

# This document is discoverable and free to researchers across the globe due to the work of AgEcon Search. 

## Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.


GIANNINI 鎆OUNDATION OF
AGRICULTURAK, ECONOMICS
LIERAR
JUM 18 ig93

THE CURRENT STATUS OF THE UNITED STATES FISHERIES

By FREDERICK W. BELL
DONALD P. CLEARY
DARREL NASH RICHARD KINOSHITA

File Manuscript No. 82
November 1971

## The Current Status of the United States Fisheries *

- Today, the fishery resources traditionally fished by both U.S. and foreign fishing fleets are at the crossroads between overexploitation and rational fisheries management. To gain some appreciation for the developments leading up to this crisis, it is necessary to briefly describe some of the critical developments over the last decade.

The Domestic Harvesting Sector: A Mixed Picture: The last ten years have witnessed a rate of increase in world fish production (based upon aggregate pounds landed) of approximately 7.0 percent per year. The consumption of no other basic food commodity increased at anything approaching this rate. In contrast to the other nations, the U.S. domestic harvestirg sector has decreased its catch from 4.94 to 4.88 billion pounds over the 1960-70 period. However, the only meaningful figure, harvested value, has increased from $\$ 354$ million to $\$ 602$ million over the same period, an annual increase of seven percent reflecting in part a tendency toward the harvesting of higher valued species. 1

Of special significance, inter-country comparisons reveal through the latest available FAO statistics (1967) that the U.S. still possesses the third largest fishing industry in the world based upon total value of all harvested fishery products (see table 1). A direct quantity comparison on a species by species basis among world fishing nations reveals the U.S. was first in the harvesting of such major species as shrimp, crabs, clams, scallops and oysters and among the top three nations in tuna, salmon, halibut and menhaden (see table 2). These rankings dramatically indicate that on a world scale the U.S. is still a major fishing power. In addition, over the 1960-70 period, the domestic harvest of shrimp, tuna, salmon, clams, crabs and Pacific groundfish have shown respectable rates of expansion, both in quantity and value (see table 3). In contrast, many other species have shown declines in production due mainly to resource problems.
U.S. Fishery Consumption: A Dynamic Picture: Although per capita consumption of food fish has remained relatively static over the 1960-68 period, per capita utilization of fishery products (including fish meal used for poultry, etc.) has increased dramatically from 46.1 to 87.7 pounds, an average annual increase of over five percent. ${ }^{2}$ Aggregate consumption of both food and industrial fish has increased from 8.2 billion to 17.3 billion pounds, an annual increase of 14 percent (see table 4). Per capita consumption of crabs, tuna, fish meal, shrimp, clams, lobster, and groundfish has increased at a rate well over two percent per year

* Prepared by Frederick W. Bell, Donald Cleary, Darrel Nash and Richard Kinoshita of the Economic Research Division, Office of Resource Utilization, National Marine Fisheries Service

1. Over this period, inflation (CPI) has increased by approximately three percent per year. No attempt has been made to adjust fishery value for inflation.
2. The years 1969 and 70 were eliminated because of short run fluctuations which were in our opinion not typical of the long run trend.
which, when coupled with U.S. population growth, has placed serious pressure on resources fished by U.S. fishermen and foreign fleets. Presently, the U.S. consumes 11 percent of all fishery resources harvested on a world basis, with less than one percent of the world's population. These dramatic increases in demand in United States and also throughout the world have placed increasing pressure on the world's fixed supply of traditional fishery resources.

Imports the Answer: To supply the rapidly growing market for various fishery products in the U.S., it became necessary to import substantial quantities of fish. As trade barriers were reTaxed on fishery products via the Kennedy rounds and demand for the product expanded, many foreign nations began to supply fish for the following variety of reasons: (1) limitation on resources available to U.S. fishermen; (2) comparative advantage of labor and material costs and (3) access to untapped resources of their own. Based on value, imports (both industrial and food) of fishery products expanded at an annual rate of 18.6 percent per year over the 1960-70 period and increased its share from 40 to 57 percent (see table 4).

## U.S. Fishery Resources: Their Potential: Except for certain

 elements of the U.S. tuna and shrimp fleets, most U.S. fishing vessels fish either on or just off the continental shelf. The fishery resources in the latter area can be divided into underutilized (i.e., not commercially marketed to any extent) and utilized (i.e., commercially marketable such as shrimp, crabs, and haddock). For the utilized species, the rate of expansion in fishing effort (i.e., amount of capital, labor and techmology applied in harvesting the resource) in response. to demand increases discussed above has been astounding. For selected major species, fishing effort has increased by the following percentages over approximately the last decade:Species

1. Northern Lobsters(inshore)
2. Gulf Blue Crab
3. Gulf Menhaden
4. Atlantic Menhaden
5. Gulf Shrimp
6. Northwest Atlantic Haddock
7. Northwest Atlantic Silver Hake
8. Skipjack Tuna
9. Atlantic Blue Crab
10. Northern Lobsters (offshore)

Percent Increase in Fishing Effort over Decade

$$
+16.7
$$

$$
+160.0
$$

$$
+94.1
$$

$$
+114.8
$$

$$
+12.0
$$

$$
+7.3
$$

$$
+629.1
$$

$$
+63.4
$$

$$
+9.2
$$

$$
+112.2
$$

Percent Decline in Catch Per Unit of Effort over Decade

Because we are dealing with a living renewable resource, but with a fixed maximum sustainable yield on an annual basis, these rates of expansion in fishing effort cannot be maintained with proportional increases in output. As indicated above, catch per unit of effort (i.e., an indicator of resource productivity) has dropped secularly over the 1960-70 period.

The capitalization index for a fishery defined as the amount of fishing - effort presently in a fishery divided by the necessary fishing effort to harvest the maximum sustainable annual yield is approaching or has already surpassed unity (i.e., is overfished) for many species: For example, such species fished by U.S. fishermenas. Atlantic menhaden; king crab; haddock; yellowtail flouder; Northern lobster, and sardines are significantly overfished. We have reached the crossroads with respect to many utilized species. However, NMFS scientists have estimated that there are on annual sustainable basis from 36-38 billion pounds of underutilized species on the. U.S. continental shelf. These resources offer hode for the future

Labor Productivity: On the Rise: Despite declines in catch per unit of effort, the American fisherman has been able to increase his annual landings per worker. A recent NMFS study indicates that the productivity index (output per fisherman) has increased at an annual rate of three percent which is approximately the rate of growth in GNP per worker for the rest of the U.S. economy. ${ }^{3}$ Apparently, U.S. fishermen have expended more units of fishing effort per fisherman each year to offset the dwindling productivity of the resource. This has materially helped U.S. fishermen compete with foreign imports and helped maintain their earnings which are at relatively low level (see below). However, open access to the fishery resources combined with increasing demand may ultimately cut into this amazing performance of labor productivity in this resource based industry unless rational management steps are taken. Increases in labor productivity (i.e., displacing labor) resource limitations and low earnings have resulted in a dectine from approximately 130,000 fisheries in 1960 to 128,000 in 1968.

Earnings to Vessels and Fishermen: Tables 6 and 7 show 1 imited survey data on annual earnings for fishing firms and labor in various fisheries. The data do indicate that for many fisheries both the rate of return and annual wages are substantially lower than return in many sectors of the U.S. economy. In addition, it must be remembered that the risk factor in fishing is great and the earnings reported are actually relatively low, given the hazards of the sea and variability in resource abundance. It should always be remembered that fishing is a profit sharing enterprise where risks fall upon labor as well as capital.

Future Prospects: For traditional species, the NMFS projects that demand in the U.S. will increase by over 33 percent by the year 2000, 4 (see table 8). The pressure on regional as well as world resources will result in rapidly rising prices that will act to slow the rate of consumption from its previous level discussed above. It is expected that within the next five to ten years the pressures of U.S. and rest of the world demand on traditional species will result in overfishing for crabs, lobsters, shrimp, menhaden, herring, and sea scallops on a world basis under conditions of open access to the resource

[^0]4. F.W. Bell, et. al., "The Future of the World's Fishery Resources. to the Year 2000," Marine Technology Society Preprints 1971.

4
Capsule Summary: Many U.S. fisheries are presently suffering from archaic laws and regulations, overcapacity and relatively low returns to labor and capital. Because of the common property nature of the resource, open access and rising demand, the problems are likely to continue unless rational management schemes are instituted. It is to this latter objective that the NMFS is dedicated.

Table 1.--Value and volume of catch by countries landing over $\$ 100,000,000,1967$

| Country |  | Thousand <br> U.S. dollars |
| :--- | ---: | :--- |
| Japan |  | metric tons |

I/ Figure is a weighted average price of all other countries in the table multiplied by U.S.S.R. landings. This is done for each species in the U.S.S.R. catch and summed to obtain the total.

2/ Value figure cannot be derived.

Source: FAO Yearbook of Fishery Statistics
Derived by: Division of Current Iconomic Analysis, National Merine Fisheries Service, U.S. Department of Commerce

Table 2. --Rank of three leading countries, by catch of specified species, 1955 and 1967
(Round weight)

| 1955 |  |  | 1967 |  |
| :---: | :---: | :---: | :---: | :---: |
| Species | Country | Mil. Lbs. | Country | Mil. 1 bs. |
| Groundfish | U.S.S.R. | 1,884 | U.S.S.R. | 5,284 |
|  | United Kingdom | 1,304 | Japan | 3,621 |
|  | Japan |  | United Kingdom | $1,419$ |
|  | Total world | 10,560 | Total world | $21,426$ |
| Tuna | Japan | 7861/ | Japan | 1,278 |
|  | United States | 3551/ | United States | 426 |
|  | Peru | 2141/ | Peru | 109 |
|  | Total world | 1,65.91/ | Total world | 2,932. |
| Salmon | Japan | 395 | Japan | 357 |
|  | U.S:S.R. | 393 | United States | 217 |
|  | United States | 282 | U.S.S.R. | $194{ }^{\prime}$ |
|  | Total world | 1,270 | Total world | 1,032 |
| Halibut | United States | 49 | Canada | 42. |
|  | Canada | 34 | United States | 39 |
|  | Norway | 11 | U.S.S.R. | 20 |
|  | Total world | 112 | Total world | 128 |
| Sardines (canned herring) | United States | 147 | Portugal | 187 |
|  | Portugal | 109 | Spain | 96 |
|  | Norway | 103 | Norway | 9521 |
|  | Total world | 1,254 | Total world | 1,920 |
| Shrimp | United States | 244 | United States | 308 |
|  | India | 235 | India | 202 |
|  | Japan | 107 | Mexico | 154 |
|  | Total world | 1,024 | Total world | 1,521 |
| Lobsters | Canada | 48 | Chile | 44 |
|  | South \& Southw Africa | 47 | Canada | 35 |
|  | United States | 32 | Australia | 32 |
|  | Total world | 227 | Total world | 309 |
| Crabs | Japan | 152 | United States | 326 |
|  | United States | 137. | Japan | 190 |
|  | U.S.S.R. | 83 | U.S.S.R. | 93 |
|  | Total world. | 425 | Total world | 739 |

Table $2 \therefore$--Rank of three leading countries, by catch of specified species, 1955 and 1957 (continued)
(Round weight)

| 1955 |  |  | 1967 |  |
| :---: | :---: | :---: | :---: | :---: |
| Species | Country | Mil. Ibs. | Country | Mil. Ibs. |
| Clams | Japan | 232 | United States | 390 |
|  | United States | 207 | Japan | 384 |
|  | United Kingdom | 17 | Spain | 91 |
|  | Total world | 500 | Total world | 1,065 |
| Scallops | United States | 194 | United States | 111 |
|  | Japan | : 36 | Canada | $=107$ |
|  | Canada | 14 | Australia | 30 |
|  | Total world | 247 | $\because$ Total world | 289 |
| Oysters | United States | 1,061 | United States | 903 |
|  | Japan | 216 | Japan | 512 |
|  | Mexico | +23 | France | 153 |
|  | - Total world | 1,376 | Total world | 1,828 |
| Fish Mea | United States | 750 | Peru | 4,004 |
|  | Norway | 438 | Norway | 1,084 |
|  | United Kingdom | 199 | United States | 539 |
|  | $\because T o t a l ~ w o r l d ~$ | 2,276 | Total world | 10,132 |

[^1]Source: FAO Yearbook of Fishery Statistics (annual editions)

Table 3.--United States Total Catch and Catch of Selected Species

| Year | Total |  | Shrimp |  | Salmon |  | Tuna |  | Crabs |  | Atlantic Groundfish |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Quantity | Value | Quantity | Value | Quantity | Value | Quantity | Valu |
|  | pounds | dollars | million pounds | million dollars | million pounds | million dollars | million pounds | million dollars | million pounds | $\begin{aligned} & \text { million } \\ & \text { dollars } \end{aligned}$ | million pounds | million |
| 1960 | 4,942 | 354 | 249 | 67 | 235 | 45 | 319 | 40 | 219 | 17 | 529 | 31 |
| 1961 | 5,187 | 362 | 175 | 52 | 311 | 52 | 357 | 46 | 229 | 17 | 533 | 31 |
| 1962 | 5,354 | 396 | 191 | 73 | 315 | 56 | 341 | 49 | 231 | 18 | 542 | 33 |
| 1963 | 4,847 | 377 | 240 | 70 | 294 | 49 | 359 | 44 | 249 | 21 | 518 | 34 |
| 1964 | 4,541 | 389 | 212 | 70 | 352 | 56 | 354 | 44 | 269 | 23 | 508 | 32 |
| 1965 | 4,777 | 446 | 244 | 82 | 327 | 65 | 373 | 47 | 332 | 30 | 487 | 37 |
| 1966 | 4,366 | 472 | 239 | 96 | 388 | 73 | 334 | 58 | 369 | 32 | 481 | 41 |
| 1967 | 4,055 | 440 | 308 | 103 | 217 | 49 | 426 | 55 | 315 | 30 | 404 | 32 |
| 1968 | 4,116 | 472 | 292 | 113 | 301 | 55 | 402 | 63 | 238 | 44 | 383 | 32 |
| 1969 | 4,292 | 518 | 317 | 123 | 246 | 55 | 419 | 67 | 246 | 40 | 337 | 34 |
| $1.970^{1 /}$ | 4,884 | 602 | 368 | 130 | 397 | 90 | 478 | 77 | 268 | 39 | 316 | 38 |
| Source: | Fishery Statistics of the United States and Fisheries of the United States, annual editions, U.S. Department of the Interior; 1/ 1970 U.S. Department of Commerce. |  |  |  |  |  |  |  |  |  |  |  |

Table 4.--Value of United States imports and consumption, and utilization of total and selected fishery products. 1960-70.



Table 6

Recent Profitaoility in Selected U．S．Fisheries and In Selscted ショnưacturinz Corcorations

## A．Highly orotitoob？Eミシneries

Shrinp－Guif of Yexics $\frac{\text { ROI ra亡e }}{23.4}$
Iellorein ara soiojock tuna ..... 9.8
King crab and tunner crab ..... 9.1
Scellops ..... 8.2
SㄹTTN ..... 7.4
Albacore ..... 7.4
Anchovy and jeck meckerél ..... 1.1
B．Ion profitoble fisheries
Groundiash－Morth AtIenticHerrins－Atlantic and Pacific$3.2-6.7$Mennaden－ȦIEntic and Culf6.0
Northern looste： ..... 6.6
Oyster ..... 6.1
Blue crab－：GuI and Atlentic ..... 5.8
Clams ..... $5: 0$
Spring looster ..... 5.1Shrimp－Horin Atianio
Groundfisi：－Pécific
Groundfisi：－Pécific
Shrimp－A1es＇： ..... 6.0
－ ..... 5.5
Mackere？－Morin Atİntic
P01100：－ ..... $6: 1$
1－Halibut5
C．ROI in selectec＝anuEatusing corporations（1958）： Food and kindrec products14.0
Motor venicles and equipernt ..... 25.1
Electrical azchinezy and equipeant ..... 15.9
Dairy procucts ..... 12.8
All manu：acturing corporetions ..... 15.3

Q．
Source：Eccnomic R＝seerch Division
. Table 7.-- Return to Labor in Selected U.S. Fisheries and in Selected Manufacturing Industries



1. Under LDR-DIE assumptions
2. Estimated for 1985 , 1990 and 2000 based upon a more gradual decline in the resource base than shown in chapter 6.
3. Projections made without additional aquaculture of clams:


[^0]:    3. Frederick W. Bell and Richard K. Kinoshita, The Measurement of Labor Productivity Changes in U.S. Fisheries (draft manuscript, NMFS).
[^1]:    1/ 1956
    2/ 1966
    3/ Product weight

