

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

PROJECTIONS OF CERTAIN FISHERY PRODUCTS OF COMMERCIAL IMPORTANCE IN LOUISIANA

By

Darrel A. Nash

Working Paper No 47

April, 1970

Projections of Certain Fishery Products of Commercial Importance in Louisiana

ABSTRACT

Demand for fish products in the U.S. is steadily increasing as population and consumer income expands. Further consumption increases are projected resulting from these same forces. This is particularly true of the highly valued fish and shellfish as -well as for fish meal, in which case the demand is derived from the expansion in broiler production. Fish products landed in Louisiana, that is shrimp, crabs, oysters, and menhaden, will make contributions to this national market and it is therefore important to maintain these fisheries. Other finfish species landed in Louisiana will experience increasing demand if they are offered to the consumer in the highly processed forms similar to the fish products now experiencing significant demand increases.

Projections of Certain Fishery Products of Commercial Importance in Louisiana

by

Darrel A. Nash

The Division of Economic Research, Bureau of Commercial Fisheries, is nearing completion of a study to project prices and consumption of fishery products for the remainder of the century. This has been done for the ten most important product classes used in the U.S. by volume and value with the exception of menhaden (fish meal). This study forms the basis of the projections of fishery products of interest to Louisiana.

The procedure of the projection study was to determine the factors affecting the demand for fish products in the U.S. and in the other major fish consuming countries. In addition, the supply of fish products likely to be available was taken into account by restricting world catch at no greater than maximum sustainable yield and by accounting for the increase in cost of catching as MSY is approached.

Projected U.S. prices and consumption is determined by how strong the factors affecting consumption (population and income increase) are in the U.S. relative to other countries.

Demand equations for three products of interest here have been derived as follows:

Shrimp

$$
\begin{aligned}
& \log \frac{\mathrm{C}}{\mathrm{~N}}=\left(-4.8075-\underset{(-12.0400)}{(-2.7001)} \log \left(\frac{\mathrm{P}}{\mathrm{CPI}}\right)+\underset{(11.5558)}{+1.6999} \log \left(\frac{\mathrm{Y}}{\mathrm{CPI}}\right)\right. \\
& \text { DaW. }=0.8007 R^{2}=0.9069
\end{aligned}
$$

Crab

$$
\log \frac{C^{*}}{N}=-5.9941-0.1487 \log \left(\frac{P}{C P I}\right)+1.8789 \log \left(\frac{Y}{C P I}\right)
$$

Oysters

$$
\log \frac{C_{N}^{*}}{N}=0.9639-0.6729 \log \left(\frac{P}{C P I}\right)+0 \log \left(\frac{Y}{C P I}\right)
$$

where: log = "logarithm of"
$\mathrm{C}=$ consumption in pounds live weight
$N=$ the U.S. civilian population
$P=$ ex vessel price in live weight
$\mathrm{Y}=$ per capita personal disposable income in the U.S. :
CPI = the U.S. consumer price index included for the purpose of taking into account inflation
D.W. = Durbin-Watson statistic
$R^{2}=$ coefficient of determination
The values in parentheses (t-values) under the shrimp equation measure the confidence in the estimate.
D.W., R^{2}, and t-value are used to measure the statistical acceptability of the estimates.

* Statistical estimates were adjusted to make the equation closer to historical trends.

The data used to obtain these estimating equations are as follows:

	Shrimp		Crabs		Oysters		
Year	Per capita consumption 1b.	Ex vessel price $\$ / \mathrm{lb}$.	Per capita consumption lb.	Ex vessel price \$/1b.	Per capita consumption 1b.	Ex vessel price \$/ıb.	Per capita personal disposable income \$
1950	1.469	27.06	0.720	6.92	4.267	5.44	1,628
1951	1.714	25.52	0.792	7.29	4.038	5.19	1,622
1952	1.816	26.22	0.729	7.28	4.437	5.00	1,647
1953	1.816	31.56	0.806	7.59	4.242	4.60	1,697
1954	1.856	24.21	0.765	7.38	4.318	5.04	1,693
1955	1.938	27.17	0.770	7.97	4.020	4.95	1,786
1956	1.836	33.82	0.824	8.63	3.842	5.17	1,847
1957	1.652	36.60	0.963	7.29	3.630	4.93	1,838
1958	1.775	33.86	0.927	7.39	3.442	5.35	1,818
1959	2.142	23.83	0.986	8.35	3.332	5.28	1,877
1960	2.224	26.02	1.076	$7 \cdot 47$	3.117	5.56	1,879
1961	2.142	28.38	1.094	7.18	3.204	6.01	1,903
1962	2.123	36.34	1.071	7.57	2.882	5.80	1,958
1963	2.366	27.29	1.143	7.93	2.984	5.12	2,002
1964	2.407	30.75	1.170	8.14	3.043	5.02	2,109
1965	2.591	30.78	1.485	8.36	2.814	5.49	2,213
1966	2.550	35.57	1.629	7.84	2.678	5.55	2,297
1967	2.754	32.56	1.485	7.37	3.272	5.54	2,359
tor edibl	e wt.		(4.5)		(8.5)		-

All dollar figures are divided by the consumer price index, 1957-59 $=1.0$

The equations were then used to make the demand projections. U.S. population and income projections were "plugged into" the equations to obtain the projections of demand for fish. The following shows the population and income projections used:

	U.S. population projections1/	Projection of U.S. personal per capita disposable income2/
1970	206.0	2,642
1975	219.4	3,036
1980	235.2	3,555
1985	252.9	4,049
1990	270.8	4,574
2000	307.8	6,091

1/ Series C, U.S. Department of Commerce, Bureau of the Census
2/ National Planning Association Center for Economic Projections, with extrapolation for later years.

Findily, the projections for these three product groups are as follows:
U.S. price and quantity projections for shrimp, orabs, and oysters, 1970-2000 (Iive weight)

Year	Shrimp		Crabs		Oysters	
	Ex vessel price \$/1b.	Billion pounds	Ex vessel price \$/2b.	Billion pounds	Ex vessel price $\$ / \beth b$.	$\begin{aligned} & \text { Billion } \\ & \text { pounds } \end{aligned}$
1970	. 45	. 686	. 10	.413	.07	. 60
1975	. 48	. 860	. 12	. 518	. 07	. 639
1980	. 52	1.050	. 16	. 620	.07	. 684
1985	.65	1.145	.21	.672 ${ }^{1 /}$.07	. 736
1990	. 77	1.207	. 47	.694 ${ }^{1 /}$. 07	- 788
2000	1.03	1.325	2/	2/	. 07	. 896

1/ Assuming a managment program to prevent oatch from exceeding world Mgy

2/ Not entimatad
The projections are made on the basis of ourrent conditions, among whioh are (i) no aignifioant ohanges in harvesting techniques; (2) no sign血軽eant ohanges in aquaculture; except in the oase of oysters where it is assumed that man oan expand the production of oyrbers by cuiturai means at a rate equal to inereases in demand so that pricees de not risel (3) no gignificant changes in the environment, that is, poilution ete.3 and (4) no signifieant ohanges in the legai-poit tieai framework in whioh fishing operations are oarriod out except as noted in the case of crabs. Obviously, changes in any of these assumptions will alter the actual consumption and prices.

Projections were made; in the context of product groups which may not be sufficiently detailed in all cases. Shrimp and oysters from all sources are probably similar enough to use in determining the part Louisiana can play in providing future supplies. Crabs, on the other hand, are a composite of blue crabs and other crabs, primarily the eastern Pacific species of dungeness and king crab. Therefore, the overall category is probably not sufficient to project blue crabs alone. Nevertheless, there is a rather definite means of projecting catch of blue crabs. This is from the standpoint of restrictions on the resource. According to Longhurst ${ }^{\text {I/ }}$ the maximum sustainable yield of blue crabs in the West-Central Atlantic (including the Gulf of Mexico) is 76.0 thousand metric tons, whereas current landings are 73.0 thousand metric tons. Therefore, given the assumptions above, catch cannot increase. Price however is projected to increase at the rate shown in the table on projections. It is important to emphasize that the restriction on catch is not a demand factor, but rather a resource restriction. There is no question that consumption would be much higher if the resource permitted.

The other products of interest have less analytical foundation than the foregoing. However, we have a fairly firm basis for

[^0]projecting the utilization of menhaden, if the resource is available. The procedure is to forecast use of fish meal which in turn can be used to estimate the demand for the raw material (menhaden).

The following demand equation was fit:

$$
\mathrm{C}=\underset{(1.42)}{-377}-\underset{(1.64)}{3.460} \mathrm{P}+\underset{(3.90)}{10.809} \mathrm{P}_{\mathrm{s}}+\underset{(9.44)}{.196 \mathrm{~F}}
$$

$$
\text { D.W. }=1.76 R^{2}=.89
$$

where: $\quad C=$ the utilization of fish meal in millions of pounds
$P=$ the price of fish meal in dollars per ton
$P_{S}=$ the price of soybean meal in dollars per ton
$\begin{aligned} & \mathrm{F}= \text { the per capita consumption of chicken, million pounds } \\ & \text { ready-to-cook weight }\end{aligned}$

The data used to estimate this equation are as follows:

Year	Fish meal used in the U.S. mil. lb.	Soybean meal price in the U.S. $\$ / T$	Fish meal price in the U.S. $\$ / T$	Consumption of chicken mil. lb.
1950	607.6	74.60	124	3,097
1951	676.5	76.90	120	3,275
1952	849.9	96.25	124	3,384
1953	740.6	80.05	124	3,424
1954	805.5	89.80	130	3,629
1955	725.0	71.50	133	3,456
1956	772.4	63.50	130	4,039
1957	690.6	58.85	126	4,296
1958	697.0	64.90	131	4,827
1959	879.0	65.00	118	5,038
1960	843.4	64.55	88	4,983
1961	1,058.2	68.80	104	5,431
1962	1,129.1	72.00	118	5,501
1963	1,264.6	79.70	121	5,727
1964	1,349.8	79.70	125	5,879
1965	1,049.4	79.10	147	6,394
1966	1,343.4	90.30	152	6,985
1967	1,725.4	87.65	128	7,258 ${ }^{1}$

For making the projections, price of fish meal and soybean meal was held constant; fish meal at $\$ 130$ per ton and soybeans at $\$ 69$ per ton. Therefore future increases are expected to result from increasing use of chicken.

The projections of chicken consumption over the interval is as follows:

1970
Chicken consumption mil. lb. ready-to-cook

1975 8,291

1980
9,741

1985
11,407
13,277

Given this expansion in the consumption of chicken, the above equation gives us the following projections of fish meal use.

Projected fish meal use in the U.S. million lbs.

1970
1975
1980
1985
These project the use of fish meal. To obtain an estimate of utilization of live weight of fish the figures are multiplied by 5, or perhaps a slightly greater figure. The probable outcome of the use of menhaden will be similar to crabs, in that there
will be a supply restriction, rather than a lack of market for the product. We can conclude that with the growth in demand for fish meal as much menhaden will be used as is available.

There remains the problem of projecting other species of interest to the Louisiana coastal zone. These species are croaker, redfish or red drum, spotted and white sea trout, spot, catfish, and bullheads. Unfortunately there is little in the way of analytical background to project the consumption of these species. The best that can be done is to estimate that the demand will depend primarily upon the product form and upon market expansion activities. Tremendous changes have taken place in the preservation and processed form of fishery products over time. .Those products that appeal to modern consumer preferences have experienced considerable growth, while those that do not appeal to this demand have remained constant or declined. Farm catfish producers are recognizing the importance of these marketing aspects.

Currently the best suggestion for projecting these low volume species is to study the trends of other fish products by product and preservation form. This is contained in "Elements Crucial to the Future of Alaskan Commercial Fisheries, " Working Paper No. 24, Bureau of Commercial Fisheries, Division of Economic Research, August 1969. Section 3, beginning on page 19 shows these data. This section is reproduced here for use in projecting these species.

Section 3 of Working Paper No. 24, Mements Crucial to the Future of Alaskan Commercial Fisheries
3. Trends in preservation and product forms

Tremendous changes have taken place in fish processing and preservation. These changes are not so much related to species as to changes in marketing by types of products, therefore, trends in the type of processing and preservation regardless of species, seems to be more important. Of course, choice of preservation and processing is not independent of species. What this means is that expansion in production will find a wider market if species which can be subjected to the more popular market forms are fished.

The growth category of frozen fish and shellfish is phenomenal especially since most or all of the increase in "fresh and frozen unspecified" can be also allocated to frozen (see tables 5 and 6). For information on processing and preservation by species see Fishery Statistics of the United States, U. S. Department of the Interior. Of the major canned fish and shellfish, only tuna shows an expanding demand. The manufacturers' value per pound of frozen fish products has also expanded somewhat more rapidly than canned, the former increasing from $\$ 0.22$ to $\$ 0.54$ per pound from 1946 to 1966, while canned increased from $\$ 0.33$ to $\$ 0.61$ during this period. These factors point clearly toward a shift in market preference from one form to the other.

Tatio 5. Fish and shellfish by method of preservation, U. S. manufacturing (In trouisands of pounds).

"able 6 . Fish ar.d shellfish by method of preservation, U. S. manufacturing (Ir. thousends of dollars)

Year	Csmned	Cured	Freshl/	Frozen	Fresh and Frozen Unspec.	Unprocessed	I'otai
1931	\%2,656	12,364	20,051	2,043	982		
1934	79,069	13,047	16,591	3,263	824		
1937	104,249	15,635	20,839	5,786	1,053		
2940	92,192	14,234	21,996	9,899	852		
1943	141,084	14,110	35,419	20,779	423		
194:6	227,629	15,077	31,540	29,843	1,577		
1949	286,840	1,6612	17,330	30,967	787		
1952	290,161	26,717,	21,940	89,575	51,090		
1955	274,967	37,684	17,676	96,607	116,336		
1958	344,737	41,657	21,221	129,729	131,903		
1961	382,809	52,396	22,908	157,145	140,901		
1964	391,026	47,783	31,664	178,679	192,338		
1906	507,841	52,499	35,120	256,205	247,463		
2907	455,240	NA	- NA	NA	NA		

Squrce: Fishery Statistics of the United States, Manufactured Fishery Products.
1 Does not include unprocessed fish 2/Incomplete

Distinct trends are also shown in degree of processing, those products closest to the convenience food category experiencing strongest upward trends shown in tables 7 and 8 . The trend in "shell removed," i.e., peeled, shucked, picked, etc., is mainly influenced by the increasing consumption of shrimp, however, demand for peeled and deveined shrimp (with the additions of further processing) almost completely dominates the shrimp market. Breaded products are made up of some of the products of the other three categories and show how rapidly all kinds of frozen fish products are entering this type of processing.

These tables should be related back to section 1 which analyzes potential by species. As stated in that section, the 'potential is great if fish products can be delivered in a frozen highly processed, convenience form, but the potential for increase is not bright without this value added.

Table 7. Fish and shellfish by method of processing, U.S manufacturing (In thousands of pounds)

Year	Filleted	Shell Removed	Breaded	Sticks and Portions
1931	70,414	98,079		
1934	68,707	112,884		
1937	115,620	138,153		
1940	113,538	146,747		
1943	135,565	145,564		
1946	164,931	155,073		
1949	184,746	$53,0661 /$		
1952	181,567	166,449	18,042	
1955	148,697	217,127	118,513	73,045
1958	143,649	264,280	161,944	82,801
1961	146,292	302,074	222,088	129,964
1964	149,672	355,412	286,317	179,887
1966	155,962	421,911	370,573	228,996
1967	144,377	NA	NA	NA

Source: Fishery Statistics of the United States, Manufactured Fishery Products 1/ Incomplete

Table 8. Fish and shellfish by method of processing, U. S. manufacturing (In thousands of dollars)

Year	Filleted	Shell Removed	Breaded	Sticks and Portions
1931	10,247	20,172		
1934	7,926	21,241		
1937	12,625	28,049		
1940	13,340	27,794		
1943	35,293	31,419		
1946	42,975	48,286		
1949	45,486	$31,8551 /$		
1952	51,630	107,566	13,614	
1955	40,579	139,738	65,429	33,046
1958	44,748	181,462	90,604	34,972
1961	45,795	212,498	120,316	50,629
1964	51,701	258,579	141,929	66,518
1966	63,446	347,144	213,449	93,800
1967	59,122	NA	NA	1

Source: Fishery Statistics of the United States, Manufactured Fishery Products.

1/ Data incomplete

WORKING PAPER SERIES

Division of Economic Research Bureau of Commercial Fisheries

1.: An Application of an Investment Model to Channel Catfish Farming by R. Thompson and F. Mange.
2. The Development of Catfish as a Farm.Crop and an Estimation of Its Economic Adaptability to Radiation Processing by D. Nash and M. Miller
3. Design Study: An Optimum Fishing Vessel for Georges Bank Groundfish Fishery by A. Sokoloski (Project Monitor)
4. The Relation between Vessel Subsidy Percentages and the Rate of Return on Investment for Various Technologies and Scale Levels: The Haddock Fishery by D. Nash, A. Sokoloski and F. Bell (Project Monitors)
5. An Economic Justification for Recommended Legislative Changes in the 1964 Fishing Fleet Improvement Act by F. Bell, E. Carlson, D. Nash and A. Sokoloski.
6. The Economic Impact of Current Fisheries Management Policy on the Commercial Fishing Industry of the Upper Great Lakes by D. Clearly.
7. Cost and Earnings in the Boston Large Trawler Fleet by B. Noetzel and V. Norton.
8. Some Elements of An Evaluation of the Effects of Legal Factors on the Utilization of Fishery Resources by A. Sokoloski.
9. A Report on the Economics of Polish Factory Trawlers and Freezer Trawlers, by B. Noetzel.
10. An Inventory of Demand Equations for Fishery Products by D. Nash and F. Eell.
11. Industry Analysis of West Coast Flounder and Sole Products and an Estimation of Its Economic Adaptability to Radiation Processing by D. Nash and M. Miller.
12. Bio-Economic Model of a Fishery (Primarily Demersal) by E. Carison.
13. The Factors behind the Different Growth Rates of U. S. Fisheries by F. Bell.
14. A Prier Incentive Plan for Distressed Fisheries byA. Sokoloski and E. Carlson.
15. Demand and Prices for Shrimp by D. Cleary.
15. Industry Analysis of Culf Area Frozen Processed Shrimpand an Estimation of Its Economic Adaptability toKadiation Processing by D. Nash and M. Miller.
17. An Economic Evaluation of Columbia River Anadromous Fish Programs by J. Richards.
18. Economic Projections of the World Demand and Supply of Tuna, 1970-90 by F. Bell.
19. Economic Feasibility of a Seafood Processing Operation in the Inner City of Milwaukee by D. Cleary.
20. The 1969 Fishing Fleet Improvement Act: Some Advantages of its Passage by the Division of Economic Research.
21. An Economic Analysis of Policy Alternatives for Managing the Georges Bank Haddock Fishery by L, Van Meir.
22. . Some Analyses of Fish Prices by F. Waugh and V. Norton.
23. Some Economic Characteristics of Pond-Raised Catfish. Enterprises by J. Greenfield.
24. Elements Crucial to the Future of Alaskan Commercial Fisheries by D. Nash, A. Sokoloski, and D. Cleary.
25. Eifects on the Shrimp Processing Industry of Meeting the Requirements of Wholesome Fishery Products Legislation by D. Nash and M. Miller.
26. Benefit Cost Analysis of a Proposed Trawl Systems Program by M. Miiler
27. An Economic Analysis of Future Problems in Developing the World Tuna Resource: Recommendations for the Future Direction of the BCF Tuna Program by F. Bell.
25. Economic Efficiency in Common Property Natural Resource Use: A Case Study of the Ocean Fishery by D. Bromley.
29. Custs, Earnings and Borrowing Capacity for Selected U. S. Fisheries by A. Sokoloski, E. Carlson, and B. Noctzel.
30. Fish Cycles: A Harmonic Analysis by F. Waugh and M. Miller.
31. Benefit-Cost Analysis as Applied to Commercial Fisheries Programs by F. Bell.
32. Economic Study of San Pedro Wetifish Boats by W. F. Perrin and i . Noetzel.
33. A Survoy of Eish Purchases by Socio-Economic Characteristics Eirst Quarterly Report - February, March, April, 1969 by D. Nash.
34. A Survey of Fish. Purchases by Socio-Economic Characteristics Second Quarterly Report - May, June, July, 1969 by D. Nash.
35. A Guide to Benefit-Cost Analysis for BCF Programs by F. Bell.
36. Estimation of the Economic Benefits to Fishermen, Vessels, and Society from Limited Entry: A Generalized Model Applied to the Northern Lobster Fishery by F. Bell.
37. Diajor Economic Trends in Selected U.S. Master Plan Fisheries: A graphical Survey by R. Kinoshita and F. Bell.
38. Market Potential for the San Pedro Wetfish:Fishery by D. Nash.
39. Pertinent U.S. Trade Barrier Information by "Master Plan" Fisheries by J. Micuta.
40. An Analysis to Determine Optimum Shrimp Fishing Effort by Area by V. Arnold.
41. A Survey of Fish Purchases by Socio-Economic Characteristics, Third Quarterly Report - August, September, October, 1969 by D. Nash.
42. Investigation of Fish Landing Patterns at Stonington, Connecticut with a View to Development of New Markets by D. Nash.
43.: A Survey of Maximum Sustainable Yield Estimates on a World Basis for Selected Fisheries by R. Fullenbaum.
44. Uethods for Calculating Civilian Der Capita Consumption of Fresh and Frozen Shellfish by S. Erickson.
45. The Organization of the California Tuna Industry: An Economic Analysis of the Relations between Performance and Conservation in the Fisheries by R. Marasco.
40. The Effects of Reports on the U.S. Chub and Lake Herring Incuiustiny by D. Cleary (NOT CIRCULATED)
47. Projections of Certain Fishery Products of Comnercial Importance in Louisiana by D. Nash.
40. The Productivity of the Sea and Malthusian Scarcity by F. Bell and E. Carlson.

> The goal of the Division of Economic Research is to enenge in economic studies which will provide irdusiry and government with costs, production and earnings araiyses; furnish projections and forecasts of food تish snc incustrial fish needs for the U. S.; develop an overall plan to develop each U. S. fishery to its maximum economic potential and serve as an advisory service in evaluating alternative programs within the Sureau of Commercial Fisheries.
> In the process of working towards these goals an array of written materials has been generated representing items ranging from interim discussion papers =o contract reports. These items are available to Enverestec professionals in limited quantities or oinset reproduction. These "Working Papers" are not to be construed as official BCF publications and the anaiytical techniques used and conclusions reacheci in no way represent a Pinal policy determination endorsed by the U. S. Bureau of Commercial Fisheries.

[^0]: : 1/ Longhurst, Alan R. "Survey of Crustacean Resources," Area Reviews on Living Resources of the Ocean, FAO Indicative World Plan for Agricultural Development, BCF, La Jolla, California, 1969.

