7]:    ${ }^{9}$ It should perhaps be noted that, since asch of these calculetions depende on two of the parameter estimatas, they are probably more raliable than those discusser in the preceding paragraph.

