

# This document is discoverable and free to researchers across the globe due to the work of AgEcon Search. 

## Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

THE PRODUCTIVITY OF THE SEA AND MALTHUSIAN SCARCITY

by<br>Frederick W. Bell<br>and<br>Ernest W. Carlson

Working Paper No. 48

$$
\text { April } 1970
$$

## ABSTRACT.

The increasing pressure of world population on natural resources has once again given rise to the spectre of Malthusian stagnation. The purpose of this Article is to examine the Malthusian doctrine of diminishing returns to natural resources using the fisheries as a case study. For the ten stocks of fish studied, it was found that Malthusian scarcity is quite prevalent. That is, fishing productivity significantly declined with expansion in effort. This hypothesis was verified for both the steady state and stock adjustment models. Without major discoveries in controlling ocean environment, it is quite apparent that the sea will be subject to Malthusian scarcity as the pressure of population increases.

## The Productivity of the Sea and <br> Malthusian Scarcity

by Frederick W. Bell
Ernest W. Carlson*

## Introduction

The increasing pressure of world population on natural resources has once again given rise to the spectre of Malthusian stagnation. The doctrine of diminishing returns to natural resources has been supported by such conservationists as Osborn [9] and Vogt [16] and denied by such economists as Barnett and Morse [1]. In the wake of increasing difficulties with producing enough food from land areas throughout the world [3] [4] [7] [10] increasing attention is being given to the sea as a source of food. Presently, only one percent of the world's food supply is obtained from the sea which occupies 70 percent of the earth's surface. Turvey [15];

Smith [14]; and Plourde [11] have recently written articles on marine economics, a subject that is getting increasing attention from economists. The purpose of this article is to examine the production economics pertaining to the fishery resources of the sea. Does the doctrine of increasing

[^0]scarcity or diminishing returns apply to marine life which has often been suggested as a panacea for the world's food needs? The answer to this question will put into sharp focus the potentialities of the sea and also help to lend empirical validity to some of the common assumptions used in the area of marine economics.

## The Production Function for the Sea: Ecology and Man

The taking of marine life from the ocean represents a direct intervention of man in the natural ecological system of the oceans. In effect, man creates an initial disequilibrium to which the ecological system must adjust (i.e., return to a new equilibrium). Schaefer and Beverton [13] have observed that the stock of marine life (i.e., fish, etc.) is increased by addition of recruits (from reproduction) and by the growth of the individuals in the stock. The stock is diminished by natural deaths. When man intervenes, the stock is further diminished by man-made mortality in the form of fishing effort. A general mathematical expression for the dynamics of this ecological system is the following (including man as a predator): ${ }^{1}$
(1) $\frac{1 d P}{P d t}=\alpha P+\beta P-\gamma P-F(E)+U$

1. Of course, this is a narrowly defined ecological system expressing a relation between man and the one species he is exploiting. The total ecological system extends to other species, the physical environment, etc.
where,
$\begin{aligned} & P= \text { stock of marine life (fish) of harvestable } \\ & \text { size (biomass); }\end{aligned}$
$\alpha=$ rate of recruitment;
$\beta$. rate of growth of stock;
$\gamma=$ rate of natural mortality;
$F(E)=$ rate of loss due to fishing effort;
$U=$ stochastic term to designate random environmental changes where Cov (PU) $=0$.
$\alpha, \beta$, and $\gamma$ are each a general function of the biomass of the population. Let us assume that the rate of loss to fishing is proportional to fishing effort, E. "E" represents the combined inputs of capital and labor to the fishery:
(2) $F(E)=g E$

We may combine $\alpha, \beta$, and $\gamma$
(3) $\delta=(\alpha+\beta-\gamma)$

Substituting (2) and (3) into (1), we have,
(4) $\frac{\mathrm{ldP}}{\mathrm{Pdt}}=\delta \mathrm{P}-\mathrm{gE}+U$

If the population or stock were in a steady state (i.e., ecological balance) we would have
(5) $\frac{1 d P}{P d t}=0$

In effect, (5) represents an equilibrium between natural growth and death on the one hand and man-made mortality
on the other. Under the steady state assumption, (4) becomes,
(6) $\mathrm{gE}=\delta \mathrm{P}+\mathrm{U}$

Also, the catch, $Q$, from fishing effort may be expressed as (7) $Q=P F(E)=P(g E)$

The question remains as to the behavior of $\delta P$. It is hypothesized that $\delta P$ is a single valued, monotonically decreasing function of $P$, that should be zero at the environmentlimited upper value of $P$. That is, the fishery is constrained either by food supply or other environmental factors to an upper limit. The behavior of $\delta P$ may be approximated ty the Verhulst-Pearl population growth law (i.e., logistic growth) ${ }^{2}$;
(8) $\quad \delta P=\psi\left(P_{u}-P\right)$
$\mathrm{P}_{\mathrm{u}}$ is the upper limit of the population while $\psi$ is a parameter. When $P_{u}=P, \delta$ equals zero. Thus, growth discontinues.
Substituting (8) into (4) we have
(9) $\frac{1 d P}{P d t}=\psi\left(P_{u}-P\right)-g E+U$
2. Since $d P / P d t=\psi\left(P_{u}-P\right)$, we may multiply through by $P$ and obtain a quadratic function or $d P / d t=\psi P u P-\psi P^{2}$. Hence, the change in the population is a parabolic function of the population size. This automatically implies that the population grows in a logistic manner.

We may define catch per unit of effort by dividing (7) by $E$ (10) $\frac{Q}{E}=g P$

Equation (10) may also be solved in terms of $P$
(i1) $P=\frac{Q}{g E}$
Setting (9) equal to zero (i.e., steady state assumption) and substituting (11) for $P$, we have
(12) $\psi \quad\left(P_{u}-\frac{Q}{g E}\right)-g E+U=0$

Solving in terms of $Q$, we have
(13) $Q=a E-b E^{2}+\varepsilon$
where $a={ }_{g P}$ and $b=\left(g^{2} / \psi\right)$ and $\varepsilon=\frac{g U E}{\psi}$
Therefore, under the above assumptions, we have reached the
hypothesis that man's intervention in the ecological system follows
a parabolic relation between catch and inputs of capital and
labor or E. ${ }^{3}$ As "E" is increased,
3. Within a wide range of observation, this conclusion does not apply to Gulf of Mexico shrimp. Shrimp found in the Gulf of Mexico have a one year life cycle. That is, this year's shrimp lay a large quantity of eggs and then die. Therefore, this year's catch has no effect on the size of the population which is based upon the number of eggs layed. The relation between catch and effort is likely to be log-linear or $\mathrm{Q}=\mathrm{AE}{ }^{\alpha}$, where $0<\alpha<1$. For this relationship, it is not possible to actually reduce physical yields by further fishing effort.

In addition, it should be pointed out that the hypothesis developed in (13) is usually called the Schaefer mode [12]. An alternative to the Schaefer model has been developed by Beverton and Holt [2]. The latter model requires that we know many individual parameters such as $\alpha, \beta$ and $\gamma$. Given the available data, we can only approximate the aggregate effects of $\dot{\alpha}, \beta$ and $\gamma$.
the biomass, $P$, is reduced. Dividing (13) by $E$, we have the average productivity of effort or

$$
\begin{equation*}
\frac{Q}{E}=a-b E+\frac{\varepsilon}{E} \tag{14}
\end{equation*}
$$

Also, differentiating (13) with respect to $E$ we have the marginal productivity of effort or
(15) $\frac{\partial Q}{\partial E}=a-2 b E+e$

Setting (15) equal to zero, we find that there is a specific quantity of capital and labor (i.e., effort) associated with the maximum sustainable yield or production (MSY)
(16) $E_{M A X}=\frac{a}{2 b} \quad\binom{$ Effort needed }{ to achieve MSY }
(17) $Q_{M A X}=\frac{a^{2}}{4 b}$

Maximum
( sustainable ) yield(MSY)

It should be recognized that (13) represents a steady state condition. If the steady state assumption does not hold, we shall have a change in the pupulation or
(18) $\Delta P=\left(Q_{E}\right)_{t}-Q_{t}=a E_{t}-b E^{2}+\varepsilon \varepsilon_{t}-Q_{t}$

Therefore, if the actual (observed) catch, $Q_{t}$, is not equal to the equilibrium catch, $\left(Q_{E}\right)_{t}$, some changes in the stock or population will occur. Let us specify the degree of stock adjustment by the following relation:

$$
\begin{equation*}
Q_{t}-Q_{t-1}=m\left[\left(Q_{E}\right)_{t}-Q_{t-1}\right] \tag{19}
\end{equation*}
$$

If we assume the stock to be in equilibrium at $Q_{t-1}$, then actual catch $Q_{t}$, will approach equilibrium catch $\left(Q_{E}\right)_{t}$ by $\Pi$. If $\Pi=1$, the adjustment will be complete and the steady state assumption will hold. Substituting (13) into (19) we have
(20) $Q_{t}-Q_{t-1}=\pi\left[a E_{t}-b E_{t}^{2}+\varepsilon_{t}-Q_{t-1}\right]$
or

$$
\begin{equation*}
Q_{t}=\pi a E_{t}-\pi b E_{t}^{2}+(1-\pi) Q_{t-1}+\pi \varepsilon t \tag{21}
\end{equation*}
$$

Dividing through by $E_{t}$, we have
(22)

$$
\frac{Q_{t}}{E_{t}}=\pi a-\pi b E_{t}+(1-\pi) \frac{Q_{t-1}}{E_{t}}+\frac{\pi \varepsilon_{t}}{E_{t}}
$$

Thus, we have two models that can be tested. They are specified in (15) and (22) and represent alternative tests of this Malthusian scarcity hypothesis. Before subjecting the model to empirical testing, let us first consider just how the production economics for the sea differ from that of the land.

Malthusian Scarcity: Land Versus Sea
Figure 1 contrasts the famous "law of variable proportions" [5] with what we shall call the "law of ecological dynamics" as they are applied to the land and sea respectively. The classical economists such as Malthus were convinced that diminishing returns and stagnation were the logical result of the expansion in capital and labor applied to land and

Figure 1

## Production Functions <br> for Land and Sea


other fixed resources. Barnett and Morse [1, p. 172] have shown that this hypothesis is not verified by examination of the data. Except for a brief reference to commercial fishing, Barnett and Morse did not test this hypothesis for production from the sea. 4 In contrast to the law of variable proportions, the law of ecological dynamics indicates that both marginal and average output per unit of effort (i.e., dosages of capital and labor) will decline throughout. That is, there is no phase of increasing returns. Also the biomass which is analogous to the fixed factor, land, will vary in size depending on the level of exploitation. Theoretically we would expect that the sea would obey the classic Malthusian law of scarcity.

The conclusion reached by Barnett and Morse which rejects the Malthusian doctrine of increasing scarcity may not apply in the case of the sea since man has no way of controlling the environment or the parameters, $\alpha, \beta$ and $\gamma$ and $P_{u}$ as yet. That is, man has not learned to alter the quality of the fixed factor itself in the case of the sea. This is
4. The authors show some data for commercial fishing that tend to contradict the scarcity hypothesis. However, the data are too aggregative and of poor quality for the early years. Also, no data on capital inputs were available.
in contrast to the qualitative improvement of the land through fertilization and hybrid seed. For agriculture, the total product function has shifted upward over time. The chances of altering environmental parameters affecting the biomass in the sea are remote; but theoretically possible. For example, an increase in the growth rate of the biomass, sor the upper limit of the population, $P_{U}$, would shift the total product function upward and raise the maximum potential production, (see equation 17).

## Empirical Test of the Malthusian Law of Increasing Scarcity Applied to the Sea

The hypotheses expressed in (14) and (22) regarding the declining productivity of fishing effortwere tested for a number of species in the Atlantic Ocean, Pacific Ocean, Berring Sea, Gulf of Mexico, Caribbean area and Chesapeake Bay. Based on available data, we selected 10 fishery stocks shown in Table 1. These stocks represent a fair sample of marine life: (1)Pelagic (i.e., swim in open sea) - tuna, sardines, menhaden; (2) Demersal (i.e., bottom swimming) haddock, halibut and (3) Crustacean (i.e., shellfish) shrimp, lobsters and crabs. Except for northern lobsters, menhaden and sardines, all these species were fished by many nations of the world.

Table 1
Least-Squares Estimates of the Relation Between Catch
Per Unit of Effort and Aggregate Effort for Selected
Fisheries (Steady State Assumption)*
(catch per unit of effort is dependent variable)

|  | Species | Constant | Effort <br> (E) <br> b | Mean <br> Annual <br> Seawater <br> Temperature | Period of Observation | $\mathrm{R}^{2}$ | DW | Q MAX <br> (thousands of metric tons) | Measure of Effort |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1. Yellowfin Tuna-E. Pacific |  | .111 | $\text { -. } 016$ | -- | 1935-67 | . 73 | . 89 | 87.3 | Boat days |
| 2. | Haddock-N.W. Atlantic | 2.92 | -. 020 | -- | 1934-61 | . 55 | 1.22 | 48.4 | Boat days |
|  |  | (11.58) | (-5.48) |  |  |  |  |  |  |
| 3. Sardine-E. Pacific |  | 1002.6 | -. 476 | -- | 1932-50 | . 38 | . 75 | 526.3 | Boat months |
| 4. Halibut-N.E. Pacific |  | 165.4 | -2.45 | - | -1930-68 | . 66 | . 48 | 12.7 | Skates |
|  |  | (17.15) | (-8.49) |  |  |  |  |  |  |
| 5. Yellowfin Tuna-Caribbean |  | 2.86 | -. 00011 | -- | 1956-65 | . 49 | 1.53 | 8.4 | Hooks |
|  |  | (5.76) | (-2.62) |  |  |  |  |  |  |
| 6. Northern Lobster-N.W. Atlantic ${ }^{1}$ |  | -48.4 | -. 000024 | 2.13 | 1950-66 | . 96 | 2.05 | 11.6 | Traps |
|  |  | (-1.43) | (-3.37) | (3.58) |  |  |  |  |  |
| 7. | Shrimp-W. Atlantic and Gulf of Mexico 2 | $2.55$ | $\begin{aligned} & -.488 \\ & (6.94) \end{aligned}$ | -- | 1951-66 | . 76 | 1.46 | N. A. | Vesseltons |
| 8. | King Crab-Berring Sea | 13.65 | -. 0.00063 | -- | 1959-67 | . 83 | 1.85 | 16.0 | Tan days |
|  |  | (13.83) | (-6.28) |  |  |  |  |  |  |
| 9. | Menhaden-Gulf of Mexico | 2.01 | -. 0000017 | - | 1946-68 | . 16 | 1.99 | 270.0 | Vessel |
|  |  | (9.99) | (-1.94) |  |  |  |  |  | weeks |
| 10. | Menhaden Atlantic | 3.84 | -. 0017 | -- | 1946-68 | . 77 | 1.44 | 98.6 | Vessel |
|  |  | (15.74) | (-8.19) |  |  |  |  |  | weeks |

*parentheses indicate t-values

1. QMAX computed while holding seawater temperature constant at $46.0^{\circ} \mathrm{F}$.
2. Shrimp is an annual crop hence the model developed doesn't appear applicable. Instead the following equation was estimated: $Q=A E^{\alpha}$ where $0<\alpha<1$. See footnote 2.
Source: Division of Economic Research
Bureau of Commercial Fisheries

Table 1 shows the least-squares estimates of (14) fitted to the date on ten fishery stocks throughout the world. The estimate of "b" was negative in every case and statistically significant at the five percent level for nine stocks. However, yellowfin tuna, sardines and halibut showed evidence of strong positive autocorrelation which somewhat detracts from the statistical significance of the results. For the steady state model, the data overwhelmingly indicate that the productivity of each fishery (Q/E) significantly declines with expansion in effort (i.e., inputs of capital and labor).

Table 2 shows the least-square estimates of the parameters of (22), the stock adjustment model. The estimate of $\Pi b$ was negative for all nine stocks (i.e., shrimp was excluded because stock adjustment does not apply) and statistically significant at the five percent level for seven stocks. The derived estimate of "b" was negative for seven out of nine fishery stocks. ${ }^{5}$ In estimation of (22), significantly positive autocorrelation was only prevalent for tuna.

Our a priori expectation is that (1-ा) or the parameter for the lagged variable would be close to zero for species that grow rapidly and have high reproduction rates and close to unity for species that grow slowly and have low reproduction rates. In general, the results confirmed our expectations. For
5. The derived estimate of " $b$ " was obtained by dividing ${ }_{I} b$ by $\pi_{0}$ II may be derived from estimated parameters of the variable $\left(Q_{t-1} / E\right)$. See equation 22.

Table 2
Least-Squares Estimates of the Relation Between Catch Per Unit of Effort and Aggregate Effort and Lagged Catch Per Current Unit of Effort for Selected Fisheries (Stock Adjustment. Assumption)*
(catch per uni of effort is dependent variable)

|  | Speci.es | Constant <br> II a | Effort <br> (E) <br> IIb | $\begin{aligned} & \frac{U_{t-1}}{E} \\ & (1-\pi) \end{aligned}$ | Mean <br> Annual Seawater Temperature | Period of Observation | $\mathrm{R}^{2}$ | DW | $Q_{\text {MAX }}$ <br> (thousands of metric tons) | Measure of Effort |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1. | Yellowfin Tuna <br> E. Pacific | $\begin{aligned} & \therefore 096 \\ & (6.45) \end{aligned}$ | $\begin{gathered} -.014 \\ (-5.13) \end{gathered}$ | $\begin{gathered} .134 \\ (1.03) \end{gathered}$ | -- | 1935-67 | . 74 | . 96 | 86.3 | Boat days |
| 2. | Haddock <br> N.E. Atlantic | $\begin{gathered} 1.96 \\ (4.03) \end{gathered}$ | $\begin{gathered} -.012 \\ (-2.60) \end{gathered}$ | $\begin{gathered} .288 \\ (2.24) \end{gathered}$ | -- | 1935-61 | . 62 | 1.69 | 51.1 | Boat days |
| 3. | Sardine <br> E. Pacific | $\begin{array}{r} 525.8 \\ (3.00) \end{array}$ | $\begin{gathered} -.339 \\ (-2.98) \end{gathered}$ | $\begin{gathered} .734 \\ (4.03) \end{gathered}$ | -- | 1933-50 | . 70 | 2.64 | 352.9 | Boat months |
| 4. | Halibut | $\begin{gathered} 50.1 \\ (2.01) \end{gathered}$ | $\begin{gathered} -.063 \\ (-1.45) \end{gathered}$ | $\begin{gathered} .644 \\ (4.88) \end{gathered}$ | -- | 1931-68 | . 80 | $1.90{ }^{\circ}$ | 12.7 | Skates |
| 5. | Yellowfin Tuna Caribbean | $\begin{gathered} 3.85 \\ (6.17) \end{gathered}$ | $\begin{aligned} & -.00015 \\ & (-3.80) \end{aligned}$ | $\begin{gathered} -.320 \\ (-2.08) \end{gathered}$ | -- | 1957-65 | . 71 | 1.74 | 16.5 | Hooks |
| 6. | Northern Lobster <br> N.W. Atlantic | $\begin{gathered} -.789 \\ (-3.15) \end{gathered}$ | $\begin{aligned} & -.000012 \\ & (-1.75) \end{aligned}$ | $\begin{gathered} -.019 \\ (-3.06) \end{gathered}$ | $\begin{gathered} 1.26 \\ (2.85) \end{gathered}$ | 1951-66 | . 97 | 2.10 | 11.6 | Traps |
| 7. | Shrimp 2, W. Atlantic and Gulf of Mexico | N.A. | N.A. | N.A. | (2.85) | -- | -- | -- | -- | -- |
| 8. | King Crab Berring Sea | $\begin{gathered} 12.93 \\ (3.13) \end{gathered}$ | $\begin{aligned} & -.00074 \\ & (-4.45) \end{aligned}$ | $\begin{aligned} & .278 \\ & (.425) \end{aligned}$ | -- | 1960-67 | . 81 | 1.71 | 17.8 | Tan days |
| 9. | Menhaden - Gulf of Mex ico | -1.81 $(5.65)$ | $\begin{aligned} & -.0000018 \\ & (-1.97) \end{aligned}$ | $\begin{aligned} & .146 \\ & (.809) \end{aligned}$ | -- | 1947-68 | . 19 | 2.30 | 242.1 | Vessel weeks |
| 10. | Menhaden-Atlantic | $\begin{gathered} 2.73 \\ (2.55) \end{gathered}$ | $\begin{array}{r} -.0012 \\ (-2.47) \end{array}$ | $\begin{gathered} .309 \\ (1.06) \end{gathered}$ | -- | 1947-68 | . 78 | 1.90 | 102.1 | Vessel weeks |

*parentheses indicates t-values

1. QMAX computed on the basis that $\Pi=0$ since ( $I=\Pi$ ) is negative and conflicts with theoretical model.

Also seawater temperature was held constant at $46.0^{\circ} \mathrm{F}$.
2. Stock adjustment technique is not applicable since shrimp has an annual life cycle. See text for fuller description.

Source: Division of Economic Research
Bureau of Commercial Fisheries
example, Eastern Pacific yellowfin tuna and menhaden grow very rapidly and (1-ח) is close to zero (i.e., not statistically different from zero). Sardines and halibut grow slow ly and for them ( $1-\Pi$ ) is closer to unityand statistically significant. Haddock grows slowly but reproduces at high levels hence we observe intermediate levels of (1-I). The sign for (1-I) conflicts with the theoretical model for northern lobster and yellowfin tuna Caribbean. It was hypothesized that the sign of (1-II) for northern lobsters would be close to unity given the slow growth of the species.

For both of the alternative specifications [i.e., (14) and (22)] it would appear that Malthusian scarcity is quite prevalent in the case of the sea based upon our sample. The results also verify the logistic growth models employed by Turvey [15]; Smith [14] and Plourde [11] in formulating marine production economics. Finally, Tables 1 and 2 show the maximum sustainable yield for each fishery stock using equation (17). Prognosis: Food from the Sea

Food supplies can certainly be increased by more intensive development of the world's fisheries. However, we have shown that for the species analyzed more intensive exploitation of the sea will result in diminishing returns to both capital and labor unless accompanied by changes in the ecological environment itself. Diminishing returnsimply a rising cost industry with, as we have shown, a maximum production potential. Contrary to wide belief, the quantities of food -available from the sea are not "unlimited."

It has been estimated by the Food and Agricultural Organization that the world is now consuming approximately 50 percent of the maximuin sustainable yield from the sea which is about 120 million metric tons [6]. This food is at the higher levels of the food chain and does not include plankton, nor a whole range if sma!l fishes which are widely dispersed and uneconomical to harvest. For example, the expense of filtering or centrifuging plant plankton from seawater makes its recovery uneconomical nor is the raw material obtained a particularly good one [8]. If the world's population doubles by the year 2000, we will have exhausted the total potential of the sea (i.e., reached MSY for fish presently consumed in various quantities) assuming a constant per capita fish consumption. Substantial income effects will, of course, hasten the day we reach a maximum utilization of the sea. Without major discoveries in controlling ocean environment, it is quite apparent that the sea will be subject to Malthusian scarcity as the pressure of population increases. ${ }^{6}$ It is doubtful that the same breakthroughs in agriculture can be easily duplicated for the sea because of the difficulty of controlling environmental variables.

[^1]Findlly, because production from the sea is a parabolic function of effort and the resource is common property in nature, the danger of oyerexploitation is a distinct possibility. That is, further increases in effort may actually reduce physical production. Therefore, in order to exploit the maximum potential of the oceans, it is necessary that proper fishery management be instituted.

1. H. J. Barnett and C. Morse, Scarcity and Growth: The Economics of Natural Resource Availability, Baltimore, 1963.
2. R. J. H. Beverton and S. J. Holt, On the Dynamics of Exploited Fish Population, London, 1957.
3. J. Bonner and J. Weir, The Next Hundred Years, New York, 1957.
4. G. Borgstrom, The Hungry Planet, New York, 1965.
5. J. M. Cassels, Explorations in Economics, New York, 1936.
6. F.A.O., The Prospects for World Fishery Development in 1975 and 1985, Rome, 1969.
7. G. Myrdal, "Will We Prevent Mass Starvation?" The New Republic, April 24, 1965.
8. National Academy of Sciences - National Research Council, Resources and Man, San Francisco, 1969.
9. F. Osborn, Limits of the Earth, Boston, 1953.
10. W. Paddock and P. Paddock, Famine 1975, Boston, 1967.
11. C. Plourde, "A Simple Model of Replenishable Natural Resource Exploitation," American Economic Review, (forthcoming).
12. M. B. Schaefer, "Some Aspects of the Dynamics of Populations Important to the Management of Commercial Marine Fisheries," Inter-American Tropical Tuna Commission, Bulletins 1 and 2, 1954.
13. M. B. Schaefer and R. J. H. Beverton," Fishery Dynamics Their Analysis and Interpretation," In the Sea, M. N. Hill, (ed.), New York, 1963, pp 464-83.
14. V. L. Smith, "The Economics of Production from Natural Resources," American Economic Review, 58, 409-31.
15. R. Turvey, "Optimization and Suboptimization in Fishery Regulation," American Economic Review, March 1964, 54, 64-76.
16. W. Vogt, Road to Survival, New. York, 1948.

## WORKIIG PAFER SERIES

Division of Econo:nic Researci Bureau of Commercial Fisheries

1. An Application of an Investment Model to Channcl Catfisi Farming by RI Thompson and F. Mange. February 1969.
2. The Developaent of Catfish as a Farn Crop and an Estination of Its Economic Adaptability to Radiation Processing by D. Nash and M. Miller. February 1969
3. Desigñ Study: An Optimum Fishing Vessel for Georges Bank Groundfish Fishery by A: Sokoloski (Project Monitor) May 1959
4. The Relation between Vessel Subsidy Percentages and the Rate of Return on Investment for Various Technologies and Scale Levels: The Haddock Fisnery by D. Nash, A. Sokoloski and F. Bell (Project Monitors). February 1969
5. An Economic Justification for Recommended Legislative Changes in the 1964 Fishing Fleet Improvement Act by F. Bell, E. Carlson, D. Nash and A. Sokoloski. February 1969
6. The Economic Impact of Current Fisheries Nanagement Policy on the Comnercial. Fishing Industry of the Upper Great Lakes by D. Cleary. October 1908
7. Cost and Earnings in the Boston Large Trawler Fleet by B. Noetzel and V. Norton. June 1969
8. Some Elements of An Evialuation of the Effects of Legal Factors on the Utilization of Fishery Resources by A. Sokoloski. February 1969
9. A Report on the Economics of Polish Factory Tramlers and Freezer Trawlers, by B. Noetzel. February 1969
10. An Inventory of Demand Equations for Fishery Products by D. Mash and F. Bell. July 1969
11. : Industry Analysis of West Coast Flounder and Sole Products and an Estimation of Its Economic Adaptability to Radiation Processing by D. Nash and M. Miller. October 1959
12. Bio-Economic Model of a Fishery (Primarily Demersal) by E. Carlson. - March 1969
13. The Factors behind the Different Growth Rates of U.S. Fisheries by F. Bell. January 1969
14. A Price Incentive Plan for Distressed Fisneries by A. Sokoloski and E. Carl.son. April 1969
15. Demand and Prices for Shrimp by D. Cleary. June 1969
16. Industry Analysis of Gulf Area Frozen Processed Sirrimp and an Estimation of Its Economic Adaptability to Radiation Processing by D. Nash, M. Miller and F. Schuler. October 1969
17. An Economic Evaluation of Columbia River Anadromous Fish Programs by J. Richards. February 1969
18. Economic Projections of the World Demand and Supply of Tuna, 1970-90 by F. Bell. June 1969
19. Economic Feasibility of a Seafood Processing Operation in the Inner City of Milwaukee by D. Cleary. April 1969
20. The 1969 Fishing Fleet Improvement Act: Some Advantages of its Passage by the Division of Economic Research. July 1969
21. An Economic Analysis of Policy Alternatives for Managing the Georges Bank Haddock Fishery by L. Van Meir. Nay 1959
22. Sone Analyses of Fish Prices by F. Wauch and V. Norton. May 1969
23. Some Econcmic Characteristics of Pond-Raised Catfisn Enterprises by J. Greenfield. June 1969
24. Elements Crucial to the Future of Alaskan Commercial Fisheries by D. Nash, A. Sokoloski, and D. Cleary. August 1959
25. Effects on the Shrimp Processing Industry of Meeting the Requirements of Tholesome Fisnery Products Legislation by D. Nash and M. Miller. June 1969
26. Benefit Cost Analysis of a Proposed Trawl Systems Program by M. Miller. June 1969
27. An Economic Analysis of Future Problems in Developing the World Tuna Resource: Recommendations for the Future Direction of the BCF Tuna Program by F. Bell. July 1969
28. Economic Efficiency in Common Property Natural Resource Use; A Case Study of the Ocean Fishery by D. Bromley. July 1969
29. Costs, Earnings and Borrowing Capacity for Selected US Fisheries by A. Sokoloski, E. Carlson, and B. Noetzel. September 1969
30.- Fish Cycles: A Harmonic Analysis by F. Wauzh and M. Miller. September 1969
30. Benefit-Cost Analysis as Appifed to Commercial Fisheries Procrams by F. Bell. October 1969
31. Economic Study of San Pedro Wetfish Doats by W.F. Perrin and B. Noetzel. October 1.969
32. A Survey of Fish Purchases by Socio-Econcmic Cnaracteristics First Quarterly Report - February, Harch, April, 1969 by D. Nash. October 1969
33. A Survey of Fish Purchases by Socio-Econcmic CharacteristicsSecond Quarterly Report - May, June, July, 1959 by D. Nash. Oct.ober 1969
34. A Guide to Benefit-Cost Analysis for BCF Programs by F. Bell. Decewbir 1969
35. Estimation of the Economic Benefits to Fishermen, Vessels; and Society from-Limited Entry: A Generalized Model Applied to the Northern Lobster Fishery by F. Bell. March 1970
36. Major Econcmic Trends in Selected U.S. Master Plan Fisheries: A graphical Survey by R. Kinoshita and F. Bell. December 1959
37. Market Potential for the San Pedro Wetfish Fishery by D. Nash December:1969
38. Pertinent U.S. Trade Barrier Information by "Master Plan" Fisheries by J. Micuta. January 1970
39. An Analysis to Determine Optimum Shrimp Fishing Effort by Area by V. Arnold. January 1970
40. A Survey of Fish Purchases by Socio-Economic Charecteristics, Third Quarterly Report - August, September, October, 1969 by D. Nash. January 1970
41. Investigation of Fish Landing Patterns at Stonington, Connecticut with a View to Development of New Narkets by D. Nash. February 1970
42. A Survey of Maximum Sustainable Yield Estimates on a Vorld Pasis for Selected Fisheries by R. Fullenbaum. February 1970
43. Methods for Calculating Civilian Per Capita Consumption of Fresh and Frozen Shellfisi by S. Erickson. February 1970
44. The Organization of the California Tuna Industry: An Econcmic Analysis of the Relations Between Performance and Conservation in the Fisheries by R. Marasco. March 1970
45. Who Buys Fresh and Frozen Seafoods in the United States-A quantitative Survey of Fish Buying Patterns by Darrel A. Nash. (not printed)
46. Projections of Certain Fishery Products of Cormercial Importance in Louisiana by D. Nash. April 1970
47. The Productivity of the Sea and Nalthusian Scarcity by F. Bell and E. Carlson. (not printed)
48. A Survey of Fish Furchases by Socio-Econcmic Characteristics Fourth Quarterly Report - November, December 1969, and January 1970 by Darrel A. Nash. April 1970
49. A Survey of Fish Purchases by Socio-Economic CharacteristicsAnnual Report by Darrel A. Nash. April 1970
50. Basic Economic Indicators - Atlantic Groundfish. April 1970
51. Basic Economic Indicators - Halibut. April 1970
52. Basic Economic Indicators - Northern Lobsters. April 1970
53. Basic Economic Indicators - Sea Scallops. April 1970
54. Basic Economic Indicators - Clams. April 1970
55. Basic Economic Indicators - Oysters. May 1970
56. Basic Economic Indicators - Shrimp. Nay 1970
57. Basic Economic Indicators - Blue Crabs. May 1970
58. Basic Economic Indicators - King and Dungeness Crabs. May 1970
59. Basic Economic Indicators - Mennaden. May 1970
60. Basic Economic Indicators - Tuna. Nay 1970

* 62. Basic Economic Indicators - Salmon. May 1970

71. Economic Projections of the U.S. and World Demand for Major Fishery Products by F. Bell, D. Nash and F. Waugh. June 1970
72. The Fundmental Theory of the Economics of Commercial Fishing by E. Carlson. June 1970

* 63 through 70 are presently in process and cover basic economic indicators for 16 other master plan fisheries.

The goal of the Division of Economic Research is to engage in economic studies which will provide industry and government with costs, production and earnings analyses; furnish projections and forecasts of food fish and industrial fish needs for the U.S.; develop an overall plan to develop each U.S. fishery to its maximum economic potential and serve as an advisory service in evaluating alternative programs within the Bureau of Commercial Fisheries.

In the process of working towards these goals an array of written materials has been generated representing items ranging from interim discussion papers to contract reports. These items are available to interested professionals in limited quantities of offset reproduction. These "Working Papers" are not to be construed as official BCF publications and the analytical techniques used and conclusions reached in no way represent a final policy determination endorsed by the U.S. Bureau of Commercial Fisheries.


[^0]:    *The au'thors are respectively chief and economist in the Division of Economic Research, Bureau of Commercial Fisheries, U.S. Department of the Interior. The views expressed in this article do not necessarily represent the policy of the U.S. Department of the Interior. The authors would like to thank James Crutchfield, Brian Rothschild, Milner Schaefer, Richard Hennemuth, Rolland Smith, Darrel Nash, Frank Hester, William Lenarz, and James Joseph for their helpful comments on an earlier draft of this article. The authors take full credit for any errors.

[^1]:    6. Our general conclusions should be qualified to include potential advances in aquaculture. The possible transformation of the fishing industry from hunting wild stocks to farming may ease the Malthusian problems associated with the sea.
