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Some Notes on the Basic Elements
of Dynamic Pool Models Used to Assess

the Impact of Fishing on Yield

by Frederick W. Bell, Director
Economic Research Laboratory

National Marine Fisheries Service

There have been a number of models suggested to assess the

impact of fishing on yield. We shall restrict our analysis to the

dynamic pool variety, since the Schaefer model has been discussed

elsewhere and is probably better understood by the layman.
1 

In out-

lining the. dynamic pool model, we have used four references: M. B.

Schaefer, "Methods of Estimating Effects of Fishing on Fish Populations,"

Transactions of the American Fisheries Society, Vol. 97, No; 3; J. A.

Gulland, Manual of Methods for Fish Stock Assessment, Part 1, Fish 

Population Analysis, F.A.O. Fish Technical Paper No. 40; W. E. Schaaf

and G. R. Huntsman, "Population Dynamics of the Atlantic Menhaden: An

Analysis of the Purse Seine Fishery, 1955-1969," unpublished manuscript;

1See M. B. Schaefer, "Some Aspects of the Dynamics of Population
Important to the Management of Commercial Marine Fisheries," Inter-
American Tropical Tuna Commission, Bulletin, I(2):27-56. For another
exposition of the Schaefer model, see F. W. Bell, E. W. Carlson, and
F. V. Waugh, "Production from the Sea," NMFS Conference on Fisheries
Management., NMFS Special Scientific Report (forthcoming).
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and D. H. Cushing, Fisheries Biology: A Study in Population Dynamics,

Madison, Wisc.: The University of Wisconsin Press, 1968. Before

we completely formulate the dynamic pool model, let us define some

important terms (or parameters) and deal briefly with their estimation.

1.0 Mortalities

1.1 General Theory

When studying mortality as applied to a fish population, it is

convenient to talk in terms of instantaneous rates or the rate at

which the numbers (N) in tht_population are decreasing, or

dN
ZN

dt
(1)

where Z = instantaneous total mortality coefficient

From any given level of population size (N0) (i.e., numbers), the

number alive at any given time is the following:

Nt = NOe
-Zt 2)

It is, of course, paramount that we distinguish between natural (M)

and fishing (F) (man-made) mortality, or

and

-
dN 

= -MN
dt

dN 
= -FN

dt

(3)

(3')
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where M = natural mortality coefficient (instantaneous)
F = fishing mortality coefficient (instantaneous)

In the Beverton-Holt model (i.e., dynamic pool) the estimation of

these coefficients (see below) are especially critical in computing

FopT or the optimum level of fishing mortality (i.e., that F which

will maximize yield from the stock).2

For very short time intervals, we may merely add the two critical

coefficients together to obtain the total mortality coefficient:

F + M = (4)

In the simplified dynamic pool model, natural mortality is

assumed to .be a constant (density-independent and the same at all

ages).

1.2 Estimation

• There are a number of methods developed by the biologists to

estimate Z, M, and F: •

(a) Direct Abundance Statistics: Let us say that we know the

abundances, say No, Ni of any group of fish at two known times, for

them the fraction surviving is Ni/No = S; therefore,

2R. J. H. Beverton and S. J. Holt, "On the Dynamics of Exploited
Fish Populations," London: Her Majesty's Stationery Office,1957.



4

= 1\11/No (5)

(b) Indices of Abundance (CPUE): If we assume that catch per

unit of effort (CPUE), no and nl, are proportional to No and N

then

-it 
Ni/No =

e
1/110 (6)

(c) Estimation of M: Once Z is estimated by either (a), (b),

or other techniques (e.g., Direct Census, Swept Area, Marking,

Tagging, etc.), M may be estimated by the intercept of a least-squares

regression of Z on effective effort (see Schaaf and Huntsman).
3

2.40 -

1.00

.30

.15
0

• •

• •

10 20 30 40

•

 1 FISHING EFFORT

Figure 1. Relation of total mortality to fishing effort

3For a fuller description of methods used to estimate "Z" see
Gulland, op. cit.



In the case above (Figure 1), M = .30 since there is no fishing

effort at the intercept (i.e., F = 0). For an example, see Figure 2,

which was employed by Schaaf and Huntsman to estimate M. •Schaaf and

Huntsman calculated the age specific total mortality (Zi) for ages

2, 3, and 4 using technique (b). For each year from 1955 through

1964, these age specific rates were averaged, each Zi being weighted

by the inverse of the standard deviation of the Zi's for all years.

This gives the most weight to age specific total mortality rate,

which is least affected by fluctuating year class strength.

Once M is - obtained, F may be calculated easily by

F=Z

(d) Estimation of M from K: K is the rate of growth of the

species (See 2.0 below). Biologists theorize that a species with a

high K is likely to have a high M or

Clupeoids:4 M is between one and two times K;

Gadiformes:5 M is generally between two and three times K.

2.0 Growth

2.1 General Theory

There exists a considerable literature on growth equations.

However, most models usually start out with the growth equation

4Any fish of the herring family.

5Cod or cod-like species.
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ascribed to von Bertalanffy. If the Ltmlbof a fish is plotted

against age (t), the result is usually a curve of which the shape

continuously decreases with increasing age', and which approaches an

upper asymptote parallel to the X-axis or Lc. (see Figure 3 below).

Length

Lco

Figure 3

Weight

inflection point
where Wi = 1/3 W.

Figure 4

t (a g e)

t (a g e)
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Curves of wei9ht and age (t) also approach an upper asymptote, but

usually form an asymmetrical sigmoid, the inflection occurring at a

weight of about one third of the asymptotic. weight. This is shown

in Figure 4.

We can specify that the rate of growth of the fish is linearly

related to length (i.e., derivative of Figure 3).

or

dl
= K (L. - L1)dt

dl
dt = KL0 - LiK

L. = value where rate of growth is zero

The equation is in the general form of a common straight line

(y = ax + b) where,

= b = KL.; a = -K; x = L
dt

Equation (7) may be integrated to find the general relationship

between 1 and t, or

L [1 _ e-K(t-to)]

where to = theoretical age where 1 = 0

Equation (8) is the Bertalanffy function (i.e., see Figure 3).

(7)

(7')

The weight of a fish is usually closely proportional to the cube

of its length, so that from (8) we can derive
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t = W 11 - e-K(t-t0)OO 

where W., is the asymptotic weight. This is shown in Figure 4.

more general growth equation has been given by Richards6 or

w
l-m 

W
1-m
cx -kt]- ae

9)

(10)

When m = 2/3, equation (10) becomes the simple Bertalanffy curve

(equation 9). When m = 2, the equation becomes the "time honored"

logistic

Woo

+ be-kt

Hence, the difference between the logistic and the Bertalanffy

growth function is the parametric value of m. This is an important

point to remember since the logistic is an integral part of the

Schaefer model, while the Bertalanffy curve is used in most "dynamic

pool models. For an exercise in the estimation of 'm" the reader

should see Tomlinson and Pella.7 Finally, in the simplified model,

the growth rate is assumed to be density-independent.

6F. J. Richards, "A Flexible Growth Function for Empirical Use,"
Journal of Experimental Biology, X(29):1959, 290-300.

7Jerome J. Pella and Patrick K. Tomlinson, "A Generalized Stock
Production Model," Inter-American Tropical Tuna Commission, Bulletin,
XIII(3), 1969.
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2.2 Estimation and Other Problems

(a) Age Determination Data: In fitting the growth curve, the

instantaneous rate of growth will not be known, but only lengths

at certain times. If t1 and t2 are close together, a close approxi-

mation to the instantaneous rate of growth is given by

dl 12 - 1 1
dt t2 - tl

(12)

where 1 1 and 12 are lengths at times t1 and t2. If this growth rate

is plotted against mean length 1/2 (11 12), then a plot corresponding

to equation (7) is obtained; the intercept on the X-axis gives an

estimate of Lcx, and the slope, an estimate of -K.

Figure 5 yields all the estimated parameters of (7).

d t
0

0 0

slope =

Figure 5
Loo

• L (mean length)
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(b) Growth of a Single Fish: The length at the end of each

year of life can be obtained from measurement; or, the growth of a

single year class can be followed in the same manner.

(c) Length-Weight Conversion: When growth data are given in

terms of weight, fitting of growth curves is most easily done by

using the cube root of the weight as an index of length, fitting

this to the equations of growth in length, and finally cubing to

return to weight. For example, Schaaf and Huntsman converted length

to weight by empirically determined formula, or

3..00000676 1 18
t

for Atlantic menhaden.

3.0 Derivation of a Simple Yield Curve

3.1 General Theory

(13)

Along with the material developed above, we must also define

some additional terms,

Nt = number of fish alive at age t
R = number of recruits to catchable stock (i.e., the number

of fish alive at age tr)6
R' = number of fish alive at the age tc (i.e., age of capture

by fishermen)
M = natural mortality coefficient (see 1.0 above)
F = fishing mortality coefficient (see 1.0 above)

8This exception will not consider mesh size as variable, but
it should be pointed out that this variable determines age at recruit-
ment. The dynamic pool model is especially useful for introducing
mesh size problems. We shall assume it to be held constant.
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The time of observation, t, must be

tr < t < tc

or somewhere between recruitment and age at capture.

Nt = Re-M(t-tr)

(14)

(15)

Equation (15) merely states that the number of fish alive at age t

is equal to the number of recruits (R) multiplied by the instantaneous

rate at which fish are dying of natural causes. Notice that equations

(15) and (2) are very similar where R = No and t-tr is necessary so

we can specify the time lapsing between recruitment and the observed

time period. Now, we are in an excellent position to specify the

number of fish that would be alive after recruitment, natural

mortality, and up to the point where capture by fishermen takes place:

R' = Re-M(t -tr) (16)

If, of course, both fishing and natural mortality are operating

after recruitment, we have

Nt = Re
-M(tc-tr)-(F+M)(t-tc) (17)

where t >tc

The number of fish actually caught over the specified time interval

(t, ti-dt) will be
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C = FNtdt (18)

So that we must, in effect, divide up the time interval between tc

(age at first capture) and tL (the maximum age attainable) into

short intervals and add the contribution of each.
tL

C = f FN dt

tc

or,
tL

C = f FRe-M(tc-tr)-(F+M)(t-tc)dt

tc
or,

C = J.FR (F+M)(t-tc)dt

tc
The weight caught, Y, during the time interval

(19)

(20)

, t+dt) may be

expressed as the following:

dYt = FNtWtdt

where Wt = average weight of fish at age t

The total weight caught can be obtained by integrating (22):

tL

= f FNtWtdt

tc

Equation (23) expresses the catch (weight) from a single year class

living for A years in a fishery. If there are A years in the year

class, there are also x .age groups in any one year in the fishery.

21)

(22)

(23)
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This is the case because, in all age groups in one year, the same

items are being summed, as in the age group within a single year

class. So (23) also expresses annual catches in a steady-state

system.

As we discussed above (Section 2.0), the Bertalanffy growth

function is the following:
f

] Wt [1 - e-K(t-t°) = w (24)

If we substitute (24) and (17) into (23) and integrate over a period

of time, the total yield function can be easily obtained:

Une_nK(tc-t0
-M(tc-tr) N—Y = FRe W (25)
' n=0 F + M + nK

where Uo = 1; Ul -3; U2 3; U3 -1

Equation (25) may be expressed in terms of yield per recruit.

Simplifying by using (23), we can express yield per recruit as

tLYt FNt
= I ---Wtdt (26)

R. Rtc

This is shown in Figure 6. The reason the dynamic pool model

is expressed in terms of catch (yield) per recruit is that it avoids

the problem of specifying the relationship between stock and

recruitment. In this way, we can separate the relationship between

catch and fishing intensity from that between stock and recruitment.

According to Cushing, it is wrong for fishermen to exploit stock at

a point beyond or to the right of the maximum yield per recruit.
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Figure 6. Yield curves for plaice calculated with
density-dependent growth; it was assumed that Lc.
varied inversely with stock density. If growth is
reduced with increased stock, the peak of the curve
is reduced, as might be expected. Curve (a) is that
with constant parameters; curve (b) is that with
density-dependent values of L. Adapted from
Beverton and Holt, 1957.
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3.2 Simulation

00

The dynamic pool model presented above can be used for simulation

purposes. Values of the parameters may be changed, and the sensi-

tivity of the model determined.. The most useful simulation is in

deriving an estimate of the maximum catch per recruit.
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4.0 The Stock-Recruitment Problem

As Cushing has indicated, the coefficient of variation of

recruitment to the East Anglian herring stock is 250 percent, and

that for the Arctic cod stock is perhaps from two to four times

greater. Therefore, specifying any mathematical of systematic

relationship between stock and recruitment may be very difficult,

if not impossible. Ricker has formulated the following relationship

between stock and recruitment:

R P (Pr-P)/Pm
R Pr r

where R = recruitment
P = parent stock
Pr = replacement size of the stock
Rr = number of recruits from Pr
Pm = stock producing maximum recruitment

If recruitment and stock are expressed in the same units, Rr =

R = (Pr)/Pm

Schaefer showed a simplified version of (28):

R = Pea-bP

(27)

Pr,

28

(29)

The form of (27) and (28) is shown in Figure 7. An empirical fit

of the Ricker equation is shown in Figures 8 and 9.

SO
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Figure 7. The stock and recruitment curves of Ricker for
various conditions. The curves A-E represent different
"stock and recruitment relationships." They pass through
the bisector (where recruitment and stock are equal, and
hence recruitment can replace stock) at the same point,
an equilibrium point. The dashed lines represent
different rates of exploitation. Adapted from Ricker,
1958.
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Figure 8. The relationship between recruitment and

stock for the Tillamook Bay chum salmon. Adapted
from Ricker, 1958.
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Once the yield per recruit equation has been specified along

with the stock recruitment relationships, we are in a position to

derive the steady-state yields (catch) given various levels of

fishing mortality and starting from a particular population size.9

Schaaf and Huntsman have generated such relationships using Atlantic

menhaden. This is shown in Figure 10. A stock-recruitment relation-

ship of a form similar to Ricker's brings the results oi the dynamic

pool model into line with those of the logistic model according to

Schaefer. An example for the yellowfin tuna fishery is given in

Figure 11..

5.0 Conclusion

The exposition is not intended for the professional population

dynamicist. It should be recognized that the dynamic pool model is

basically a simulation type approach. It is critically based on the

estimate of crucial parameters such as F, M, and K. The model

differs from the Schaefer approach in that the parameters are not

estimated simultaneously via least-squares. The dynamic pool model

91t should be pointed out that Beverton and Holt have used a
stock-recruitment relationship of the form

R =
1

a

so as R approaches an asymptote, 1/a, P becomes larger.
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mortality rate 0.95 at 25,000 units of effort.
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is especially useful in dealing with circumstances where the initial

population deviates from steady-state results and one wishes to obtain

long-run steady-state implications of holding fishing mortality

constant.
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