

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

ANWUAL SHELF

THE FUTURE OF THE WORLD'S FISHERY RESOURCES:
FORECASTS OF DEMAND, SUPPLY AND PRICES TO THE YEAR 2000 WITH A

DISCUSSION OF IMPLICATIONS
FOR PUBLIC POLICY
by
Frederick W. Bell
Darrel A. Nash
Ernest W. Carlson
Frederick V. Waugh
Richard K. Kinoshita
Richard F. Fullenbaum

File Manuscript No. 65-1
December 1970
NATIONAL MARINE FISHERIES SERVICE ECONOMIC RESEARCH LABORATORY

CONTENTS

Page
Abstract 1
Chapter 1 Introduction and sumary 2
1.1 Introduction 2
1.2. The nature and purpose of projections 3
1.3 Sumiliary 4
Chapter 2 Trends in demand and supply of fish products for the world and United States, 1950-67 9
2.1 Introduction 9
2.2 World supply and demand 9
2.3 World potential: estimates of maximum sustainable yield 19
2.4 U.S. demand and supply 24
2.5 U.S. potential: maximum sustainable yield in waters adjacent to the U.S. 33
2.6 Price and consumption trends in the U.S. for selected fishery products 35
Chapter 3 Biological growth, yieid and supply 79
3.1 Introduction 79
3.2 The I.CR model 79
3.3 The ITR model 84
3.4 Statistical estimation of yield functions 86
3.5 A numerical example of the two catch-cffort functions 90
3.6 Indistry cost functions 93
3.7 Iridustry supply functions for a region 97
3.8 Supply function for the world: an aggregation of regional supply functions 98
3.9 Regional and world supply functions: a mathematical analysis 101
Chapter 4. The determinants of demand for fishery products and empirical estimates of these relationships 106
4.1 Introduction 106
4.2 Theory of demand 100
4.3 Empirical estimation of demand parometers for selected fishery products by country 111
Page
Chapter 5 The mechanics of projection 145
5.1 Introduction 145
5.2 The general procedure for food fishi 145
5.3 Specific procedures and assumptions 151
5.4 The general procedure for fish mea? 157
Chapter 6 Economic projections of demand, supply and prices for selected iishery products to the year 2000 160
6.1 Introduction 160
6.2 Groundfish 162
6.3 Tuna 168
6.4 Salmon 175
6.5 Halibut 182
6.6 Sardites 187
6.7 Shrimp 192
6.8 Lobsters 197
6.9 Crabs 202
6.10 Clams 207
6.11 Scallops 213
6.12. Oysters 219
6.13 Other food fish 22.4
6.14 Fish meal 229
6.15 Overāll U.S. consumption of food fish 235
6.16 Overall world consumption of food fish and fish meal 240
Chapter 7 Implications of the demand and supply projections for public policy 250
7.1 Introduction 250
7.2 A fishery management policy to prevent overfishing 253
7.3 An anti-pollution policy 260
7.4 A fish farming policy 267
7.5 An underutilized species policy 271
7.6 A harvesting efficiciency policy 278
7.7 A policy to avoid 280
$\% 8$ Policy implications for meeting projected demand: the world indicative plan $28 ?$
7.9 Need for adequate information 283
Acknowledgements 284
Literature cited 286
Appendix A Alternative projections of world fish consumption and prices 290
Appendix B Fishery statistics 305
Appendix C Human population statistics
Page
Appendix D Price and incone statistics 403
Appendix E Major fishery areas of the world for statistical purposes. 419

TABLES

Table Page
1.1 Year world will reach maximum sustainable supply 6
2.1 Value and yolume of catch by countries landing over $\$ 100,000,000$, 1967
11
11
2.2 Value of major world fishery products of interest to the U.S. 1950, 1960, and 1967
12
12
2.3 Rank of three leading countries, by catch of specified species, 14
2:4 Rank of three leading countries in consumption of selected fish 17 products, 1955 and 1967
2.5 Relation of world landings to world maximum sustainable yield (MSY) for fisheries included in the analysis 20
2.6 U.S. per capita consumption of selected species, 1950, 1960, and 1967, ranked by annual percentage change in consumption during the period 1950-67 26
2.7 U.S. production of fish and shellfish by method of preservation, selected years 28
2.8 U.S. production of fresh and frozen fish and shellfish by method of processing, selected years 29
2.9 Domestic production, imports, and imports as percent of supply, specified species, 1950, 1960, and 1967 31
2.10 MSY in waters adjacent to the U.S. (ocean fisheries). 34
2.11 U.S. per capita consumption and deflated ex vessel prices of groundfish, 1948-68 38
2.12 U.S. per capita consumption and deflated ex vessel prices of tuna for canning, 1947-67 41
2.13 U.S. per capita consumption and defflated wholesale prices of canned salmon, 1948-•67 44
2.14. U.S. per capita consumption and deflated wholesale prices of fresh and frozen salmon, 1948-67 47
2.15 U.S: per capita consumption and deflated ex vessel prices of halibut, 1.950-67 50
2.16 U.S. per capita consumption and deflated wholesale prices of canned sardines, 1950-68 53
2.17 U.S. per capita consumption and deflated ex vessel prices of shrimp, 1948-67 50
2.18 U.S. per capita consumption and deflated ex vessel prices of lobster, 1948-67 59
2.19 U.S. per capita consumption and deflated ex vessel prices of crabs, 1948-67 62
2.20 U.S. per capita consumption and deflated ex vessel prices of clanis, 1948-67 65
2.21 U.S. per capita consumption and deflated ex vessel prices of scallops, 1948-67 68
2.22 U.S. per capita consumption and deflated ex vessel prices of oysters, 1948-67 71
Table Page
2.23 U.S. per capita consumption and deflated ex vessel prices of other food fish, 1950-67 74
2.24 U.S. per capita utilization and wholesale price of fish meal, 1950-1967 77
4.1 Regression results of groundifish demand equations by selected countries 117
4.2 Regression results of tuna denand equations by selected countries 118
4.3 Regression results of salmon demand equations by seiected countries 120
4.4 Regression results of halibut demand equations by selected countries 12.1
4.5 Regression results of sardine demand equations by selccted countries 122.
4.6 Regression results of shrimp demand equations by selected countries 123
4.7 Regression results of lobster demand equations by selected countries 124
4.8 Regression results of crai demand equations by selected countries 125
4.9 Regression results of clam demand equations by selected countries 126
4.10 Regression results of scallop demand equations by selected countries 12.
4.11 Regression results of oysters demand equations by selected countries 128
4.12 Regression results of all other food fish demand equations by U.S. and rest of world 12.9
4.13 Regression results of fish meal cemand equations by U.S. and rest of worl.d 130
4.14 Groundfis' equations used for making projections 131
4.15 Tuna equations used for making projections 132
4.16 Salmon cquations used for making projeciions 133
4.17 Halibut equations used for making projections 134
4.18 Canned sardines equations used for making projections 135
4.19 Shrimp equations used for making projections 130
4.20 Lobster equations used for making projections 137
4.21 Crab equations used for making projections 138
4.22 Clam equations used for making projections 139
4.23 Scallop equations used for making projections 140
4.24 0yster equations used for making projections 141
4.25 All other food fish equations used for making projections 142
4.26 Fish meal equations used for making projections 144
6.1 Groundfish projections (IDR--DIE assumptions) 164
6.2 Tuna projections (IDR-DIE assumptions) 171
6.3 Salmon projections (JDR-DIE assumptions) 177
6.4. Salmion projections (IES.-DIE assumptions) 178
6.5 Halbut projections (LIR-DIE assumptions) 183
Table Page
6.6 Sardine projections (IES-DTE assumptions) 188
6.7 Shrimp projections (IDir..DIE assumptions) 193
6.8 Lobster projections (IDR-DIE assunptions) 198
6.9 Crab projections (LDI-DIE assurntions) 203
6.10 Clam projections (LDR--DIE assumptions....nithout aquaculture) 208
6.11. Clam projections (ITS-DTE assumptionsworith aquaculture) 209
6.12 Scallop projections (IDR-DIE assumptions.--with the calico scalliop resource) 2.24
6.13 Scallop projections (IDR-DIE assumptions-m-rithout the calico scallop resource) 2.15
6.Ilt Oyster projections (TES.ITEE assumptions) 220
6.15 Othor focd fish projections (ITM-I)IE assumptions) 225
6.16. H'ish meal projections (In assumptions) 23.1
6.17 U.S. per capita consumption of fishery products, actual and projecteá do year 2000 236
6.18 U.S. aggregate consumption of fishery products, projected to year 2000 237
6.19 Catch of marine fish, crustaceans and moluscs (1955) arid estimated world potential by marine area and species 2.4
6.20 Consumption and projected demand for fish meal 242
6.21 World aggregate consumption of fishery products, projected to year 2000
248
248
7.1 Ranking of fisheries on the basis of projected utilization 252
7.2 Estimated economic losses resulting from common property riature of the resource for selected fisheries, 1966 2.58
7.3 Estimated losses in revenue to fishermen due to poliution for selected cases and time periods 261
7.4 Shellfish production closed due to pollution or toxicity, 1906 262
7.5 Projected real world price increases for selected fishery products without augmentation in supply through aquaculture, specified years
268
268
7.6 Selected underutilized species and their additional potential economic value
273
273
7.7. Benefit-cost analysis of the calico scallop program 277
A1. 1 World projections by species (LCR-DTE assumptions) 291
A1. 2 World projections by species (IDR-CIE assumptions) 293
Al. 3 World projections by species (IDDR-ZTF assumptions) 296
A1. 4 Horld projections by species (ICR.GIE assumptions) 299
A1. 5 Horld projections by species (I,CR-ZIE assumptions) 302
B1. 1 Estimate of iSY and actual lendings by region: groundfish 305
B1.2 Estimate of HSY and actual landings by region: tuna 307
B1. 3 Estimate of idSY and actual landings by region: salmon 308
B1.4 Estimate of MSY and average amual landings (1965..67) by region: halibut 309
B1.5 Estimate of fisy and actual laridings by region
sardines
sardines 310 310
B1. 6 Estinate of $4 S Y$ and actual landings by region:
shrimp
shrimp 312 312
B1.7 Estimate of lisy and actial landings by region: lobsters 373
B1. 8 Estinate of HSY and actual landings by region: craios 314
B1. 10 Estimate of my and actual landings by region: clams 315
B1. 10 Estimate of misy and actual landings by region: scallops 317
Table Page
B2. 11 Groundfisin, Canada 319
B2.12 Groundfish, Denmark 3?0
B2. 13 Groundfish, France 321
B2.14 Groundifish, Iceland 322
B2.15 Groundfish, Japan 32.3
B2.16 Groundfish, Netherlands 32.4
B2.17 Groundfish, South Korea 325
B2.18 Groundfisin, United Kiagdom 326
B2.21 Tuna, Canada 328
B2.2.2 Tuna, EEC countries 329
B2.23 Tuna, Japan 330
B2. 24 Tuna, Peru 331
B2. 25 Tuna, Spain 33?
B2.26 Tuna, Taiwan 333
B2.27 Tuna, Turkey 334
B2.28 Tuna, United Kingdom 335
B2.31 Salmon, Canada 336
B2.32 Salmon (cannea), Canada 337
B2.33 Salmon (fresh, frozen, cured), Canada 338
B2.34 Saliiion (a.71), Denmark 339
B2.35. Salmon (a11), Japen 340
B2. 36 Salmon (canned), Japan 341
B2.37 Salmon (fresh, frozen, cured), Japan $34 ?$
B2. 38 Salmon (all), U.S.S.R 343
B2. 41 Halibut, Canada 345
B2.42 Halibut, Iceland 346
B2. 43 Halibut, Norvay 3.7
B2.44 Halibut, West Germany $3 \wedge 8$
B2.A5 Halibut, United Kingdom 349
B2.51 Canned sardines, Canada 351
B2.52 Canned sardines, Norway 352
B2.53 Canned sardines, Portugal 353
B2.54 Canned sardines, Spain 35 !
B2.55 Canned sardines, United Kingdom 355
B2.61 Stirimp, India 356
B2.62 Shrimi, Japan 357
B2.63 Shrimp, Mexico 359
B2.64 Shrimp, Pakistan 359
B2.65 Shrimp, Thailand 360
B2.71 L.obster, Australia 302
B2.72 Lobster, Canada 363
B2.73 Lobster, Chile 364
B2.74 Lobster, France 365
B2.75 Lobster, United Kingdom 366
B2.81 Crabs, Canada 368
B2.82 Crabs, Japan 369
B2. 83 Crabs, U.S.S.R 370
Table Page
B2.91 Clams, Japan 372
B2.92 Clams, Korea 373
B2. 93 Clams, Malaysia 374
B2. 94 Clams, Spain 375
B2.95 Clams, United Kingdom 376
B2.101 Scallops, Australia 378
B2. 102 Scallops, Canada 379
B2. 103 Scallops, France 380
B2. 104 Scallops, Japan 381
B2.111 Oysters, Canada 382
B2. 112 Oysters, France 383
B2.113 Oysters, Japan 384
B2. 114 Oysters, Mexico 385
B2.115 Oysters, South Korea 386
B2.116 Oysters, Taiwan 387
B3 Total world catcin by species 390
B4 Total world catch by country 393
Cl World population by countries 397
C2 : Projected populations 402
D1 CPI (for all items) for selected countries (1963 = 100) 404
D2.1 GNP per capita for selected countries (in 1958 U.S. dollars) 409
D2.2 GNP per capita for selected countries (in dollars in constant 1962 prices) 412
D2.3 GNP for selected countries (millions of dollars in constant 1962 prices) 473
D2.4 : U.S.S.R. national income 415
D3 Projected GNP per capita (in 1958 U.S. dollars) 418

FIGURES

Figure
Page
2.1 Groundfish, per capita consumption and price 39
2.2 Tuna, canned, per capita consumption and price 42
2.3 Salmon, canned, per capita consumption and price 45
2.4 Salmon, fresh and frozen, per capita consumption and price 48
2.5 Halibut, per capita consumption and price 51
2.6 Sardines, canned, per capita consumption and price 54
2.7 Shrimp, per capita consumption and price 57
2.8 Lobsters, per capita consumption and price 60
2.9 Crabs, per capita consumption and price 63
2.10 Clams, per capita consumption and price 65
2.11 Scallops, per capita consumption and price 69
2.12 Oysters, per capita consuniption and price 72
2.13 Other food fish, per capita consumption and price 75
2.14 Fish meal, per capita consumption and price 78
3.1 General shape of the logistic curve 82
3.2 Groundfish, Atlantic northeast, response of yield to effort 92
3.3 Average cost for L.DR and LCR function given the same basic data. 95
3.4 W'orld supply and regional supply 100
5.1 Equilibrium of world supply and demand for a fishery product 15 ?
6.1 Historical and projected world consumption of groundfish 165
6.2 Historical and projected U.S. consumption of groundfish 166
6.3 World demand and supply functions for groundfish, 1970~2000 167
6.4 Supply functions for tuna 169
6.5 Historical and projected world consumption of tuna 172
6.6 U.S. consumption of tuna 19,7-1965 and projected to year 2.000 173
6.7 World demand and supply functions for tuna, 1970.. 2000 174
6.8 Historical and projected world consumption of salmon 179
6.9 U.S. consumption of salmon 1948-1967 and projected to year 2000. 180
6.10 World demand and supply functions for salmon, 1970-2000 181
6.11 Historical and projected world consumption of halibut 184
6.12 U.S. consumption of hatibut 1950-1967 and projected to year 2000 185
6.13 World demand and supply functions for halibut, 1970-2000 186
6.14 Historical and projected world consumption of sardines 189
6.15 U.S. consumption of sardines 1950-1967 and projected to year 2000 190
6.16 World deniand and supply functions for sardines, 1970-2000 191
6.17 Historical and projected world consumption of shrimp 194
6.18 U.S. consumption of shrimp 1947-1967 and projected to year 2000. 195
6.19 World demand and supply functions for shrimp, 1970-2000 196
6.20 Historical and projected world consumption of lobsters 199
6.21 U.S. consumption of lobsters 1948-1967 and projected to year 2000 200
6.22 World demand and supply functions for lobsters, 1970.m2000 207
6.23 Historical and projected world consumption or crabs 204
Figure Page
6.24 U.S. consumption of crabs 1948-1967 and projected to year 2000 205
6.25 World demand and supply functions for crabs, 1970-2000 206
6.26 Historical and projected world consumption of clams 210
6.27 U.S. consumption of clams 1948-1967 and projected to year 2000 211
6.28 World demand and supply functions for clams, $1970 \cdots 2000$ 212
6.29 Historical and projected world consumption of scallops 216
6.30 U.S. consumption of scallops 1948-1967 and projected to year 2000 217
6.31 World demand and supply functions for scallops, 1970-2000 218
6.32 Historical and projected world consumption of oysters 221
6.33 U.S. consumption of oysters 1948-1967 and projected to year 2000 222
6.34 World demand and supply functions for oysters, 1970.-2000 223
6.35 Historical and projected U.S. consumption of other food fish 226
6.36 Historical and projected world consumption of other food fish 227
6.37 World demand and supply functions for other food fish 1970-2000. 228
6.38 Historical and projected world utilization of fish meal 232
6.39 Historical and projected U.S. utilization of fish meal 233
6.40 World demand and supply functions for fish meal, 1970-2000 23a
6.41 Historical and projected U.S. per capita consumption of fish and shellfish 238
6.42 Historical and projected U.S. aggregate consumption of fish and shellfish 239
6.43 Comparison of Bell et al. and FAO world projections for food fish 247
6.44 Historical and projected world aggregate consumption of fishery products 249

The Future of the World's Fishery Resources: Forecasts of Demand, Supply and Prices to the Year 2000 with a Discussion of Implications for Public Policy

By
Frederick Wo Bell, Jarrel A. Nash, Ernest W. Carlson, Frederick V. Weugh, Fichard Ko Kinoshita, and Richard F. Fullenbeun, Economists

Economic Research Laboratory, National Marine Fisheries Service College Park, Maryland 20740

ABSTRACT

In the past few years, the world cormunity has become increasingly aware of the sea and its resources. The increasing pressure of world population expansion is expected to lead to more intensive exploitation of the fishery resources of the world's oceans. It is the purpose of this study to integrate all relevant biological and utiliatition factors into one complete model of the world demand and supply for seafood products. Forecasts of anticipated consumption and expected price over the next 30 years are derived within the framework of the model. The species which are studied include: (1) Tuna, (2) Salmon, (3) Groundiish, (4) Hajiout, (5) Sardines, (6) Shrimp, (7) Crabs, (8) Lobsters, (9) Oysters, (7.0) Clems, (II) Scallops, and (12) other food fish. With the exception of sardines, oystors, clans, and scallops, it is estimated that all of the species will reach the point of maximum sustainable supply in the 1985-2000 period. Policy implications are discussed and possible program areas are outlined.

CHAPTER 1.

Introduction and Sumary

1.1 Introduction

In an industry based upon a relatively fixed (but renewable) resource, it is especially urgent that we be able to predict the economic impact of demand pressures on that resource. Many importent public policy questions arise: Will there be enough of the resource to satisfy huran needs? Will prices rise substantially? Are we about to overexploit our resources?

The world fishery resource is not only relatively fixed, but is comon property in nature. 1/When no one owns scarce fishery resoures, government regulations are often necessary to provert nesterul exploitation or overfishing. This is an additional reason to project the future course of demand so that overfishine may be avoided. Finally, demand and supply projections serve as a useful input into a broad range of policy foundation regarding fishery resources.

One aspect of world fishery consumption since forld We II has been its propensity to increase at a groder rate ard, for some poriods, at a considivebly grater rato then the iruvese ir mow
 utilizaticn) increased at an arnual rate of 7.0% per yoar. Over this same period, the consumption of fish commodities increased at a rate groats then any other basic food cormodity. Ihe rate or jucrease in humen population was of the order of 2.0% per annum.

IT We are referxing here to fishery stock in the wild state whon are remweble but nevortheless fixed on a subtaingie yiela besis for a civen level of fishing effort.

The world is presently consuming approximately 62% of maximum sustainable yield for finfish (Chapter 3). Shellfish are consumed at 23% of their potential yjeld. However, there are wide variations as to the extent of utilization of the stock within these categories. Many of the stocks are fully utilized and have already attracted surplus capital and labor.

The situation is likely to get worse if free access to the resource is permitted. The rising world denand will contribute to the problem. The principal factor influencing further exploitation of the fishery resources is market demand, the main determinants of which are the growth in population and income (assuming tastes and preference constant). This is true for both fish meal and
fish used directly as human food. The demand for fish meal is derived indirectly through demand for poultry products; which depends in turn upon the growth of population and income.

For the above reasons, we must know more about the future course of world population, income and the available supplies of fish.

To make an economic projection of supply and demand for fish products we first set up an "econonic model." This model is essentially a set of relationships describing the main biological and economic forces that determine the maximum sustaineble suppiy of fish from the ocean, the anounts caught and consumed, the prices, the costs of production, and consumer income and population. Such a rindel, for exarnole, mast show how fish production and prices respord to changes in the humen population and per capita income.

To make a projection we start with a comonly accepted projection of the future trends in the human population and in the per capita income. We inserted these data into our model and solved the equations in order to estimate future production and consumption of fish, and future prices ard costs of production. Thus, the projection is a mechanical process that can be carried out by a computer.

The real world jas much more complested then any model we set up. Also the projections assume no chance in the present programs or policies. It helps us see where present progrems and policies micht lead us in the future. The main purgose of the whole exercise is to help us see whether we need changes in these progrons and poliodes.

These projections are not fatelistic prophecies like those of fortune tellers and soothsayers. They point ont possible future trends. But the United States and other countrises can do a great deal to modify future trends if they umeratan the fores that are shaping them. Economic projectinns give advance warming of problems that need attention.

1.3 Sumary

After making the economic projections (Chaptars $2 . r 6$), the following basic conclusions were reached:
A. The World
(1) The world demand for species fished by U.S. fishermen will, in many cases, outstrip the maximum world supply potential before 1985.

The projections indicate that, on a world basis, maximun sustainable supplies of the species shown in Table l.l will be reached in the years given in the table.?/

Critical problems of resource supply are occurring or are about to occur for groundfish, salmon, halibut, lobsters, crabs, and fish meal. Unless proper management policies are adopted, overfishing for crabs, lobsters, groundfish, and fish meal on a world basis is possible within the next 15 years.
(2) Aggregate fish consumption (including ifish meal) for the world will expand from approximately 57.1 million metric tons in the $1965-67$ base pericd to 83.5 million metric tons (round wejght) by the year 2000, an increase of 66.3%.

2] The euthors recognize that the term "species" is not accurate in a biological sense. We really have broad categories such as crabs that contain mary diverse species of crabs. However, these categories represent the limit disaggregation for purposes of this report. We hope that scientists will understand our use of the word "species" to designate a broad catesory.

Table l.l:--Year world will reach maximu sustainable supply

II Aquaculture not assumed in these projections. See Chapter 6 for rosults for aquacujture.
2/ For halibut and selmon, projactions camot go bel on Wy becuase of existing reculations to protect the resoure fron crexfishins. Gysters were excluded from the above list becanse of aqueculume ownentine natural stock supplies. See Chapter 6 for a fullox disoussion.
3/ Does not include the possibility of expanded supyly through bethery operations and stream improvements. See Chepter 6 for a rehexatiom of this assumption.

4/ Excluảes hake anā hake-like fish. See Chapter ó.
5/ Excludes central Pacific skipjack. See Chapter 6 for juintification.
6/ Includes recent discovery of calico senllops.
B. The United States
(1) Aggregate consumption of food fish for the United States will expand from approximately 2.2 billion pounds in the $1965-67$ base period to alnost 2.9 billion pounds (edible weight) in the year 2000, an increase of 33%.
(2) Because of resource supply problems and declining income elasticities for fish products, per capita consumption of all food fish in the Ünjed States is expected to decline from 11.02 pounds in the base period to 9.38 pounds by the year 2000, a decrease of $1.4 .9 \%$.
(3) Reaching of world potential for species fished by U.S. fishermen will put increasing pressure on our regional stochs which, in many cases, are alnost fully utilized. Unless effective management is instituted, U.S. regional resources may be among the first world resources to be seriously damaged or completely destroyed.
(4) These results show that it is imperative that the United States enter into management schemes with other nations and that we institute our own management of domestic fishery resources. Of great importance is the fact that the United States will not enjoy the luxury of being able to jmport 2.11 the fishery products it desires because of world supply linitations relative to demand. In order to augment our supply of fishery products, wa
must carefully manage our resources to achieve their maximum potential consistent with economic efficiency.
(5) Because of the limited supplies of established species, we must make every attompto exploit underutilized species, if economically feasible.
(6) Attempts should be made to stop the detrinental effects of pollution on the fishery reserves which will grow increasingly valuable over tine, as sustainable supplies are utilized.
(7) To augmont limited suppiies of fishery products, research on fish farming should be given high priority.
(8) Because of rising real costs (and prices) of catching fish as demem expands, every attempt should be made to increase harvesting efficiency within a proper menagement program.

CHAPTER 2

TRENDS IN DFHAND AND SUPPI Y OF FITSI PRODUCTS FOR THE WORT,D AND THE UNTTED STATES, 1950-1967

2.1 Introduction

To formulate a sét of economic projections and to interpret and understand the results, it is first necessary to become familiar with the past and current status of the fisheries. We found this a considerable learning process, perticulariy in regard to the fishories of other countrieso Surprisingly, this knovledge provided several insights into the U.Se fisheries as well. The purpose of this chapter is to provide the reader With the background of U.S. and world demand for and supply of fishery products during the post-World War II period.

2.2 World Supply and Demand

Depending upon the particular need for the information, there are several weys of measuring the catch of fish on a world basis. The most commonly used measure is physical weight (tonnage), probably because of the simplicity of calculation compared to other bases. However, this method is only user̂tif for certein typet of information, such as relating the catch of a species to ite maximim sustainable yield. Using tonnage to make inter-species comparisons is quite questionable. It is also often used as a means of computing total worlu wtch by adine across species and making inter-country
comparisons of this total. For the latter purpose, physical weight is of limited value, because of vast price differences arong the species of fish. Moreover, fish meal, the biggest volune itiem, is not used directily by hunans. The best available method for inter-species and inter-country comprisons of total. landings of fish therefore, js on a monetary besis. It expredies the value placed on the product accortris to the use for whin the roduct is harvested and purchesed (humn nutrition, in connection with recreational. activities, or anjmal production).

The nore meaningivl value measure is usually avoided, howeven, probably because it is extremely difficult to obtain coraparable prices across the many countries and dozens of species. This measure has only recentily been used for the major fishirc nations. Table 2.1 ranks these nations by value of fish landed jn 1957. Japan, U.S.S.R., and the United States are the leading fishing nations, measured by value of landings.

Table 2.2 shows the value of world landings for the najor fisheries. The U.S. ex vessel prices are multiplied by world catch to obtain an estimate of world value of these species. I/ With this in mind, the value figures shom can be taken only as rough approxinations to actual value. Nevertheless, groundish is unquestionably the highest in total value of catch on a world basis. Shrinp is second, being only 57\% as large in value as groundfish in 1867.

1/ The designation of which species are included in the species groups utilized in this report are found in Appendix B2.

Table 2.1.--Value and volume of catch by countries landing over $\$ 1.00,000,000,1967$ I/

Country	Thousand U.S. dollars	Thousend metric tons
- Japan	1,952,85'1	7,850.4
U.S.S.R.	1,037,046 21	5,777.1
United States	439, 14.4	2,430.5
Spain	325,524	1, 1335.7
Philippines	271,426	- 769.2
France	265,35'8	820.0
Italy	186,890	373.1
Unjeted Kingdom	174,659	1, 026:1
Norway	166,227	3,268,7
Pakistan	153,473	417.0
Canada	149,460	1,302.6
Thailand	146,421	847.1
Peru	124, 04.6	10,133.7
South Korea	112,454	749.2
Taiwan	103,390	458.2
Vict Nam (South)	3/	470.7

I/ Statistics from People's Republic of China not available.
2/ Figure is a weighted average price of all other countries in the table multiplied by U.S.S.R. landings. This is done for each species in the U.S.S.R. catch and summed to obtain the total.

3/ Value figure cannot be deriyed.
Source: Foca and Agricultural Organization, United Nations, Yearoock of F'ishery Statistics, 1967, Rome, Italy.

Derived by: Market Research and Services Division, National Marine Fisheries Service, NOAA, U.S. Department of Commerce

Tabel 2.2.--Value of major world fishery products of interest to the U.S., I950, 1960, and 1967
(Quantities in round weight ${ }^{[/}$exceot where otherwise noted)

Product	MiI. Ibs.	$\begin{gathered} 1950 \\ -\$ / 130 \\ 2 / \\ \hline \end{gathered}$	Mi] \$	Mil. Pbs.	$\begin{gathered} 2960 \\ \frac{13 \mathrm{~b}}{2 /} \\ \hline \end{gathered}$	MiII. 8	Vin. Ibs.	$\begin{gathered} 1067 \\ -\$ / 10 \\ 21 \\ \hline \end{gathered}$	Mil. 8
Groundfish	5,388.0	. 070	370.2	11,089.1	. 057	632.1	21,425.8	. 070	1,499.8
$\text { Shrimp }{ }^{3 /}$	332.9	. 430	143.1	970.0	. 4214	401.6	1.,521.1	. 566	860.9
Tuna	I, 115.0	. 788	209.2	2,330.9	. 124	289.0	2,931.6	. 128	375.2
Lobster	149.9	. 429	64.3	262.4	. 443	116.2	308.6	. 720	222.2
Saimon	580.5	. 136	78.9	903.4	. 184	166.2	1,032.7	. 150	154.7
Fish meal	1,54\%0	. 010	15.4	4,586.0	. 010	45.9	10,134.0	. 012	121.6
$\text { oyster } 5$	23.2	. 462	10.7	L:8.4	. 473	22.9	54.8	-472	25.8

[^0]After groundfish and shrimp, value falls off considerably to tuna, lobster, salmon and fish meal. Oysters, the next highest value iten, are included mainly to indicate that other species are quite Iow in value compared to the top few.

Substantial changes have taken place in world fishing since the end of World War IT. The growth rate of the catch in ternis of tomage has been little short of phenomenal- -7.0% per year in the post-Wur. period. By comparison total foca output hes increased about $2.8 \% \mathrm{p}=\mathrm{r}$ year for the same period (USDA, October 1964). The most widely noted increase is the rapid increase in fish meal production (Table 2.3). In 1955 world production vas 2.2 billion pounds. However, by 1967 this had reached 10.1 billion. Peru has emerged from virtually no production in the mid-1950's to the unquestioned leader producing 4.0 billion pounds in 1.967.

Most important from a value standpoint are the substantial catch increases of high-valued species. The U.S.S.R. tripled groundfish catch; Japan's was nearly doubled. Japan and the U.S. made substantiel increases in tuna catch. Crab production by the U.S." increased a50\%, while Japan and the U.S. also sienificantly increased the catch of clams.

Table 2.3.--Rank of three leading countries, by catch of specified species, 1955 and 1967
(Round weight)

Table 2.3.--Rank of three leading countries, by catch of specified species, 1955 and 1967 (continued)

[^1]Source: FAO Yearbonk of Fishery Statistics (annual editions)

France has made notable increases in oyster production principally as the result of the application of culture techniques.

Because of our preoccupation with impor't and tonnage statistics, the fact that the United States is an important producer of a number of valuable fishery products has been underemphasized. This country ranks first in production of all species of shellfish except lobsters. It is also an important producer of tuna, salmon, and halibut., Sur.prisingly, the United Statos is not among the first three in groundfish production, primarily because this category has such a high volume on a worldwide basis. In sum, out of the twelve fishery products shown in Iable 2.3 the United States ranked first in the production of five species and second in the production of thros species for the year 1967.

Table 2.4 shows that, relative to other countries, the United States, even in 1955, was a major world fish consumer. By 1957, j.t was the leading user of 10 of the 12 categories shom on this teble. The exceptions are sardines and groundrish in which case the United States ranks second and third, respectively, in conswationo Japan and the U.S.S.R. are the remaining major consumers of these products on a world basis. Japan is an important consumer of the world's supplies of oysters, clans, shrimp, groundrish, tuna, and salmon. The U.S.S.R. consumes signifjeant quantities of groundfish and salmon.

Table 2.4.--Rank of three leading countries in consumption of selected fish products, 1955 and 1967
(Round weight)

Species	1955		-1967	
	Country	Mil. 1 bs .	Country	Mi. 1 lbs .
Groundfish	U.S.S.R.	1,884	U.S.S.R.	5,284
	United Kingdom	1,304	Japan	3,621
	United States	1,124	United States	1,608
	Total world	10,560	Total world	21,426
Tuna	United States	585 ${ }^{\text {B }}$	United States	944
	Japan	$455 \frac{\square}{1 / 1}$	Japan	730
	Peru		E.E.C.	367
	Total world	1,653\%	Total vorld	2,932
Salmon	U.S.S.R.	382	United States	276
	Japan	352	Japan	263
	United States	308	U.S.S.R.	185
	Total world	1,270	Total world	1,032
Halibut	Unjted States	84	United States	82
	Norway	10	Canada	7
	United Kingdom	7	Norway	7
	Total world	112	Total world	128
Sardines (canried herring)	United States	123	Portugal	187
	Portugal	109	United States	127
	United Kingdom	62	Spain	61
	Total world	1,254	Canada	61
			Total world	1,920
Shrimp	United States	3192	United States	$5432 /$
	India	235	Thailand	$134 \cdot$ -
	Japan	97	Japan	109
	Total world	1,024	Total world	1,521
Lobsters	United States	121	United States	174
	France	14	United Kingdom	23
	Canada	10	France	21
	Total world	2.27	Total world	309
Crabs	United States	163	United States	272
	Japan	103	Japan	212
	France	15	United Kingdom	34
	Total world	42.5	Total world	739

Table 2.4.--Rank of three Jeading countries in consumption of sel.ected fish products, 1.955 and 1967 (continued)
(Round weight)

Spocies	--1955		1967	
	Country	Mil Ibs.	Country	Mil. 1 bs .
Clams	Japan	232	United States	390
	United States	2.07	Japan	345
	United Kingdom	17	Spain	9.
	Total world	500	Total world	1,055
Scallops	United States	202	United States	231.
	Japan	36	Australia	30
	France	8	Japan	15
	Total world	247	Total world	289
Oysters	United States	1,070	Unjited States	1, 71, 4
	Japan	216	Japan	390
	Mexico	23	France	273
	Total world	1,376	Total world	1,82.8
Fish meal ${ }^{3 /}$	United States $4 /$	957	United States	1. 94:3
	United Kincdoml/	420	Federal Republic	
	Federal Repuhlic of Germany LI	407	of Gemany Japan	1,301 1,079
	Total world	2,276	Total world	10,13?

[^2]Source: FAO Yearbook of Fishery Statistics (annual editions)

Because a high proportion of the total fish supply is consumed by these three countries, they will largely determine when consumption of fishery products will reach the world's sustainable yield.

2.3 World Potential: Fstimates of Maximum Sustainable Yield

Fish (which almost completely depends upon the forces of nature for growth and productivity) is one of the few remaining products of importance to man. Man's effort dictates how much is caught, but does not greatly influence how much is grown. 2 / (Aquacultural practices which are in scattered use are exceptions.) गhe significance of this fact is that there is a finite limit to the quantity of fish available on a sustainable basis. This limit must be known in order to estimate future production and consumption. Chapter 3 develops these relationships more fully.

For some of our popularly consumed species, i.e., groundfish, salmon, and halibut, the catch is now near maximum sustainable yield (T\&le 2.5). In addition, tuna, crabs, lobsters, and shrimp are experiencing a rapid growth in catch, thus hastening the day when they will also be nearly fully utilized. Within these major groups, there are species which are being fished at or beyond MSY in certain fishing grounds. The ratio of present landings to potential yield, assuming a world MSY of 120 million metric tons, of all species is 4\%. However, if we compute this ratio for the species of fish and shellfish which are commonly consumed at present, the ratio

[^3]Table 2.5.-.-Relation of world landings to world maximum sustainable yield (MSY) for fisheries included in the analysis

Species	MSY	$\text { Jandings } 1 / *$	Landings as a: percentage of MS
	Thous	metric tons	
Selected fi.nifi.sh			
Groundfish	9,117.1	6,270.9	. 68.78
Tuna ? $2 /$	1,770.0	1,320.0	74.6
Salmon	--	476.3	--
Halibut	56.5	60.8	107.61
Sardines 3/	39,4.74.7	18,466.?	46.78
Total, selected finfish	50,47\%	26,118.4	51.8
Selected shellfish			
Shrimp	1, 4,91.9	634.4	42.7
Lobsters	3.92.5	137.3	71.32
Crabs	671.5	328.0	188.84
Clams L!	4,000.0	478.1	11.95
Scallops 5/	1,490.9	166.4	11.16
Oysters	\cdots	777.0	--
Totals selected shellffish	6,355.9	1.974.2. 6/	2\% 44
All other fish and shellfish	63,226.4	28,2,60:4,6 I/	45.01
World Totzl	120,000.0	56, 323.066!	1:5.9

* Due to lack of complete informbtion, sum of restonel lendige do not always add up to world lendings.

1/ 1965 through 1.967
2/ Does not include the potential maximum suttainable yield oif Central Pacific skipjack estimated at 800,000 metric tons.
3/ Includes other herren-like species -.. See Appendix B-a for list of species.
4 Assuming no aquaculture.
5/ Includes the recently discovered calico scallop resolirce.
6/ 1965-67 average -- excludes oyster landings in order to conpute columin 3.
7/ 1965-67 average.

> Source: FAC Yearbcok of Fishery Statistics (anmal editions) and John A. Gulland, The Fish Resources of the Ocean, FAO, Technicel Paper No. 97, 1.970 .
rises to 61%. Given that the growth in the demand for fish will be concentrated primarily in those species and that the underutilized species may be unacceptable in terms of relative substitutability for the nore commonly consumed fish, the ratio of 61% presents a much more realistic view of the impending resource problem. We shall also demonstrate in Chapter 3 that there is a difference between the world maximum sustainable yield and the world naximum sustainable supply. The latter is usually a smaller quantity. Hence, Table 2.5 represents the most optimistic total potential from the sea.

There are wide ronging estimates of the world maximum sustainable yield of fish and shellfish. Therefore, the use of the control total of 1.20 million metric tons was a selection by the authors based on our reading of published information on the subject. Our sumnary of these sources follows, together with the reasons why the particular selection was made.

Previous estinates of world maximum sustainable yield have varied from a low of 21.6 million metric tons \quad to a high of 2,000 million metric tons (Scheefer and Alverson, 1968). The technidues avoived
 stock-or a food chain approach in which ocological efficiency factors are employed. Recent examples of the latter include the works of

Rythor (1969) and Noiseev (1969), whereas examples of the former include the
findings of Graham and Fawards, Schaefer, Pike and Spilhaus. The range of variability of estimates is markedy reduced when one considers the following quote:
"Several of the authors have, in fact, estinated the potential fisheries harvest of the systom; that is, they are estimating total potential harvest as at some stated trophic level independent of physical and/or econoinic capabitity by man to intervene When realistic limitations based on technological capabilitites are inposed, the figures are much lower. The range of estimates from this group--80 to 200 mililion metric tons --is understandeble, in vjew of limitations on basic scientifi.c jintormation now available . . ! " (Schsefer and Alverson, 1969)

Using 200 million metric tons as a conservative upper linit to the maxinum harvest rate, we nay divide this figure botween traditional species and species not presently exploited on a comercial scale。 There is a surprising consenses of opinion among biologists on the maximum sustainable yield of the tradi.. tional species, i.e. large pelagic fish, demersal, and medium pelagic fish. The FAO estimates approfintely 120 million metric tons (inclusive of Cephalopods and Crusteceans) (Fio, June 1.959) and Ftother recently gave a total of 100 million metric tons (Byther, 1969). The major ismes
of contention, in fact, revolves anoun the economic feasibility of harvesting the species not presently exploited--Antarctic krill, lantern fish, ctc. There are essentially two schools of thought on this subject. The first, taken from FAO, is very optimisti.c with respoct to the potential. development of these species:
". . . It sems probably, however, that as pressure on the more accessible stocks grows increasing attention will have to be paid to the posaibilitites of exploiting these unconvontional species, and this will in turn bring wi.th it the development of a teghology adapted to their comercial exploitation. . . . $1:(F A O$, June 1969)3/

On the other hand, Ryther belioves that these species "are too small and too widely dispersed in the sea to be economically harvestable and userul to man, and that, in fact, they are a part of the food chains that support those larger species allready being utilized." (Fyther, 1970)

We have used a control total of 120 million metric tons for world MSY for tivo reasons. First, there is no reason to believe that change in technolozy will suddenly become available to harvest these hitherto unexploited speoies. In other words, we make the same assurptions that economsts have traditionally employed in fowecasting structural changes for national economies; namely, that in a technolozical advance has
$3 /$ For more evidence with respect to traditionsl species, and the point
of view expressed above, see Gulland (1970).
not occurred for the past 30 years, it will not cccur in the next 20-30 ycars. Secondly, even if it became technically feasible to exploit these specjes -- and there is no convincing evidence on this point -- it still might not be economically feasible to undertake this typ: of activity. That is, there is no compelling evidence that consumers would be willing to pay a price sufficiently high so that fishermen engaged in the exploitation of these marine rasources could recover at least a competitive rate of return on their investnents.

2. 14 United States Demand and Supply

Aggregated statistics on the utilization of fitshery products in the United States suggest thet very few changes in consumption patterns are taking place. Per capita consumbion remains relatively constant while imporis account for greater sheres of the supply. By probing
more deeply, hovever, a different picture emerges. Within the overall level of fish consumption, important changes are taking place in the productis entering into use. Also, there is a lively market for fish meal, the use of which is continually increasing as the production of broilers and other animals fed on fish meal increases.

The changing pattern of fish consumption can be seen in the trends in per capita consumption over the time period considered (Table 2.6). Compared to the overall stability of fish consumption per capita, there are dramatic changes anong species and products. The per capita consumption of each of certain important species such as salmon, halibut, sardines, and oysters, all of which are important species on the U.S. market, decreased during this time period. Consunption of tuna, shrimp, and crabs, however, increased by at least 3% per year. Species such as surf clams, - spiny lồbsters, and king and dungeness crabs, which.were relatively unimportant in 1.950, had by 1967 become important fish products for consurption. The increese in surf clems accounts for the increase in consumption of all clams. The same sjituation occurs for spiny lobsters and king and dungeness crab. Consumption of fish meal also increased significantly, showing an annual increase of 3.2%

As will be discussed in later chapters, the principal factors affecting growth in demand are the continually rising income of consumers and population increases. Obviously there are other

Table 2.6.-.U.S. per capita consunption of sclected species, 1950, 1960, and 1967, ranked by anmal percentage change in consumption during the period 1950-67

Specjes/product	Per capita consumption			Average annualgrowth**	
	1950	1960	1967		
	------ Pounds.-------			---Percent---	
Crabs, total ${ }^{1 /}$. 72	1.08	1.49	4.7	
Biue ${ }^{2 /}$ 2/	. 13	. 13	. 11		1.2
King and dungeness ${ }^{\text {a }}$. 07	. 11	. 19		7.4

Tuna ${ }^{2 /}$
$1.13 \quad 2.05$
2.32
4.3

Fish meal ${ }^{3 /}$
$4.00 \quad 4.69$
8.71
3.2

Shrimp ${ }^{1 /}$
$1.47 \quad 2.22$
2.75
3.0

Clams, total $1 / 1$
$1.86 \quad 1.84$
2.31
2.4

Harcl and soft ${ }^{2 /}$
.23 . 13
.13
-2.6
Surf?
.06
.15
.23
8.9

Lobster, total ${ }^{2 /}$.12
.16
.18
2.3

Northern¹
Spiny?
.08 . 07
.06
-1.4
5.8

Groundfish ${ }^{1 /}$
6.12
6.84
8.13
2.0

Sea scallops ${ }^{1 /-}$
.14
.20
.13
1.9

Halibut ${ }^{2 / /}$
.21
.23
.17
-0.8
Oysters ${ }^{1 /}$
4.27
3.11
3.27
-2.8
Sardines ${ }^{2 /}$
1.56 . 48
.41
-3.3
Salmon, total ${ }^{2 /}$
1.55 . 81
.89
-3.5
Canned ${ }^{2 /}$
Fresh and frozen린
1.42
.72
.72
-4.1
.17
.02

Round weight
Edible veicht
Per capita utilization, product weight
Source: Compiled in the Reonomic Resemeh Iabortory. 26
socioeconomic determinants of demand, such as geographic region, and religion, however, these have little effect on growth. On the other hand, the per capita consumption decrease can be attributed, in large part, to upper limits on the biological production of certain fi.sh species; oysters, salmon, and halibut being particularly affected.

Another factor which influences fish purchases is the method and degree of preservation. There is a definite trend toward frozen fish and wray from canned, cured, and smoked fish. We must hasten to add that canned tuna, the largest single item in U.S. fish consumption, does not fit this picture. If canned tuna were omitted from the data, there wuld be a sharp decline in canned fish consumption. The volume and value of fishery products processed in the United States, by method of preservation, for selected years, are shown in Table 2.7. The information is a good indicator of fish consumption, but is not wholly complete because products imported for consumption without being further processed are not included. Likewise, small amounts of processed products are exported and should be deducted to obtain U.S. consumption.

In keeping with general food consumption trends, those fishery products which are highly processed and leave little final preparation to the household or institutional user have enjoyed rapid expansion, replacing those which require considerable preparation by the final user, (Table 2.8). Two products which have had the advantage of these changing tastes are frozen breaded shrimp and frozen breaded

Table 2.7.--U.S. production of fish and shellfish by method of preservation, selected years

Method of preservation						
Canned	836	317	666	343	822	508
Cured	84	35^{\prime}	68	43	66	52
Fresh	74	26	53	18	78	35
Frozen	182	64	314	147	476	256
Fresh and frozen, unspecified	71	46	183	149	308	247

I/ F.o.b. plant
Source: Fishery Statistics of the United States (annual editions)

Table 2.8.-.U.S. procluction of fresh and frozen fish and shellfish by method of processing, selected years

Type of I/ processine	1950		1960		1966	
	Mi.l.		.		11 l	.
Filleted fish	1.84	50	144	44	156	63
Shelled ${ }^{\text {2/ }}$	151	92	287	204	422	347
Breaded products	7	4	201	105	371	21.3
Stjeks and portions	0	0	115	46	235	91.

I/ Some duplication exists between breaded and the other types of processing. 2/ Includes all types of processing of crustaceans and molluscs in which the meat is removed from the shell.

Source: Fishery Statistics of the United States (annual editions)
sticks and portions produced from groundfish. Again, this table. is not an exact measure of U.S. consumption by processing form, as imports, not further processed, and exported processed products are not included. Both quantities, however, represent very smal. portions of the figures in this table.

In the almost two decades covered by this study, the situation in the United States has changed from one in which one-quarter of. all fish consumed was imported to one where more than two-thirds of the supply is beinc provided by other countries. There is lititie question that import chages are the most dynamic forces taking plaee in the inánstry.

Theme have been meny opinjons exprassed and studian made concerning the rise of this phenomenon. On the domestic side, application of techological improvements in fishing have lagged behind, relative to many other fishing nations. Developments in the Unites States are in sharp contrast to those which occurred in other countries after World Wer II, when many nations looked to the sea as a now source of food supplies and economic development. Particularly notable is the development of distant water fisheries in which fleets of many countries, often with their government support, travel to the rich fishing grounds in proximity to the United States. The northwest Atlantic became a source of great fishing acitivity in the late 1950's and early 1960's. A major development has also taken place in the tuna fishery in that nations ṣent fleets to distant fishing grounds, rapidly increasing world production over the period. Also

Table 2.9.-Domestic production, imports, and imports as percent of supply, specified species, 1950, 1960 , ana 1967

Species	1950			1960			1967		
	Proãuction	Imports	Imports as percent of sunply	Procuction	Imports	Imports as percent of supply	Production	Imports	Imports as percent of supply
	--villion pounds--			-Million pounds--			-Million pounās--		
Grounafish I/ 5/	208	70	25.1	167	176	51.3	146	319	68.6
Tuna $2 / 5 /$	403	80	16.6	3.7	357	53.0	426	452	51.5
Saimon 2/6/	323	54	14.3	235	45	16.1	217	11	4.8
Hailiout $1 / 5 /$	39	17	30.3	38	24	38.7	30	24	44.4
Sardines I/	318 I/	32 I/	9.1 I/	74 8/	27 8/	$26.08 /$	29 8/	52 8/	63.4 8/
$\stackrel{\omega}{\sim}$ Sinrimp 3./5/	114	40	26.0	140	119	44.4	190	202	51.5
Loosters 2/ 5/	23	22	48.9	31	21	40.4	27	16	37.2
Crabs 2/5/	155	21	11.9	219	26	10.6	315	13	4.0
Clams I/ 5/	41	6	12.8	50	2	3.8	71	2	2.7.
Scallops I/ 5/	20	1	4.8	27	7	20.6	10	13	56.5
Oysters 1/5/	76	0.4	0.5	60	7	10.4	60	18	23.1
Fish Meal $4 / 5 /$	480	128	21.0	580	264	31.3	422	1,302	75.5

1/ Faible weight.
2/ Round weight.
3/ Reads-off weight.
L/ Meal weight.
5/ Pell, F. W. and R. Kinoshita, "Major Economic Trends in Selected U.S. Master Plan Fisheries: A Graphical Survey: "(unpublished manuscript), Economic Research Laboratory, National Marine Fisheries Service, U.S. Department of Commerce. 1969.

6/ "Basic Economic Indicators-SaImon," Economic Research Iaboratory, National Marine Fisheries Service, U.S. Depariment of Commerce: 1970.

I/ Fisheries of the United States 1960, U.S. Department of the Interior, Apri1 1961.
8/ Fisheries of the Unttec States 1969, C.E.S. No. 5300, U.S. Depertment of the Interior,
important is the developinent of certain shellfish fisheries, particularly shrimp, along the coast of several countries. These nations have, in turn, looked to the United States as a market for their catch. Presently, over 70 countries export shrimp to the United States.

Another factor in the status of fisheries is that various states have instituted conservation laws which, while achieving the objective of maintaining the resource have in effect, legislated inefficiencies in fishing. One example is shortened seasons which tend to conmit greater capital to the fishery, each firm hoping to get the maximum of the common property resource. Another ineffiency is prohibiting the use of the most efficient technology.

As in consumption, there are considerable djfferences in the relative importance of supplies which are domestically produced and importss, by species. From Table 2.9 it is obvious that the four major items showing rapid consumption increases--tuna, groundfish, shrimp, and fish meal--are also the some products which have had major increases in the quantities imported. Clams and crabs stand out as species where domestic production is increasing while imports are decreasing.

[^4]Table 2.10--MSY in waters adjacent to the U.S: (ocean fisheries)

I. Northvest Atlantic

$2,454.7$	$2,371.3$	96.6
$2,702.4$	$1,332.7$	51.2

Tuna
I. Pacific?/
792.0
$792.0 \quad 100.0$
Salmon
I. Northeast Pacific
$406.7 \quad 406.7 \quad 100.0$

Hali but

I. Northeast Pacific	40.0	42.3	1.05 .8
II. Atlantic	18.5	18.5	100.0

Sardines

I. Northwest Atlantic
II. Western Central Atlantic
III. Northeast Pacific
IV. Eastern Central Pacific

Shrimp

Table 2.10-MSY in waters adjacent to the U.S. (ocean fisheries) (cont.)

Species/Region I/ \quad| Landings |
| :--- |
| MSY Percent |
| estimate of MSY |

Crabs

I. Northwest Atlantic
40.0
2.2
5.5
II. Western Central AtIantic
80.0
76.9
96.1
III. Northeast Pacific
190.0
177.0
93.2
IV. Eastern Central Paciric
32.5
1.5
4.6

Clams

I. Northwest and Western Central	352.4	188.8	53.6
Atlantic 4/			

II. Northeast Pacific 4/
28.6
2.8
9.8

Scallops
I. Northrest and Western Central $146.0 \quad 146.0 \quad 100.0$ Atlantic 5/
II. Northwest and Western Central 888.0 146.0 16.4 Atlantic 6/

1/ See Appendix E for a definition of regions.
2/ Includes tropical Pacific yellowfin tuna fishery
3/ Includes fisheries off the coast of Mexico and Central America
4/ Excludes aquaculture
$5 /$ Without calico scallops
6/ With calico scallops
Source: Derived from, John A. Gulland, The Fish Resources of the Cocen, FHO.Technical Paper No. 97 and PAO Yearboot of Fishery Statistics, 1967.
these grounds. The far-ranging tuna and portions of the Gulf shrimp fleets are the exception.

These very productive areas heve attracted fishing effort to the point that many of the traditionally-caught species are being fished at or beyond MSY. Much of the take is by other countries. Some species which can support considerable catch increases on a world basis are fished very heavily in waters near the U.S. coasts. Particularly critical linits occur for crabs, tuna, salmon, halibut, and Atlantic groundfish. Shrimp, lobster, and sardine catches are restricted in many areas. Shellfish species which vill support considerable catch increases are tanner crab, northem shrimp (both off Alaska and New England), calico scallops, offshore lobsters, and offshore clams. A number of finfish species such as Atlantic pollock, Atlantic ocean perch, and Pacific groundfish could al so support much higher catches. The lack of a developed market and sufficient consumer demand for these species, however, account for the lon utjuization.

2.6 Price and Consumption Trends in the U.S. foir solocted Fishery Products

We have traced the overall development of fisheries for the world and the United States since World War II. The following pages present details of U.S. per capita consumption and prices for these products. Prices are divided by the consumer price index (CPI) to adjust for general price inflation. The major trends are noted together with a brief statement on the causal factors which have determined the position of each fishery through the period.

Groundfish: Upward trends in consumption of groundfish have been maintained since the end of World War II, but dynamic changes have taken place within this industry. At the beginning of the period it was primarily a domestic fresh fish trade, while at the present it is dominated by foreign-supplied frozen products. If the consumption of fish sticks and portions are excluded, there would be a distinct downward trend in the remaining products.

Table 2.11.-wU.S. per capjta consumption and doflated ex vessel prices of groundfish, 19180.68

Year	Per capita Ex vessel 17 consumption price : CPI	Year	Per capita consumption	E. vossel I price \because CPI
	Founds 2 Cents pound		Pounds 21	Conts/pound
1948	$6.33 \quad 6.89$	1958	6.10	6.36
1914	$6.36 \quad 6.05$	1959	7.73	6.26
1950	$6.12 \quad 7.04$	1.960	6.84	5.66
1951	6.82 6.73	1961	7.49	5.562
1952	6.46 6.51	1962	7.75	5.83
1953	$5.87 \quad 6.14$	1.903	7.72	6.20
1.954	6.49 5.75	$1.96{ }_{4}$	8.04	5.90
1955	$6.81 \quad 5.38$	1965	8.51	6.38
1956	6.48 \% 5.58	1966	8.75	7.50
1.957	7.03 5.63	1967	8.73	7.00
		1968	9.50	6.96

If Consumer price index (CPI) 1957-9 $=1.00$ I/ Round weight

THE FUTURE OF THE HORLD'S. FJSHERY RESOURCES: FORECASTS OF DEMAND, SUPPI.Y AND PRICES TO THE YEAR 2000 WITH A DISCUSSION OF IMPLICATIONS FOR PUBLIC POLICY

BY: Frederick W. Dell, Darrel A. Nash, Ernest W. Carlson, Frederick V. Waugh, Richard K. Kinoshita, Richard F. Fullenbaum

Figure 2.1-wGroundfish, per capita consumption and price

Canred tuna: Virtually all the tuna consumed in the United States is camed. Since World War II, technological improvements in catching and continually rising imports have resulted in a downerd real price trend. This, together with an adequate resource base, has resulted in a strong rise in consumption. At present nearly one-fourth of the U.S. consumption of fish consists of camed tune.

Table 2.12. \cdots U. U. per capi.ta consumption and deflated ex vessl prices of tuna for caming, 1917-67.

Year	Per capita consumption	Ex vessel 1/ price : CPI	Year	Per capita consumetion	Ex vessel 1 / price $: C P I$
	Pounds ?/	Cents/pound		Pounds ? 2	Cents/round
1947	0.78	21.1	1958	1.77	13.5
1948	0.89	22.2	1959	1.88	12.8
1949	0.89	19.6	1960	2.05	12.0
1950	1.13	18.7	1961	2.08	12.4
1951	1.22	16.6	1962	1.97	13.8
1952	1.27	16.5	1963	1.98	17.8
195'3	1.37	16.6	1964	2.01	11.8
1954	1.37	17.6	1965	2.32	17.8
1955	1.15	15.6	1965	2.20	11.7
1956	1.57	13.9	1967	2.32	11.0
1957	1.58	12.9			

THE FUTURE OF THE WORLD'S FISHERY RESOURCES: FORECASTS OF DEMAND, SUPPLY AND PRICES TO THE YEAR 2000 UITH A DISCUSSION OF IMPLICATIONS FOR PUBLIC POLICY

BY: Frederick W. Bell, Darrel A. Nash, Ernest W. Carlson, Frederick V. Vaugh, Richard K. Kinoshita, Richard F. Fullenbaum

Figure 2.2.-..Tuna, camed, per capita consunption and price

Canned salmon: The greatest portion of salmon consumption is in the canned form. A combination of changing consumer food preferences during this period and a restriction on supplies resulting from fewer spawning areas has discouraged growth of canned salmon consumption. Under current conditions, production camot be significantly increased.

Table 2.13.....U.S. per capita consumption and deflated wholesate prices of canned selmon, 194:3-67

THE FUTURE OF THE WORLD'S FISHERY RESOURCES: FORECASTS OF DEPAND, SUPPLY AND PRICES TO THE YEAR 2000 WITH A DISCUSSION OF IMPLICATIONS FOR PUBLIIC POLICY

BY: Frederick W. Bell, Darrel A. Nash, Ernest W. Carlson, Frederick V. Waugh, Richard K. Kinos'ifta, Richard F. Fullenbaum

Figure 2.3--Salmon, canned, per capita consumption and price

Fresh and frozen salmon: A slowly increasing trend is now apparent in the consumption of fresh and frozer salmor, followirct a decline in consumption during the first half of the post-war period. Consunption of total salmon has been dromine continuously, so that fresh and frozen consunption is taking a greater share of the total. Until very recentiy production of fresh and frozen salmon was confined primerily to king salmon, but is now expanding into others including pink, the most iniportant samon specisb.

Table 2.14....U.S. per capita consumption and daflated wholesale prices of fresh and frozen salmon, 1948-67

Year	Per capita consumption	Wholesale I/ price \therefore CPT	Year	Per capita consumption	Wholesale 17 price \div CPI
	pounds ?/	Cents/pound		Pounds 27	Cents/pound

1948	0.16		1958	0.17	72.8
1949	0.19		1959	0.10	76.2
1950	0.13	59.8	1960	0.09	82.3
1951	0.14	58.6	1961	0.13	83.4
1952	0.22	56.1	1962	0.14	90.7
1953	0.22	$5^{\prime} 3.2$	1.963	0.19	85.8
1954	0.18	60.3	1961	0.18	81.6
1955	0.16	60.6	1965	0.19	78.8
1956	0.16	67.1	1966	0.17	80.2
1957	0.13	65.5	1967	0.17	80.7
$1 . /$ Consumer price index (CPI) $1957-9=100$	2.1	Edible weight			

THE FUTURE OF THE HORLD'S FISHERY RESOURCES: FORECASTS OF DEMARO, SUPPL.Y AND PRICES TO THE YEAR 2000 WITH A DISCUSSIOH OF IMPLICATIOUS FOR PUBLIC POLICY

BY: Frederick W. Bell, Darrel A. Nas'n, Ernest H. Carlson, Frederick V. Waugh: Richard K. Kinoshita, Richard F. Fullenbaum

Figure 2.4...Salmon, fresh and frozen, per capita consumption and price

Halibut: Intornational regulation of the fishery has enabled the comparatively low resource base to produce at about a constant total catch (United States and Canada combined). It has been fished. at or beyond MSY for most of the post-war period. Without management, the resource would have been decimated a number of years ago.

Table 2.15-uUs. per capita consumption and deflated ex vessel prices of halibut, $1950 \cdots 6$

THE FUTURE OF THE WORLD'S FISHERY RESOURCES: FORECASTS OF DEMAND, SUPPLY. AND PRICES TO THE YEAR 2000 WITH A DISCUSSION OF IMPIICATIONS FOR PUBI.JC POL.JCY

BY: Frederick W. Mell, Darrel A. Nash, Ernest W. Carlson, Frederick V. Waugh: Richard K. Kinosilita, Richard F. Fullenbaum

Figure 2.5-.-Halibut, per capita comsumption and price

Canned sardines: The availebility of altemative fish modueis, including frowen convenience products, has caused a downard shirt in consumption of canned sardines compared to pre-World War J.t. Shorttorm consumbion changes are cuite responsive to price Jevels in that lower prices tend to encourage consumption. Foieign sumpliers are taking an increasing share of the dometic menket.

Table 2.16.-U.S. per capita consumption and deflated wholesale prices of canned sardines, 1950-68

Year	Per capita. consumption	Wholesale I/ price \div CPI	Year	Per capita consumption	Wholesale 1 price $\div \mathrm{CPI}$
	Pounds 21	Cents/pound		Pounds ?	Cents/pound
1950	1.56	18.53	1960	0.48	27.83
1951	0.46	23.05	1961	0.57	29.52
1952	0.50	31.70	1962	0.48	35.95
1953	0.73	31.83	1963	0.47	32.27
1954	0.97	24.95	1964	0.46	31.01
1955	0.37 .	23.19	1965	0.41	33.16
1956	0.40	29.87	1966	0.46	31.671
1957	-0.51	29.45	1967	0.41	40:74,
1958	1.00	21.55	1968	0.43	$40.17{ }^{\circ}$
1959	0.40	26.68			

THE FUTURE OF THE WORLD'S FISHERY RESOURCES: FORECASTS OF DEMAND, SUPPLY AND PRICES TO THE YEAR 2000 WITH A DISCUSSION OF IMPLICATIONS FOR PUBLIC POLIC!

BY: Frederick W. liell, Darrel A. Nash, Ernest W. Carlson, Frederick V. Vaugi: Richard K. Kinoshita, Richard F. Fullenbaum

Figure 2.6--Sardines, canned, per capita consumption and price

Sinimp: Shrimp, a relatively important fishery product even in 1948, has shown a steady gain in aggregate consumption, so that for several years the retail value has been the highest of all fish products. Some increase in domestic landings is evident; however, imports have surpassed domestic supplies since 1960. Many of the less developed countries now look to the United States as an outlet for their shrimp production.
'fuite 2.17...ius. per cepitua consunption and deflated ux vessel prices of shrimp, 194,8-67

THE FUTURE OF.THE WORLD'S FISHERY RESOURCES: FORECASTS OF DEMAND, SUPPLY AND PRICES TO THE YEAR 2000 WITH A DISCUSSION OF IMPLICATIONS FOR PUBLIC POLICY

BY: Frederick W. Bell, Darrel A. Nash, Ernest W. Carlson, Frederick V. Waugh: Richard K. Kinoshita, Richard F. Fullenbaum

Figure 2.7--Shrimp, per capita consumption and price

Lobsters: Lobster consumption is increasing rapid́ly. An approximate doubling in per capita consumption has occurred since 1948. Rising consumer incomos have apparently increasod denend for this highly regarded fishery product. Spiny lobster, most of which is imported, has increased rapidly in importance and now accounts for over two-thirds of total conswaption.
 prices of lobster, 1948-67

Year	Per capita consumation	Ex vessol 1 price: CPil	Year	Per capita consumption	Ex vessel 17 price -CPI
	Pounds $2 /$	Cents/pound		Pounds ?/	Cents/pound
19248	0.096	49.6	1958	0.145	48.2
1949	0.109	43.5	1959	0.150	49.0
1950	0.117	42.9	1960	0.163	41.3
1951	0.130	39.9	1961	$0.15{ }^{\prime} 7$	49.9
1952	0.127	45.6	1962	0.165	48.1
1953	$0.14+2$	41.5	1963	0.195	51.9
$195{ }^{\prime} 4$	0.138	40.8	1964	0.194	59.3
1955	0.147	41.8	1965	0.182	66.5
1956	0.140	47.4	1966	0.181	66.6
1957	0.160	39.0	1967	0.183	72.0

THE FUTURE OF THE WORLD'S FISHERY RESOURCES: FORECASTS OF DEMAND, SUPPLY AND PRICES TO THE YEAR 2000 WITH A DISCUSSION OF IHPLICATIONS FOR PUBLIC POLICY

BY: Frederick W. Bell, Darrel A. Nash, Ernest W. Carlson, Frederick V. Whog: I Richard K. Kinoshita, Richard F. Fullenbaum

Figure 2.8-.-Lobsters, per capita consumption and price

Crabs: Craba consuption, composed primarily of blue, king, and dungeness, remained stable until the mid-1950's and has increased rapidly since then. Increases since 1960 have been due totally to the rapid development of the Alaskan king crab fishery. More recently thiss resource has declined because of overfishing. Dungeness and tanner crab are now gaining in popularity.

Table 2.19.--U.S. per capita consumption and dellatai ex vessel paces of crohe, 7.91:8..67

Year	Per capita Br vessel $1 /$ Year			Per capitaEx vessel $1 /$ consumption price$=$ CPI	
	Pounds 2/	ts/p		Pounds 21	Cents pound 3
1948	0.814	8.49	1958	0.927	7.39
1949	0.742	7.74	1959	0.986	8.35
1950	0.720	6.92	1960	1.076	7.47
1.951.	0.792	7.29	1961	1.034	7.18
1952	0.729	7.28	1962	1.071	7.57
1953	0.806	7.59	1963	1.1.143	7.93
1954	0.765^{\prime}	7.38	1964	1.170	8.1.4
1955	0.770	7.97	1965	1.485	8.36
1956	0.82 .4	8.63	1956	1.629	7.84
1.957	0.963	7.29	1.967	1.485	7.37

1/ Consumer price jndex (CPI) 1957-9 = 100
2/ Round weight
3/ Based on round weight

THE FUTURE OF THE WORLD'S FISHERY RESOURCES: FORECASTS OF DEMAND, SUPPL.Y AND PRICES TO THE YEAR 2000 WITH A DISCUSSION OF IMPLICATIONS FOR PUELIC POLICY

BY: Frederick W. Bell, Darrel A. Nash, Ernest W. Carlson, Frederick V. Waugh: Richard K. Kinosilita, Richard F. Fullenbaum

Figure 2.9--Crabs, per capita consumption and price

Clams: Hard; soft, and sur clams comprise the lus. supply. Hard clans have been the traditionally important species, however, in 1960 half the catch consisted of surf clams and now this species accounts for about 65 percent of the total landings. The price per pound for surf clams is moh lower than that for hard or soft clams. Recently the catch of surf clams has apparentily reached maximum sustainable yield and industry i.s. looking to other abundant species, sixch as ocean quahogs, as potential replacenonts for surfs.

IGIt 2.\%.U.S. per capita consumption and deflated ex vessel prices of clams, 1948-67

Year	Per capita consumption	Ex vessel $1 /$ price \div CPI	Year	Per capita consumption	Ex vessel $1 /$ price \div CPI
	Pounds 27	Cents/pound 3		Pounds 2/	Cents/pound
1948	1.833	5.02	1958	1.417	4.4
1949	1.755	4.59	1959	1.716	3.87
1950	1.859	4.80	1960	1.840	3.64
1951	1.911	4.51	1961	1.859	3.41
1952	1.748	4.88	1962	1.950	3.16
1953	1.658	5.03	1963	2.242	3.23
1954	1.358	5.02	1964	2.242	3.30
1955	1.410	4.77	1965	2.418	3.30
1956	1.534	4.56	1966	2. 283	3.417
1957	1.573	4.43	1967	2.308	3.71

THE FUTURE OF THE WORLD'S FISHERY RESOURCES: FORECASTS OF DEMAND, SUPPLY AND PRICES TO THE YEAR 2000 WITH A DISCUSSION OF IMPIICATIONS FOR PUB!IC POLICY

BY: Frederick'W. Bell, Darrel A. Nash, Lrnest W. Carlson, Frederick V. Uaugh Richard K. Kinosilita, Richard F. Fullenbaum

Figure 2.10--Clams, per capita consumption and price

Scallops: Per capita consumption of scallops has been steady throughout the period with the exception of about a 25 percent higher figure from 1950 through 1966. Unusually high prices prevajled from 1963 through 1966. Not incidentally, this was a time of heavy promotion by industry. Canadian imports increased rapidly from 1957 to 1964 and now supply about half of the U.S. market.

Table 2.21.--U.S. per capita compion ma comatod ex verol pricas of scallops, 19188-67

THE FUTURE OF THE WORLD'S FISHERY RESOURCES: FORECASTS OF DEMAND, SUPPLY AND PRICES TO THE YEAR 2000 WITH A DISCUSSION OF IMPLICATIONS FOR PUBLIC POLICY

BY: Frederick W. Bell, Darrel A. Nash, Ernest W. Carlson, Frederick V. Waugh, Richard K. Kinositita, Richard F. Fullenbaum

Figure 2.11--Scallops, per capita consumption and price s.ats

Oysters: Dwindling resource supplies, caused in some cases by pollution and in others by oyster diseases, have resulted in a sharp downvard trend in consunption. Seeding programs in the Chesapeako Bay area have served to stabilize supplies in recent years.

Table 2.2<... 3 : 3 e per capita consunption and deflatul ex vessel prices of oysters, 1948-67

Year	Per capita consumption	Ex vesse price \neq		Per capita consumpti.	Ex vessel 1 price t CPI
	Pounds 27	Cents/po		Pounds ?	Cents/pound
194,8	4.590	5.13	1958	3.442	5.35
1949	4.463	5.40	1959	3.332.	5.28
1950	4.267	5.44	1960	3.111	5.56
1951	4.038	5.19	1961	3.204_{4}	6.01
1952	4.437	5.00	1962	2.882	5.80
1953	4.242	4.60	1963	2.984	5.12
1951	4.318	5.04	1954	3.043	5.02
1955	- 4.020	4.95	1965	2.81 .4	5.49
1956	3.842	5.17	1966	2.678	5.55
1957	3.630	4.93	1967	3.272	5.54
1/ Consumer price index (CPI) 1957-9 = 100 2/ Round weight 3/ Based on shell-on weight					

THE FUTURE OF THE WORLD'S FISHERY RESOURCES: FORECASTS OF DEMAND, SUPPLY AND PRICES TO THE YEAR 2000 WITH A DISCUSSION OF IMPLICATIONS FOR PUBLIC POLICY

BY: Frederick V. Bell, Darrel A. Nash, Ernest W. Carlsnn, Frederick V. Waugh, Richard K. Kinosinta, Richard F. Fullenbaum

Figure 2.12 …0ysters, per capita consumption and price

Other food fish. There are over a hundred additional species of fish used comnercially in the United States but not included in the preceding data. These may be classed within one of the following categories, (1) those for which there is a low resource base, of ten quite important in local areas, (2) those that are low valued relative to harvesting cost, and (3) newly developed resources which may become important.

Table 2.23.-WUS per canita consumtion and deflated ev vorsel nricos of other two rishls Lyju 0i

Year	Per capitia consumbtion	Ex vessel price :	Year	Per capita consumption	Ex vessel I/ price - CPI
	Pounds $2 /$	Cents po		Pounds ? 1	Cents/pound 3/
1950	3.8	13.0	1959	3.3	10.2
1951	3.8	11.2	1960	2.6	9:8
1952	3.7	11.0	1961	2.6	8.8
1953	3.8	10.4	1962	2.6	9.3
1954	3.4	10.3	1963	2.3	9.5
1955	3.5	9.4	1964	2.4	9.4
1956	3.2	8.4	1965	1.9	9.7
$195^{\prime} 7$	2.9	10.5	1966	1.9	9.6
1958	2.6	10.6	1967	2.0	11.2

I/ Consumer price index (CPI) $1957-9=100$
2/ Round weight
3/ Edible weight

THE FUTURE OF THE WORLD'S FISHERY RESOURCES: FORECASTS OF DEMAND, SUPPL.Y AND PRICES 70 THE YEAR 2000 WITH A DISCUSSION OF IMPLICATIONS FOR PUBLIC POL.ICY

BY: Frederick W. Bell, Darrel A. Nash, Ernest W. Carlson, Frederick V. Waugh; Richard K. Kinoshita, Richard F. Fullenbaum

Figure 2.13-0ther food fish, per capita consumption and price

Fish meal: Demand for fish meal parallels the demand for broiler chickens and other farm animals which utilize this product. Prices in turn, are heavily influenced by the availability of soybean and other protein meal products used in livestock rations. There is an apparent upward shift in demand beginning about 1960 as prices and per: capita utilization have trended upward. Domestic supplies have been heavily augnented by imports principally from Peru since the late 1950 's when that country developed the anchoveta fishery.

Table 2.29,--U.S. per capita utilization ard wholesale price of fish meal, 1950-1967

THE FUTURE OF THE WORLD'S FISHERY RESOURCES: FORECASTS OF DEMAND, SIJPPLY AND PRICES TO THE YEAR 2000 WITH A DISCUSSION OF IMPLICATIO:HS FOR PUBLIC. POLICY

BY: Frederick W. Bell, Darrel A. Nash, Ernesti W. Carlson, Frederick V. Waugh, Richard K. Kinoshita, Richard F. Fullenbaum

Figure 2.14-Fish meal, per capita consumption and price

BIOLOGICAL GROWTH, YIELD, AND SUPPLY

3.1 Introduction

In this chapter, we shall discuss the basic determinants of the supply of fish. This will establish the theoretical foundation for the supply side of one projection model which is presented in Chapter 5. Two possjble models of the yield from a fishery will be considered. The models are essentially variants of the model developed by Milner B. Schaefer (1954). The models assume logistic grouth of the biomass of fish. One model assumes that the yield from fishing is linearly related to effort. We shall call this the logisticconstant returns (LCR) model. The other assumes decreasing returns from effort. This we call the logistic-decreasing returns (LDR) model.

3.2 The LCR Model

The LCR model indicates a linear relationship between "fishing effort" and "sustainable yield" per unit of effort. Ideally, fj.shing effort is an index of inputs, including ships, gear, labor, tine, and others used to catch fish. In practice, vie usually must be content with some proxy, such as the number of ship-days spent in fishing. Corresponding to any given effort, there is a sustanable yield-that is, an average yield that could be maintained indefiritely.

Let us consider in some detail the basis of the LCR model. First, consider biological growth. The LCR model assumes the simple logistiic growth curve

$$
\begin{equation*}
\mathrm{m}_{\mathrm{t}}=\frac{\mathrm{M}}{.1 \cdot(\cdots \cdot+} \tag{3.1}
\end{equation*}
$$

where m_{t} is the biomass of some specjes of fish at time t, M is the stable biomass that would be approached gradually from biological causes alone (recruitment, growth, \& mortality), \in is the base of natural logarithms $(e \sim 2.7 .18)$, and c and g are constants.

This curve has been used by many biologists, popuiation experts and economists. Davis (1941), Tintner (1952), and Pearl \& Reed (1923) have. discussed the properties of such curves in detail. There is one caveat of which the reader should be aware. These writers have used the logistic to describe the numbers in a population and not its weight.

The extension to wejght may be unwarranted.

[^5]The logistic curve rises throughout, but the rate of increase first increases, then declines; and it approaches the upper limit, f (Figure 3.1). The maximum size of the biomass is limited by food, space, and other enviromental paramers.

More specifically the rate of increase (found by differentiating (3.1)) is

$$
\begin{equation*}
\frac{d m_{i}}{d t}=g_{t}\left(\quad 1-\frac{m_{t}}{M}\right) \tag{3.2}
\end{equation*}
$$

Note that: (1) growth (i.e., increment to the biomass) approaches zero as m_{t} approaches M and (2) the greatest growth is where the current biomass is one-half the maximum biomass.

Now consider the yjeld from fishing. The LCR model assumes that yield is proportional to effort:

$$
\begin{equation*}
y_{t}=k x_{t} m_{t}, \quad 0 \leq k x_{t} \leq 1 \tag{3.3}
\end{equation*}
$$

where y_{t} is the yiejd, k is a constant, x_{t} is fishing effort, and m_{t} is the biomass of the species we are studying (all at time t).

THE FUTURE OF THE WORLD'S FISHERY RESOURCES: FORECASTS OF DEMAND, SUPPLY AND PRICES TO THE YEAR 2000 WITH A DISCUSSION OF IMPIICATIONS FOR PUBLIC POLICY

BY: Frederick W. Bell, Darrel A. Nash, Ernest W. Carlson, Frederick V. Haugh, Richard K. Kinosliita, Richard F. Fullenbaum

Figure 3.1--General shape of the logistic curve

Equations (3.2) and (3.3) together imply that the yield is a second-degree function of effort. Pella (1967) explained the detailed mathematics. Iet us briefly go through the mathenatics ourselves. When the biomass is stabilized with fishing (steady-state equilibrium), the increase due to biological causes is just matched by the yield fron fishing (thus, making the net change in population zero). Ihus, fron (3.2) and (3.3),

$$
\begin{equation*}
y_{t}=g m_{t}\left(I-\frac{m_{t}}{M}\right)=k x_{t} m_{t} \tag{3.4}
\end{equation*}
$$

solving for m_{t},

$$
\begin{equation*}
m_{t}=m\left(1-\frac{k}{g} x_{t}\right) \tag{3.5}
\end{equation*}
$$

Inserting (3.5) into the last expression in (3.4), we get

$$
\begin{equation*}
y_{t}=m\left(k x_{t}-\frac{k^{2} x_{t}^{2}}{g}\right) \tag{3.6}
\end{equation*}
$$

Equation (3.6) is a second-degree polynomial. Simplifying,
we have

$$
\begin{equation*}
y_{t}=a x_{t}-b x_{t}^{2} \tag{3.7}
\end{equation*}
$$

where $a=k M$ and $b=\frac{k^{2}}{g} M$.
To estimate the sustainable yield associatcd with any stated effort, we need only to estimate the two constants, and b. We shall discuss this problem in Section 3.4.

3.3 The LINR Model

Equation (3.7) depends on the two assumptions: first, that the natural biological growth rate is a logistic curve; second, that (3.3) expresses the relation between effort and yield at time, t. Although (3.7) has been uscd extensiveiy in the analysjss of fishery behavior by fishery biologists, we have some doubts about the assumption: expressed by equation (3.3). We doubt if doubling the effort would double the yiejc. Ihe first unjt of effort takes some proportion of the biomass, say pm_{t}, leaving ($\left.1-\mathrm{p}\right) \mathrm{m}_{\mathrm{t}}$. We shai] now assume with Beverton and Holt $(1957)^{2}$ that a second unit of effort would take $p(1-p) m_{t}$, leaving (1.. $p)^{2} m_{t}$. Th-n x_{t} units of effort would leave $(1-p)^{x_{t}} m_{t}$, or say $z^{x_{t_{m}}}$ (where $\left.z=(1 \quad-p)\right)$. And the yield would be

$$
\begin{equation*}
y_{t}=m_{t}\left(1-z^{x_{t}}\right) \tag{3.8}
\end{equation*}
$$

where y_{t} is yicld, x_{t} is effort, and where $0<z<l$ is the proportion of the biomass that wound be left after one unit of effort.

Following the same procedure as before, in (3.8) holds, at equilibrium

$$
\begin{equation*}
y_{t}=\varepsilon m_{t}\left(l-m_{t} / M\right)=\left(1-z^{x_{t}}\right)_{m_{t}} . \tag{3.9}
\end{equation*}
$$

2 The rationale for this procedure is explained in Beverton and Holt (1957). However, because they could assume that p was small they replaced ($1-\mathrm{p}$) with $\mathrm{e}^{-\mathrm{a}}$. (Continued)
(Continued)
Richard Hennemuth, NMFS, Woods Hole, Massachusetts, and Jerome Pe11a, NMFS, Auke Bay, Alaska, and others have expressed doubts as to whether this procedure was a proper interpretation of Beverton and Holt's work. Pella suggested that a better rationale for this equation could be either "that the fraction of the population removed by a unit of economic oftort decreases with jncreatiog economic effort even with the fish population biomass fixed," or it could be "based on fishing gear interference combined with a reduction in concentration with increasing economic effort."

Hennemuth questioned the LDR model as an approximation of the response of sumly to increase in consumer demand beyond MSY (i.e., what the right side of the yield function looks like.). They indicated quite correctly that neither the LCR, or JDF models have been validated so that we can solve the question of the "other side of the yield function." It probably varies by species. We agreed and pointed out that both projections under the LCR and LDR models were included in the manuscript and that we were only interested in showing a docline in production after fishing effort expanded beyond $E_{\text {MAX }}$. They agreed that this was a desirable feature, although the exact path and rate of decline in production was debatable.
from which we find that

$$
\begin{equation*}
m_{t}=M\left(1-\frac{1-z^{x_{t}}}{g}\right) \tag{3.10}
\end{equation*}
$$

and inserting (3.10) into the right-hand side of (3.9),

$$
\begin{equation*}
y_{t}=M\left[\left(1-z^{2}\right)-\frac{\left(1-z_{2}^{2}\right)^{2}}{g}\right] \tag{3.11}
\end{equation*}
$$

Since $0<z<1$, equation (3.11) shows that the annual yield would approach $M(7-1 / 5)$ if fishing effort wore increased indefinitely. It also indicates that with no effort there would be no yield. As effort increased, yield would increase untill it reached a maximum and then depending upon the value of g it might fall.

3.4 Statistical Estimation of Yield. Functions

If there were sextes of observations on effort and corresponding yields in a number of periods of time, we could estimate the parameters in (3.7) and (3.11) by the classical method of least squares or by other techniques (Fox 1970) for fisheries on a world basis. We made estimates of the yield curves on a regional basis by utijizing the information we had at hand. The derivation of owe yield function utilizes (3.7) and (3.11) together with landings and price in a base period, and biologists' estimates of MSY. We

3
Biologists have devised a number of ways to estimate MSY, some by intuitive judgment alone. We have merely taken their estimates as an input to our study and selected two theoretical yield-curves which will have a maximum coinciding with the cripirical estimates of MSY.
used (3.7) or (3.11) to estimate the relative yield y_{t} / y_{1} associated with the relative effort x_{i} / x_{1}. (Here y_{1} and x_{1} are yicld and effort in some base period, such as the past 5 years.). The effort--yield function will then tell what proportional increase in yield would result from any stated proportional increase in effort. The base-period yields (catches), for each principal species are readily available. Several biologists have estimater the maximum sustainale yiell, y^{*}, for various species in partic.. ular regions, usjng a variety of technical methods together with individual judenent. Gulland (1970) surveyed these estimates and published a detailed summary.

More specifically, we employed the following procedure in estimating the catch-yield relation for any stock of fish. Our second-degree parabola can be written ${ }^{4}$

$$
\begin{equation*}
y_{t} / y_{1}=a x_{t} / x_{1}-b\left(x_{t} / x_{1}\right)^{2} \tag{3.12}
\end{equation*}
$$

Where y_{1} and x_{1} are yield and effort in some base period, such as the past 5 years and y_{t} and x_{t} are projected yield and effort.

Our problem is to compute the constants, a and b, so that the curve goes through the points $(0,0)$ and (1,1); and is tangent to y*. Differentiating (3.12), we have

$$
\begin{equation*}
\frac{a\left(y_{t} / y_{1}\right)}{a\left(x_{t} / x_{1}\right)}=a-2 b x_{t} / x_{1} \tag{3.73}
\end{equation*}
$$

[^6]When yield is a maximum y^{*}, and when x^{*} is the corresponding effort,

$$
\begin{equation*}
x^{*} / x_{1}=a / 2 b \tag{3.14}
\end{equation*}
$$

Insering (3.11) into (3.12),

$$
\begin{equation*}
y^{*} / y_{y}=a^{2} / 2 b-a^{2} / 4 b=a^{2} / 4 b \tag{3.15}
\end{equation*}
$$

In the base period, $y_{t} / y_{1}=1$. and $x_{t} / x_{1}=1$. So, from (3.12),

$$
\begin{equation*}
I=a-b ; b=a-1 \tag{3.16}
\end{equation*}
$$

Equations (3.15) and (3.16) together inaicate that

$$
y \% / y_{1}=a^{2} /(4 a-4)
$$

that is,

$$
\begin{equation*}
a^{2}-1 a y * / y_{1}+4 y * / y_{1}=0 \tag{3.17}
\end{equation*}
$$

Solving (j.17) for a

$$
\begin{equation*}
a=2 y^{*} / y_{1}:\left(1 \pm \sqrt{1-y_{1} / y^{*}}\right) \tag{3.1.8}
\end{equation*}
$$

If we know y^{*} and y_{1}, we can compute "a" from (3.18). Then, from (3.16), $b=a-1$. So we have an estimate of both constants in (3.12). Of course, (3.18) gives us two values of a and two corresponding values of b. We will use the larger of
the two values of a when there is current overfishing but otherwise we use the smaller value.

We derive the LDR yield function in the following way. If we have given only the yield (i.e., catch) in the base period, y_{1}, and the maximum sustainaije yield, y, modic assume some value of E in (3.1), we can estimate the relative yields, y_{t} / y_{I}, that would correspond to various degrees of relative effor, x_{t} / x_{1}. Thus, if ve assume that the yield would approach zero if effort became very large, we are assuming that $\mathrm{g}=1$. In this study, we assumed that $\mathrm{g}=1$. In that case, equation (3.11) can be written

$$
\begin{equation*}
y_{t} / y_{1}=M z^{x_{t} / x_{1}}\left(1-z_{t}^{x_{1} / x_{1}}\right) \tag{3.19}
\end{equation*}
$$

Equation (3.19) is maximized when $z^{x_{t} / x_{1}}=1 / 2$. So the maximum ratio $y \% / y_{1}$ is reached when $y^{*} / \mathrm{y}_{1}=I / 4 \mathrm{M}$, or $\mathrm{M}=4 \mathrm{y}^{*} / \mathrm{y}_{1}$. Thus (3.19) is equivalent to

$$
\begin{equation*}
y_{t} / y_{1}=4 y^{*} / y_{1} z^{x_{t} / x_{1}}\left(1-z^{x_{t} / x_{1}}\right) \tag{3.20}
\end{equation*}
$$

Since y_{1}, x_{1} and y^{*} are known, and since in the base period,

$$
\begin{align*}
& \frac{y_{1}}{y_{1}}=1=1 \frac{y^{*}}{y_{1}} z(1-z) \tag{3.21}\\
& \text { we can compute } Z=1 \pm \sqrt{1-y_{1}} / \text { : }
\end{align*}
$$

3.5 A Numerical Example of the Two Cetch-Fffort Functions

 The following Workshoet 3.1 shows how we corfiputed yield functions for groundrish, Atlantic northeast. In this case, there appeass to have been overfishing in the base year (1.965), sc the effort-yield cur was downard sloping. Figure 3.2 shows the results graphicelly. The two curves are somewhat similar until approaching the base period, when $x_{t} / x_{I}=1$ and $y_{t} / y_{1}=1$. The striking difference between the two curves can be seen when they are extrapolated to estinate the yields that would result from substantial increases in effort. The LCR curve drops sharply, and reaches zero with an increase of about one-quarter in effort. The LDR curve drops much less rapidly, and would never quite reach zero, even if effort were increased without limit.Which or the two curves is better for purposes of projection, where we must extrapolate far beyond the range observed in the past? Thjs is a matter of judgment. We are inclined to favor the I,DR function, based upon (3.20).

Worksheet 3.1
Computation of world supply functions for groundfish in the Atlantic northeast
y_{1}) Landings (1965) Gulland 2,658 thousand metric tons
y^{*}) MGY Gulland $\quad 3,960$ thousand metric uosi
A. Schaefer Yield Function

$$
\begin{aligned}
& \quad y_{1} / y^{*}=0.67121 \\
& e=2 y^{*} / y_{\perp}\left(1 \pm \sqrt{1-y_{1} / v *}=2.97968(1+\sqrt{0.32879)}\right. \\
& =2.97968(1.57340)=4.68822 \\
& y_{t} / y_{1}=4.68822 x_{t} / x_{1}-3.68822\left(x_{t} / x_{1}\right)^{2}
\end{aligned}
$$

b. I, Y, Yicuad Faction

$$
\begin{aligned}
& \mathrm{z}=\frac{1 \pm \sqrt{1-y_{1} / y^{*}}}{2}=\frac{1-\sqrt{0.32079}}{2}=\frac{0.42660}{2}=0.21330 \\
& y_{t} / y_{1}=4 y * / y_{1} z^{x_{t} / x_{1}}\left(1-z_{t} / x_{1}\right)=5.95936 \mathrm{z}^{x_{t} / x_{1}}\left(1-z^{\left.x_{t} / x_{1}\right)}\right.
\end{aligned}
$$

$\mathrm{x}_{\mathrm{t}} / \mathrm{x}_{\text {I }}$	$\left(x_{t} / x_{l}\right)^{2}$	$\begin{aligned} & \text { ICR } \\ & Y_{i e l d ~ r a t i o ~} \\ & y_{t} / y_{I} \end{aligned}$	$0.21330^{x_{t} / x_{1}}$	$z^{x_{t} / x_{1}}\left(1-z_{t} x_{t} / x_{1}\right.$	LDR jield Ratio $\mathrm{y}_{\mathrm{t}} / \mathrm{y}_{\mathrm{I}}$
1/4.	$1 / 26$	0.94154	0.67959	0.21775	1.29765
1/2	1/4	1.42206	0.46184	0.24854 w	0.48114
1	1	1.00000	0.21330	0.16780 -	1.00000
3/2	9/4	-0.12662	0.09850	0.08880	0.52919
2	4	0.04550	0.04343	0.25882
3	9	-•••	0.00971	0.00962	0.05733
4	16	0.00207	0.00207	0.01234

THE FUTURE OF THE WORLD'S FISHERY RESOURCES: FORECASTS OF DEMAND, SUPPLY AND PRICES TO THE YEAR 2000 WITH A DISCUSSION OF IMPLICATIONS FOR PUBLIC POLICY

BY: Frederick W. Bell, Darrel A. Nash, Ernest W. Carlson, Frederick V. Maugh, Richard K. Kinoshita, Richard F. Fullenbaum

Figure 3.2--Groundfish, Atlantic northeast, response of yield to effort

3.6 Industry Cost Functions

To derive cost curves, we assume that total cost of harvesting, c_{t}, varies with effort, x_{t} (Gordon 1954) so that the relative cost in any region is proportional to relative effort (that is, if effort increases by $x \%$, total cost goes up by $x \%$);

$$
\begin{equation*}
c_{t} / c_{1}=x_{t} / x_{1} \tag{3.22}
\end{equation*}
$$

Then (3.12) can be written

$$
\begin{equation*}
y_{t} / y_{1}=a c_{t} / c_{1}-b\left(c_{t} / c_{1}\right)^{2} \tag{3.23}
\end{equation*}
$$

Solving (3.23) for c_{t} / c_{1},
Total cost: $c_{t} / c_{I}=\frac{a \pm \sqrt{a^{2}-4 b y_{t} / y_{I}}}{2 b}$
Where from (3.16), $1=a-b$ and a is given in (3.18).
Equation (3.24) indicates the change in total cost required to
attain any given increase in yield. Thus, to increase yield, 50% (so that $y / y_{1}=1.5$) the total cost would be $\frac{a \pm \sqrt{a^{2}-6 b}}{2 b}$ times the cost in the base period.

Dividing (3.24) by $\mathrm{y} / \mathrm{y}_{1}$,
Average cost: $\frac{c_{t} / c_{I}}{y_{t} / y_{I}}=\frac{a \pm \sqrt{a^{2}-4 b y_{t} / y_{I}}}{2 b y_{t} / y_{I}}$
and differentiating (3.0))

Marcinal cost: $\frac{d\left(c / c_{1}\right)}{a\left(y / y_{1}\right)}=\frac{F 1}{\sqrt{a^{2}-4 b y_{t} / y_{1}}}$.

Equations (3.23) through (3.26) are based upon the logisticconstant returns model ($J_{s} C R$), as indicated by (3.12). The losisticdecreasing returns model (LDR), indicated by equation (3.19) can be rewritter,
or

$$
\begin{align*}
& y_{t} / y_{1}=M\left[z_{t} / x_{1}-z^{2 x_{i} / x_{1}}\right] \tag{3.27}\\
& z^{2 x_{t} / x_{1}}-z_{t} x_{t}+x_{1}+\frac{1}{M} y_{t} / y_{I}=0
\end{align*}
$$

Thas

$$
\begin{equation*}
x_{t} / x_{0}=\frac{1 \pm \sqrt{1-4 y / y M}}{2} \tag{3.28}
\end{equation*}
$$

Again, assuming that $c_{t} / c_{1}=x_{t} / x_{1}$, we can solve (3.28) for $c_{t} / c_{1}:$

$$
\begin{equation*}
c_{t} / c_{I}=\log \left[\frac{1 \pm \sqrt{1-4 y_{t} / y_{I} M}}{2}\right] \tag{3.29}
\end{equation*}
$$

where Z is given in (3.21).
Equation (3.29) gives total cost. Average cost. isं; as before, $\frac{c_{t} / c_{1}}{y_{t} / y_{1}}$. That is

$$
\frac{c_{i} / c_{1}}{y_{t} / y_{1}}=\frac{\log \left[\frac{1 \pm \sqrt{1-4 y_{t} / y_{1} \mathrm{~m}}}{2}\right]}{\log \mathrm{z}-\mathrm{y}_{\mathrm{t}} / \mathrm{y}_{1}} \cdot(3.30) \quad(1)
$$

Equations (3.25) and (3.30) indicete curves averes: and: as a function of landings, as shown in the diagram below. Joth curves rise at an increasing rate as yield increases from zero to y^{*}; then, as yield is pushed beyond the maximum sustainable yield, average costs continue to rise as yield drops on account of overfishing. In general, the LDR curve lies above the JCCR curve except for yields below those in the base period. (See Figure 3.3).

THE FUTURE OF THE WORLD'S FISHERY RESOURCES: FORECASTS OF DEMAND, SUPPLY AND PRICES TO THE YEAR 2000 WITH A DISCUSSION OF IAPLICATIONS FOR PUBLIC POLICY

BY: Frederick W. Bell, Darrel A. Nash, Ernest W. Carlson, Frederick V. Waugh, Richard K. Kinoshita, Richard F. Fullenbaum

Figure 3.3--Average cost for LDR and LCR functions given the same basic data

3.7 Industry Supply Functions for a Region

Under conditions of perfect competition, increasing costs,
区.:
and free access to the resource, production is increased up to the point where price, p_{t}, equals average cost. ${ }^{-}$/ This condition should apply, at least approvimately, to ilisherna. In ay cui. we will assunc,

$$
\begin{equation*}
p_{\mathrm{t}} / \mathrm{p}_{\mathrm{I}}=\mathrm{c}_{\mathrm{t}} / \mathrm{c}_{\mathrm{I}}, \tag{3.31}
\end{equation*}
$$

For example, if average costs should rise 50%, we would expect production to be adjusted so that the price of fish would rise 50%.

Thus, for the LCR model, we can substitute (3.31) into (3.25):

$$
\begin{equation*}
\frac{p_{t} / p_{1}}{y_{t} / y_{1}}=\frac{a \pm \sqrt{a^{2}-4 b y_{t} / y_{1}}}{2 b y_{t} / y_{1}} \tag{3.32}
\end{equation*}
$$

As it stands, (3.32) indicates price as the dependent variable; yield, as indrpendent. But we shall consider the curve to be xeversible, We shall use (3.32) to estimate the landings (i.e., the yiela) that would result from any given price. In other words, we shall use (3.32) as the supply curve for the LCR model.

[^7]Similarly, the supply curve for the LDR model is

$$
\begin{equation*}
\frac{p_{t} / p_{1}}{y_{t} / y_{1}}=\frac{\log \left[\frac{1}{2}\left(\pm \sqrt{1-4 y_{t} / y_{1} M}\right)\right.}{y_{t} / y_{1} \cdot \log z} \tag{3.33}
\end{equation*}
$$

So far, we have discussed the supply curve in any ranson that is, the amount that the region could be expected to supply at various assumed prices. Next we need to combine these regional. supply functions into a world supply function.

3.8 Supply Function for the World: An Aggregation of Regional.

Supply Functions

lo make projections of future supplies and prices, we need to equate world supply with world demand (assuming certain levels of world population and income).

World sustainable supply at any specified price is the total amount that vould be supplied by all regions at that price. Figure 3.4 illustrates the procedure for the case of three regjons.

We first estimate each of the three regional supply curves (the heavy lines in the diagram). In the case illustrated, region 1 may be a region near the big market center, where fish may be caught at little expense, but where the stock is soon reduced by overfishing. Regions 2 and 3 are further removed from market; the potential supplies from these regions are large, but can be obtained only at greater expense. We shall assume that all three regions sell. at the "world price" minus transportation; thus, supplies in all three regions respond to the same world price.

The curve of world sustainable supply is obtained by summing the regional supplies at any given price. For example, the diagram: illustrates the case where the world price isp. (The price in ? each region is assumed to be some known percentage of the world price.) When the world price is p, the regional amountis supplieci are q_{1}, q_{2}, q_{3}. Their sum, $\left(Q_{1}=q_{1}+q_{2}+q_{3}\right)$ is the worldi supply at price p. Similarly, the world sustainable supply at any other price can be found by adding the curves horizontaliy.

We note that the wosld maximum sustainable yield (MSY) is the sum of the MSY's for the individual regions.' It is indicated by the vertical Inn to the right of Figure 3.4. But this maximum sustainable yield would not be attainable without maintaining each region at MSY. It is biologically possible, but economically unfeasible, undor competitive conditions. For example, as the world price would rise, it would be necessary to prevent overfishing in region 1 (and perhaps in region 2), if the potential world MSY were to be attained.

The heavy curve indicates the response of world supply to changes in world price. It assumes no controls-only the normal competitive responses of the fishing industry to prices and costs. That is what we have assumed in most of the projections reported here.

Whenever the regional supply functions are markedly different from one another, we found it necessary to estimate them separately,

THE FUTURE OF THE WORLD'S FISHERY RESOURCES: FORECASTS OF DEMAND, SUPPLY AND PRICES TO THE YEAR 2000 WITH A DISCUSSION OF IPPLICATIONS FOR PUBIIC POLICY

BY: Frederick W. Bell, Darrel A. Nash, Ernest W. Carlson, Frederick V. Haugh, Richard K. Kinositita, Richard F. Fullenbaum

Figure 3.4--\%orld supply alid regional supply

and to derive the world supply function as indicated previously. But in some cases, we found it adequate to compute a world supply curve directly from world landings and world prices.

Therefore, we have two important concepts:

1) World maximun sustajnable yicid (MSY)

$$
\sum_{i=1}^{n} M_{i}
$$

2) World maximum sustainable supply (MSS)

$$
\max \sum_{i=1}^{n} s_{i}
$$

Only in the case: where each region is controlled at lisY will the two concepts be equivalent.

3.9 Regionel and World Supply Functions: A Mathematical Analysis

Regional variations in the degree of exploitation may have profound eifects in terms of the aggregate world supply curve. Iet us revert to the ICR model, and equation (3.23)

$$
\begin{equation*}
y_{t} / y_{1}=a c_{t} / c_{1}-b\left(c_{t} / c_{1}\right)^{2} \tag{3.34}
\end{equation*}
$$

If we replace the expression c_{t} / c_{1} by $p_{t} y_{t} / p_{1} y_{1}$, and rearrange terms, we may solve for y_{t} in terms of p_{t} alone,

$$
\begin{equation*}
y_{t}=\frac{a p_{1} y_{1}}{b p_{t}}-\frac{p_{1}^{2} y_{1}}{b p_{t}^{2}} \tag{3.35}
\end{equation*}
$$

where $\mathrm{p}_{1}, \mathrm{y}_{1}$, are base perjod price and landings, respectively. Differentiating (3.35) with respect to price, and setting the resultant expression equal to zero, we may obtain the price, p^{*}, at which maximum sustainable yield is attained:

$$
\begin{equation*}
p^{*}=2 p_{1} / a \tag{3.36}
\end{equation*}
$$

Since prices are assumed to be the same for all regions, the price at which MSY is reached in any given region is dependent upon the parameter "a" of the yield function, and this paraneter is determined solely by the ratio $\mathrm{y}^{*} / \mathrm{y}_{1}$. Substituting (3.36) into (3.35), we pet

$$
\begin{equation*}
y^{*}=\frac{a^{2}}{4 b} y_{1} \tag{3.37}
\end{equation*}
$$

Let us now assume that there are n regions. The sum or the regional maximum yields is then given by:

$$
\begin{equation*}
\sum_{i=1}^{n} y_{i}^{*}=\sum_{i=1}^{n}\left(\frac{a_{i}}{4 b_{i}} y_{1_{i}}\right) \tag{3.38}
\end{equation*}
$$

where $y_{l_{i}}, a_{i}$ and b_{i} are, respectively, the yield function paraneters and the base period level of landings in the ith region. Equation
(3.38) represents a global upper bound, a "maximurn maximorum."

On the other hand, let us define the world supply function as the sum of the regional supply schedules,

$$
\begin{equation*}
\sum_{i=1}^{n} y_{t_{i}}=\sum_{i=1}^{n}\left(\frac{a p_{1} y_{1_{i}}}{b p_{t}}-\frac{p_{1}{ }^{2} y_{1_{i}}}{b p_{t}{ }^{2}}\right) \tag{3.39}
\end{equation*}
$$

Differentiating (3.32) with respect to price and then setting it equal to zero, we can solve for the price at which the world supply function reaches a maximum,

$$
\begin{equation*}
w_{j}^{*}=\frac{2 p_{1} \sum_{i=1}^{n} \frac{y_{1}}{b_{j}}}{\left(\sum_{i=1}^{n} y_{1} \frac{a_{i}}{b_{i}}\right)} \tag{3.40}
\end{equation*}
$$

When (3.40) bubstituted into (3.39), the maximum point of the vorld supply function can be found,

In general: (3.4I) will be less than (3.38), ${ }^{6 /}$ but will
approach (3.38) as differences in regional yield coefficients become smaller. When the regional coefficients are the same, the following holds:

6/ A general statement about the relationship between (3.40) and (3.36) cannot be made. In other words, we cannot say a priori whether the price at which MSY is reached will be higher or lower than the price consistent with the maximum of the vorld supply function。

However, it is also true that

$$
\begin{equation*}
\frac{1}{4} \frac{a^{2}}{b} \sum_{i=1}^{n} y_{I_{i}} \equiv \sum_{i=1}^{n}\left(\frac{a_{i}^{2}}{l_{i b}} y_{l_{i}}\right) \equiv \sum_{i=1}^{n} y_{i}^{*} \tag{3.43}
\end{equation*}
$$

Thus, world maximum sustaintiole yield can be citaned in the market only if the regional yield parameters are the same.

Similar conclusions can be drawn from the LJR model. Given the relative yield equation fron the decreasing retums model,

$$
\begin{equation*}
y_{t} / y_{I}=M z^{x_{t} / x_{1}}\left(1-z^{x_{t} / x_{I}}\right) \tag{3.44}
\end{equation*}
$$

we met donive the price at which maximum sustainable veld will be forthcoming by first differentiating with respect to x_{t} / x_{1}, setting it equal to zero, and substituting the expression $p_{t} y^{*} / P_{1} Y_{1}$ for x_{t} / x_{1}. Thers,

$$
\begin{equation*}
\mathrm{p}^{*}=\frac{\log \left(\frac{1}{5}\right) n_{1}}{\log \mathrm{z}}\left(\mathrm{y}_{1} / \mathrm{y}^{*}\right) \tag{3.45}
\end{equation*}
$$

Since z depends upon the ratio y^{*} / y_{1} (as does M in equation (3:44)), it foliows that here too all regions must have the same degree of exploitation in order to harvest world maximum yield.

Thus, in sumary, any one of three conditions would be sufficient to pormit the maximum resource potential from the world's oceans to be harvested: first, if. world yiel.d and world. landings are equally distributed between regions; secondly, if the ratio of landings to maximum sustainable yield is the same in all
regions, $7 /$ and, finally, if each region's harvest rate is
"frozen"--via rogulations maintaining the level of the permissible harvest rate-at regional MSY. The u.ltimate effect of these ${ }^{2}$ regional variations is basically an empirical question. However, it is possible that for some species the impact of luc or aty dimension could be sienificant, i.e., a considerable difference could arise between MSY and maximun supply.

It should be pointed out that given the specification in (3.34) that the slope of the absolute supply curve, i.e., $y_{t}=f\left(p_{t}\right)$, does depend upon the absolute level of base period landings, y_{1}; however, the elasticity of supply does not. Thus, the attainment of MSY merely depends upon the assumption that all regional supply curves have the same elasticity. The formula for the price elasticity of supply for the LCR model is given by:

$$
E_{s} \equiv \frac{p_{t}}{y_{t}} \frac{d y_{t}}{d p_{t}}=\left[\frac{p_{1}}{\partial p_{t}-p_{1}}\right]-1,
$$

and thus is independent of base period landings.
The limit of E_{s} as $p_{t} \rightarrow p^{*}=0$, i.e., when $p_{t}=p^{*}$, the elasticity of supply is equal to zero.

CHAPIER 4

THE DETERMTNANTS OE DENAND FOR FISHERY PRODUCTS AND EMPIRICAT ESTIMATES OT THESE RELATIONSHTPS

4.1. Introduction

In Chapter 3, we showed how the supply of fishery products is derived. In this chapter, we shall discoss the basic cetori., ants of the demand for ijshery products. In addition, we shall quantify these relationships through the estimates of demand functions and present the functions to be used to make the projections.
4.2 Theory of Jemand.

First, let us, set out the theoretical basis for ciemand estimatione Jet Q / F bo the per capita consumption of a good, (N symbolizing the size of the population): $P_{0} /$ CPI be the doflated price of that good, $\mathrm{P}_{1} / \mathrm{CFI}, \ldots, \mathrm{P}_{\mathrm{n}} / \mathrm{Cl}$, the deflated prices of other goods, Y / N be the deflated per capita income of consuners, and Z_{1}, \ldots, Z_{n} are noneconomic foizes affecting fish purchases. This implies the following general demaad furai n

$$
\begin{equation*}
Q / N=f\left(\frac{p_{0}}{C P I}, \frac{p_{1}}{C P I}, \cdots, \frac{P_{n}}{C P I}, \frac{Y}{N}, Z_{1}, \cdots, Z_{n}\right) \tag{1,.1}
\end{equation*}
$$

Hence per capita consunption of a given fishery product is determined by the price of the product, the prices of other products, the income of consumers, and othen variables such as hebit, product form, advertising, etc. The theory of demand used in this chaptex j.s the most simplified with which one can work. The Economic Research Laboratory is presently working with more complicated dynamic demand functions which may reveal the influence
of habit formation as well as income
and price on per capita consumption of a comnodity. See
Houthakker and Taylor (1970). In practice. this complete functionel rolationship is rarely usod to obtin emghich mimates and this stody is no excoption One reason is thet it is dirficult. to determine minch variables should be included in the set P_{1} through y_{n} and Z_{1} through Z_{n} for ary given product. Alrost as common is the difficulty of oftaining data over a historical period especially for many non-economic veriables.

Initial eficut: ver made to determine the effectis of other prices on the consumption of the fish products. There was little statistical support for including these variables, as explained more fully in Chapter 5. We recognize that prices of other products may becone important outside the range of the data, such as projec.tions which are grater than current consumptiono However, since no estimates are available these could not be taken into account.

This model has boen crjeticized for not taking into acuount the possible simultaneous determination of supply and demand functions: This occurs when there are a number of jointly detemined variables in a system. The most commonly investigated case occurs when price affects quantjety, quantity affects price; and both are affected by outside forces (exogenous variables). This creates the so-called
identification problen and necessitates a simultaneous estimation of demand and supply functions. Failure to consider this "identification problem" when it exists results in meaningless parameter estimates.

Year to year variations in fish catch are almost cortain?y highly dopendent on natwal phonomen, Leavin cowomb arees, principally pate, as a minor determinant. One study finds fish catch as a randon variable (Doll, unpublished). In such cases the identification problem is not serious. The study by Doll, in which two‥stage and three-stage least squares were used, shows that price and income elasticities were quite close to similar elasticities obtained from classical least squares. (See Section 4.3 of this chapter.)

For these reasons we bave used the following version of the demand function in order to obtain empirical estimates to be used in projectione

$$
Q / \mathrm{N}=\mathrm{f}=\left(\begin{array}{ll}
P_{0}, & Y \\
\frac{\mathrm{CPI}}{\mathrm{CP}}
\end{array}\right)
$$

Next, we chose the form of this function. Equations were run both in linear and logarithmic form. In the majority of cases, the log equations were superior from a statistical stendpoint. Therefore, this form was used throuchout in order to siriplify summation across countries. The form shown in (4.3) was used except as noted later.

$$
Q / \mathrm{N}=\mathrm{A}\left(\mathrm{P}_{0} / \mathrm{CPI}\right)^{\alpha} \quad(\mathrm{Y} / \mathrm{N})^{\dot{\beta}}
$$

In logarithms, (4.3) can be written

$$
\log (Q / \mathbb{N})=\log A+\alpha \log P_{0} / C P I+\beta \log Y / N
$$

α is the elasticity of consumption with respect to price, (sometimes called "price elasticity"). β is the elasticity of consumption with respect to income, (sometimes called "Engel's elasticint at jur of Ernst Engel (1895)). The theory also specifies the sign of a and . The price elasticity for normal goods is negative; that is, as price increases, consumption is discouraged, with the opposite effect if price goes dom. In the case of an income increase, there tends to be an increase in consumption; while a decrease in incone discourages consumtic..

It should be recognized that this modified equation is likely to result in certain biases of the elasticity estimates. Omitting other prices is İkely to affect both α and β. Also, the income coefficient is likely to be affected by other upward trends in the economy such as improved products which would be expected to bias the coefficient lipward. We felt it was better to include these additional trend erectis rather than use a "true" income elasticity and assume all trends will cease in the future.

During the past 50 years, economists and statisticians have developed practical methods of estimating the constants in (4.3) or (4.4). An enormous quantity of literature is available in this
area. Among the pathbreaking studies, we mention Moore (1917), Working (1922), Ezekiel (1930), Schultz (1938), Stone (1954), and Wold and Jureen (1953).

In recent years, a number of economists have studied the demand for fish (Waugh and Norton, 1969; Lampe and Farrell 1965; Bell, 1968; Gillespic ot: al., lat Suttor and Aryan-Nejad, 1969; Doll, 197]; Purcell, 1968; Nash, 1967; and Cleary, 1969.). These studies served as a basis for deriving the fishery demand equations used in the present study. To give a basis for worldwide projections, we found it necessary to make our own estimates of demand elasticitien.

Fish meal presents a unique case among the products because it is an internediate product--not used directly by humans; but used as a feed ingredient for poultry and meat animals. Thus, the demand for meal is termed a derived denand., In addition, the level of usc of fish meal is highly sensitive to its price relative to that of other feed ingredients. These facts require a different specification of the demand function for fish meal. The broiler chicken industry is by far the largest user of fish meal. Soybean meal is the closest substitute for fish meal in rations fed to the chickens.

Therefore, the demand equation for fish meal in the United States was specified as follows:

$$
\begin{equation*}
a_{1}=a+b_{1}\left(\frac{P}{C P I}\right)+b_{2}\left(\frac{P_{S}}{C P I}\right)+b_{3} c \quad \text { (United States) } \tag{4.5}
\end{equation*}
$$

where Q and P are as above, and
C $=$ the consumption of chickens in the United States,
$P_{S}=$ the price of soybean meale

Since it is difficult to reflect the numerous factors affectinc: fish meal use in other countries, a generalized equation was specifice to reflect the various factors:

$$
\begin{equation*}
Q_{2}=a \cdot b_{1}\left(\frac{p}{P_{S}}\right)+b_{4} T \quad \text { (Rest of World) } \tag{4.6}
\end{equation*}
$$

where T or time (one year) represents all other secular factors in other countries. World consumption, Q is then obtained by adding ε_{1} and u_{2}.

4.3 Ernpirical Estimation of Demand Parameters for Selected Fishery Projects, by Country

The primary interest in this stuady is to project fish consumption and prices by species for the United States. In order to accomplish this, however, we must take the rest of the world into acc:ount. Therefore, estimates of the demand relationship for each species by country were derived. Demand projections for each country were made based on these equations. We are quitc confident that the U.S. denand projections are reliable for decision-making purposes. However, due to the possibility of inaccuracies in the projections for some countries, the projections for countries other than the United States are combined. However, each country's demand was first projected individually. While some individual foreign country estimates are questionable, we feel the total non-U.S. projections are reasonable.

The fishery products which are of major importance to the United States were selected for intensive analysis. They are discussed in chapter 2, but for reference are: (1) groundfish, (2) canned tuna, (3) canned salmon, (4) fresh and frozen salmon, (5) halibut, (6) canned sardines, (7) shrimp, (8) Inhster, (9) crabs, (10) clums, (11) scallops, (12) cystore, (13) other food fish, and (14) fish meal.

Countries recording significant consumption were included in the demand analysis. Thus for those products such as halibut, where consumption is concentrated in a few couritrics, the coverage of the total project consumed is quite high (93%). On the other hand, groundfish is consumed by many countries of the world, most of which are individually unimportant. In this case, the analysis covers only 57% the total world consumption. Extrapolation to total world demand was done by assuming the same relationship holds for the rxcluded combtries as well as for those in the analysis. (Sce Chapter 5.)

There are various terhiques available to derive the coefficients to be used for projections. The general practice is to use an objec. tive estimating procedure and accept the results of this without further consideration. The values of α, β, etc., are extremely critical in making the projections, particularly for those several years hence. Therefore, we felt it was desirable to interject judgment into selecting the elasticities to be used for making
projections. For several reasons, outlined below, it was necessary to change some of the coefficients when they were at variance with a priori theory.

Annual time series observations were used as data to obtain the objective estimates Statistios on landings ennsumption, prices, and related indomation were obtaned matrly fom the Foce and Agricultural Organization (FAO, Annual editions). Where possible, (i.e., Canada and the U.S.) data were obtained directly from the nations' statistical reports. Population and consumer income data were taken from sources in the U.S. Department of Agriculture (1968). We found many problems with the data; forexampe, the definitions for "tuna," "groundfish," and "flatfish," etc., were not uniform by country. Also, FAO must use considerable judgement in combining individual country reports which come to them in diverse forms and with different bases for reporting weight. More work is needed to improve these basic data, but for now, it is the only source available for many countries. The study would not have been possible without FAO data. Any improved data series will be used in these equations as soon as they are obtainable.

We used ordinary least squares procedures to estimate the demand function (4.3) for each country. While the results are far from perfect, they do provide useful approximations to the elasticities α and β, for the species in question in each country. These results are shown
in Tables 4.1 through 4.14.

After completing the objective (statistical) analysis, the demand equations were analyzed to determine if they were acceptable for projection purposes. The two most common reasons for changing then were (1) the elasticities had the "wrong" sign from a theoretical standpoint, and (2) the elasticibies wow onona... incorrect in terms of magnitude. General solutions were to vese the elasticity of a similar fishery productis, or to use the elasticity of the same produet from a country with similar consuming habitis. The changes made from the statistically-derived demand functions and the explanation for these changes appear in Tables 4.15 through 4.26.

Statistical estimation of economic relationships, particularly with data which are not highly accurate, is subject to several pitfalls. It is often the cas that the analyst accepts less than inghly reliable results. Nevertheless, there are means of measuring the reliability of the resulus. They are both econonic and statistical tests. The economic tests are those theoretical underpirmings describud earlier.

Three statistical tests of reliability are used in jurging our results. The t-value, which appears in the parentheses in Tables 4.1 to 40.74 , tests whether the elasticity (the figure diractily above the t-value) can be regaraded as being different from zeroo
(That is, it tests whether a variable has any effect on the results.) For the number of observations used here, a t-value of about 2.2 (in absolute terms) is needed to conclude the sigrificance of the elasticity coefficient at the commonly accepted 95% confidence level. We compromised sonetimes and accepted elasticities with lower t-valuer if the coeficient was acceptable from a theoretical point of view. A second test is R^{2} which shows what percent of the variation in consumption is explained by price and income. Both mathematically and logically this figure must be between 0 and I.0; therefore, the closer it is to 1.0 , the more reliable is the consumption estimate. The Durbin-Watson statistic (D-W) is a test of the reliability of the t-values and of the proper specification of the equation. I'wo common types of specification errors are: including the wrong set of variables, and usinc an unacceptable form of the equation (for example, logarithmic versus linear). This is a fairly common problen when using timo series data because many factors, thich have no causal relationship to the one being estimated, change over time. For our sample size, D-W values between about 1.4 and 2.6 denote acceptable specification of the equations.

The equation used for making the demand projections are show in Tables 4.15 to 4.26. Because some of the demand estimates were statistically weak or were not supported by economic logic, the authors changed certain parameter estimates designated by footrotes. Given the critical use of the parameters, we felt this was justified. We did not want to be confined to mechanically accepting the statistical results.

The projections in Chapter 6 are sufficiently plausible to justify the demand relationshins presented in these tables.

Table 4.1.--Regression results of groundifish demand equations by selected countries

Country	Constant	$\begin{aligned} & \text { Price } \\ & \text { eఇasticity } \end{aligned}$	Income eIasticity	R^{2}	D-W	Perioa
U.S.A.	$\begin{gathered} -2.0145 \\ (-6.7514) \end{gathered}$	$\begin{gathered} 0.1014 \\ (0.7541) \end{gathered}$	$\begin{gathered} (.8518 \\ (0.1877 .) \end{gathered}$	0.84	2.23	1948-68
Japan	$\begin{gathered} -1.6923 \\ (-3.4357) \end{gathered}$	$\begin{gathered} 0.2767 \\ (0.7008) \end{gathered}$	$\begin{gathered} =.0467 \\ (6.5060) \end{gathered}$	0.83	1.05	1956-67
Canada	$\begin{gathered} 6.6006 \\ (0.4757) \end{gathered}$	$\begin{gathered} -3.6297 \\ (-0.7904) \end{gathered}$	$\begin{gathered} -1.2045 \\ (-0.2481) \end{gathered}$	0.30	2.37	1953-66
Korea $1 /$	$\begin{gathered} 2.2774 \\ (1.6845) \end{gathered}$	$\begin{gathered} 0.7873 \\ (0.8476) \end{gathered}$	$\begin{aligned} & -1.0595 \\ & (-1.6433) \end{aligned}$	0.26	1.33	1956-67:
Denmark 2/	$\begin{aligned} & -3.9025 \\ & (-4.1255) \end{aligned}$	$\begin{gathered} -0.3016 \\ (-0.4763) \end{gathered}$	$\begin{gathered} 1.9469 \\ (5.8995) \end{gathered}$	0.83	0.93	1956-67
Prance 2/	$\frac{-10.3194}{(-1.5965)}$	$\begin{aligned} & -7.1220 \\ & (-1.8019) \end{aligned}$	$\begin{gathered} 6.5998 \\ (2.7293) \end{gathered}$	0.46	2.76	1956-67
Netherlands	$\begin{gathered} -6.9719 \\ (-4.8273) \end{gathered}$	$\begin{gathered} -0.0783 \\ (-0.2316) \end{gathered}$	$\begin{gathered} 2.6716 \\ (4.6651) \end{gathered}$	0.88	1.86	1956-67
United Kingdom	$\begin{gathered} -4.1 .534 \\ (-2.1125) \end{gathered}$	$\begin{aligned} & -1.3952 \\ & (-1.6296) \end{aligned}$	$\begin{gathered} 2.1924 \\ (2.5550) \end{gathered}$	0.55	2.06	1955-65

Japanese price data were used in the equation
U. S. price data were used in the equation

Tependent variable is per capita consumption of groundfish in round weight.
Prices are ex vessel deflated by the indiviaual country's CPI and converted into U.S. cents per pound by
the exchange rates.
Income is defleted by the individual country:s CPI and converted into U.S. dollens men capita by the whance rotes.
T yatues in parentheses.

Table 4.2--Regression results of tuna demand equations by selected countries

Country	Product form	Constant	$\begin{aligned} & \text { Price } \\ & \text { elasticity } \end{aligned}$	Income elasticit:-	2^{2}	D-W	Perios
U.S.A.	can	$\begin{gathered} -2.6090 \\ (-2.3862) \end{gathered}$	$\begin{gathered} -0.8632 \\ (-4.9220) \end{gathered}$	$\begin{gathered} 1.1675 \\ (4.1626) \end{gathered}$	0.84	1.44	1947-57
Canada	can	$\begin{gathered} 0.3115 \\ (0.1151) \end{gathered}$	$\begin{gathered} -0.1353 \\ (-\therefore .6090) \end{gathered}$	$\begin{gathered} -0.0868 \\ (-0.2 .068) \end{gathered}$	0.04	1.77	1956-67
United Kingdom	can	$\begin{gathered} 3.0045 \\ (0.9403) \end{gathered}$	$\begin{gathered} 0.8675 \\ (2.0944) \end{gathered}$	$\begin{gathered} -1.4787 \\ (-1.4950) \end{gathered}$	0.45	1.92	1956-67
EEC	can	$\begin{gathered} -1.9451 \\ (-1.1439) \end{gathered}$	$\begin{gathered} -0.3524 \\ (-0.9966) \end{gathered}$	$\begin{gathered} 0.8313 \\ (1.5023) \end{gathered}$	0.32	1.14	1956-67
Spain	raw	$\begin{gathered} -2.2564 \\ (-1.0961) \end{gathered}$	$\begin{gathered} -0.4058 \\ (-0.5344) \end{gathered}$	$\begin{gathered} 1.0425 \\ (1.6359) \end{gathered}$	0.29	2.33	1956-67
	can	$\begin{gathered} -0.3610 \\ (-0.3273) \end{gathered}$	$\begin{gathered} 0.5865 \\ (1.44!.6) \end{gathered}$	$\begin{gathered} -1.3867 \\ (-0.0406) \end{gathered}$	0.20	1.85	1956-67
Turiey	raw	$\begin{aligned} & 13.8698 \\ & (1.4047) \end{aligned}$	$\begin{gathered} -0.2453 \\ (-0.1720) \end{gathered}$	$\begin{gathered} -5.7316 \\ (-1.4893) \end{gathered}$	0.22	2.06	1956-67
Japan	raw	$\begin{aligned} & -0.4085 \\ & (0.4459) \end{aligned}$	$\begin{gathered} -0.5095 \\ (-0.6674) \end{gathered}$	$\begin{gathered} 0.3434 \\ (1.2365) \end{gathered}$	0.15	1.59	1956-67
	can	$\begin{gathered} 2.4965 \\ (2.4297) \end{gathered}$	$\begin{gathered} 0.9953 \\ (1.1675) \end{gathered}$	$\begin{gathered} -1.3954 \\ (-4.5004) \end{gathered}$	0.70	1.65	1956-67

Table 4.2--Regression results of tuna demend equationsby selected countries (continued)

(In Iogarithms)							
Country	Product form	Constant	Price elasticity	Income elasticiも	R^{2}	D-W	Period
Taivan	raw	$\begin{gathered} -0.2467 \\ (-0.2561) \end{gathered}$	$\begin{gathered} -0.2190 \\ (-0.9106) \end{gathered}$	$\begin{gathered} 0.4926 \\ (1.2008) \end{gathered}$	0.23	2.89	1956-67
	can	$\begin{aligned} & -=0.5766 \\ & (-5.2343) \end{aligned}$	$\begin{gathered} -0.0583 \\ (-0.1155) \end{gathered}$	$\begin{gathered} 5.5071 \\ (4.7395) \end{gathered}$	0.78	1.87	1956-6?
Peru	raw $1 /$	$\begin{gathered} 0.1854 \\ (0.0274) \end{gathered}$	$\begin{gathered} 0 . I 392 \\ (0.0485) \end{gathered}$	$\begin{gathered} 0.2715 \\ (0.1299) \end{gathered}$	0.002	1.29	1956-67

1./ U.S. price data were used in the equation.

Depencent variable is per capita consumption of tuna in round weight, except for the U. Shich is in edible veight.
Prices are ex vessel deflated by the individual country's CPI and converted into Uos. ents per pound by the exchange rates.
Income is defiated by the individual country's CPI and converied into U.S. dollars re: capita by the exchange rates.
T values in parentheses.

Table 4.3.--Regression results of salmon demann equations by selected countries (In logarithms)

Country	Constent	$\begin{aligned} & \text { Price } \\ & \text { elasticity } \end{aligned}$	Income elesticit.	32	D-W	Period
U.S.A.	$\begin{gathered} 4.3032 \\ (4.89 ? 6) \end{gathered}$	$\begin{gathered} -0.7056 \\ (-2.1229) \end{gathered}$	$\begin{aligned} & -0.9743 \\ & (-2.9165) \end{aligned}$	0.73	1.62	1950-67
Canada	$\begin{gathered} 2.9662 \\ (0.9647) \end{gathered}$	$\begin{aligned} & -0.9312 \\ & (1.5707) \end{aligned}$	$\begin{gathered} -0.3584 \\ (-0.3421) \end{gathered}$	0.23	1.79	1950-68
Denmark	$\begin{aligned} & -31.1268 \\ & \left(-4.95^{4}+5\right) \end{aligned}$	$\begin{gathered} 3.9913 \\ (2.6827) \end{gathered}$	$\begin{aligned} & 7.6541 \\ & (5.5241) \end{aligned}$	0.67	1.72	1948-67
U.S.S.R.I/	$\begin{gathered} 6.9748 \\ (2.7694) \end{gathered}$	$\begin{gathered} 0.3080 \\ (0.5266) \end{gathered}$	$\begin{gathered} -2.5719 \\ (-2.3031) \end{gathered}$	0.75	2.20	1955-67
Japan	$\begin{gathered} 0.9930 \\ (1.2899) \end{gathered}$	$\begin{gathered} 0.0266 \\ (0.0430) \end{gathered}$	$\begin{gathered} -0.2235 \\ (-0.4403) \end{gathered}$	0.06	2.78	1955-67

L/Japan's price data used in the equation.
Dependent variable is per capita consumption of salmon in round weight.
Prices are ex vessel defiated by the individual country's CPI, converted into U. \tilde{y} ents per pound by the exchange rates.
T values in parentheses.

Table 4.4--Regression results of halibut demand equations by selected countries

Country	Constant	$\begin{aligned} & \text { Price } \\ & \text { elastici.ty } \end{aligned}$	$\begin{aligned} & \text { Thcome } \\ & \because \text { asticity } \end{aligned}$	p^{2}	D-W	Perioci
U.S.A.	$\begin{aligned} & 1.1649 \\ & (2.0150) \end{aligned}$	$\begin{gathered} -0.1571 \\ (-2.0486) \end{gathered}$	$\begin{aligned} & -0.5112 \\ & -4.0781) \end{aligned}$	0.63	1.66	1950-6
Canada	$\begin{aligned} & -11.6941 \\ & (-2.1387) \end{aligned}$	$\begin{gathered} 0.1474 \\ (0.1934) \end{gathered}$	$\begin{array}{r} 3.3220 \\ (1.3229) \end{array}$	0.28	1.71	1951-67
West Germany ${ }^{1 /}$	$\begin{gathered} 3.1432 \\ (2.3293) \end{gathered}$	$\begin{gathered} -1.0387 \\ (-1.9436) \end{gathered}$	$\begin{gathered} 0.9960 \\ (-2.2109) \end{gathered}$	0.53	1.00	1958-67
Ice 1 and 1/	$\begin{gathered} -2.6609 \\ (-0.8071) \end{gathered}$	$\begin{gathered} -0.7300 \\ (-0.0012) \end{gathered}$	$\begin{gathered} 1.5474 \\ (1.2883) \end{gathered}$	0.14	0.66	1954-67
Norway	$\begin{gathered} 4.0482 \\ (7.7186) \end{gathered}$	$\begin{gathered} -0.8395 \\ (-2.1017) \end{gathered}$	$\begin{gathered} -0.7894 \\ (-4.0483) \end{gathered}$	0.73	1.40	1948-67
United Kingdom*	$\begin{array}{r} 7.8900 \\ \times 5.9746) \\ \hline \end{array}$	$\begin{array}{r} -1.8467 \\ (-2.8282) \\ \hline \end{array}$	$\begin{gathered} -1.8823 \\ (-7.5762) \\ \hline \end{gathered}$	0.78	0.68	1948-67

1/ U.S. price data were used in the equation.
Dependent variable is per capita consumption of halibut in round weight, except for t.a U.S. which is in éible weight.
Prices are ex vessel deflated by the individual country's CET and converted into U.s sents per pound by the exchange rates.
Income is deflated by the individual country's CPI and converted into U.S. dollars pe. capita by the exchange rates.
T values in parentheses.

Table 4.5 .--Regression results of sardine demand equationsoy selected countries

1 U.S. price data were used in the equation.
Dependent variable is per capita consumption of sardine in round weight, except for e U.S. which is in edible weight.
prices are ex vessel deflated by the individual sountry's CPI, converted into U.S. cors per pound by the exciange rates.
Income is derleted by the individual country's CPI and converted into U.S. dollens u. capita by the exchange rates.
T vaiues in parentheses.

Table 4.6-Regression results of shrimp demand equationsby selected countries

Country	Constant	$\begin{aligned} & \text { Wrice } \\ & \text { elasticity } \end{aligned}$	$\begin{aligned} & \text { Income } \\ & \text { easticity } \end{aligned}$	R^{2}	D-W-:	Period
U.S.A.	$\begin{gathered} -4.8075 \\ (-12.0400) \end{gathered}$	$\begin{gathered} -0.3099 \\ (-2.7001) \end{gathered}$	$\begin{gathered} 1.6999 \\ (1.1 .5558) \end{gathered}$	0.31	0.80	1948-6?
Mexico	$\begin{aligned} & -11.5852 \\ & (-5.2599) \end{aligned}$	$\begin{gathered} -1.6584 \\ (-3.1705) \end{gathered}$	$\begin{aligned} & 5.2396 \\ & 5.85611) \end{aligned}$	0.34	2.15	1958-6:
India $1 /$	$\begin{gathered} -1.0936 \\ (-0.7041) \end{gathered}$	$\begin{gathered} 0.4761 \\ (1.7194 \end{gathered}$	$\begin{gathered} -0.0133 \\ (-0.0157) \end{gathered}$	0.31	1.72	1958-67
Japan	$\begin{gathered} -0.0306 \\ (-0.0589) \end{gathered}$	$\begin{gathered} -0.1492 \\ (-0.4616) \end{gathered}$	$\begin{gathered} 0.1350 \\ (1.1603) \end{gathered}$	0.11	0.62	1953-67
Pakistan 1/	$\begin{gathered} -4.5177 \\ (-5.2110) \end{gathered}$	$\begin{gathered} 0.1692 \\ (0.5791) \end{gathered}$	$\begin{gathered} 2.0226 \\ (4.5649) \end{gathered}$	0.65	1.61	1953-67
Thail and $1 /$	$\begin{array}{r} -8.8344 \\ (-14.4455) \\ \hline \end{array}$	$\begin{array}{r} 0.6047 \\ (2.3746) \\ \hline \end{array}$	$\begin{gathered} 3.9753 \\ (1.4 .4492) \\ \hline \end{gathered}$	0.97	1.50	1958-67

II U.S. price data were used in the equation.
Dependent variable is per capita consumption of shrimp in round weight.
Prices are ex vessel deflated by the indivichal country's CPI and converted into U.S. sents per pound by the exchange rates.
Income is deflated by the individual country's CPI and converted into U.S. do:lars per capita by the exchange rates.
T values in parentheses.

Table 4.7-Regression results of Lobster cemand equations by selected countries

I/ U.S. price data were used in the equation.
Dependent variable is per capita consumption of lobster in round weight, except for 2 U.S. which is in edible weight.
Prices are ex vessel deflated by the individual country's CPI and converted into U.S. ants per pound by the exchange rates.
Income is deflated by the individual country's CPI and converted into U.S. dollars os capita by the exchange rates.
T values in parentheses.

Table 4.8-Regression results of crab demend equations by selected countries

Country:	Constant	Price elasticity	$\begin{aligned} & \text { Income } \\ & \text { esticity } \end{aligned}$	R^{2}	D-W	Period
U.S.A.	$\begin{array}{r} -6.2101 \\ (-10.8588) \end{array}$	$\begin{gathered} 0.0661 \\ (0.1948) \end{gathered}$	$\because \begin{aligned} & 1.8789 \\ & \because 1.2304) \end{aligned}$	$\bigcirc .89$	1.09	1948-67
Canada	$\begin{gathered} -3.3492 \\ (-1.9950) \end{gathered}$	$\begin{gathered} -0.6313 \\ (-1.1843) \end{gathered}$	$\begin{aligned} & 1.01 .54 \\ & 1.8!51) \end{aligned}$	0.17	1.31	194:8-67
U.S.S.R.	$\begin{gathered} -1.4653 \\ (-2.7352) \end{gathered}$	$\begin{gathered} 0.5674 \\ (1.0842) \end{gathered}$	$\begin{aligned} & 0.1956 \\ & 1.7555) \end{aligned}$	0.28	1.45	1953-67
Japan 1/	$\begin{array}{r} -3.0586 \\ (-2.6417) \\ \hline \end{array}$	$\begin{gathered} 0.7755 \\ (0.6023) \\ \hline \end{gathered}$	$\begin{gathered} 0.9467 \\ (6.1192) \\ \hline \end{gathered}$	0.70	0.50	1948-67

1/ U.S. price data were used in the equation.
Dependent varioble is per capita consumption of crab in round weight.
Prices are ei vessel deflated by the individual ccuntry's CPI and converted into U.S. cents per pound by the exchange rates
Income is deflated by the individual country's CPT and converted into U.S. dollars per capita by the exchange rates.
T values in parentheses.

Table 4.9--Regression results of clam demand equationsby selected countries.

Country	Constant	$\begin{aligned} & \text { Price } \\ & \text { elasticity } \end{aligned}$	$\begin{aligned} & \text { ncome } \\ & \text { ? asticity } \end{aligned}$	R^{2}	D-W	Perioc
U.S.A.	$\begin{gathered} -0.2051 \\ (-0.1460) \end{gathered}$	$\begin{aligned} & -0.6047 \\ & (-2.1100) \end{aligned}$	$\begin{gathered} 0.2564 \\ (0.6641) \end{gathered}$	0.53	0.50	1948-67
Spain ${ }^{1 /}$	$\begin{gathered} -1.3340 \\ (-0.5341) \end{gathered}$	$\begin{gathered} -1.5768 \\ (-1.5976) \end{gathered}$	$\begin{gathered} 1.3854 \\ (2.5951) \end{gathered}$	0.71	1.66	1948-67
United Kingdom ${ }^{1 /}$	$\begin{gathered} -3.4578 \\ (-1.1303) \end{gathered}$	$\begin{gathered} 0.5353 \\ (0.8751) \end{gathered}$	$\begin{gathered} 0.7105 \\ (0.9713) \end{gathered}$	c. 05	0.96	1948-67
Japan ${ }^{\prime \prime}$	$\begin{gathered} 0.3275 \\ (0.2563) \end{gathered}$	$\begin{gathered} -0.2391 \\ (-0.4617) \end{gathered}$	$\begin{gathered} 0.2171 \\ (0.9757) \end{gathered}$	0.46	1.16	1955-66
Korea ${ }^{1 /}$	$\begin{aligned} & -10.1612 \\ & (-2.6641) \end{aligned}$	$\begin{array}{r} -1.9574 \\ (-1.9756) \\ \hline \end{array}$	$\begin{array}{r} 6.2974 \\ (4.8140) \\ \hline \end{array}$	0.03	1.97	1953-67

I' U.S. price data were used in the equation.
Dependent variable is per capita consumption of clam in round weight.
Prices are ex vessel ceflated by the individual country's CPI and converted into U.S. aents per pound by the exciange rates.
Income is deflated by the individual country's CPI and converted into U.S. dollars: capita by the exchange rates.
T values in parentheses.

Tab1e 4.10-Regression results of scallop demand equations by selected countries

Country	Constant	$\begin{aligned} & \text { Price } \\ & \text { elasticity } \end{aligned}$	Income elasticity	R^{2}	D-W	Period
U.S.A.	$\begin{gathered} -1.1225 \\ (-2.2794) \end{gathered}$	$\begin{gathered} -0.6337 \\ (-7.1560) \end{gathered}$	$\begin{gathered} 0.4285 \\ (2.9821) \end{gathered}$	0.30	1.31	1950-67
Canada	$\begin{gathered} -6.5116 \\ (-1.3957) \end{gathered}$	$\begin{gathered} -1.8032 \\ (-3.1131) \end{gathered}$	$\begin{gathered} 2.5809 \\ (1.92 i 1) \end{gathered}$	0.54	1.90	1949-67
France ${ }^{1 /}$	$\begin{gathered} -5.5043 \\ (-5.2420) \end{gathered}$	$\begin{gathered} -0.2800 \\ (-0.9502) \end{gathered}$	$\begin{gathered} 1.7366 \\ \hdashline 6.3162) \end{gathered}$	0.75	2.47	1950-67
Japan 1/	$\begin{gathered} 2.8155 \\ (3.9621) \end{gathered}$	$\begin{gathered} -0.5765 \\ (-1.8047) \end{gathered}$	$\begin{gathered} -0.4194 \\ (-6.0979) \end{gathered}$	0.75	0.79	1955-66
Australia ${ }^{\prime \prime}$.	$\begin{aligned} & -25.6822 \\ & (-6.2612) \end{aligned}$	$\begin{gathered} 0.1106 \\ (0.1557) \\ \hline \end{gathered}$	$\begin{array}{r} 8.0216 \\ (6.3720) \\ \hline \end{array}$	0.76	0.77	1952-57

If U.S. price data were used in the equation.
Dependent variable is per capita consumption of scallop in rund weight, except for the U.S. which is in edible weight.
Prices are ex vessel deflated by the individual country's $C P$ and converted into U.S. cents per pound by the exchange rates.
Income is deflated by the individual country's CPI and converted into U.S. dollars per capita by the exchange rates.
T values in parentheses.

Table 4.11--Regression results of oysters demand equations by selected countries

I/ U.S. price data were used in the equation.
Dependent variable is per capita consumption of oysters in round weight.
Prices are ex vessel deflated by the individual country's CPI and converted into U.S. ents per pound by the exchange rates.
Income is deflated by the individual country's CPI and converted into U.S. dollars per capita by the exchange rates.
T values in parentheses.

Table 4.12--Regression results of all other food fish demand equations by U.S.. and rest of world.
(In logarithms)

Country	Constant	Price elasticity	Income elasticity	R^{2}	D.W.	Period
U.S.A.	$\begin{gathered} 6.9033 \\ (9.1192) \end{gathered}$	$\begin{aligned} & +.01 \% \\ & (.0555) \end{aligned}$	$\begin{gathered} (1.973 \\ (10.0528) \end{gathered}$	0.89	2.5\%	$19 \% \%$
Rest of Worla	$\begin{aligned} & -1.2320 \\ & (3.5000) \end{aligned}$	$\binom{-.1528}{(-1.2204}$	$\begin{gathered} .9560 \\ (9.51 .58) \end{gathered}$	0.89	1.21	1950-67

// U.S.price data were used in the equation.
Dependent variable is per capita consumption of all food fish and shellfish not included in the individual species anlaysis, in edible weight. World in round weight.
-
Price is ex vessel deflated by CPI.
Income is derlated by CPI.

Table 4.13.--Regression results of fish meal demand equations by U.S. and rest of world ${ }^{1}$
(Linear equat:

Country	Constant	Price coefficient	Soybean price coersicient	Cricken consumption coefficient	Time c.oefficient	R^{2}	D-W	Period
U.S.A.	$\begin{array}{r} -460.68 \\ (1.32) \end{array}$	$\begin{array}{r} -3.35 \\ (1.54) \end{array}$	$\begin{array}{r} 10.09 \\ (3.62) \end{array}$	$\begin{array}{r} .22 \\ (8.84) \end{array}$		0.88	1.73	1950-67
Rest of World ${ }^{1 /}$	$\begin{array}{r} 1,553.37 \\ (1.50) \end{array}$	$-1, \frac{150.81}{(1.93)}$			$\begin{array}{r} 433.36 \\ (15.99) \end{array}$	0.94	.73	1950-67

I/ These results were also used in making demand projections.
2. U.S. price data was used in the equation.

3/ Price of fish meal : price of soybean meal.
Dependent variable is fish meal in million pounds.
Price is price per short ton.
Soybean price is price per short ton.
Chicken consumption is million pounds reaiy-to-cook weight.

Table 4.14.--Groundfish equations used for making projections

Country	Constant	Price elasticity	Income elasticity
		logarithins	
United Slate:	$-1.0919 \mathrm{l} /$	-1.0 a/	$0.85,183$
Canada	-.2.7681	-1 4/	1.211 5/
Denmark	-2.3922 I/	-1.3952 6/	1.9469
France	$-4.4452 \mathrm{I} /$	-1.3952 6/	$2.19246 /$
Netherlands	-3.9736 I/	-1.3952 6\%	$2.1924 \text { 6/ }$
United Kingdom	-4.1534	-1.3952	2.1924
J apaii	-0. yuv I	-1.0 2/	1.0467
Korea	-1.1102 I/	-1.0 2/	1.0467 I/

See footnotes following Table 4.25.

Table 4.15.--Tuna equations used for making projections

Country	Constant	Price elasticity	Income elasticity
		-logarithm:	
U.S.- canned	$-2.3164 \mathrm{I} /$	-0.8632	1.1.675
Canada--canned.	-3.1757	-0.8632 8/	1.1675 /
U.K.-canned	$-3.44101 /$	-0.8632 9 /	1.16759
FEC-canned	-2.3904 I/	-0.8632 9/	$1.16759 /$
Spain-not canned	-2.2564	-0.4058	1.0425
Spain-canned	1.4874 $1.10 /$	-1.0000	0 I1/
Turkey-not canned	$0.37201 /$	-0.2453	0 11/
Japen-not camed	0.4085	-0.5095	0.3434
Japan-canned	0.8389 I/10/	-1.0000 2/	0 I1/
Taiwan-not canned	-0.2467	-0.2190	0.4926
Taiwan-canned	$-3.4832 \mathrm{I}$	$-1.0000{ }^{12 /}$	$2.000013 /$
Peru-not canned	$-1.2773^{1 /}$	-0.4058 1.4/	1.042515

See footnotes following Table 4.25.

Table 4.16.--Salmon equations used for making projections

Country	Constant	Price elasticity	Income elasticity
		logarithms	------------
U.S.	$1.07471 /$	-0.7066	$011 /$
Canada	$1.83701 /$	$-0.93 ?^{1}$	- 11]/
Denmark	$-10.8606 \mathrm{I} /$	-1.0 ${ }^{1}$	$\cdots 14.013 /$
U.S.S.R.	1.2955 1//	-1.0 2/	011
Japin ${ }^{\text {J }}$	$1.8742 .1 /$	-1.0 2/	$0 \mathrm{ll} /$

See footrotes following Table 4.25 .

Table 4.17.--Halibut equations used for making projections

Country	Constant	$\begin{aligned} & \text { Price } \\ & \text { elasticity } \end{aligned}$	Income elasticity
	---	-logarithms	
Uni.ted States	$-1.9600 \mathrm{I} /$	-1.0 12/	. 8518 5/
Canado	$-1.83361 /$	-1.0 2/	. 85.18
West Germany	$-5.16201 /$	-1.0387	$1.54745 /$
. Iceland	-2.6609	-0.7300	1.5474
Norway	$-1.24061 /$	-0.8395	. 8518 5/
United Kingar	-0.8386 $1 /$	-1.8470	$.8518{ }^{5 /}$

\qquad

See footnoter following Table 4.25 .

Table 418:.-.Canned sardines equations used for making projections

Country	Constant	Price elasticity	Income elasticity
United States	1.39 I/	-0.9837	$017 /$
Canada	1.860 ?	-0.9837 9/	$011 /$
United Kingdom	-3.000%	-0.994'7	1.4843
Portuga 1	-1.0345	-0.6970	1.364 .1
Norvay	1.28 I/	-0.51.26	0 11/
Spain	-0.85 1/	-1.0694	$113 /$

See footnotes following Table 4.25.

Table 4.19.--Shrimp equations used for making projections

Country	Constant	Price elasticity	$\begin{aligned} & \text { Income } \\ & \text { elasticity } \end{aligned}$
		-logarithms -	
United States	-4.8075	-0.30n9	1.6999
Mexico	$-8.21051 /$	-1.6584	$413 /$
Indja	-3.0222 I/	-12/	$2.022616 /$
J.apan	-0.0306	-0.1492	0.135
Pakistan	$-2.83011 /$	-1 21.	2.0226
Thail and	-2.3305 1/	-1 2/	$2.022617 /$

See footnotes following T'able 4.25 .

Table 4.20.--Lobster equations used for making projections

See footnotes following Table 4.25.

Table 4.21.-.Crab equations used for making projections

Country	Constrant	Price elasticity	Income elasticity
United States	-5.9941 1/10/	-0.1487 18/	1.8789
Canada	-3.3619 10/	-0.6313	1.0154
U.S.S.T	-0.260 1/10\%	-0.6313 19/	0.1956
Japan	-2.1003 1/10/	-0.4 18/	0.9467

See footnotes folloring Table 4.25 .

Table 4.22.--Clam equations used for making projections

Country	Constant	Price elasticity	Income elasticity
		logarithms	
United States	-0.1530 I/	-. 6047	0.2564
Spain	$-2.53001 /$	-1. 5768	1.3854
United Kingdom	-1.9460 I/	$-1.1761 \quad 18 /$	0.7105
Japan	$0.0632 \mathrm{I} /$	-0.2391	0.2171
Korea	$-7.42551 /$	-1.9574	413

See footnotes following Table 4.25 .

Trable 4.23.--Scallop: equations used for making projections

Country	Constant	Price elasticity	Income elasticity
United States	$-0.773610 /$	-0.6337	0.4288
Canada	-7.2177 10/	-1.8038	2.581
France	$-5.775910 /$	-0.2799	1.7366
Japan	-1.9617 1/10/	-0.5765	0.428851
Australia	$-6.78021 .0 /$	-1.8038 4/	2.581 4/

See footnotes following Table 4.25 .

Table 4.24.--Oyster equations used for making projections

See footnotes following Table 4.25 .

Table 4.25.--All other food fish equations used for making projections
$\left.\begin{array}{lccc}\hline \text { Country } & \text { Constant } & \text { Price } & \text { elasticity }\end{array}\right)$ elasticity

1/ Constant changes so that equation goes through the 1965-67 value of each variable after the elasticity coefficients are changed and where original equations did not approximate 1965-67 base.
2) Price elasticity has "wrong" sign, assumed to be -I.

3/ Low relative to other countries. U.S. was unrealistically losing share of world consumption.

4/ Elasticity "too high," and low t value assumed to be -l.
5/ Income elasticity taken from U.S. groundfish.
6/ Magnitude of elasticities unacceptable; those for United Kingdom used (culturally similar country).

7/ Elasticities has "wrong" signs and low t values; those for Japan used (culturally similar country).

8/ Elasticity "too low;" and had low t value; U.S. coefficient used.
9/ Elasticity has "wrong" sign; U.S. ccefficient used.
10) Constant term changed to put equation in round weight.

11/ Income slasticity has "vrong" sign, assumed to be zero.
12/ Price elasticity "too low," and had low t value; assumed to be -1 .
13/ Incone elasticity too large, felt to result partially from other time-related changes.

14/Elasticity has "wrong" sign and low t value; Spain coefficient used (culturally similar country).

15/ Flasticity "too low" and low t value; Spain coefficient used (culturally similar country).

16/ Elasticity had "wrong" sign and low t value; elasticity of Pakistan used (culturally similar country).

17\% Data unreliable; elasticity of Pakistan used (culturally similar country).

18/ Elasticity had "wrong" sign and low t value; taken from alternative form of the equation which was run.

19/ Price elasticity had "wrong" sign and low t value; that of Canada used instead.

Table 4.26. --Fish meal equatjons used for making projections

Price is price per short ton.
Soybean price is price per short ton.
Chicken consumption is million pounds ready-.to-cook weight.
Time; 1950:=1.

Chapter 5

THE MPCHANICS OF PROJECTION

5.1 Introduction

Using the theoretical and empirical relationships developed in Chapters 3 and 4, it is now possible to combine the se tools.en into one overall model of the longrun economic development of a fishery. The final model will yield an economic structure which is capable of projecting future trends in fish supplies, consumption and prices.
5.2 The General Proccdure for Food Fish

The following procedures were employed in making economic projections of the demand and supply for each fishery product considered:
(1) For the ith species, the demand functions (Chapter 4) for I. . . . k countries were employed to project the level of per capita consumption $\left(\frac{Q}{N}\right)$ in each of the countries based upon projected increases in per capita $\left(\frac{Y^{\dagger}}{N}\right)$ income (or product) at a given relative price level, $\left(\frac{\bar{\Gamma}}{\text { CPI }}\right)$ (sword (t) indicates piojected figure). Projected per capita income fur $1 . . . k$ contries wes obtained fran the U.S. Department of Agriculture (1968) (Appendix D). ${ }^{\text {I. }}$

Fut mathematical]y, we have,
$1)$
Assumptions behind these projections are discussed in the Appendix. The same applies to population projections.

$$
\begin{aligned}
& \left(\frac{Q^{+}}{N}\right)_{1}=A_{I}\left(\frac{P}{C P I}\right)_{I}^{-a_{1}}\left(\frac{Y}{N}\right)_{I}^{\beta_{1}} \\
& \left(\frac{Q}{N}\right)_{2}^{+}=A_{2}\left(\frac{P}{C P I}\right)_{2}^{-a_{2}}\left(\frac{Y}{N}\right)^{\beta_{2}} \\
& \left(\frac{Q}{N}^{+}\right)_{k}=A_{k}\left(\frac{P}{C P I}\right)_{k}^{-a_{k}}\left(\frac{Y}{N}\right)_{k}^{\beta_{k}}
\end{aligned}
$$

where $\left(\frac{Y}{N}^{\dagger}\right)_{1}, \cdots\left(\frac{Y}{N}^{\dagger}\right)_{k}$ are projected independent.?y while $\left(\frac{P_{I}}{\operatorname{CPI}_{I}}\right)=\gamma_{I} ;\left(\frac{P_{2}}{\operatorname{CPI}}\right)=\gamma_{2} ; \cdots\left(\frac{P_{k}}{\operatorname{CPI}_{k}}\right)=\gamma_{k}$.

Of course, the price and income parameters may be fixed or variable over time. Later in this chapter, we shall argue that there are cogent reasons to believe that income elasticities for food items such as fish decline with rising per capita income. In this case, the income clasticities, β 's, will decline with increases in por capita income over time.
(2) Projected per capita consumpion (demand) fror the ith species in the $7 .$. . k countries was then multiplied by projected population, IV^{\dagger}, to obtain projected aggregate consumption at a given level of relative prices. Projected population vas outained fron the U.S. Jepertuent of Aspiculture (1968) (Appendix C). These projected consumtion fisues were then sumbed across countries or

$$
\begin{equation*}
\sum_{i=1}^{K}\left(\frac{Q}{N}^{T}\right)_{i} \quad\left(N^{\dagger}\right)_{i}=\left(Q_{W}^{n D}\right)+ \tag{5.2}
\end{equation*}
$$

where $\left(Q_{W}{ }^{n D}\right)$ is the net demand for the world as a whole. The concept of net demand is used since we did not estimate the demand for all countries but selected leading consuming countries (Chapter 4). In most cases, these leading countries consumed over threequarters of the world consumption. Gross demand was estimated by multiplying l / k by $\left(Q_{W}{ }^{n D}\right)^{\dagger}$. "k" is the ratio of net to gross world demand which was assumed to be constant for the projection period.

$$
\begin{equation*}
\left(\frac{1}{k}\right) Q_{W}^{n D}=Q_{W}^{g D} \tag{5.3}
\end{equation*}
$$

(3) The weighted world price $\left(P_{1}\right)$ was obtained by weighting the real price (absolute) existing in each country by its consumption in the base period (1965-1967). This was done since prices are held constant for the initial projections

$$
\begin{equation*}
\frac{\sum_{i=1}^{k}\left(p_{1}\right)_{i}\left(Q_{1}\right)_{i}}{\left(Q_{W}^{n D}\right)_{1}}=\left(p_{1}\right)_{W} \tag{5.4}
\end{equation*}
$$

where $\left(p_{1}\right)_{i}=$ base period price for ith country; $\left(Q_{1}\right)_{i}=$ base period

[^8]consumption for fth country; $\left(Q_{W}{ }^{n D}\right)_{I}=$ net world consumption in the base period.
(4) The regional supply functions for the th species (Chapter 3) were then summed across j regions to obtain a world supply function. As discussed in Chapter 3, two supply functions 3/ were formulated.

SCR
$y_{w}=\sum_{i=1}^{j} y_{i}=\sum_{i=1}^{j}\left(y_{1}\right)_{i}\left\{a\left[\left(P_{0}\right)_{w} /\left(P_{I}\right)_{v}\right]-b\left[\left(P_{C}\right)_{w} /\left(P_{1}\right)_{w}\right]^{2}\right\}_{i}$
$y_{w}=\sum_{i=1}^{j} y_{i}=4 \sum_{i=1}^{j j} y_{I} * z_{i}^{\left(P_{I}\right)_{W}}\left[\begin{array}{r}\left(P_{0}\right)_{W} \\ \left.l-z_{i}{ }_{\left(P_{0}\right)_{W}}^{\left(P_{W}\right.}\right]\end{array}\right]$

Since $\left(P_{O}\right)_{W}=\left(P_{1}\right)_{W}$ in the base period, (5.5) and (5.6) merely yield world landings (ie., supply) for $1965-1967 . \mathrm{y}_{\mathrm{w}}=$ world supply while $\mathrm{y}_{\mathrm{i}}=$ supply in each region while z is defined in Chapter 3.
(5) The projected world demand, $\left(Q_{W}^{g D} \dagger\right)$ was then compared to world supply, y_{w}, at the given weighted world price (base period price).

3/
Equations (5.5) and (5.6) are merely equations (3.12) and (3.20) solved for world landings as a function of world price. Time subscripts have been eliminated to simplify the above expressions.
$\left(Q_{w} g^{g D}\right)^{\dagger} \gtrless y_{w}$
Since $\left(Q_{w} g D\right)^{\dagger}>y_{w}$, prices were automatically increased in each of the 1.. . k countries by an arbitrary percent. A new weighted world price $\left(P_{0}\right)$ was obtained after the first iteration. Then a new supply response was obtoined. This iterative procedure was carried out until projected demand and supply (${ }_{\mathrm{w}}{ }^{\dagger}$) were equal at a projected equilibrium vorld price, $\left(P_{0}\right)_{W}^{\dagger}$.

$$
\begin{equation*}
\left(Q_{\mathrm{w}}^{\mathrm{gD}}\right)^{\dagger}=\mathrm{y}_{\mathrm{w}}^{\dagger} \tag{5.8}
\end{equation*}
$$

Through the use of these mechanics, the following projections can be obtained:

1) Projected World Demand, $\quad\left(Q_{V} g D\right)^{\dagger}$
2) Projected World Supply, $y_{w} \dagger$
3) Projected Equilibriun World Weighted Price, $\left(\mathrm{P}_{0}\right)_{\mathrm{w}}^{\dagger}$

Finally, step (5) assures us that each country's consumption of the ith species will also be projected since total world consumption must be exhausted by the consuming countries. Hence, the additional output of the above procedure is the following:
4) Projected Consumption of Countries 1 . . . k at equilibriun world values.
Figure 5.1 shows the above model in graphicall form.

5.3 Specific Procedures and Assumptions

The general procedure outlined in 5.2 may be used with fixed or varying paraneters. Also, the form of the supply function may

THE FUTURE OF THE WORLD'S FISHERY RESOURCES: FORECASTS OF DEMAND, SUPFLY AND PRIICES TO THE YEAR 2000 WITH A DISCUSSION OF IMPLICATIONS FOR PUBLIC POLJCY

BY: Frederick W. Bell, Darrel A. Nash, Ernest W. Carlson, Frederick V. Waugh, Richard K. Kinoshita, Richard F. Fullenbaum

Figure 5.1--Equilibrium of world supply and demand for a fishery product

be changed. Two supply classifications will be used with demand variations coming under each class:

1. LCR Supply Function

1.1. Constant Income Flasticities (ICR-CIE)
1.2 Deciining Income Elasticities (ICR-.DIE)
1.3 Zero Income Elasticities (ICR-ZIE)
2. IDR Supply Function
2.1 Constant Income Elasticities (IDR--CIE)
2.2 Declining Income Elasticities (IDD-DIE)
2.3 Zero Incone Elasticities (IDR-ZJE)

It is possible to make six sets of projections (Appendix A). For purposes of this report, we have decided to discuss the declining income elasticities (Chapter 6) since this set of projections represents a middle ground between constant and zero income elasticities. We believe it is plausible on theoretical grounds that incorie elasticities decline with increasing per capita income. The decline in the base period income elasticity (estimated in Chapter 4) was accomplished through the following formula:

$$
\text { Ist Period; } t=0
$$

$\log \left(\frac{Q}{N}\right)_{i, 1}=\log A_{i, 1}^{+\alpha}\left(1,1 \quad \log \left(\frac{P}{(C P I}\right)_{i, 1}+\left[\frac{6 i, 1}{(1+.4)^{t-1}}\right] \log \left(\frac{Y}{N}\right)\right.$ where $\alpha_{i, 1}$ and $\beta_{i, 7} \equiv \alpha_{i}$ and $\beta_{i} ;(-)_{i, 1}$ is the value of a variable in the $i^{\text {th }}$ country during the first pericd, and $t=0$;

2nd Period; $t=1$ (5 years)
$\log \left(\frac{Q}{N}\right)_{i, t}=\log \left(\frac{Q}{N}\right)_{i, t-1}+\frac{\beta_{i}}{(1+.4)} t\left[\log \left(\frac{Y}{N}\right)_{i, t}-\log \left(\frac{Y}{N}\right)_{i, t-1}\right]$
for $t=1, \ldots, n$.

The expression above indicates an income elasticity that decreases over time, according to a "decay function." Eventually, it would approach zero as a limit. The elasticity, β, is the one found in the base period. We have observed a tendency for income elasticities for fish to decline with rising incomes; and such a decline seems theoretically appropriate. The decay rate of 1/1. 4 each 5-year interval is a rough estimate based upon studies of tuna and other species. ${ }^{4 /}$ We believe that the most likely projections are those based upon the assumption of declining income elasticities and upon the LDR supply function.

This is probably one of the most serious criticisms of our study. In defense of this criticism we must make two very relevant points. First, most economists would agree that the assumption of constant income elasticity over the riext 30 years is completely unrealistic. Consumers cannot continue to increase their per capita consumption of many species indefinitely. Therefore, it was necessary to build some dampenjng effect into the projections. Second, limited work on the decay in the income elasticity for tuna and groundrish--two principa? fish species--indicated that the elasticity fell at the rate of $\beta_{i} /(1+.4) t$ on the average. Therefore, we built this decline into the demand functions for all species in order to obtain a more "conservative" estimate of the expansion in demand. Analysis of nationwide cross-sectional fish consumption data indicates a lower income elasticity for high income groups than at lower levels. The actual projections agree pretty much with expectations under these assumptions. The projections may easily be modified by the reader if he feels he has better information on the decay in the income elasticity over time. We are convinced that the "decay" assumption is valid. The rate is admittedly a debatable point. We did the best we could based on the information at hand. Projections using constant and zero income elasticities are given in Appendix A as alternates.

The projection model is based upon various assumptions in addition to those specified above. These assumptions are explicitly 5 listed below.

1. No change in the existing degree of fishery management.

As indicated in Chapter 1 , one of the prime purposes of making an economic projection is to ascertain just where we will be without taking certain actions. Thererore, the projections can serve as a guide to policy formulation. This is djscussed in Chapter 7 .
2. No change in the rate of tecmological advance rolative to other sectors in the economy. One assumotion behind the supply projections is that the rate of technological change is the some as in other sectors of the economy. This is perhars a fairly restrictive assumption; however, it is much more realistic than the alternative of assuming a constant level of technology (i.e., zero technologicai change).
3. Input prices to the fishing industry increase at the same rate as input prices in other sectors of the economy. This proposition reduces to the assumption that the relative cost of labor, capital, and rav material inputs remain constant.

5
Another assumption which is impljeit in the projection model is the use of point estimates. That is, because forecasts of income and population may be presented for "ranges" or "intervals", it follows that our projections might likevise be mase as interval estimates. However, because this amounts to an unusually cumbersonie framemork, and because it tends to obscure qualitative trends, we have decided that point estimates in this context will serve as useful indicators as to direction of change.
4. No change in the level of pollution. This is an extremely critical assumption. Since pollution is probably related to an expansion in population and income, this assumption is clearly untenable unless steps are taken. Our projections assume no rise in the general pollution index. This will be discussed in Chapter 7 .
5. No major disruptions in international trade or production, through insurrection, war or other abnormalitjes.
6. No significantly high cross-elasticjties between fishery product grouns selected for projection. In Chapter 4, we specified a simple demand function of each fishery product which did not explicitly include strong cross-elasticity effects between products. That is, an increase in the price of the fishery product, has ceteria paribus, resulted in a substitution of all other goods for fishery products. Some of the studies we conducted tend to confirm the hypothesis that strong cross-elasticities are not prevalent for the fishery product groups selectel for projection (Cleary, 1969; Bell, 1969; Weugh and Norton, 1.969\%. To the extert thet strong cross effectus exist at higher prices, the projections will be biased.

[^9]7. No change in price differentials between countries. The observed price differential between countries was thought to reflect differences in transportation cost, given the extensive international trade in fishery products. To the degree that trade patterns change over the projection period, this relative configuration will change. No correction was made in the relative configuration in the base period since (1) trade patterns were not projected and (2) the trend in transporation cost was not available.
8. No change in share of fish consumption of residual countries. To simplify matters, we assumed that the residual countries--the countries not included in the demand analysisw-would consune the same shere of projected fish consumption as they did in the base period. Because of the uncertainity of the increase in consumption among the underdeveloped areas and the question of which countries will be included in the iuture, we did not try to speculate on the possible changes in this share. 5.4 The General. Procedure for Fish Moal

Modifications were made in the procedures for projecting fish meal use. These changes are: the entry of soybean meal prices as a determinant; substituting chicken (i.e., broilers) consumption and time as variables in place of consumer income; and directly estimating a single function for all foreign countries (rather than estimating one equation for each major consuning country).

The projections of chicken consumption and soybean meal prices were obtained from discussions with the Division of Eicononic and Statistical Analysis and the Economic Research Service, U.S. Department of Agriculture, which is currentily engaged in work in these areas.-7/ A critical assumption is that the price of soybean meal will remain constant throughout the projection period. The officials in the abovementioned agencies foresee only slight, if any; price rises-mprincipally becanse production can be greatily expanded with piesentily available resources.

Given this assumption, the U.S. equation is: ${ }^{8 /}$

$$
\begin{align*}
Q_{1} & =A+\alpha P+\gamma C+\lambda P_{S} \tag{5.21.}\\
& =B+\alpha P+\gamma C
\end{align*}
$$

Where $B=A+\lambda P_{s}$.
The rest-of-world equation is:

$$
\begin{align*}
Q_{2} & =A+\alpha \frac{P}{P_{S}}+\eta \mathrm{T} \tag{5.12}\\
& =A+\left(\alpha \frac{T}{P_{S}}\right) P+\eta T
\end{align*}
$$

where $Q_{I}=U . S$. utilization of fish meal, million pounds
$P=U . S$ price of fish meal, dollars per short ton

[^10]$C=U . S$. consumption of chicken, retail weight, million pounads
$P_{S}=U . S$. price of soybean meal, dollars per short ton

$\Omega_{2}=\begin{aligned} & \text { utilization of fish meal, all other countries, million } \\ & \text { pounds }\end{aligned}$
$T=$ time, $1950=1$

Total world demend is then $Q_{1}+Q_{2}=Q_{w}$, derived by projected increases in C and T at a given price level of P. Projections of the equilibrium price and output for fish meal are the same as for the food fish with one change in the supply function $9 /$ Fish meal is produced almost totally from herring-like fish. These fish are also used for humen consumption in making canned sardines, pickled herring, and a wide variety of other canneḍ, cured, and smoked products. The fish used for human consumption command a higher price than products destined for fish meal. Therefore, the projected use of herring-like fish for human use is subtracted from the maximum sustainabie supply. The remaining production is available for manufacturing fish meal. Inerefore, as demand for herring for human use expanas, the amount which is available for use as fish meal declines. The major pressure on the resource comes from utilization as fish meal, because consumption as human food is projected to require a very small proportion of the total resource supply.
9/ Although the money price of fish meal was used in the analysis, all projected money prices were deflated to put them in real terms and on a comparable basis with food fish projections.

CHAPTER 6

 FOR SECECLED FISHER PRODUGS TO THE YEAR 2000

6.1 Introduction

Economic projections of world supply, demand and price for selected fish products were made using the model outlined in chapter 5. For each of the two yield functions (i.e., IJCR, IDDR) we have three levels of demand projections. ${ }^{1}$ A constant positive income elasticity will yield large demand increases over the projection period (GIE). A declining positive income elasticity (i.e., declinjng, but asymptotic to zero) will yield smaller increases in demand (. DIE). Finaily, a zero income elasticity represents no income effect--.just population-and is the most conservative estimate of likely increases in demand (ZIE). Each set of assumptions gives a different projection for world demand, supply and price. In this chapter we have deciced to present the declining income elasticity demand model (DIE) and the LDR supply model which we believe represent the most reasonable assumptions resarding supply and demand? These projections represent our best judgnent as to the future

IICR = Logistic Constant Returns Yield Function LDR $=$ Logistic Decreasing Retums Yield Function See Chapter 4 for a more complete description of these yield functions.
2In some cases, we made other assumptions regarding supply for particular species. For example, it was assumed for oysters and sardines, that supply was infinitely elastic within the relevant rarge. See the discussion below fon further elaboration.
course of events. The other sets of projections may be found in Appendix A. We shall discuss the projections for each species individually. ${ }^{3}$

It must be pointed out that the projections presented in the chapter are not mathematical certainties, but our best judgment as to the most probable outcome with current information. The reader should be aware of this qualification.

[^11]
6.2 Groundfish

World production of groundfish has increased steadily since the late 1940 's. In the $1965-67$ base period, the world utilized 70% of the maximum sustainable yicld (MSY). However, the groundfish located in the northeast Atlantic are greatly overexploited where decreases in effort would materially raise physical production (i.e., rate of exploitation is well beyond that level of effort needed to harvest MSY for that region). Both the Gulf. of Alaska and the northrest Atlantic are fully exploited at maximum sustainable yield. In contrast to salmon and halibut which are regulated at MSY (See Sections 6.3 and 6.4), we must include the possibility of overfishing the resource since widespread management regines have not been instituted.

Because of the acute overfishing in the northeast
Atlantic and resource restrictions in other areas, we project that world maximum sustainable supply (MSS) for groundfish will be reached in 1970 or 15,400 million pounds in contrast to MSY of 20,100 million pounds (see Chapter 3 for a more precise definition of MSS and MSY). If demand pressures persist, dwindling physical production of groundfish is projected for the 1970-2000 period. . Real prices will more than quadruple from 6.2 cents a pound in the 1965-67 base period to 28.3 cents a pound in the year 2000 .

[^12]Without management, the world outlook for groundfish is extremely bleak. Table 6.l indicates these trends.

The repercussions of the world resource problem will be felt in U.S. consumption of groundfish. U.S. aggregate and per capita consumption of groundfish is projected to drop over the 1965-67-2000 period. The U.S. share of world consumption is expected to decline from 11.8% in the 1965-67 base period to 7.9% in the year 2000 . This is in line with the historical period which saw the decline in U.S. share of groundfish from 19% in 1951 to 11.8% in the 1965-67 base period. Groundfish supplies could be augumented through the use of the hake resource. However we specifically assumed that much of the hake resource is not easily substitutable for the more established groundfish on the demand side. We have treated hake in the demand and sumply categories of "all other fish." Thus, any increased domand pressure for that species will not affect the supply-demand situation for groundifish and, conversely, an increase in the demand for groundfish is assumed to be independent of the demand for hake.

Table 6.1-Groundfish projections* (LDR - DIE assumptions)
(Round weight - U.S. dollars)

World					United States			
Year	Quantity million pounds	Real price c!b.	$\begin{aligned} & \% \\ & \text { of } \\ & M S Y \end{aligned}$	\% of MSS	Quantity million pounds	Per capita consumption in 10 s.	$\begin{aligned} & \text { Real } \\ & \text { price } \\ & \text { q/Ib } \end{aligned}$	U.S. consumption as percent of world
1965-67 †	14,01.0	6.2	70	91.	1,658	8.15	7.0	11.8
1970	15,400	8.9	77	100	1,370	6.65	10.0	8.9
1975	15,300	11.3	75	99	1,250	5.69	12.7	8.2
1980	14,900	14.6	74	97	1,115	4.74	16.4	7.5
1985	12,700	18.3	63	82	995	3.93	20.5	7.8
1990	11,600	22.5	58	75	890	3.28	25.2	7.7
2000	10,500	28.3	52	68	830	2.69	31.8	7.9
						2		

World maximum sustainable yield (MSY) - 20,100 million pounds
World maximum sustainable supply (VSS) - 15,400 million pounds

* Species included in Groundfish: PAO data include Atlantic cod, haddock, pollock, Pacifjc cod, poutassou, redfish, bastarci halibut, brill, dab, Juropean flounder, lemon sole, megrin, European plaice, common sole, and pleuronectifomm; and Canadian data include cod, haddock, redfish, flounder and soles.
t Avenare of actual data

THE FUTURE OF THE WORLD'S FISHERY RESOURCES: FORECASTS OF DEMAND, SUPPLY AND PRICES TO THE YEAR 2000 WITH A DISCUSSION OF IMPLICATIONS FOR PUBLIC POLICY

BY: Frederick W. Bel7, Darrel A. Nash, Ernest W. Carlson, Frederick V. Vaugh, Richard K. Kinoshita, Richard F. Fullenbaum

Figure 6.1--Historical and projected world consumption of groundfish *

1.65^{\prime}

THE FUTURE OF THE WORLD'S FISHERY RESOURCES: FORECASTS OF DEMAND, SUPPLY AND PRICES TO THE YEAR 2000 WITH A DISCUSSION OF IMPLICATIONS FOR PUBLIC POLICY

BY: Frederick W. Bell, Darrel A. Nash, Ernest W. Carlson, Frederick V. taugh, Richard K. Kinositita, Richard F. Fullenbaum

Figure 6.2--Historical and projected U.S. consumption of groundfish*

THE FUTURE OF THE VORLD'S FISHERY RESOURCES: FORECASTS OF DEMAND, SUPPLY AND PRICES TO THE YEAR 2000 WTTH A DISCUSSION OF IMPLICATIONS FOR PUBLIC POLICY

BY: Frederick W. Bell, Darrel A. Nash, Ernest W. Carlson, Frederick V. Waugh, Richard K. Kinoshita, Richard F. Fullenbaum

Figure 6.3--Horld demand and supply functionsfor groundfish, 1970-2000*

6.3 Tuna

Tuna production has increased considerably over the last 15 years. However, the future production potential of tuna is uncertain. The uncertainty stems from the fact that the potential of the central Pacific skipjack is relatively unknown. For tuna, we formulated a discontinuous supply function based upon the considerably lower catch rates envisioned in the central Pacific under known technology. For purposos of analysis we assumed that catch rates in the central Pacific for skipjack are probably not more than one-tenth of catch rates for exploited stocks. Therefore, unless real prices were to rise by 1000%, it would not be economical to attempt to harvest central Pacific skipjack. This is the reason for the discontinuous supply curve. In Figure 6.4 SS shows the world supply response without while SS' shows the supply response with the central Pacific resource. The critical factor is the increase in price produced by expansion in demand. Excluding the central Pacific resounce, the maximum sustainable yield for tuna is $3,903 \mathrm{million}$ pounds. According to our projections, the world maximum sustainable supply (excluding skipjack) will be reached around the year 2000. Real prices will almost double, but this probably will not be sufficient to bring into production the central Pacific resource under existing technology. 5

[^13]THE FUTURE OF THE WORLD'S FISHERY RESOURCES: FORECASTS OF DEMAND, SUPPLY AND PRICES TO THE YEAR 2000 WITH A DISCUSSION OF IMPLICATIONS FOR PUBLIC POLICY

BY: Frederick W. Bell, Darrel A. Nash, Ernest W. Carlson, Frederick V. Waugh, Richard K. Kinoshita, Richard F. Fullenbaum

Figure 6.4--Supply functionsfor tuna

The U.S. is expected to increase its consumption of tuna from 898 million pounds in the $1965-67$ base period to 1,395 million pounds by the year 2000 , with a rise in the share of the world market.

Tabie 6.2--Tuna projections (LDR - DIE assumptions)*

World					United States			
Year	Quantity million pounds	Real price ヶ/1b.	\% of MSY	$\%$ of MSS	Quantity million pounds	Per capita consumption in lbs.	Real price غ/Ib.	U.S. consumption as percent of the world
1965-67t	2,845	15	73	78	898	4.56	12	32
1970	2,900.	16	74	79	1,105	5.36	13	38
1975	3,210	18	82	88	1,215	5.54	14	38
1980	3,430	20	88	94	I,285	5.46	16	37
1935	3,560	23	91	97	1,320	5.22	18	37
1990	3,630	25	93	99	I,370	5.06	19	38
2000	3,650	30	94	100	1,395	4.53	23	38

World maximum sustainable yield $(N S Y)=3,903$ million pounds
Wonld maximum sustainable supply $(M S S)=3,659$ million pounds
\dagger Average of actual data

* See footnote 4 of Chapter 6 for a discussion of differences in real price between the U.S. and the world.

THE FUTURE OF THE WORLD'S FISHERY RESOURCES: FORECASTS OF DEPAND, SUPPLY AND PRICES TO THE YEAR 2000 WITH A DISCUSSION OF IHPLICATIONS FOR PUBLIC POLICY

BY: Frederick W. Bell, Darrel A. Nash, Ernest W. Carlson, Frederick V. Waugh, Richard K. Kinoshita, Richard F. Fullenbaum

Figure 6.5.-Historical and projected world consumption of tuna*

THE FUTURE OF THE WORLD'S FISHERY RESOURCES: FORECASTS OF DEMAND, SUPPLY AND PRICES TO THE YEAR 2000 WITH A DISCIUSSION OF IMPLICATIONS FOR PUBLIC POLICY

BY: Frederick W. Eell, Darrel A. Nash, Ernest W. Carlson, Frederick V. Waugh, Richard K. Kinosilita, Richard F. Fullenbaum

Figure 6.6-.l.S. consumption of tuna 1947-1966 ard projected to year 2000\% Page 173

THE FUTURE OF THE WORI.D'S FJSHERY RESOURCES: FORECASTS OF DEMAND, SUPPL.Y AND PRICES TO THE YEAR 2000 WITH A DISCUSSION OF IMPLICATIONS FOR PUBLIC POLICY

BY: Frederick W. Bell, Darrel A. Nash, Ernest W. Carlson, Frecierick V. Waugh, Richard K. Kinoshita, Richard F. Fullenbaum

Figure 6.7--World demand and suoplvfunctions for tuna, 1970-2000*

6.4 Salmon

Salmon is a highly valued species of fish which enjoys a rapidly rising demand throughout the world. Since 1955, there has been no appreciable increase in the production of salmon on a world basis. According to our best estimates, we are presently taking the maximun sustainable salmon potential from the seas. To eliminate the possibility of destruction of the salmon resource, most of the major salmon streams are presently regulated. This regulation takes the form of limiting the number of hours that fishermen can fish and gear they can use in order to assure that adequate spawners reach the upper limits of the streams. Because of the existing management policy to protect the resource, we projected aggregate consumption at maximum sustainable yield. In constructing the world supply curve, we did not build it up from regional supply functions (see Chapter 3) because of the heavy concentration of the resource in the northwest Pacific region. It was also not necessary since each region is controlled through management at MSY.

The analysis revealed that the demand (income and population effects) throughout the world will, increase, which will put added pressure on the fixed resource base. The consequences will be rapidly rising prices and falling per capita consumption to the year 2000. In fact, real
prices for the world are expected to increase from 24 cents in the 1965-67 base period to 38 cents per pound by the year 2000. These price projections do not include normal increases in inflation. The U.S. is expected to maintain its share of aggregate world salmon consumption, and experience a continuation of the historical fall in per capita consumption.

Many have argued that the salmon supply potential can be increased through hatchery operations and streari improvement. In this case, the maximul sustainable yield for salmon may be appreciably increased. This is shown in Table 6-4 where an infinitely elastic supply is assured.

Table 6.3--Salmon projections ${ }^{1}$ (LDR - DIE assumptions)
(Round weight - U.S. dollars)

| | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | |

Tabie 6.4--Saimon projections (IES - DIE assumptions)
(Round weight - U.S. dollars)

Worla			United Suetes			
						U.S. con-
	Quantity	Reel	Quentity	Per caozta	Real	sumption es
	million	price	million	consumption	price	pexcertiof
Year	pounds	dil 13.	poundis	in lbs.	4110.	the worla
1905-67!	1050	24.2	301	2.54	18.0	2.9 .0
2970	2051	24.2	317	1.54	18.0	30.2
1975	1126	$2{ }^{4}$	338	1.54	18.0	30.0
1980	1211	24.2	362	1.54	18.0	29.9
1085	1302	24.2	389	1.54	18.0	29.0
1990	1396	24.2	417	1.54	18.0	29.9
2000	1590	24.2	474	1.54	18.0	29.3

Haverage of actual aete
$\stackrel{\rightharpoonup}{\infty}$

THE FUTURE OF THE WORLD'S FISHERY RESOURCES: FORECASTS OF DEMAND, SUPPLY AND PRICES TO THE YEAR 2000 WJTH A DISCUSSION OF IMPLICATIONS FOR PUBLIC POLICY

BY:. Frederick W. Bell, Darrel A. Nash, Ernest H. Carlson, Frederick V. Waugh, Richard K. Kinoshita, Richard F. Fullenbaum

Figure 6.8--Historical and projected world consumption of salmon*
Page 179

THE FUTURE OF THE WORID'S FISHERY RESOURCES: FORECASTS OF DEMAND, SUPPLY AND PRICES TO THE YEAR 2000 WITH A DISCUSSION OF IMPLICATIONS FOR PUBLIC POLICY

BY: Frederick W. Bell, Darrel A. Nash, Ernest W. Carlson, Frederick V. Waugh, Richard K. Kinosilita, Richard F. Fullenbaum

Figure 6.9--U.S. consumption of salmon 1948-1957 and projected to year 2000 ${ }^{\circ}$
Page 180

THE FUTURE OF THE WORLD'S FISHERY RESOURCES: FORECASTS OF DEMAND, SUPPLY AND PRICES TO THE YEAR 2000 WITH A DISCUSSION OF IMPLICATIONS FOR PUBLIC POLICY

BY: Frederick W. Bell, Darrel A. Nash, Ernest W. Carlson, Frederick V. Haugh: Richard K. Kinoshita, Richard F. Fullenbaum

Figure 6.10 --World demand and supply functions for salmon, 1970-2000* Page 181

$\begin{array}{ll}\therefore \text { Assumption: } & I D R-D I E \text { and managed at MSY } \\ S_{1} S_{1}=I R S-D I E\end{array}$

6.5 Halibut

Since 1933, the catch of most of the world's halibut has been regulated under a treaty between the United States and Canada. The International Pacific Halibut Commission has been the principal investigatory agency under the treaty. It has been the duty of the Commission to preserve the halibut resource. World halibut landings have not increased since 1955 since the resource is fished at maximum sustainable yi.el.d.

As in the case of salmon, halibut is expected to experience no increase in production with rapidly rising prices and falling per capita consumption. Real prices are expected to increase by over 100% by the year 2000 from 25 cents per pound in the $1955-67$ base period to 52 cents a pound by the year 2000. The U.S. share increases gradually over the projection period.

Table 6.5--Halibut projections ${ }^{1}$.. (LDR - DIE assumptions)

[^14]THE FUTURE OF THE WORLD'S FISHERY RESOURCES: FORECASTS OF DEMAND, SUPPLY AND PRICES TO THE YEAR 2000 WITH A DISCUSSION OF IMPLICATIONS FOR PUBLIC POLJCY

BY: Frederick W. Bell, Darrel A. Nash, Ernest W. Carlson, Frederick V. Daugh, Richard K. Kinoshita, Richard F. Fullenbaum

Figure 6.11....Historical and projected world consumption of halibut*

THE FUTURE OF THE WORLD'S FISHERY RESOURCES: FORECASTS OF DEMAND, SUPPLY AND PRICES TO THE YEAR 2000 WITH A DISCUSSION OF IMPLICATIONS FOR PUBLIC POLICY

BY: Frederick W. Bell, Darrel A. Nash, Ernest W. Carlson, Frederick V. Waugh, Richard K. Kinosilita, Richard F. Fullenbaum

Figure 6.12--U.S. consumption oi halibut 1950.-1967 and projected to year 2000* Page 185
\square

THE FUTURE OF THE WORLDS FISHERY RESOURCES: FORECASTS OF DEMAND, SUPPLY AND PRICES TO THE YEAR 2.000 WITH A DISCUSSION OF IMPLICATIONS FOR PUBLIC POLICY

BY: Frederick W. Bell, Darrel A. Nash, Ernest W. Carlson, Frederick V. Waugh; Richard K. Kinositita, Richard F. Fulienbaum

Figure 6.13-World demand and supply functions for halibut, 1970.2000*
Page 186

*Assumptions: LDR-DIE and managed at MisY

6.6 Sardines

Presently, the world has an ample supply of sardines and herring-like fish for food consumption. ${ }^{6}$ Best available estimates indicate that the world utilizes about 3% of available supplies. Therefore, we decided to assume an infinitely elastic supply of sardines within the range of our projections. The world is expected to more than double its consumption of sardines by the year 2000. The U.S. per capita consumption is not predjcted to change since our estimated income elasticity is zero; therefore, the U.S. share of world consumption is projected to decline from 7.0% in the 1965.07 base period to 4.0% in 2000.

[^15]Table 6.6--Sardine projections (IES - DIE assumptions)
(Round weight - U.S. dollars)

World*			United States			
Year	Quantity million pounds	Real price द/ 1 b .	Quantity million pounds	Per capita consumption in los.	Real price द/1b.	U.S. consumption as percent of world
1965-67†	1,920	31	134	. 68	36	7.0
$\underline{270}$	2,570	31	739	. 67	36	5.4
1975	3,228	31	148	. 67	36	4.6
1980	3,652	31	159	. 68	36	4.4
1985	4,07.4	31	171	. 68	36	4.2
1990	4,438	31	183	. 68	36	4.1
2000	5,225	31	2.08	. 68	36	4.0

*Assumes constant price within projection range
tAverage of actual data

THE FUTURE OF THE HORLD'S FISHERY RESOURCES: FORECASTS OF DEMAND, SUPPLY AND PRICES TO THE YEAR 2000 WITH A DISCUSSION OF IMPLICATIONS FOR PUBLIC. POLICY

BY: Frederick W. Bell, Darrel A. Nash, Ernest W. Carlson, Frederick. V. Waugh, Richard K. Kinoshita, Richard F. Fullenbaum

Figure 6.14....Historical and projected world consumption of sardines *

THE FUTURE OF THE WORD'S FISHERY RESOURCES: FORECASTS OF DEMAND, SUPPLY AND PRICES TO THE YEAR 2000 WITH A DISCUSSION OF IMPLICATIOAS FOR PUBLIC. POLICY

BY: Frederick W. Bell, Darrel A. Nas'h, Ernest H. Carlson, Frederick V. Waugh, Richard K. Kinoslita, Richard F. Fullenbaum

Figure 6.15-..U.S. consumption of sardines 1950-1967 and projected to year 2000\% Page 190

THE FUTURE OF THE WORLD'S FISIIERY RESCIURCES: FORECASTS OF DEMAND, SUPPLY AND PRICES TO THE YEAR 2000 WITH A DISCUSSION OF IMPLICATIONS FOR PUBLIC POLICY

BY: Frederick W. Bell, Darrel A. Nash, Ernest W. Carlson, Frederick V. Waugh Richard K. Kinoshita, Richard F. Fullenbaum

Figure 6.16-..World dernand and supply functions for sardines, 1970-2000*
Page 191

*Assumption IES-DIE and managed at MSY

6.7 Shrimp

World production of shrimp has increased steadily over the last 20 years. In the $1965-67$ base period, we utilized about 43% of the world shrimp potential (MSY). The life cycle of most shrimp virtually precludes overfishing. This is because the majority of shrimp have a short life cycle. Therefore, increases in demand will probably not reduce physical production. Because of this fact, shrimp production and consumption can only increase on remain constart at the maximum potential in the face of rising demand. However, there are some species of shrimp that have longer life cycles; therefore, backward bending supply curves were taken into consideration for these species in making the projections. The reader is referred to Appendix B for a division of shrimp based upon life cycle.

As we can see, world demand will not increase to utilize the full potential (MSS) for shrimp until about the year 2000. However, real prices will. increase by over 154 \% from the $1965-67$ base period to the year 2000 because of the increasing difficulty of harvesting additional shrimp (i.e., declining yi.elds). The United States is expected to increase its share of world consumption of shrimp because of its high incone elasticity. U.S. per capita consumption of shrimp is expected to increase steadily over the 1970-2000 period.

Table 6.7--Shrimp projections (LDR - DIE assumptions)
(Round weight - U.S. dollars)

World					United States			
Year	Quantity million pounds	Real price द/lb.	\% of MSY	$\begin{aligned} & \% \\ & \text { of } \\ & \text { MSS } \end{aligned}$	Quantity million pounds	Per capita consumption in ibs.	Real price द/lb.	U.S. consumption as percent of world
1965-67+	1,399	37	43	43	518	2.63	33	37.
1970	1,970	42	60	60	690	3.35	37	35
$\underline{2} 75$	2,350	46	72	72	840	3.83	41	36
1980	2,740	52	84	84	990	4.21	46	36
1985	2,970	58	91.	91	ユ,120	4.29	52	38
1990	3,170	67	97	97	1,210	4.47	60	38
2000	3,260	94	99	99	1,320	4.29	84	40

World maximum sustainable yield $=3,278$ million pounds
Worla maximum sustainable supply $=3,278$ million pounds
TAverage of actual data

THE FUTURE OF THE WORLD'S FISHERY RESOURCES: FORECASTS OF DEMAND, SUPPLY AND PRICES TO THE YEAR 2000 HITH A DISCUSSIOH OF IMPLICATIONS FOR PUBLIC POLICY

BY: Frederick W. Bell, Darrel A. Nash, Ernest W. Carlson, Frederick V. Waugh, Richard K. Kinoshita, Richard F. Fullenbaum

Figure 6.17-..Historical and projected world consumption of shrimp*

THE FUTURE OF THE WORLD'S FISHERY RESOURCES: FORECASTS OF DEMAND, SUPPLY AND PRICES TO THE YEAR 2000 WITH A DISCUSSION OF JMPLICATIONS FOR PUBLIC POLICY

BY: Frederick W. Bell, Darrel A. Nash, Ernest W. Carlson, Frederick V. Waugh, Richard K. Kinoshita, Richard F. Fullenbaum

Figure 6.18--U.S. consumption of shrimp 1947-1967 and projected to year 2.000\%
Page 195

THE FUTURE OF THE WORLD'S FISHERY RESOURCES: FORECASTS OF DEMAND, SUPPLY AND PRICES TO THE YEAR 2000 WITH A DISCUSSION OF IMPLICATIONS FOR PUBLIC POLICY

BY: Frederick W. Bell, Darrel A. Nash, Ernest W. Carlson, Frederick V. :laugh, Richard K. Kinos'iita, Richard F. Fullenbaum

Figure 6.19-..Horld demand and supply functions for shrimp, 1970.2000*
Page 196

- Supply functions for world shrimp bends back:orc because some shrimp have a longer than annual life cycie. See Appencix. 3.

N

6.8 Lobsters

Lobster production experienced rapid growth throughout the last 20 years. Presently, we are utilizing approximately 72% of the world's maximum sustainable yield.

As indicated by our projections, the world is expected to utilize maximum sustainable yield by 1985. Of course, demand for this product will continue and thereby put tremendous pressure on the fixed resource and price. Unless fishery management is instituted, there may be an actual reduction in physical output (i.e., overfishing). This is indicated by a drop in world production to 411 million pounds in 1990 and to 320 million pounds in the year 2000. As a consequence of the expansion in demand and overfishing after 1985 , it is expected that real prices will increase from 63 cents per pound in the 1965-67 base period to 311 cents per pound by the year 2000. The future demand needs relative to supply prospects for lobsters are hardly encouraging.
U.S. aggregate consumption of lobsters is expected to peak in 1985, the same year that world MSS is reached. Because of its higher income elasticity, the U.S. is expected to progressively increase its share of world consumption over the 1970-2000 projection period.

Table 6.8--Lobster projections (LDR-DIE assumptions)

World					United States			
Year ${ }^{\prime}$	Quantity million Dounds	Real price द/lb.	\% of MSY	\% of MSS	Quantity million pounds	Per capita consumption in lbs.	Real price $\dot{\xi / 1 b}$	U.S. consumption as percent of world
1965-67t	303	63	71.5	71.5	160	. 82	68	52.8
1970	330	67	77.8	77.8	217	1.05	72	65.8
1975	383	81	90.3	90.3	258	1.18	87	67.4
1980	412	97	97.2	97.2	287	1.22	105	69.7
1985	424*	123	100.3	100.0	303	1.20	133	71.5
1990	411	147	96.9	96.9	299	1.10	159	72.7
2000	320	311	75.5	75.5	242	. 79	336	75.6

*World maximum sustainable yield $(M S Y)=424$ million pounds World maximum sustainable supply (MSS) $=424$ million pounds
+Average of actual data

THE FUTURE OF THE HORLD'S FISHERY RESOURCES: FORECASTS OF DEMAND, SUPPLY AND PRICES TO THE YEAR 2000 WITH A DISCUSSION OF IMPLICATIONS FOR PUBLIC POLICY

BY: Frederick H. Bell, Darrel A. Nash, Ernest W. Carlson, Frederick V. Waugh, Richard K. Kinosiita, Richard F. Fullenbaum

Figure 6.20 -Historical and projected world consumption of lobsters*

THE FUTURE OF THE WORLD'S FISHERY RESOURCES: FORECASTS OF DEMAND, SUPPLY AND PRICES TO THE YEAR 2000 WITH A DISCUSSION OF IMPLICATIONS FOR PUBLIC POLICY

BY: Frederick W. Bell, Darrel A. Nash, Ernest W. Carlson, Frederick V. Haugh, Richard K. Kinostiita, Richard F. Fullenbaum

Figure 6.21--U.S. consumption of lobsters 1948-1967 and projected to year 2000: Page 200

THE FUTURE OF THE WORLD'S FISHERY RESOURCES: FORECASTS OF DEMAND, SUPPLY AND PRICES TO THE YEAR 2000 WITH A DISCUSSION OF IMPLICATIONS FOR PUBLIC POLICY

BY: Frederick W. Bell, Darrel A. Nash, Ernest W. Carlson, Frederick V. Waugh, Richard K. Kinoshita, Richard F. Fullenbaum

Figure 6.22--World demand and supply functions for lobsters, 1970-2000* Page 201

6.9 Crabs

The world crab situation is similar to that discussed for lobsters. Although world crab production has increased considerably, we are rapidly reaching the point where potential supply will be exhausted. Presently, the world is utilizing 58% of maximum sustainable yield.

According to oun world projections, the consumption of crabs will increase rapidly to 1980. As shown in Figure 6.25 , the LDR supply function bends back abruptly after reaching maximum sustainable supply. This fact, coupled with the position of the world demand curve does not yield a determinant jntersection of supply and demand after 1980. The model discussed above has worked amazingly well for all other species, but seems to have yielded poor results (indeterminant solutions) after 1980 for crabs. Fortunately, the model is indeterminant in the "overfishing" region. Theoretically, this would indicate rapid extinction of the resource: However, projections are sometimes made to be modified. Therefore it is sufficient to say that overfishing will occur after 1980 given the parameters and projections used in the model. Table 6.9 does show projections for crabs for the 1985-2000 period. These projections were obtained by assuming intersections of demand with the backward bending portion of the supply function. This was done by making demand for crabs more elastic over the 1985-2000 period. This is enough of an indication of a danger to the resource. Action should be taken (see Chapter 7).

Table 6.9--Crab projections* (LDR - DIE assumptions)
(Round weight - U.S. dollars)

World					United States			
Year	Quantity million pouncs	Real price c/1b.	$\begin{aligned} & \% \\ & \text { of } \\ & \text { MSY } \end{aligned}$	\% of MSS	Quantity million pounds	Per capita consumption in 16 s.	Real price c/1b.	U.S. consumption as percent of world
1965-67 ${ }^{\circ}$	732	12	58	58	302	1.53	7.9	41
1970	870	12	69	69	410	1.99	7.9	47
1975	1,060	15	84	85	520	2.37	9.8	49 .
1980	1,210	21	96	97.	620	2.64	13.7	51
1985	1,140	58	90	91.	570	2.25	58.0	50
1990	990	80	78	79	490	"1.81	80.0	50
2000	850	114	67	68	425.	1.38	114.0	50

World maximum sustainable yield (MSY) $=1,262$ million pounds
World maximum sustainable supply (MSS) $=1,253$ million pounds
*Not projected using entire model described in Chapter 5. See Section 6.8 of this chapter for a discussion of how these projections were derived.
\dagger Average of actual data

THE FUTURE OF THE WORLD'S FISHERY RESOURCES: FORECASTS OF DEMAND, SUPPLY AND PRICES TO THE YEAR 2000 UITH A DISCUSSION OF IMPLICATIONS FOR PUBLIIC POLICY

BY: Frederick W. Bell, Darrel A. Nash, Ernest W. Carlson, Frederick V. Haugh, Richard K. Kinosilita, Richard F. Fullenbaum

Figure 6.23--Historical and projectied world consumption of crabs*

THE FUTURE OF THE WORLD'S FISHERY RESOURCES: FORECASTS OF DEMAND, SUPPLY AND PRICES TO THE YEAR 2000 WITH A DISCUSSION OF IMPLICATIONS FOR PUBLIC POLICY

BY: Frederick W. Bell, Darrel A. Nash, Ernest W. Carlson, Frederick V. Waugh, Richard K. Kinoshita, Richard F. Fullenbaum

Figure 2.4--U.S. consumption of crabs 1948-1967 and projected to year 2000*
Page 205

THE FUTURE OF THE WORLD'S FISHERY RESOURCES: FORECASTS OF DEMAND, SUPPL.Y AND PRICES TO THE YEAR 2000 WITH A DISCUSSION OF IMPLICATIONS FOR PUBLIC POLICY

BY: Frederick W. Bell, Darrel A. Nash, Ernest W. Carlson, Frederick V. Waugh, Richard K. Kinoshita, Richard F. Fullenbaum

Figure 6.25w-World demand and supply functions for crabs, 1970..2000\%

6.10 Clams.

Like scallops (section 6.11), the present world consumption is considerably short of utilizing the full potential of suppl.y. Presently, the world utilizes 12% of maximurn sustainable yield.

Assuming that extensive aquaculture breakthroughs are not realized over the projection period, world demand is expected to increase by approximately 5% for clams over the 1965-67 .. 2000 period. Real prices will increase from 3.5 cents for the $1965-67$ base period to 4.8 cents in the year 2000 .
U.S. per capita consumption will fall off slightly over the projection period because of its zero income elasticity and the negative effect of higher prices. However, the aggregate U.S. market for clams will increase from 474 million pounds to 690 million pounds over the 1965-67-2000 period.

Table 6.10 shows the world and U.S. projections assuming the existence of aquaculture which will make the real supply curve flat (See sardines and oysters). Relaxing the assumption of no extensive breakthroughs in aquaculture, the reader can readily compare the results.

Table 6.10--Clam projections (LDR - DIE assumptions - without aquaculture)
(Round weight - U.S. dollars)

World maximum sustainable yield $=1,762$ million pounds
World maximum sustainable supply $=1,762$ million pounds
HAverage of actual data

\div Average of actual data

THE FUTURE OF THE WORLD'S FISHERY RESOURCES: FORECASTS OF DEMAND, SUPPLY AND PRICES TO THE YEAR 2000 WITH A DISCUSSION OF IMPLICATIONS FOR PUBLIC POLICY

BY: Frederick W. Bell, Darrel A. Nash, Ernest W. Carilson, Frederick V. Haugh, Richard.K. Kinosinita, Richard F. Fullenbaum

THE FUTURE OF THE WORLD'S FISHERY RESOURCES: FORECASTS OF DEMAND, SUPPLY AND PRICES TO THE YEAR 2000 WITH A DISCUSSION OF IMPLICATIONS FOR PUBLIC POLICY

BY: Frederick W. Bell, Darrel A. Nash, Ernest W. Carlson, Frederick V. Waugh, Richard K. Kinoshita, Richard F. Fullenbaum

Figure 6.27--U.S. consumption of clans 1948-1967 and projected to year 2000: Page 211

THE FUTURE OF THE WORLD'S FISHERY RESOURCES: FORECASTS OF DEMAND, SUPPLY AND PRICES TO THE YEAR 2000 WITH A DISCUSSION OF IHPLICATIONS FOR PUBLIC POLICY

BY: Frederick W. Bell, Darrel A. Nash, Ernest W. Carlson, Frecierick V. Haugh, Richard K. Kinosilita, Richard F. Fullenbaum

Figure 6.28-World demand and supply functions for clams, 1970-2000\%

6.11 Scallops

Because of the recent discovery of the calico resource, the world is a considerable time away from utilizing the maximum sustainable scailop production. Only 11% of maximum sustainable yield is presently consumed on a world basis. Because there is some debate concerning the immediate use of the calico scallop resource because of technological. problems, we have decided to make two projectiors-one with the inclusion of the calico scallop resource and the other excluding this resource from consideration.

Assuming calico scallops as part of the world potential supply, it is projected that world scallop consumption will nearly double by the year 2000 with no appreciable increases in real prices. World MSY and MSS are for all general purposes practically identical in the case of scallops (See Chapter. 3 for a discussion of these concepts).
U.S. per capita consumption is expected to increase from 1. 37 pounds in the 1965-67 base period to 1.62 pounds in the year 2000. It is expected that the U.S. will maintain its share of world consumption over the 1965-67 - 2000 perjod.

Without the inclusion of the calico scallop resource, consumption will increase by approximately 7% (compared to 93% with the calico scallop resource) over the 1965-67 - 2000 period. Real prices will increase from 7.5 to 9.0 cents per pound. Little change in U.S. per capita consumption or share of the world market is projected under these assumptions.

Table 6.12--Scallop projections (LDR - DIE assumptions - with the calico scallop resource)

World					United States			
	Quantity million pounds	Real price ¢17	\% of vSY	$\%$ of MSS	Quantity million pounds	Per capita consumption in lbs.	Real price غ/Ib	U.S. consumption as percent of world
$\frac{\text { Year }}{1965-67 ~}+$	$\frac{\text { pounds }}{367}$	$\frac{\text { c/1b }}{7.2}$	$\frac{\text { NSY }}{14}$	$\frac{\text { MSS }}{14}$	$\frac{\text { pounds }}{268}$	$\frac{\text { in } 1.35 .}{1.37}$	$\frac{c / 1 \mathrm{~b}}{6.7}$	$\frac{\text { of worid }}{73}$
1970	460	7.2	18	18	300	1.46	6.7	55
1975	520	7.3	20	20	335	1.53	6.8	64
1980	570	7.4	22	22	370	1.57	6.8	65
1985	620	7.4	24	24	405	1.60	6.9	65
1990	650	7.5	26	26	435	1.61	7.0	67
2000	710	7.6	28	28	500	1.62	7.0	70

Vorld maximum susta nable yield $=2,548 \mathrm{million}$ pounds
World maximum sustainable supply $=2,548$ million pounds
+Average of actual data.

Table 6.13-Scallop projections (LDR - DIE assumptions: without the calico scallops resource)

World maximum sustainable yield $=912$ million pounds
World maximum sustainable supply $=844$ million pounds

+ Average of actual data

THE FUTURE OF THE WORID'S FISHERY RESOURCES: FORECASTS OF DEMAND, SUPPLY AND PRICES TO THE YEAR 2000 WITH A DISCUSSION OF IMPLICATIONS FOR PUBLIC POLICY

BY: Frederick W. Bell, Darrel A. Nash, Ernest W. Carlson, Frederick V. Waugh, Richard K. Kinoshita, Richard F. Fullenbaum

Figure 6.29-Historical and projected world consumption of scallops*

THE FUTURE OF THE WORLD'S FISHERY RESOURCES: FORECASTS OF DEMAND, SUPPLY AND PRICES TO THE YEAR 2000 WITH A DISCUSSION OF IMPLICATIONS FOR PUBLIC POLICY

BY: Frederick W. Bell, Darrel A. Nash, Ernest W. Carlson, Frederick V. Waugh, Richard K. Kinosinita, Richard F. Fullenbaum.

Figure 6.30-U.S. consumption of scallops 1948-1967 and projected to year 2000* Page 217

* Assumptions:- LDR-DIE, LDR-DIE without calico

THE FUTURE OF THE WORLD'S FISHERY RESOURCES: FORECASTS OF DEMAND, SUPPLY AND PRICES TO THE YEAR 2000 WITH A DISCUSSION OF IMPLICATIONS FOR PUBLIC POLICY

BY: Frederick W. Bell, Darrel A. Nash, Ernest W. Carlson, Frederick V. Waugh, Richard K. Kinoshita, Richard F. Fullenbaum

Figure 6.31-World demand and supply functions for scallops, 1970-2000\%

6.12 Oysters

Oysters are one species which are not totally subject to a rising supply function. In many parts of the world, oysters are produced in beds which are cultured or farmed. Therefore, the supply of oysters on a world basis is assumed to be infinitely elastic (i.e., IES). This is shown in Figure 6.34. World oyster consumption is expected to increase from 1,713 million pounds in the $1965-67$ base period to 5,409 million pounds by the year 2000 .

Because of the zero income elasticity for the United States, oyster consumption will not increase as rapidly in this country, rising from 570 million pounds in the 1965-67 base period to 896 million pounds in the year 2000. Therefore, the U.S. will have a declining share of the world consumption of oysters, falling from 33.3% to 16.6% over the 1955-67-2000 period.

Table 6.14--Oyster projections (IES - DIE assumptions)
(Round weight - U.S. dollars)

World			United States			
Year	Quantity million pounds	Real price c/lb.	Quantity million pounds	Per capita consumption in lbs.	Real price ¢/ib.	U.S. consumption as percent of world
1965-67	1,713	5.3	570	2.91	5.5	33.3
1970	2,127	5.3	600	2.91	5.5	28.2
1975	2,686	5.3	639	2.91	5:5	23.8
1980	3,278	5.3	685	2.91	5.5	20.9
1985	3,869	5.3	736	2.91	5.5	19.0
1990	4,443	5.3	788	2.91	5.5	17.7
2000	5,409	5.3	896	2.91	5.5	16.6

†Average of actual data

THE FUTURE OF THE WORLD'S FISHERY RESOURCES: FORECASTS OF DEMAND, SUPPLY AND PRICES TO THE YEAR 2000 WITH A DISCUSSION OF IHPLICATIONS FOR PUBLIC POLICY

BY: Frederick W. Bell, Darrel A. Nash, Ernest V. Carlison, Frederick V. Haugh, Richard K. Kinoshita, Richard F. Fullenbaum

Figure 6.32--Historical and projected world consumption of oysters*

THE FUTURE OF THE WORLD'S FISHERY RESOURCES: FORECASTS OF DEMAND, SUPPLY AND PRICES TO THE YEAR 2000 WITH A DISCUSSION OF IMPLICATIONS FOR PUBLIC POLICY

BY: Frederick W. Be11, Darrel A. Nash, Ernest W. Carlson, Frederick V. Waugh, Richard K. Kinosinita, Richard F. Fullenbaum

Figure 6.33-U.S. consumption of oysters 19A8-1967 and projected to year 2000% Page 22.2

THE FUTURE OF THE WORLD'S FISHERY RESOURCES: FORECASTS OF DEMAND, SUPPLY AND PRICES TO THE YEAR 2000 WITH A DISCUSSION OF IMPLICATIONS FOR PUBLIC POLICY

BY: Frederick W. Bell, Darrel A. Nash, Ernest W. Carlson, Frederick V. Haugh, Richard K. Kinos'iita, Richard F. Fullenbaum

Figure 6.34--World demand and supply functions for oysters, 1970-2000*

6.13 Other Food Fish

The other food fish category is extremely diverse and contains numerous species where supply potential is uncertain. However, we believe we should remain consistent in our procedures. As discussed in Chapter 2, the world maximum sustainable yield for all fish is 264,600 million pounds. We subtracted from this the world maximum sustainable yield for all species discussed above, plus fish meal. This lert a residual of 153,881 million pounds. This figure was then used as the maximum sustainable yield for the other food fish category. In the 1965-67 base period, the world consumed 36% of MSY for the other food fish category.

Our projections indicate that world demand for other food fish will increase from 55,304 million pounds in the 1965-67 base period to 118,000 million pounds by the year 2000. Because of the low utilization of other food fish in the base period, real prices are expected to increase 24% by the year 2000, when 77% of world MSY will be utilized.

Although U.S. aggregate consumption of the other fish is expected to rise from 1266 million pounds in the base period to 1623 million pounds in the year 2000, per capita consumption will fall due to a zero income elasticity and rising real prices. The U.S. share of the world consumption of other food fish is expected to decline by nearly 50%.

Table 6.15 --Other food fish projections (LDR - DIE assumptions)

World					United States			
Year	Quantity million pounds	Real price ¢/ 1 b .	$\%$ of MSY	$\begin{aligned} & \% \\ & \text { of } \\ & \text { MSS } \\ & \hline \end{aligned}$	Quantity Million pounds	Per capita consumption in lbs.	Real Price $\xi / 1 \mathrm{~b}$.	U.S. consumption as percent of world
1965-67	55,304	10.2	36	36	2266	6.43	10.2	2.3
1970	62,000	10.2	40	40	1321	6.41	10.2	2.1
2975	72,000	10.4	47	47	1380	6.29	10.4	1.9
1930	82,000	10.9	53	53	1412	6.00	10.9	1.7
1985	91,500	II. 2	59	59	1477	5.84	11.2	1.6
2900	101,500	11.5	66	66	1540	5.69	11.5	1.5
2000	118,000	12.4	77	77	1623	5.27	22.4	1.4

World maximum sustainable yield - 153,881 million pounds
and maximum sustainable supply - l53,881 miliion pounds

THE FUTURE OF THE WORLD'S FISHERY RESOURCES: FORECASTS OF DEMAND, SUPPLY AND PRICES TO THE YEAR 2000 WITH A DISCUSSION OF. IMPLICATIONS FOR PUBLIC POLICY

BY: Frederick W. Bell, Darrel A. Nash, Ernest W. Carlson, Frederick V. Waugh, Richard K. Kinoshita, Richard F. Fullenbaum

Figure 6.35--Historical and projected U.S. consumption of other food fish*

THE FUTURE OF THE WORLD'S FISHERY RESOURCES: FORECASTS OF DEMAND, SUPPLY AND PRICES TO THE YEAR 2000 WITH A DISCUSSION OF IMPLICATIONS FOR PUBLIC POL.ICY

BY: Frederick W. Bell, Darrel A. Nash, Ernest W. Carlson, Frederick V. Haugh, Richard K. Kinoshita, Richard F. Fullenbaum

Figure 6.36--Historical and projected world consumption of other food fish*

SONOOd NOIllIg

THE FUTURE OF THE HORLD'S FISHERY RESOURCES: FORECASTS OF DEMAND, SUPPLY AND PRICES TO THE YEAR 2000 WITH A DISCUSSION OF IMPLICATIONS FOR PUBLIC POLICY

BY: Frederick W. Bell, Darrel A. Nash, Ernest M. Carlson, Frederick V. !laugh, Richard K. Kinoshita, Richard F. Fullenbaum

Figure 6.37--World demand and supply functions for other food fish 1970-2000\% Page 228

*Assumption: LDR

6.14 Fish Meal

Fish meal is the last claimant on use of fish resources, as the product commands a lower price than fish for human food. Fish meal can be made from a wide variety of fish products, although on a world basis, nearly all is manufactuxed from species of herring-like fish. U.S. production is now essentially based on menhaden which is caught from New Jersey to North Carolina and in the Gulf of Mexjco. This resource is now being fished at or beyond maximum sustainable yield. By far the major world supplier of fish meal is Peru, which catches anchoveta off its coast and ships locally manufactured fish meal to North American and European markets.

World fish meal production increased 6.5 times from 1950 to 1967. This rate of increase cannot continue due to the limitation on the resource. In the 1965-67 period, about 60% of world maxinum sustainable yield was harvested. Therefore, catch increases will be considerably curtailed.

In the past, there has been a fairly static ratio of fish meal to soybean meal prices (about 1.7:1). Since both had a high supply elasticity, the supplies of each could be adjusted to maintain the price ratio.

With the approaching limitations on expansion of fish meal, this ratio is not expected to hold. since fish meal is becoming more expensive relative to soybean meal.

Within the category of herring-like fish certain species are used for direct hunan consumption, while the remainder goes into fish meal. Many species are on the borderline since their utilization s shifts with changes in market opportunities. In estinating supply available for fish meal, we first substracted projected consumption of canned sardines. Resources available for fish meal production decline as sandine production increases. This occurs because fish for human purposes will command a higher price than fish meal, thus bidding it away from fish meal.

In spite of the large resounce base of herring-like fish maximun sustainable supply will be reached by 1980. (See Table 6.16 \% By 1980, world equilibrium production will reach 62,500 million pounds. This will also be the peak consumption year for the U.S., reaching a total of 9,300 million pounds or 14.9% of the total world market. Drastic declines in utilization will occur between 1980 and 2000, the latter figure being nearly halved cormpared to 1980. Real prices are shown to increase 7.0 times between 1970 and 2000, risirig from 1.1 cents per pound in the base period to 7.8 cents a pound by the year 2000. The U.S. share is projected to remain fairly constant over the period, ranging between 14:4 ard 17.0. In sum, it looks like the outlook for fish meal is not very optimistic.

Table 6.16--Fish meal projections (LDR assumptions)

World						United States		
Year	Quantity million pounds	Real price ϕ / lb.	World consumption of sardines million $_{I /}$ pounds	$\%$ MSY $2 /$	$\%$ of MSS $2 /$	Quantity million pounds	Real price $\phi / 1 \mathrm{~b}$.	U.S. utilization as percent of world
1965-67+	45,070	1.0	1,920	67	71	6,860	1.0	15.2
1970	50,000	1.1	2,570	75	79	8,100	1.1	16.2
1975	59,900	1.3	3,228	90	95	9,250	1.3	15.4
1980	62,500	2.1	3,652	94	100	9,300	2.1	14.9
1985	49,900	4.2	4,074.	77	81	7,000	4.2	14.0
1990	43,000	5.7	4,438	68	71	6,200	5.7	24.4
2000	33,500	7.8	5,225	55	58	5,700	7.8	17.0

Worla maximum sustainable yield (MSY) - 70,240 million pounds
World maximum sustainable supply (MSS) - 66,400 million pounds
\dagger Average of actual data
1/ Included here to show total utilization of the herning-like resource.
?/. Including utilimation of the resource for sardines.

THE FUTURE OF THE WORLD'S FISHERY RESOURCES: FORECASTS OF DEMAND, SUPPLY AND PRICES TO THE YEAR 2000 WITH A DISCUSSION OF IMPLICATIONS FOR PUBLIC POLICY

BY: Frederick W. Bell, Darrel A. Nash, Ernest W. Carlson, Frederick V. Vaugh, Richard K. Kinoslita, Richard F. Fullenbaum.

Fioure, 6.38 --Historical and projected world utilization of fish meal*

THE FUTURE OF THE WORLD'S FISHERY RESOURCES: FORECASTS OF DEMAND, SUPPLY AND PRICES TO THE YEAR 2000 WITH A DISCUSSION OF IMPLICATIONS FOR PUBLIC POLICY

BY: Frederick W. Bell, Darrel A. Nash, Ernest W. Carlson, Frederick V. Waugh, Richard K. Kinos'ıita, Richard F. Fullenbaum

Figure 6.39-..Historical and projected U.S. utilization of fish meal*
Page 233

THE FUTURE OF THE WORLD'S FISHERY RESOURCES: FORECASTS OF DEMAND, SUPPLY AND PRICES TO THE YEAR 2000 WITH A DISCUSSION OF IMPIICATIONS FOR PUBLIC POLICY

BY: Frederick W. Bell, Darrel A. Nash, Ernest W. Carlson, Frederick V. Waugh, Richard K. Kinoshita, Richard F. Fullenbaum

Figure 6.40--World demand and supply functions for fish meal 1970-2000\%
Page 234

*Assumption: LDR-DIE

6.15. Overall U.S. Consumption of Food Fish

U.S. per capita consumption of all food fish has not changed appreciably over the last 50 years, averaging between 10 to 11 pounds. According to our projections, overall per capita consumption of food fish will decline from 11.02 pounds in the base period to 9.38 : pounds by the year 2000, a decrease of 14.9%. Of all the species considered, only shrimp and scallops are expected to experience an increase in per capita consumption from 1965-67-2000 period. The biggest decline is expected in groundfish. The decline in per capita consumption results from acute supply problems and consequent increases in real prices. For the presently utilized species, it is fair to say that no appreciable increase in per capita consumption is possible given the supply problems discussed in Chapters 3 and 6.

Of course, aggregate U.S. consumption of food fish will continue to increase. By the year 2000, Americans will be consuming almost 2.9 billion pounds (edible weight) in the 1965-67 base period, an increase of 33.2%. Hence, there will be ample opportunity to supply an ever increasing market for fishery products in the United States. Except for groundfish, all species will experience an increase in sales by the year 2000, the largest percentage increase occuring in shrimp.

Table 6.I7 -- U.S. per capita consumption of fishery products, actual and projected to year 2000 1/

	1965-67 Average	1970	1975	1980	1985	1990	2000	Changes 200 from 1965-6 Percent
	- - -			, edi	weight	- -	-	
Groundfish	2.54	2.00	1.71	1.42	1.18	. 98	. 81	-68.1
Tuna	2.28	2.68	2.77	2.73 :	2.61	2.53	2.26	- 0.9
Salmon	. 99	. 99	. 95	. 90	. 85	. 80	. 72	- 27.3
Halibut	. 17	. 18	. 17	. 16	. 15	. 13	. 12	-29.4
Sardines	. 43	. 42	. 42	. 43	. 43	. 43	. 43	0
Shrimp	1.29	1.64	1.88	2.05	2.10	2.19	2.10	62.8
Lobsters	. 18	. 23	. 25	. 27	. 27	. 24	. 1.8	0
Crabs $2 /$. 34	. 44	. 53	. 59	. 50	. 40	. 31	- 8.8
Clams $3 /$. 37	. 39	. 39	. 39	. 39	. 37	. 34	- 8.1
Scallops ${ }^{4 /}$. 16	. 17	. 18	-18	. 19	. 19	. 19	18.8
Oysters	. 34	. 34	. 34	. 34	. 34	. 34	. 34	0
Miscellaneous	1.93	1.92	1.89	1.80	1.75	1.71	1.58	-18.1
Total	11.02	11.40	11.49	11.27	10.76	10.31	9.38	-14.9

1/ Under LDR-DIE assumptions
2/ Estimated for 1985,1990 , and 2000 based upon a more gradual decline in the resource base thar shown in Chapter 6 .

3/ Projections made without additional aquaculture of clams
4) Includes calico scallops

Table 6.18 -- U.S. aggregate consumption of fishery products, projected to year 2000 I/

	1965-67 Average	1970	1975	1980	1985	1990	2000	Changes 2000 from 1965-67
		-	Million	Pounds, ed	le weight	- -	--	Percent
Groundfish	497.8	412.0	375.2	333.9	298.4	265.4	249.3	-49.9
Tuna	449.1	552.0	607.7	642.1	660.1	685.1	695.6	54.9
Salmon	195.0	203.8	208.9	212.1	215.3	217.3	222.4	14.0
Halibut	33.5	36.6	37.0	37.0	37.0	37.0	37.4	11.6
Sardines	84.7	85.5	92.2	101.1	108.8	116.4	132.4:	56.3
Shrimp	254.1	337.8	412.5	484.5	531.1	593.1	646.4	154.4
Lobsters	35.5	47.4	57.0	63.5	68.3	65.0	55.4	56.0
Crabs ${ }^{\prime} /$	67.0	90.6	116.3	138.8	126.5	108.3	95.4	42.4
Clams ${ }^{\prime} /$	72:9	80.3	85.6	91.7	98.6	100.2	104.8	43.8
Scallops ${ }^{4 /}$	31.5	35.1	39.5	42.3	48.1	51.5	58.5	85.7
Oysters	67.0	$\because 70.1$	74.6	80.0	86.0	92.1	104.7	56.3
Miscellaneous	380.2	396.3	414.0	423.6	443.1	462.0	486.9	28.1
Total	169.3	2,348.5	2,520.5	2,650.6	2,721. 3	2,793.4	2,889.2	$3^{3} \cdot 2$

1/ Under LDR-DIE assumptions
2. Estimated for 1985, 1990 and 2000 based upon a more gradual decline in the resource base than shown in Chapter 6 .
3/ Projections made without additional aquaculture of clams.
4. Includes calico scallops

THE FUTURE OF THE WORLD'S FISHERY RESOURCES: FORECASTS OF DEMAND, SUPPLY AND PRICES TO THE YEAR 2000 WITH A DISCUSSION. OF IMPLICATIONS FOR PUBLIC POLICY

BY: Frederick W. Bell, Darrel A. Nash, Ernest W. Carlson, Frederick V. Waugh, Richard K. Kinoshita, Richard F. Fullenbaum

Figure 6.41--Historical and projected U.S. per capita consumption of fish and shellfish

THE FUTURE OF THE WORLD'S FISHERY RESOURCES: FORECASTS OF DEMAND, SUPPLY AND PRICES TO THE YEAR 2000 WITH A DISCUSSION OF IMPLICATIONS FOR PUBLIC POLICY

BY: Frederick W. Bell, Darrel A. Nash, Ernest W. Carlson, Frederick V. Waugh, Richard K. Kinoshita, Richard F. Fullenbaum

Figure 6.42--Historical and pro.iected U.S. aggregate consumption of fish

SGinnod NOl7718

6.16. Overal1 Horld Consumption of Food Fish and Fish Meal

FAO Demand and Supply Forecastis: As indicated in Chapter 2, the maximum potential for fish from the world's oceans is probably no greater than 120 million metric tons (Ryther, 1969). This iss admittedly a debatable figure but is consistent with the total world fish potential employed by FAO in their "The Prospects for Horld Fishery Development in 1975 and 1985." This is shown in Table 6.19. However, FAO does exclude molluscs (i.e., oysters, clams, scallops, etc.) which are included in our estimates although we used 120 million metric tons as a control figure.

Assuming no rise in real prices, FAO projects a world demand for food and fish meal of 106.5 million metric tons by the year 1985 (i.e., this is as far as they made their projections). The FAO projected total and per caput demand for fish (i.e., demand for human consumption) in 1975 and 1985 are given in Table 6.20. As stated above this demand has been forecast on the basis of the assumptions of population and income increase. An important methociological assumption underlying these projections is that of constant prices. Although this is an unrealistic assumption, FAO states that it is extremely difficult to relax

Table 6.19-- Catch of marine fish, crustaceans and molluscs (1965) and estimated world potentiai
by marine area and species

	Laxe roleede		Jecrorraad		Shomine rolucic		Cosmapopectis.		C:vasinceans		-0: 21	
	$\begin{aligned} & 2065 \\ & \text { oston } \end{aligned}$	$\begin{aligned} & \text { iotont } \\ & -1 a i \end{aligned}$	$\begin{aligned} & 1965 \\ & 00 . t \mathrm{~h} \end{aligned}$	$\left[\begin{array}{c} 20 \tan t \\ -1: 1 \end{array}\right.$	$\begin{aligned} & 2965 \\ & c a t c h \end{aligned}$	$\begin{gathered} \text { rotant } \\ -i \Delta 1 \end{gathered}$	$\begin{array}{r} 2.265 \\ \text { coich } \\ \hline \end{array}$	$\begin{aligned} & \text { Poisht } \\ & -\sin \end{aligned}$	$\begin{aligned} & 1955 \\ & c a t c o \end{aligned}$	$\begin{gathered} \text { iotrat } \\ -i=2 \end{gathered}$	$\begin{aligned} & 2955 \\ & c: 295 \end{aligned}$	$\begin{array}{r} 9 \tan 2 \\ -\tan 2 \end{array}$
	85 9 4.2 137 23 43	$\left\{\begin{array}{l}700\end{array}\right.$	3,750 2,141 234 $-\quad 626$ 254 446	6,900 3,300 3,000 930 5,000 1,080	$\begin{array}{r} 5,1.52 \\ 302 \\ 660 \\ 382 \\ 146 \\ 1,632 \end{array}$	$\begin{aligned} & 7,500 \\ & 2,300 \\ & 3,000 \\ & 2,000 \\ & 5,000 \\ & 7,450 \end{aligned}$	$\begin{array}{r} 33 \\ 9 \\ 3 \\ 123 \\ 2 \\ 4 \\ \hline \end{array}$	$\begin{array}{r} 1,000 \\ 1,000 \\ 700 \\ 1,000 \\ 500 \\ \hline \end{array}$	$\begin{gathered} 199 \\ 43 \\ 215 \\ 7 \\ 56 \\ 23 \end{gathered}$	$\begin{array}{r} 170 \\ 70 \\ 260 \\ 80 \\ 230 \\ 20 \\ \hline \end{array}$	$\begin{aligned} & 9,129 \\ & 3,206 \\ & 1,260 \\ & 1,265 \\ & 2,137 \end{aligned}$	$\{53,700$
Sotsl htzantio	339	700	8,041	20,210	8,232.	27,4,50	272	4,700	4,43	720	27,276	53,700
Poctesc Ocrom ?onemooct Yor"horai Yostom Contral Bestan Contrel Southroot Soutloast	290 334 207 339 317 83 83	$\left\{\begin{array}{c}\text { a } \\ 2,000\end{array}\right.$	$\begin{array}{r} 3,207 \\ 2,4,68 \\ 4,055 \\ 92 \\ 65 \\ 258 \\ \hline \end{array}$	$\begin{array}{r} 3,800 \\ 3,800 \\ 32,000 \\ 750 \\ 600 \\ 2,000 \end{array}$	$\begin{array}{r} 1,609 \\ 626 . \\ 1,222 \\ 120 \\ 25 \\ 7,783 \end{array}$	$\begin{array}{r} 2,100 \\ 3,000 \\ 5,000 \\ 650 \\ 1,200 \\ 15,000 \\ \hline \end{array}$	$\begin{array}{r} 559 \\ 46 \\ .89 \\ \hline 9 \\ \hline \end{array}$	$\begin{array}{r} 1,000 \\ 1,000 \\ 200 \\ 300 \\ 500 \\ 500 \\ \hline \end{array}$	$\begin{array}{r} 218 \\ 342 \\ 67 \\ 21 \\ 21 \end{array}$	$\begin{array}{r} 370 \\ 680 \\ 130 \\ 10 \\ 80 \end{array}$	$\begin{array}{r} \{3,212 \\ 5,872 \\ 626 \\ 168 \\ 8,055 \end{array}$	$\{55,500$
Totel Pros.ijo	2,305	2,000	8,9:4	21,950	21,375	25,950	624.	3,500	$674{ }^{\circ}$	1,280	22,012	55,500
$\frac{\text { Indem Cosen }}{\substack{\text { Pasiorn } \\ \text { Hastom }}}$	$\begin{array}{r} 60 \\ 92 \\ \hline \end{array}$	200 21.0	$\begin{array}{r} 575 \\ 504 \\ \hline \end{array}$	$\begin{array}{r} 1,000 \\ 1,700 \\ \hline \end{array}$	102 452	$\begin{array}{r} 700 \\ 3,000 \\ \hline \end{array}$	$\frac{¢}{6}$	\} 500	68 28	120 240	$\begin{array}{r} 805 \\ 2,069 \end{array}$) 7,300
Tosel Jnciun	252	210	1,079	2,700	553	3,700	ϕ	500	90	250	1,87\%	7,300
	35	45	328	400	506	700	40	500	27	50	926	2,700
Haxia motal	1,832	2,955	18,382	45,260	20,725 58,800		826	9,200	2,234	2,190	42;898	215,200
Ereanens.car Facioz	$\times 2.6$		$\times 2.5$		$\times 2.8$		$\times 21.1$		$x \lambda .0$		$\cdots 2.7$	

Fijuxues for nowontial do not add horizontaldy duo to rounding

Table 6.20~- Consumption and projected demand for fish meal

 i.c. it i.3 anemen that 5 tone of fish make 1 ton of mena
in any systematic manner, since changes in the price of one comodity will have an effect on the demand for all other commodities, the effect being greatest where one commodity is easily substituted for the other. $\quad \cdots$ The FAO data in Table 6.20 relate to the demand for fish meal for use as animal feed which currently accounts for one third of the total world fish catch. Although there is a small but growing demand for fish meal for use as supplemental feed in fish culture, its principal use is in the preparation of balanced feeds for pigs and poultry. It follows, therefore, that the demand for fish meal will be influenced, to a marked extent, by changes in the demand for these products. Another important factor influencing the fish meal market is the extent to which pig and poultry producers switch from extensive to intensive methods of farming and the corresponding attention given to the use of balanced feeds. The extent to which this takes place is, of course, dependent on the spread of knowledge of animal nutrition and feeding techniques-a factor which is of considerable relevance when considering the developing countries. No econometric methodology for estimating the future demand for fish meal has yet been established, therefore, a somewhat pragmatic approach has been adopted in arriving at the projected demands. The main factors influencing the choice of growth rates are set out below.
(a) For North America relatively low rates of increase in the demand for fish meal have been assumed in view of the comparatively low rate of population increase expected
and the extrenely low income elasticities prevailing for pork and poultry products. Somethat higher rates of increase were used for the European Economic Community (FEC) countries because of the Commity's policy of expanding pig and poultry production. Allowance was also made for the presently lower degree of intensified poultry production in certain countries of the Comanity (e.g. Italy), and the generally higher income elasticities for pork and poultry producis than are found in North America. These same considerations apply to northwest Europe, although the increase in demand assumed for this region is marginally lower than that for the EGC. This is due to the dominant position of the United Kingdom where balanced feeding is already in widespead use by pig and poultry famers and; therefore, more modest increases in the demand for fish meal are visualized.
(b) In south Europe and the centrally planned sastern European countries, higher growth rates in the demand for fish meal have been assumed on the basis of fairly high income elasticities of demand for pork and poultry products poultry meat in many countries having a unit elasticity. Those high growth rates are justified also on the basis of the anticipated increase in per canut $G D P$ and the anticipated improvements in animal husbandry in a number of countries where pig and poultry production is still rather unscientific.
(c) The most rapid growith in demand is projected for developing countries, where the implementation of the IUP proposals for livestock production will not be realized without the adoption of modern scientific methods of production. In many of these countries there is not only a general lack of knowledge of the value of balanced concentrate feeds, but there is also a very high income elasticity for pork and poultry products. It is also believed that only through a rapid increase in the production of pigs and poultry will many of these countries be able to meet their nutritional requirements by 1985.
(d) The assumed production of offal was estimated by extrapolating the demand for frozen and canned fish and making certain assumptions with regard to the offal available. An increasing trend in offal availability has been assumed not only because an increasing quantity of fish is expected to berfrozen and canned, but also because a greater amount of the offal actually available is expected to be used.

The major unknown in these projections is the extent to which fish meal is likely to be replaced by other sources of protein in animal feed. In this respect the demand for fish for meal is subject to even greater uncertainty than the demand for food fish. The use of fish meal by animal feed compounders is very closely controlled on a strict comparison of the price of protein and amino acids derived from different sources and most of the ingredients used in animal feeds are capable of being synthesized or are obiainable from alternative sources, such as soybean meal or petroleum.

Bell, et al., Demand and Supply Forecasto. Table 6.21 shows our projections to the year 2.000 for food fish and fish meal. By 1985, we project demand (in equilibrium) to increase to approximately 78.6 million metric tons. The following is a brief comparison of our projections and those made by FAO:

$$
\text { Bell, et al } \mathrm{FAO}
$$

Food fish $\quad 56.0 \quad 69.0$
Fish meal $\quad 22.6 \quad 37.5$

Meal and food fish $\quad 78.6 \quad 106.5$
The reasons for the different projections may be broken down according to the two categories:
(a) Food rish

The difference betwan the Bell et al, mojections of poofish consumption for 1985 of 56 million metric tons and the significantly higher FAO projections of 69 milion metric tora can be accombe row by four basic factors.
(1) The Bell et al., forecasts utilize a decaying income elasticity, whilc the F $\Lambda 0$ group used a constant income elasticity ($=$ to .68).

By the year 1985, the world income elasticity (Bell, et al.,) is decayed to .22 , while the FAO world elasticity remajns at .68 .
(2) The second important factor is the incorporation by the Bell group of supply constraints, which allow for a rising price and thus a dampening in the rate of increase of consumption. The FAO forecasts assume a perfectly elastic supply of fish with no upward pressure upon prices.
(3) (4) The last two factors relate to the estimates of annual world growth in population and per capita world income. FAO's estimates of 2.1% and 3.2% for world population and income respectively are higher than the Bell et al., estimates of 1.7%
and 3.0%.
(b) Industrial Fish

Here again, the FAO projections show a significantly higher level of expected consumption in 1985. Bell et al., forecasts 22.6 million metric tons, whereas FAO forecasts a level of 37.5 million metric tons--65.9\% . higher. While FAO based its projections of fishmeal upon the growth in demand for oil cake and did not rely explicitly upon any econometric techniques for estimating expected consumption, it is nonetheless evident that the lack of consideration of supply constraints was a particularly important factor in the inflated forecast given by FAO.

We project that world demand (and supply) for fish meal and food fish will increase by 46.3% over the 1965-67-2000 period. By the year 2000 the world is projected to consume approximately 84 million metric tons of all fish (meal and food) ${ }^{-}$ which is approximately three. quarters of the potential from the world's oceans. Because of the rise in real prices, as supply constraints become more acute, we expect demand to increase at a slower pace after the year 2000.

Over the projection period, oysters, shrimp, and sardines are expected to have the greatest increase in production on a world basis. Groundfish, salmon, halibut, lobsters, crabs and fish meal are expected to have either declines or small increases in production over the projection period on a world basis. The future for the presently highily valued species is especially bleak.

THE FUTURE OF THE WORLD'S FISHERY RESOURCES: FORECASTS OF DEMAND, SUPPLY AND PRICES TO THE YEAR 2000 WITH A DISCUSSION OF IMPLICATIONS FOR PUBLIC POLICY

BY: Frederick W. Bell, Darrel A. Nash, Ernest W. Carlson, Frederick V. Waugh, Richard K. Kinoshita, Richard F. Fullenbaum

Figure 6.43--Comparison of Bell et al. and FAO world projections for
food fish

Table 6.21 --World aggregate consumption of fishery products, projected to year 2000 ${ }^{1 /}$

	1965-67 ${ }^{\text {/ }}$	1970	1975	1980	1985	1990	2000	$\begin{aligned} & \text { Changes } \\ & 1965-67 \\ & \text { to } 2000 \\ & \hline \end{aligned}$
			-Thousan	metric	round	eight		Percent
Food fish								
Groundfish	6,368	6,935	6,940	6,759	5,761	5,262	4,763	-25.2
Tuna	1,291	1,315	1,456	1,556	1,615	1,647	1,657	28.4
Salmon	476	476	481	485	485	485	485	1.9
Halibut	58	58	58	58	58	58	58	0
Sardines	871	1,166	1,464	1,657	1,848	2,013	2,370	172.1
Shrimp	634	894	1,055	1,243	1,347	1,438	1,479	133.3
Lobstegrs ${ }^{\text {a }}$	137	150	174	187	192	186	145	5.8
Crabs ${ }^{\text {/ }}$	328	395	481 535	549	517	449	385	17.7
Clams ${ }^{\text {4/ }}$ 5/	478	481	535	590	626	658	694	45.2
Scallops ${ }^{\text {/ }}$	166	209	236	259	28.	295	322	94.0
Oysters	777	965	1,218	1,487	1,755	2,015	2,453	215.7
Other fish	25,086	28,123	32,659	37,195	$41, .304$	46,040	53,524	113.4
Total food fish	36,670	41,217	46,768	52,025	55,989	60,546	68,336	86.4
Fish meal	20,440	22,680	27,170	28,350	22,634	19,505	15,.!96	-25.7
Total (food and meal)	57,110	63,897.	73,938	80,375	78,623	80,051	83,532	46.3

[^16]THE FUTURE OF THE WORLD'S FISHERY RESOURCES: FORECASTS OF DEMAND, SUPPLY AND PRICES TO THE YEAR 2000 WITH A DJSCUSSION OF IMPLICATIONS FOR PUBLIC POLICY

BY: Frederick W. Bell, Darrel A. Nash, Ernest H. Carlson, Frederick V. Waugh, Richard K. Kinoshita, Richard F. Fullenbaum

Figure 6. W1-Historical and projected world aggregate consurnption of

CHAPTER 7

IMPLICATIONS OF THE DEMAND AND SUPPLY

PROJECTIONS FOR PUBLIC POLICY

7.1 Introduction

The major purpose of the preceding analysis has been to integrate all relevant bio-technological factors into one economic model of the world's fisheries and to derive from that model the projected quantitative changes in resource utilization, prices, and consumption to the year 2000. The major emphasis in this chapter will be to focus attention upon areas of policy application. Our projections have been predicated upon the assumption that policy initiatives would not be forthconing. In this context then, we can discuss areas where new policies or more extensive policy applications could be utilized. The most fundamental conclusions that can be drawn from the preceding analyses is that without a change in present policy many of the traditionally consumed species of fish will be utilized at or near MSS within the not too distant future. In fact, our
projections incicete that in the next 30 years fishing eifort for many species will increase to the point where world physicel output, i.e., MSS, will be reciuced for groundfisin (1970), crabs (1980); fishmeal (1980), lobsters (1985) and tuna before the year 2000. The ranking of fisheries on the basis of
projected utilization is shown in Table 7.1. It is additionally important to note that the ultimate potential of alternative supplies of living marine resources is questionable, Ryther has argued that, "...the open sea -90% of the ocean and three-fourths of the earth's surface - is essentially a biological desert, It produces a negligible fraction of the world's fish catch at present, and has litile or no potential for yielding more in the future." (Ryther, 1969)l/

Even graver doubts exist with respect to the possible substitutability of species not now exploited for those traditionally consumed, especially those consumed in the U.S. Thus the concept of "spaceship earth" would appear to be relevant regarding \cdots the world's oceans.

It is not our purpose to suggest in the context of public choice that a decision must be made by society to preserve the world's resources at a level consistent with MSS. There may be other considerations for individual nations or individual groups of nations which may preclude following a policy of fishery management designed to limit entry. It is a1so not our purpose to present relative policy evaluations or, for that

I/ There is some debate about the ultimate potential of the sea as a source of focd. For a critique of Ryther's article, see Alverson, Jonghurst, and Gulland (1970).

Table 7.1.--Ranking of fisheries on the basis of projected utilization

1/ Gear limitations introduce technological inefficiencies. Also salmon may only be at lisy if expanded hatchery operations and stream improvements are ignored.
2/ By 2000 only $28 . \quad$ of MSY is expected to be utilized when calico scallops are included.
3/ By 2000 only $\varepsilon 7 \%$ of MSY is expected to be utilized without additional aquaculture.
4/ Infinitely elastic supply, within relevant range with. additional aquaculture.
5/ Infinitely elastic supply, within relevant range as food fish.

Source: See Chapter 6 .
matter, to give precise policy prescriptions for particular regional fisheries, It is our purpose, hovever, to present various options in the event that society decides that a policy of conservetion of living marine resources is the proper decision to be followed. A discussion of the major areas of public policy would have to include:

1. A Fishery Management Policy
2. A Fish Farming Policy
3. An Underutilized Species Policy
4. A Harvesting Efficiency Policy
5. An Anti..Pollution Policy
6. A Policy to Avoid.

We do not mean to suggest that many of these policies are not already in application. We merely intend to give a comprehensive review of both ongoing and new policies within the context of the projections.

7.2 A Fishery Management Policy to Prevent Overrishing

The free market has not operated to create the most efficient allocation of capital and labor in exploiting the fishery rescurces throughout the world. As demand for the fishery products expands, more and more firms are attracted to harvesting the resource. However, the physical vield of a given fisheries stock, like any other factor of production, is subject to diminishing and, ultimately, to negative returns (as shown in Chapter 3). That is, as the invuts of labor and capital (which we will here combine under one heading as "fishing effort") are increased, each successive increment increases the total catch by a smaller and smaller anount, until at some level the maximum annually sustainable catch is reached. Beyond that
level, further increases in fishing effort will diminish the actual catch and may denLcte or destroy the resource.

What makes the ocean fisheries differ so funduentelly from most other resource-oriented industries is that the resource stock is unappropriated; that is, unowned. The fish stocks are open to exploitation by anyone who is willing to expend the effort to harvest the resource. Such a private market mechanim coupled with a common property resource will eventually lead to overifishing, reduction in physical output, and higher prices. Failures in the private market (under the present management schemes) emphasize the urgency for solving questions relating to managenent jurisdiction over fisheries.

A further problem is often connected with governent attempts to conserve the comon property resource itself. If the fimeny in question is completely under the jurisdiction of a single political entity, i.e., a state, the chronic crisis of the industry and inevitable declining yields will produce a demand for "conservation." The usual goal pursued by regulatory agencies is a reduction of effort to the maximum sustainable catch level. In any case, the conservation measures usually chosen--the shortening of seasons and restrictions on the effectiveness of gear--tend to be self--defeating from the point of view of the welfare of the fishing industry and of the general public.

Then the dramics of a regulated fishery unuelly tum ont to be a tug-or-war between the fishermen, who attemot to fimprove their position by improving the efficiency of their gear and their techniane, and the wematirg agency which tuies to "concerve" the
resource by reducing the efficiency of each unit of fishing effort.
Given sufficient rise in denind, the free market aporoach results
in too many fishermen and too many boats when everyone fishes to
whattever extent they wish.
Our projections indicate that the process discussed above will continue and worsen for many species in the next 30
years. Without fishery management, fishing effort will increase to the point where world physical output (maximum sustainable supply) will be reduced for groundfish (1970); crabs (1980); fishmeat (1980); lobster (1985) and tuna before the year 2000. These species need immediate attention. Other species need attention in some areas of the world.

Potential benefits from fishery managenent are substantial: Generally, fishing beyond maximum sustainable yield is an economic crime of the first magnitude. $2 /$ The extra effort beyond that point is not only unproductive--it is counter productive. The resources spent in this way are worse than wasted. Society could afford to pay to keep the extra resources idle. Of course, idle resources are not an ideal answer. Obviously, we should try to

[^17]divert some of these resources to other uses that are really productive.

F'ishery managenent will require international cocperation. We already have international commissions to limit the catch of some yellowfin tuna and of halibut. We will soon need them for other species of fish. Setting up international commitsjons, however, is not enough. To be effective, cominssions must set up controls that are workable and that are economically sound. And they must police the controls to see that they are effectj.ve.

The controls should not only prevent fishing beyond maximum sustainable yields, they should discourage other forms of overcapacity in fishing. Instead of ships and crews being idle in many cases after the appopriate cateh as been reached, we should have only enough ships and crews to catch the proper amount of fish. however, retiring excess capacity is difficult in ary kind of business. Even jif a cheese plant or a steel mill is antiquated, inefficient, and poorly located, it may stay in business for decades ir the owners can cover variable costs. Fjshing fleets face the same predicenent. Fren though the ocon is a free resource, the fishing industry has a great deal of capital tied up in ships and gear. Fishermen find it difficult to shift from fishing to other occupations. One of our most difficuit problems in the remainder of the 20th century will be to eliminate overcapacity. We should try to do this without impeding progress. We will need to build new and more efficient ships and equipment, but this will increase the difficulty of solving the problems of retiring inepricient ships and equipant.

Another significant argument is that in rural areas where labor is especially immobile, limiting entry may not be socially desirable. The trade-off between efficiency and maximum employment should be considered as part of the policy prescription.

Of course, we should look after our own interests, and the costs and benefits should be fairly shared. Our statesmen should be able to work this out with statesmen of other countries and set up additional international fisheries commissions to manage the world's fish supplies to benefit menkind. 3/ Already there is much talk of the establishment of country quotas. The costs of such commissions might be met by the major fish-producing nations, each bearing the costs proportionate to the total value of the fish catch. This would not be a "give-away" deal as all nations including the United States would benefit by getting more fish at lower prices.

Table 7.2 shows some of the losses from either improper fishery management or open access to the resource for selected

3/ In 1973, a. Iaw of the sea mesting will be held under the sponsorship of the Unjeted Natjons to work toward such e.greements. Some consider this meeting a last attempt at "saving" the world's oceens from overexploitation. There may also be other ways of resolving the overfishing problem by establishing 200 mile limits for coastal nations or other devices. The implicetions of this policy recomnendation is beyond the scope of this report.

Table 7.2--Estimated economic losses resulting from common property nature of the resource for selected fisheries, 1966

Fishery	No. of Vessels \& Boats	No. of fishermen	Landings (thou.10s)	$\begin{gathered} \text { Value } \\ \text { (thou.dol.) } \end{gathered}$	$\begin{gathered} \text { Excess } \\ \text { cost } \\ \text { (thou.dol.) } \end{gathered}$	$\begin{array}{r} \text { Ineffic } \\ \frac{u t i l i z}{} \\ \frac{V e s s e l}{} \\ \hline \text { boats } \\ \hline \end{array}$	$\begin{aligned} & \text { cientily } \\ & \frac{\text { zed } 1 /}{\& \& i s h e r-~} \\ & \begin{array}{c} \text { men } \end{array} \\ & \hline \end{aligned}$	Value vessels inefficiently utilized (thou.dol.)
New Eng. groundfish	624	3,065	480,709	40,764	12,200 $2 /$	187	920	1,900
Atlantic menhaden	65	1,066	515,025	7,843	3,100 $3 /$	26	426	1,300
Gulf strimp	7,739	13,756	179,230	82,973	41,500 ${ }^{1 /}$	3,870	6,878	38,700
Pacific groundfish	243	873	119,363	7,935	$05 /$	--	--	--
Northern lobster	7,001	7,974	29,541	22,256	05	--	--	--
Chesapeake oysters	6,007	8,997	21,232	14, 4.53	10,100 6	4,205	6,298	5,900
Tropical tuna	154	1,720	285,200	49,000	7,4007/	23	258	1,200
Pacific salmon	17,076	27,814	387,512	73,465	51,400 $/ 1$	11,953	19,470	59;800
King crab	382	1,065	159,202	15,671	7,800 $/$	191	533	4,800
Halibut	326	1,213	40,326	9,708	$3,00010 /$	130	485	1,300
Total above	39,617	67,543	2,217,340	324,079	137,400	20,585	35,268	174,900
Total U.S.	82,122	135,636	4,365,900	472,354				325,000

1/ The number of inefficientiy utilized vessel and fishermen was obtained by multiplying percentage excess cost
(i.e., excess cost divided by value of catch) by existing feet and fishermen.

2/ 30% of value of catch. Estimated by Working Group, International Commission for the Northwest
2/ AtTantic Fisheries (1968)
3/ 40% \% of value of catch

Table 7.2--Estimated economic losses resulting from common property nature of the resource for selected fisheries, 1966 (Continued)

4/ 50% of value of catch. Estimated by Economic Research Division. Calculated on the basis that the net tonnage of the fleet has doubled since 1950 with litile increase in output.
5/ Below MSY with respect to eifort
71
71 15\% of value of catch. Estimated by NMFS Oxford Laboratory
year
8/ 70%
9/ 50\%
0140\% of value of catch. Calculated on basis of the number of days vessels are needlessly idile during
of value of catch. Estimated by Crutchfjeld and Pontecorvo
of vaiue of catch. Estimated by Economic Research Division
of value of catch. Estimated by Crutchfield at Law of the Sea Conference (1968)
U.S. fisheries in 1966. These losses will continue to grow as our projections indicate unless proper fishery management is instituted. (Seesection 7.7 for a discussion of policies to be avoided.)

7.3 An Anti.. pollution Policy

Our projections indicate that future world sustainable supplies of fish will be utilized rapidly and that fish prices will rise appreciably. Some readers may think that such a gloomy out.look is overlī pessjmistic, but actually the squeeze on future fish supplies may turn out to be tightex than our projections indicate.

Our projections are based upon current estimates of the maxjmurn sustajnable yields of various species. These maximum sustainable yields are not fixed permanentiy. They change as the biological environnent: (ecology) changes. Water pollution hes becone a serious problem. It has already spoiled fishing in many of our streams, rivers and lakes--end has reduced the yield of fish in many coastal areas of the world. Further uncontrolled pollution could lower the maximum sustainable yields of some of the principal species or commercial fish. Table 7.3 ind̉icates some recent losses due to pollution. Such losses are likely to continue, and even to increase, unless anti-pollution policies are successful. Table 7.4 shovs a more detailed bxeakdown of shellfish areas closed by sewage pollution.

Table 7.3.--Estimated losses in revenue to fishermen due to pollution for selected cases and time periods.*

1. Sewage pollution of shellfish areas

Areas closed because of pollution:
1,751,800 Acres
Estimated potential loss in revenue

$$
\$ 1.2,126,41001 /
$$

2. DDT pollution of mackerel

Landings of mackerel curtailed
for 2 months (1.969)
Estimated potential loss in revenue
3. Heavy metal (mercury) pollution
(a) Closure of inland fishing areas estimated annual loss in revenue to fishermen

3,200,000
(b) Closure of Brunswick estuary estimated annual loss in revenue to fjshermen $\therefore \quad 300,000$
*All revenue figures are based on ex vessel prices and do not reflect retail value which could be on the average three times greater.

1. Based on average yield of shellfish and the weighted average price.
2. If vessels were tied uo in port, they would have lost 20\% of annual revenue.

Source: Economic Researuh Leboretory mid Ofilce of Resoure Utiltation, NitS; U.S. Department of Health, Eucation, and Welfare, Fulie Health Service, Mational Register of Shellísh Eroduction Areas, 1966.

Table 7.4.--Shellfish production areas closed due to pollution or toxicity, 1066

Source: National Register of Shellfish Production Areas, U.S. Department of Health, Education, and Welfare; Public Health Service, 1966.

The prophet or this danger was Rachel Carson (1962). She presentea a wealth of evidence that the uncontrolled use of "hard" insecticides, such as DDT, are upsetting the balance of nature, destroying wildilife, poisoning fish, and even causing serious problems of human health.

For several years, some of the practical agriculturalists poked fun at Miss Carson. They called her a sentimental do-gooder and an alamist. They continued to promote $D D T$ and related pesticides and herbicides. Meanwhile, many factories dumped their wastes into streams and rivers. And for a few years, the testing of atomic and hydrogen bombs resulted in an indiscriminate shower of strontium 90. Since World War II, the pollution of our air and water has increased so enormously that almost everyone is now aware of its dangers. At long last, the political system has begun to react and is searching for ways to stop or at least to reduce pollution.

Aside from prohibitory legislation, much could be done by the judicious use of economic incentives and penalties, aimed at making pollution unprofitable. This would cost a great deal of money, but perhaps it would be even more costly to continus to ignore pollution.

Most pollution results because under present laws it is cheaper to the individual firm to discharge untreated waste into the ecosystem than to treat it before discharge. In smali amounts the ecosystem can do quite a commendable job cleaning itself up. Unfortunately, its capacity, though large, is limited. As our society grew wealthier, it produced more waste but its attitude on waste disposal, forned in
the years when the system was adequately regenerative, did not change. At the present time, society is becoming aware of the extent of pollution, and 0 : the fact that something can be done about it through the policical process. An economist's view of the pollution problem is that those who pollute and, by extension, those who buy products that pollute, should pay the full cost for What they do or buy; and this full cost includes all the damages done to the public aid/or means to avoid this pollution. The effect of pollution on fisheries is as varied as the kinds of pollution. Many shellfish areas have been closed because raw seware has made the fish unsafe to eat (T able $7 \cdot 3$). Other effects of pollution have been the deterioration of the nursery grounds of sme species such as menhader. The U.S. Food and Drug Administration (FDA) has prohibited the sale of salmon from the Great Iakes and mackerel from the Pacific Ocean because of high DDI concentrations found in them. Sune species of birds have been made sterile by DDT. The sme thine could happen to fish. The adversa effects of pollution can reatue the erfentive and antual maximum sustainable yields of many species.

It is beyond the ability of the market to handle externalities 4 / such as, for example, water pollution. Vater pollution has

[^18]prevented millions of recreationists from utilizing rivers, lakes and ocean fronts. Commercial fishermen suffer financially because they are prevented from making a living in these lakes and ocean fronts. From the standpoint of developing overnment programs, water pollution is defined as the effects of any agent or combination 'of agents which degrade the aquatic environment to the extent that yield of a major fishery resource is reduced, or the commercial. utilization of fish or shellfish is impaired by contamination. Pollution of aquatic environment is brought about in various ways. - Some examples are: massive pollution at irregular time intervals by accidental release of industrial chemicals during their manufacture or transport, or during their mining as raw materials (as in the Santa Barbara ojl seepage, or the most recent one in the Gulf of Mexico) ; massive and lons-term release of industrial wastes of varyjng levels of toxicity; insidious long-term release of industrial and domestic wastes at low instantaneous rates but having sericus ecological consequences; the relesse of agricultural dusts and industrial and domestic gaseous exheusts into the, atmosphere, and eventuelly into the aquatic environment, again having serious ecological consequences; and messive quantities of donestic or industrial solid or semi-solid waste materials, dumped over extended pericds in rather restricted locations.

Much concern has been shown over the degradation of insh, wildlife, and recreation vallies associated with our estuarias.

It is often alleged that the problem is that the estuarine resources are being destroyed by pollution and land fill operations. The real problem, however, seens to be of an economic nature. 5/ Destruction of estuarine resources involves an economic cost to society. If we expect prices to adequately serve as the basis for social choice, then the opportunities foregone in the use of estuarine resources for any given purpose must be reflected in the price figures. In other words, to alter the use of estuaries, the socjal costs of destruction should be reflected in the private costis to those who would destroy the resources by development or pollution. Unfortunately, the costs facing land developers and potential polluters do not reflect the losses to others. (In other woras, they do not include the externalities.) Thus the problem is that individuals are making decisions concerning estuarine resources without being made adequately responsible and accountable for their aceions with respect to the use of these resources.

There is considerable evidence that pollution is affecting our fish resources (Tables 7.3 and 7.4). Some species, such as the salnonoid, whitefishes, and perches of the Great Lakes, are failing to reproduce and are disappearing sequentially due to longterm pollution of the lakes. Other species, such as surfoperches in California, exhioit a high percentage on indiviunas"uith anomities and neoplasma, especially near sewer outfells. Almost all species are, to some degree, contaminated within their body tissues by residuss of pesticides or heavy metals.-- in some

[^19]cases to the extent which exceeds FDA's tolerance for contamination.
Government programs with respect to pollution problems are restricted to research which is directly related to endangered commercial fish species. These programs include: collection of data on the nature, quantities, and sources of pollutants; toxicological and ecological studies on commercially important species and their food chairs; monitoring the status of pollutants in the aquatic environment and the safety and wholesomeness of fishery products; studies on cleaning up the environment; and studies on decontamination of fishery products.

7.4 A Fish Farming Policy

Effective control over water pollution could probably prevent future drops in the maximum sustainable yields of many species of fish, but this is not enough. Rapidly rising populations and real. incomes will mean a big increase in the demand for fish, as we have shown in Chapter 6. Table 7.5 shows the rise in real prices
(assuming the supplies that can be anticipated from present methods). To moderate these projected price increases and satisfy an increasing world demand, we need to explore every feasible way of increasing supply from new sources.

To some degree, at least, the world's fish production can be increased by "fish farming." Most comnercial fishing is done by 5

Some prefer the term "aquaculture," but aquaculture includes the culture of anything in water (for exampie, tomatoss).

Table 7.5.--Projected real world price increases for selected fishery products. without augmentation in supply through aquaculture, specified years

I/ Without additional aquaculture.
2/ With newly discovered calico scallop resource.

Source: Chapter 6.

hunting. Man once got his supplies of meat mainly by hunting. Later he found he could do better by enclosing and improving pastures, scientific breeding and feeding of animals, and similar farming techniques.

To some extent, such farming techniques have been used for fish production for centuries in many countries. Iverson states that "Oysters were raised by the Japanese as early as 2000 B.C., and oy the Romens about 100 B.C." (Iverson, 1968) Recently, some kinds of fish farming have been growing in the United States. An estimated 10 million pounds of catfish were harvested from fish farms in the United States in 1967 -- compared to 33 mjllion pounds caught in public waters (U.S. Department of Interior, 1970). Kussmen estimated in 1967 "that the production of farm-raised catich will. double during the next year or two." (Kussman, 1967).

Of course, catfish reprasents only a small percentage of our total national fish consumption (although it is important in the South and Midwest). However fish farming is not limited to catfish.

Fish farming includes the care, cultivation, and harvesting of any species of fish under private ownership. The care and cultivation may be very intensive, as in the case of pond.-raised catfish. Or it may involve only a few operations, such as stocking with fingerlings.

A recent study by Bardach refers to the farming of plaice, sole, shrimp, crab, abalone, sea bream, puffer fish, carp, and mullet in various parts of the world. (Esrdech, 1968) Ihey concluded thet, "Tre practice of aquaculture may not only be greatly expanded, particularly in those parts of the world most in need of its products, but also that its yields may be very appreciably increasea through the use of modern science and technology."

The Japanese have led the way in fish farming. Hot only have they developed comercial oyster faming but they are now producing a substantial percentage of their fresh-vater fish from farming. Brown states that in Japan in 1065, "The following per-centages of fish produced vere cultured: 100% of the trout, 88% of the eel, 72% of the caro, 14% of the Crucian carp, and 10%. of the ager." (Brown, 1969)

In general, it is doubtrul whether many of the presently exploited combrial species nould be successful candidates for
fish culture. Prerequisites for success should be rapid growth and high conversion of feed to meat. These are attributes of, for example, catfish or oysters which may reach marketable size in 1 or 2 years. Therefore, work might be done in developing new varieties of fish that might have the same taste and texture of the present comercial species but which have the attributes necessary for comercial culture.

The opportunities for profitable fish farming are probably greatest in ponds and rivers, somewhat less in brackish waters near the ocean shore, and much less in the open ocean. The United States and other countries would be wise to encourage and promote fish farming wherever it has a good chance of competing successfully with the capture of wild fish. The main effort at present should be that of research and education. Potential fish farmers should be given detajled and up-to-date facts about methods, costs, prices, and likely profits. We need to intensify research not only on fish culture, but also on the processing and marketing of cultured fish.

7.5 An Underutilized Species Policy

Our projections indicate that supplies of some of the principal market species of fish will soon be fully utilized and that their prices will rise (table 7.6). But if consurners prove villing to buy some of the presently less preferred species, total per
capita supplies of fish need not decline much, at least for many decades. Also, such a switch in buying would tend to dampen down the increases in prices of the more preferred species.

I: Thirity years ago, Rachel Carson wrote, "If . . . fisheries are to yield their full quota of food, now and in the future years, the burden of overexploitation must be lifted from the few species that now make up more than four-fifths of the catch; the slack of wasted pounds must be taken up from the fishes that are now underutilized. Still little utilized are fishes like cusk, dogfish, skates, anglers, and dozens of others. From the standpoint of human velfare, thousands upon thousends of pounds of these less known fishes go to waste in the sea each year." (Carson, 1941)

Because many consumers are not aware of underutilized species, our fishemon avoid them-often throwng them back if they are caught. Table 7.6 shows some presently underutilized species and their potential economic value, assuning they could be substituted for presently utjilized species. How can markets be opened up to some of the species that are now underexploited?

The most basic (and most difficult) way is to change consumer preferences. This will require more reports like that of Rachel Carson. It will take much reseacch and education on the nutritional values of fish. And it may need intensive promotion and advertising of the right kind. For example, the Plentiful Foods

Table 7.6--Selected underutilized species and their additional potential economic value

Species	Current world landings	$\begin{gathered} \text { Maximum } \\ \text { sustainable } \\ \text { yield } \\ \hline \end{gathered}$	Retail price*	Total value of additional catch to MSY	Regions for further major exploitation
(thousand metric tons) (dollars/lbs) (thousand dolla					
Calico scallops	10	740.9	1.74 1/	334,140	East coast of Florida 4/
Tanner crab	20.0	50.0	$1.431 /$	210,022	North Pacific (off of Alaska) 5/
Clams	478.1	799.8	1.28	139,589	Northwest \& West central Atlantic, Northeast Pacific, Rortheast Atlantic 6/
-Pacific groundfish	1;332.7	2,602.4	. 52	1.,455,574	North Pacific 7/
Sardines and fish mea!	17,820	30,111.9	. 079 3/	601,149	West central Atlantic,southeast Atlantic Southwest Pacific, northeast and east central Pacific 8;

* Latest U.S. price. Assumes U.S. price and world price identical.

1/ Assumes species could be readily substitutable for current utilized species at existing utilized species prices.
2/ Assumes no decrease in price as result of increased landings. This assumption is acceptable cver a period of time where income and population will increase. Also, we did not consider rising real prices which will alter revenue estimates. These will depend on price elasticities which are not avallable.
3 Weighted average of sardines and fish meal.
4/ Derived from John A. Gulland, The Fish Resources of the Ocean, FAO Fisheries Technicel Paper
No. 97, 1970.
5/ Ibid.
6/ Ibid.
7/ Ibid.
(8/ Ibic.

Program of the U.S. Department of Agriculture should emphasize the species that really are plentiful and inexpensive. But a realistic marketing specialist will realize that changing consumer preferences is likely to be slow and hard. The Romans used to say "de gustibus non disputandum," meaning that there is no use arguing about taste. A free market accepts the consumer as king and caters to his tastes--even if some experts call these tastes "irrational." As incomes rise, the consumer can indulge his tastes even more. This is not an argument against research, education, or promotion aimed at inducine consuners to accept some of the currently lesspreferred species of fish. On the contrary, it is an argunent that ve will need stronger efforts along this line jn the future.

One current trend may be that of breaking down old preferences. This is the trend toward highly processed fish, such as sticks, and portions. Usually the consumer of these processed iterus does not know what species of fish he is gettjng, and doesn't seem to care much. He simply wants some fish that is easy to prevare and that does not taste bad.

The role of the Government in the promotion of underutilized species is debatable. . It can legitimately do two things to help broaden the tastes of the consumer: (1) It can assess the
stocks of various species available as to their magnitude, catchability and palatability, and (2) it can help make industry aware of them. 7 Industry is quite capable of promoting underutilized species if it believes the market can be developed.

Industry does not have the proper incentive to assess stocks of fish. Industry has, of course, over the years, dipcovered and promoted many species successfully but industries' efforts are halting because of the uncertainties involved. It might take many years for a full scale fishery to develop in some instances.

7/

There are many philosophies regarding government assistance to industry. Any activity involving the development of products from unfamiliar species on one hand, to outright promotion of products through advertising (for example) on the other, are forms of subsidy to the industry. This is not to say that consumer benefits are not also involved. The two, in fact, through a considerable range, can be complimentary in nature. One can approach the whole subject from the standpoint of modern cominunication theory in marketing and relate the purpose of promotional activities throughout the product development process to adoption theory. For example, it might be more legitimate to engage in promotional activities at the "awareness," "information," and "trial" stages of product adoption than to engage in physical product development itself. The organization of the fisheries may make it more difficult for a single firm to justify expenditures for creating product awareness than for physical product development. Some see no distinction with regard to the government's appropriate role among stages of product development. That is product development begins with the physical aspects and ends with the communication aspects. If the government is to engage in any of these activities one could build a stronger argument for some of the comnunication recuirements, the difficulties of the industry providing for itself, than for some of the physical product modifications required. The fundamental debate arises when a group of physical scientists make a judgement based upon their appreciation and feeling of legitimacy surrounding activities that modify products in a physical way ard their lack of appreciation for the need for
services such as marketing that do not contribute to the physical improvement of the product.

A recent example of govermment jndustisy partnership is the calico scallop. The calico scallop beds were mapped by BCF on exploratory cruises. Although a ready market exists for the finished product, several problems in vessel design and shucking had to be solved before these beds were ready for full scale exploitation. Many of these problems were solved by industry with minor aid from BCF. Because of the work of BCF, these scallops are several years closer to the table than they would have been without this catalyst. The benefit-cost analysis for this program is shown in wable 7.7.

Sokoloski and Carlson (1.569) recently proposed a "price-incentive plan" under which the government would pay fishermen to land certain underexploited species. This plan was intended only to help alleviate unforeseeable resource problem. For example, haddock has been the preferced fresh fish in the Boston market, but supplies of haddock have dropped drastically in recent years. Sokoloski and Carlson proposed payments to stimulate increased marketings of pollock, which is plentiful.

Table 7.7.--Benefit-cost analysis of the calico scallop program

Year	Economic-1/ benefits	Present value economic benefits:-	$\begin{aligned} & \text { Program-2/ } \\ & \text { cost } \end{aligned}$	Present value of costs
	-------	------Thousand dol	S-	
1971	2,910	2,910	2,250	2,250
1972	4,889	4,074	2,048	1,707
1973	7,096	4,928	1,723	780
1974	8,898	5,149	848	491
1975	17,097	8,246	641	309
	40,891	25,307	6,910	5,537

$B / C=4.57$
1/ Savings to consumers in cost per unit of scallops as a result of greater quantities available which lover the price (consumers' surplus).

2/ Includes all Federal, non-Federal costs.
Source: Economic Research Laboratory, National Marine Fisheries Service

Incertive payments of this kind could be socially beneficial, especially if they help consumers to discover dosirable species. This could modify some tastes that have been based partly upon habit. If so, the incentive payments could be temporary. Ihey could be droped as soon as a market was developed for the underexploited species. In addition to incentive payments to stimulate the buy:ing of underexploited species, we may need taxes to discourage the consumption of overexploited species. For example, we may need to tax haddock, as well as to subsidize pollock. Such a program of taxes and subsidies could be self-supporting. And it could help protect our future supplies of fish. It should be pointed out that the incentive payments plan is meant to be illustrative and not a firm proposal. Obviously, more research is needed before such a plan could be adopted.

7.6 A Earvesting Efficiency Policy

As demand expands, there will be an upward piessure on prices, since fishing is a rising cost industry (Chapter 3). Price rises may be abated if investments are made in the research and development of cost-reducing fishing techniques.

Many marketable specjes are not harvested at present becouse the individual members of the.stock are not sufficiently agreyezated to allow harvesting at present prices. Research could be done on the tecmiques of aggregation. The Japanese use such a technique in their saury fishery where they emoloy bright Iights to aturact saury so that they can be harvested economically. Experinents could be conducted using this and other techniques to attract fish. Essentially such technjques would be instrmental in shirting the production function for a fishery.

Other work could be done in gear research either to improve existing gear or develop new gear. One recent example of the potential for gear jmprovement occurred in the U.S. tuna fleet. In the late fifties the fleet was contracting as a result of high costs and a price ceiling for its product imposed by Japanese imports. Fxperiments by a few innovative fishermen and gear designer Mario Puretic drastically cut costs. Their experiments caused a change in the technology used by the fleet, transforming it from a pole and line fishery to a seine fishery. The new technology was adopted rapidly by the fleet and now the U.S.fleet is. rapidly expanding , while the Japanese fleet is contracting. Who knows what technological innovations could be made in other fisheries that could dramatically reduce costs in those fleets?

If a fishery is producing at MSY, improvements in techrology cannot lower prices to the consumer. However, under proper manacement, resources could be transferred to other species. The increased output could lower the prices of fishery products indirectly through the production of substitutes.

Another field where much cost-reducing work can be done is that of short-term forecasting. Short-term forecasting helps the fisherman by giving him information as to the location, spatially and temporally, of the fish. This allows the fisherman to reduce his search time thereby increasing his catch. A notable and successful example of such aid is the HMFS albacore forecasting
program. NOAA collects oceanographic and atmospheric data and processes the information into 0 form so that the fleet can interpret it and then locate the best probable fishing areas.

7.7 A Policy to Avoid

Over the years, regulatory mechanisms have been developed which have inposed an increasing burden of legislative inefficiency. This regulatory tangle now includes jurisdictional, scientific, and quasi-economic dimensions. Most of the fisheries are in state waters, and thus the states have been forced to adjudicate the growing conflict between fishing and other uses of the coastal zone. These regulations spread beyond territorial waters as fishsries originally limited to these zones have extended. The pressures of increasing demand have added new regulation upon old to attempt further conservation and management. These piecemeal accumulations have grown so as to virtually dominate the character of the industry in terms of the capital-labor ratio and technologjcal change. This accumblated maze of regulations hew now grown to be as significant a problem as the original notivation for their enactment -- the common property nature of the resource.

This sequence of regulations has led to several outstanding facts: (I) the resulting number of regulations is staggering and, in most instances, efficient harvesting techniques have been precluded; (2) the goal of limiting fishing effort has not been reached; (3) there are few examples of effective state or regionalFederal coordination to manage common fisheries; and (4) individual States vary considerably in the success of their biological, technological, and management activities and capabilities.

International fisheries suffer from a similar inability to develop coordinated management. With growing pressure on the resource, many of these fisheries are characterized by overijshing, inefficient regulations, and questionable extensjons of national \because jurisdiction.

As many of these international fisheries involve U.S. territorial waters and the contiguous zone, some management must be initiated in international waters before $U . S$. waters can be managed effectively.

It is becoming increasingly evident that new steps in fishery management and development cannot be channeled through existing State organizations without some alteration in the Federal-State. local interrelatjonship. This is especially true as we move forward With legislation to provide a mechanism for managing the contiguous zone and as our fisheries increasingly expand their scope of operation so that many are both domestic and international in dimension. The policies mentioned above are definitely to be avoided.

7.8 Policy Implications for loeting Projected Demand:

The Vorld. Indicative Plan

We have tried to point out some of the policy implications of our demand and supply projections. For purposes of comparison, let us look at some of the policy implications exploned by FAO in their Prospects for World Fishery Development in 1975 and 1985. Although the FAO demand projections differed from those developed in this report, the general conclusion of increasing demand pressures on relatively fixed fishery resources is comnon to both studies.

1. In many countries there is a great need for fish protein for food purposes as well as for export to other countries. In order to increase their catchine potential, these countries should replace traditionally low productivity fishing craft by powered vessels designed to meet the specific needs of the local fishery.
2. To develop the fisheries, there is a great need for port and harboun facilities. The lack of these facilities has become one of the major factors inhibiting the expansion of offshore fishing operations.
3. If vessel mechanization is to become widespread, there is also a need for official crecit schemes.
4. With increased mechanization, there is a clear need for fishermen training.
5. The complexities of successful fish culture indicates a need for improved and exparded extension services, if high yields are to be obtained.
6. In the case of fully exploited stocks, management is required if technological developments are to lead to cost reductions and not to a smaller catch at a higher cost per ton. The objective of management should, therefore, be to maintain fishing effort at the level giving the greatest net returns since beyond this point the cost of any extra effort will be greater then the value of the resulting yield. The IWP, therefore, einphasizes the importance of management measures aimed at a more rational utilization of fish stocks and supports the efforts being made to this end.

7.9 Need for Adequate Information

Finally, to implement many of the policies discussed above, it will be necessary to improve the nature of both biological and economic information on fisheries. Therefore, it will be necessery to collect reliable data on which to base nore precise policy judgments. Although stated last, we believe that rapid answers about the status of fisheries is certainly a priority item.

ACKNONL.EDGEMENTS

The authors are deeply•indebted to many people for their work in helping to complete this study. The study was widely reviewed and cach review is appreciated. An early version was reviewed by the following economists within the NMFS: Harvey Hutchings, Hoyt Wheel and, Bruno Noetzel, John Vondruska, Fred Olson, and Jack Greenfield. Mr. Harold Crowther, former NNES (BCF) Director has provided many helpful comrnents on this draft.

We are also appreciative of the several economists outside NMFS who took time to provide many helpful comments. Their revjews were particularly valuable because of their background in fisheries economics. We wish to thank the following porsons for their help:

James Crutchfield, Universi.ty of Washington; Guilio Pontecorvo, Columbia University; Anthony Scott, University of British Columbia; Herbert Nohring, Universjty of Minnesota; Paul Adam, Organization of Economic Cooperation and Development; A. M. Huq, University of Maine; Frederick Smith, Oregon State University; Fred Prochaska, University of Florida; Russel. 1 Thompson, Texas A\&M; Joshua John, Department of Forestry and Fisheries, Canada; Richard Marasco, University of Maryland; Miller Spangler, National Planning Association, and Davjid Culver, Head, Long.run Projections Section, Economic Research.Services, U.S. Department of Agriculture.

Biological knowledge of fisheries was essential to the study, therefore, we relied on fishery biologists and fishery administrators to review the report for correctness in applying biological relationships. We wish to thank: fron the Southeast Region--Richard Whiteleather,

Harold Allen; James E. Sykes, Biological Laboratory, St. Petersburg Beach, Florida; Thomas Rice, Radiobiological Laboratory, Beaufort; Robert Temple, Biological Laboratory, Galveston; Edward Klima, Exploratory Fishing and Gear Research Base, Pascagoula; Harvey Bullis, Jack Wise, Albert Jones, Tropical Atlantic Biological Laboratory; Miami; from the Northwest Region--Donald Johnson; Roy Wahle, Columbia Fisheries, Portland; John Dassow, Technical Laboratory, Seattle; Dayton Alverson, George Hirschhorn, Brian Rothschild, George Tanonaka, Biological Laboratory, Seattle; Jack Richards, Walter Pereyra, Exploratory Fishing and Gear Research Base, Seattle; from the Alaska Region-Harry Rietze; Jerome Pella, Joseph Greenough, Willian Smokes, Robert McVey, Robert Simpson, Auke Bay Biological Laboratory, Auke Bay; from the Northeast Region-James Hanks, Milford Biological Laboratory; George Ridgway, Boothbay Biological Laboratory; Aaron Rosenfield, Oxford Biological Laboratory; Richard Henneinuth, Bradford Brown, Woods Hole Biological Laboratory; from the Southwest Region-..four anonymous reviewers; Paul Smith, Allen Longhurst, William Lenarz, Fishery-Oceanography Center. The study was truly a project of the entire staff of the Economic Research Laboratory. We hesitate to mention names at the risk of omitting all who should be acknowledged. Mr. David Pear was responsible for assembling all of the data used in the demand estimates. Those responsible for the majority of the typing are Mrs. Bernice Per:ry, Mrs. Marcella Davis, and Mrs. Shelva Page and we are grateful to then. Finally, Mrs. Mary Helen Ives and Miss Nancy Aldrich thoroughly edited the final manuscript.

The decisjons as to the final content and interpretation are the authors' and we accept full responsibility for then.

LITERATURE STEED

Alverson，I．，A．Ionghurst，and J．Gulland．1970．How much food from the sea？Science Vol．168，No．3930，April 24，1970．

Bardach，John E．，et al．1968．The status and potential of aquaculture， Volume II．American Institute of Biological Sciences，Washington，DeCo May 1968。

Bell．Frederick W．1．969．Economic projections of the world demand and supply of tuna，1970－90（unpublished manuscript）。Economic Research Laboratory， National Marine Fisheries Service，National Oceanic and Atmospheric Administration，U．S．Department of Commerce，Washington，D．C．

Bell，Frederick W．1968．The Pope and the price of fish．American Fonomic Review，December 1968.

Bell，Frederick W．and Richard Kinoshita．1969．Major economic trends in selected U oS．master plan fisheries：a graphical survey（unpublished manuscript）．Economic Research laboratory，National Marine Fisheries Service， National Oceanic and Atmospheric Administration，U．S．Department of Commerce， Washington，D．G．

Beverton，R．J．H．and S．J．Holt．1957．On the dynamics of exploited fish populations．Min，Agr．Fish and Food（U．K．）Fish Investigations，Ser．II， 19：1．－533．

Brow，E．E．1969．The fresh water cultured fish industry of Japan． Agricultural Experiment Station Research Report hill，University of Conga， March 1．969．

Canadian Fisherman．1967．Canadian fisheries statistics，196－1955． Canadian Fisherman，Vol．51ヶ，Ho．6，June 1907，pp．73－97．

Carson，Rachel I．IMpi．Food from the sea Conservation Bulletin No．33． UsS．Fish and Wildlife Service，U．S．Department of the Interior，Washington， D．G。p． 2 ．

Carson，Rachel I．1．962．Silent spring．Houston Mifilin，Boston．
Clary，Donald P．1．969．Demand and prices for shrimp（unpublished manuscript）． Economic Research I，oblatory，National Marine Fisheries Service，National oceanic and Atmospheric Administration，U．S．Department of Commerce，Washington，D．C．

Davis，Harold T．1941．The theory of econometrics．Principia Press， Bloomington．pp．209－2liI．

Do 11，John P．1971．An econometric e analysis of the U．S．shrimp market （unpublished manuscript）．Economic Research Laboratory，National Marine Fisheries Service，National Oceanic and Atmospheric Administration，Us， Department of Commerce，Washington，D．C．

Engel, Ernst. 1895. Die lebenkosten Belgischer arbeiter-familien fruher und jetzt. C. Heinrich Dresden.

Ezekiel, Mordecai. 1930. Methods of correlation analysis. John Wiley and Sons, Inc., New York.

Food and Agricultural Organization of the United Nations. 1969. The prospects for world fishery developnents in 1975 and 7.985. FAO Indicative World Pl.an. Rome, I.taly. June 1969.

Food and Agricultural Organizetion of the United Nations. Annual editions. Yearbook of fishery statistics, Rome, Italy.

Fox, William W., Jr. 1970. An exponential surplus-y:ield model for optimizing exploited fish populations. Tropical Atlantic Biological. Laboratory, Bureau of Comnercial Fisheries, UoS. Department of Interior, No. 123.

Gillespie, William Co, James C. Hite, and John L. Lytle. 1969. An econometric analysis of the U.S. shrimp industry. Economics of Farine Resources No. 2. South Carolina Agricultural Experiment Station, Clemson, South Carolina. December 1969。

Gordon, H. Scott. 1954. The economic theory of a comnon property resource: the fishery. Journal of Political Economy, Vol. 2, No. 2, April 1954.

Gulland, John A. 1970. The fish resources of the ocean. Technical Paper No. 97. Food and Agricultural Organization, United Nations, Rome, Italy.

Houthakker, H. S. and Lester D. Taylor. 1970. Consumer demand in the United States: analyses and projections. Harvard University Press, Cambridge, Massachusetts.

Iverson, E. S. 1968. Farming the edge of the sea. Fishing Nems (Books) Ltid, London.

Kussman, W. C. 1967. Processing of the comercial fish farming conference. Texas Agricultural Extension Service, Texas A\&il, College Station, Texas.

Lampe, H. C. and J. F. Farrell. 1905, Jhe New England fishery: function markets for finned food fish. I and II. Economics of Marine Resources, Nos. 2 and 3. University of Rhode Island.

Liaqat, Ali. 1968. World ravi and canned tuna situation. Commerciel Fisheries Review, Vol. 30, No. 2, Feb. 2, 19008.

Moiseev, P. A. 1969。 Iiving resources of the world ocean. Fishchevaya Promyshlennost, Moscow. 339 p.

Moore, Henry L. 1.917. Forecasting the yield and price of cotton. Mac Millen, New York.

Nash，Darrel A．1957．Demand for fish and fish products，with special reference to New England。 Recenti Developments and Research in Fisheries Economics，F。W．Bell and J．Es Hazelton（ed．）。 Oceana Publications，Inc．， Dobbs Ferry，New York．

Pearl，Raymond and L_{0} J．Reed．1923．On the mathematical theory of population growth．Me tron．Vol．3．pp．2－－19．

Pella，Jerone．1967．A study of methods to estimate the Schaefer model paraneters with special reference to the yellowfin tuna industry． Unpublished Ph．D．dissertation，University of Washington．

Purcell，J．Co and Robert Rauniker．1968．Analysis of demand of fish and shellfisho College of Agriculture Experiment Stations，Research Bulletin 51，University of Georgia，Experiment，Georgia．December 1966.

Ricker，E．W．1958．Handbook of computations for biological statistics of fish populations．Bull．Fish．Res．Bd．，Canada，11．9：1－300．

Ryther，John H．1969．Photosynthesis and fish production in the sea． Science，Vol．165，No．3901，October．3，1969，pp．72－76．

Ryther，John H．1970，Reply to Alverson，Longhurst，and Gullend＇s How much food from the sea？Science，Vol．168，No．3930，April 24， 1970.

Schaefer，Minner B．1954．Some aspectis of the dynamies of populations important to the manarement of the conmercjal marine fisheries．Interamerican Tropical Iuna Commission Eulletins 1 and 2．LaJolla，California．

Schaefer，Mi，Iner B．and Dayton Le Alverson．I968．World fish potentials．In The future of the fishing industry of the United States．University of Washington， Publication in Fisheries，New Series，Vol。IV．

Schultz，Henry．1938．The theory and measurement of demend，University of Chicago Press．Chicago，Illinois

Simpson，A．Ge 1969．McIluscan rescruces，Area reviews on living resources of the woild＇s ocean．FAO Indicative World Flan for Agricul．tural Development，Fisheries Laboratory，Burnham－on－Crouch．
Sokoloski，A．A。 and E，W．Carlson．1959．A price incentive plan for distressed fisheries（unpublished manuscript）．Economic Research Laboratory， National Marine Fisheries Service，National Oceanic and Atmospheric Admin－ istration，U．S．Department of Commerce，Washington，D．G。
Stone，Richard．1954．The measurement of consumers＇expenditures and behavior in the United Kingdon．Cambridge University Press，Massachasettis．

Suttor，Richard E．and Parviz Aryan－Nijando 1909．Demand for shellfish in the United States．Miscellaneous Publication 695，University of Maryland， College Park，Marylant，July 1969．

Tintrier, Gerhard. 19'32. Econometrics. Wiley and Sons, New York, pp. 203-2.1.1.
U.S. Departinent of Agriculture. 1964. World food budget 1970. Foreign Agricultural Economic Report, No. 19. U.S. Department of Agriculture, Foreign Region Analysis Division, Washington, D.C. October 1.961.

UoS. Department of Agricultiare. 1953. World population and income by countries, $1950-55$ and projections to 1980 (working paper). Econonic Research Service, U.S. Departinent of Agriculture. October 1958.
U.S. Department of Commorce. 1970. Basic economic indicators...-salmon. Economic Reseacch Laboratory, National Marine Fisheries Service.
U.S. Departinent of Commerce. 1970. A progran of research for the catifish faming industry. l'echical Asbistance Project, Esonomic Develoment Adininistration, Sept. 1970.
U.S. Departinent of Health, Education, and Welfare. 1966. National register of shellfish production areas. Public Health Service, U.S. Department of Health, Education and Welfare.
U.S. Department of Interior. Annual editions. Fisheries of the United States.
U.S. Department of Interior. Annual editions. Fishery statistics of the United States. Washingtor, D.C.

Waugh, Frederick V. and Virgil. J. Norton. 1969. Sone analyses of fish prices. University of Rhode Island Agricultural Experiment Station Bulletin LOI. WRI Departinent of Resource Economics jn cooperation with Division of Economic Besearch, Bureau of Commercial Fisheries, U.S. Department of the Interior.

Working, Holbrook. 1922. F'ectors determining the price of potatoes. Experinent Station Bulletin 10. University of Minnesota.

Wold, Herman and Iars Juraen. 1953. Demand analysis. Wiley and Sons, New York.

$$
4
$$

$$
1
$$

[^0]: Z/ Equivalent to Live weight
 E/U.S. ox vessel price : Consumer Price Index (all commodities)
 3/ Heads-off basis
 If Actually no exchange tekes place at the ex vessel level for menhaden, the principal U.S. species. This is an estimated prico womparetive purposes. pish meal can be made from many sources. In the U.S., marhaden and hemring make up wout 95% of production, the remainder coming from undersized food fich and focm blent offal. It is likely that the 95% fure is Iow for nost major producing combios.
 E/ Meat weight basis

[^1]: $\frac{1 /}{2 /}$
 1956
 1966
 Product weight

[^2]: J/ 1956 date
 2/ No export data evaileble; data probsbly overstates consumtion
 3/ Product weight
 I/
 1958

[^3]: Man, however, can destroy the natural productivity by such actis as overfishine and pollution.

[^4]: 2.5 United States Potential: Maximum Sustainable Yield in Waters

 Adjacent to the U.S.
 Marine areas adjacent to the United States are unmatched in biological productivity of fish species of commercial importance. Because of this, the United States fishing industry has concentrated on

[^5]: 1
 It should be mentioned that an alternative apprach to the logistic model (or variations on the logistic) for exploring the effect of fishing on catch is the dynamic pool or yield per recruit model. This model. uses the relationship among growth, natural mortality and fishing mortality to compute the yield in weight theoretically obtainable from a constant number of recruits entering the fishery. For a dis.. cussion of: this approach, see R. J. H. Beverton, and S. J. Holt, "On the Dynanics of Exploited Fish Populations," Min. Agr., Fish and Food (U.K.), Fish. Investig., Ser. II, 19: 1-533, 1957 and E. W. Ricker, Handbook of Computations for Biological Statistics of Fish Populations. Bull. Fi.sh. Res. Bd. Canada, 119: 1-300, 1958.

[^6]: 4
 The constants (a and b) j.n 3.12 differ from those in 3.7 , since the y 's and x 's in 3.12 are normalized.

[^7]: 5/ If each operator could ignore the actions of his competitors, he would increase production only to the point where price was equal to marginal cost. This would provide net profits to the operators. But, since there is free access to the common resource, these profits would attract additional operators So the position where price equals marginal cost would be unstable. The industry voula expend untill price equated average cost. This position would be stavle; there would be no incentive for further expansion.

[^8]: 2/
 k was obtained by dividing total consumption in the countries studied by total world production in the 1965-1967 base period.

[^9]: 6 Cleary's study showed lon crosserlasticities for shrimp and other shellfish. Bell's study showed no statistically significant crosselasticity betwoen tuna and salmon.

[^10]: 7/
 Responsibility for the conclusions derjved by using these projections rests with the authors.
 $8 /$
 The variables used in the fith meal model are defined in Chapter 4.

[^11]: 3 Unfortunately, these projections do not include Mainland China. It is a leading producer and consumer of fishery products, however, no data have been supplied publicly since 1960. Even in prior years only aggregated data are available. In the mid-1950's approximately one-third of the then 2 to 3 million metric tons annual catch was freshwater fish, thus not competing for the marine resource. To the extent that China competes for the marine resources, both in landings and consumption, the current projections should be modified. (See FAO Yearbook of Fishery Statistics through 1960 for Mainland China fishery statistics.). The probable impact of including Communist China, if data were available, would be to slightly modify the other food fish category. A discussion of the principle points concerning the projections is given, together with (1) a table showing world and United States projections of quantity, price and related factors, (2) a chart showing world consumption both past and projected, (3) a similar chart for the U.S. and (4) a chart showing world supply, demand projections, price and MSY. To keep the chapter within a reasonable size, only the highlights of each species group are given.

[^12]: ${ }^{4}$ The reader should observe that our projections often show some difference in real price between the world and U.S. This is due to species mix problems, temporary dis. equilibrium, local demand, and data problems as well as transportation costs. See Section 8.7 for a discussion of some of these problems.

[^13]: 5 Government programs are presently under way to discover a new technology for harvesting central Pacific skipjack. If successful, these programs will help moderate projected real price increases.

[^14]: Faverege of actuel date.
 *For an explanation of differences in real price between the U.S. and the world see footnote 4 of Chapter 6 . *W World maximum sustainable yield (MSY) $=129$ million pounds
 I. Projections are identical to those obtained under assumptions because projections are held at Fishery management is in force (see text for discussion).
 θ^{\prime}

[^15]: ${ }^{6}$ See section 6.22 for a discussion of the use of the supply potential for herring-like fish.

[^16]: 1/ Under LDR-DIE Assumptions
 2/ Average of actual
 3/ Estimated for 1985, 1990 and 2000 based on a gradual decline in the resource base.
 4/ Without additional aquaculture
 ㅎ/ Includes calico scallops

[^17]: 2/ This statement should be qualified by two possibilities. First, nations with high social discount rates (i.e., prefer present to future consumption) may rationally overfish a resource. Second, overfishing may be necessary to expand employment in areas of low opportunity cost. The latter policy is dangerous because of the possibility of total collapse of the resource thereby rendering all fishermen unemployed.

[^18]: 4/ By externalities ve mean a situation where the action of using common property resources, such as water, affects other consumers.

[^19]: $5 /$ It should be rointed out that many conservaitionistis also plece a high value on zurvivel of the species. This mind of sociel chode should also be reccgnized.

