

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

By

William F. Perrin and Bruno G. Noetzel

Working Paper No.. 32 October 1969

US bureau of Commercial fisheries DIVISION OF ECONOMIC RESEARCH

1. An Application of an Investment Model to Channel Catfish Farming by R. Thompson and F. Mange.
2. The Development of Catfish as a Farm Crop and an Estimation of Its Economic Adaptability to Radiation Processing by D. Nash and M. Miller.
3. Design Study: An Optimum Fishing Vessel for Georges Bank Groundfish Fishery by A. Sokoloski (Project Monitor).
4. The Relation between Vessel Subsidy Percentages and the Rate of Return on Investment for Various Technologies and Scale Levels: The Haddock Fishery by D. Nash, A. Sokoloski and F. Bell (Project Monitors).
5. An Economic Justification for Recommended Legislative Changes in the 1964 Fishing Fleet Improvement Act by F. Bell, E. Carlson, D. Nash and A. Sokoloski.
6. The Economic Impact of Current Fisheries Management Policy on the Commercial Fishing Industry of the Upper Great Lakes by.D. Cleary.
7. Cost and Earnings in the Boston Large Trawler Fleet by B. Noetzel and V. Norton.
8. Some Elements of An Evaluation of the Effects of Legal Factors on the Utilization of Fishery Resources by A. Sokoloski.
9. A Report on the Economics of Polish Factory Trawlers and Freezer Trawlers, by B. Noetzel.
10. An Inventory of Demand Equations for Fishery Products by D. Nash and F. Bell.
11. Industry Analysis of West Coast Flounder and Sole Products and an Estimation of Its Economic Adaptability to Radiation Processing by D. Nash and M. Miller.
12. Bio-Economic Model of a Fishery (Primarily Demersal) by E. Carlson.
13. The Factors behind the Different Growth Rates of U. S. Fisheries by F. Bell.

William F. Perrin and Bruno G. Noetzel sufficient demand for wetfish at present prices.

Authors: William F. Perrin, Fishery Biologist (General), Bureau of Commercial Fisheries Fishery-Oceanography Center, P. O. Box 271, La Jolla, California 92037, and Bruno G. Noetzel, Industry Econcmist, Bureau of Commercial Fisheries Division of Economic Research, 7338 Baltimore Avenue, College Park, Maryland 20740.

Introduction
I. Financial condition of the fleet
A. Productivity, revenue, and profits
B. Capital structure and return on investment
C. Crew earnings

1. Fleet averages for 1963 to 1967
2. Vessel variation in crew earnings
D. Employment
II. Model for calculating costs and earnings
A. Analysis of costs
3. Operating costs
4. Owner cosis
a. Parts and repairs
(1) Existing vessels
(2) New vessels
b. Netting and supplies
c. Insurance
(1) Existing vessels
(2) New vessels
d. Payroll and taxes
e. Interest on loans
f. Moorage
g. State and county taxes
h. Depreciation
(1) Existing vessels
i. Office expenses and other costs
B. Prediction of earnings
5. Revenue
a. Problem of predicting revenue
b. Solution to the problem of predicting revenue
6. Profits, return on investment, and crew earnings
a. Existing vessels
b. New vessels
III. Economic feasibility of fleet expansion and new-vessel construction
A. Fleet expansion with existing vessels
7. Summary table
8. Analysis of summary table and conclusions
B. Fleet expansion or vessel replacement with new vessels
9. Summary tables
10. Analysis of summary tables and conclusions

Summary
Acknowledgements
References Cited

INTRODUCTION

San Pedro is the major seaport for Los Angeles, California. San Pedro wetfish boats fish for mackerel, bonito, anchovies, and tuna in local waters and land them in a fresh unfrozen condition. In recent years, vessel operators in this fleet have been financially hard-pressed; they have complained of rising costs coupled with static fish prices. At the same time, large underexploited populations of mackerel and anchovies are reported to exist in the California Current (Ahlstrom, 1968). If these resources are to be harvested by U.S. fishermen, the wetfish fleet must expand, either through recruitment of surplus vessels from other fisheries or through the construction of new vessels. Motivated by these considerations, the U.S. Bureau of Commercial Fisheries in 1968 began an investigation of the present financial condition of the fleet and the economics of the operations of wetfish boats. This paper reports the results of the study. In this introduction, we shall present background material on the makeup, history, landings, and operations of the San Pedro fleet, state the precise aims of the study, and describe the data base used.

The San Pedro wetfish boat fleet is part of the roundhaul fleet, which is made up of four types of vessels: (1) tunaboats, (2) combination boats, (3) wetfish boats, and (4) miscellaneous small roundhaul boats.
(1) Tunaboats. Tunaboats are large, long-range purse seiners that vary in fish capacity from 100 short tons to 800 short tons and that fish almost solely for tuna: yellowfin tuna (Thunnus albacares) and skipjack (Katsuwonus pelamis) off Mexico,

Central America, and South America; and bluefin tuna (Thunnus thynnus) and albacore tuna (Thunnus alalunga) off California and Mexico. McNeely (1961) has described the purse-seining gear used and the methods of fishing. Green and Broadhead (1965) have described and analyzed the costs and earnings of tropical tunaboats.
(2) Combination boats. Combination boats are purse seiners that vary in fish capacity from 140 tons to 160 tons and are medium-range vessels that fish primarily for tuna off California and Mexico and for wetfish mostly off California, . with tuna making up the major part of the catch. In 1967, eight combination boats were in the San Pedro fleet.
(3) Wetfish boats. Wetfish boats are relatively small purse seiners that vary in fish capacity from 25 ton 3 to 160 tons and that range in length from 40 to 86 feet overall. They operate within 100 miles of San Pedro. Individual trips last from 1 to 10 days, with the average being between 1 and 2 days. Scofield (1951) has described the vessels, gear and fishing methods. Recent technological developments in the fleet, including the adoption of nylon nets and hydraulic net-hauling blocks, have paralleled those described by McNeely (1961) for the tunaboat fleet. These boats fish primarily for wetfish, here defined to include bonito (Sarda chiliensis), Pacific mackerel (Scombel: japonicus), jack mackerel (Trachurus symmetricus), and Pacific sardine (Sardinops caerulea) for canning and also for the fresh-fish market; and northern anchovy (Engraulis mordax) for reduction.

Figure 1. --SanP edro wetfish boat fleet--1958 to 1968. (These data were furnished by the Fishermen's Cooperative Association of San Pedro.)

A significant proportion of their catch, nowever, in terms of value is made up of bluefin and albacore tuna (see the wetfish fleet landings below). The number of San Pedro wetfish boats decreased from 47 in 1958 to 25 in 1968 (Figure 1), with the greatest reduction occurring in the boats in the size range of 25 to 50 tons.
(4) Miscellaneous small roundhaul boats. Small roundhaul boats include very small purse seiners that vary in fish capacity from 5 tons to 25 tons and "lampara" boats that vary in fish capacity from 5 tons to 40 tons and that fish for wetfish, squid (Loligo opalescens), anchovies for use as bait in sport fishing, and a wide • variety of other species landed primarily for the fresh-fish markets.

Of these four types of vessels in the San Pedro roundhaul fleet, wetfish boats (Category 3 above) were the subject of this study.

Wetfish boats have had a history of coping with adversity. The decline of the California sardine fishery (Figure 2) left a sizable fleet of small purse seiners on the West Coast in need of profitable employment. Some turned to salmon seining or to tropical-tuna seining, some converted to trawling, and many became the property of foreign fishing companies and left U.S. waters; but some boats, especially those at Monterey and San Pedro, expanded their activities on Pacific mackerel, jack mackerel, bonito, and bluefin, albacore, and skipjack tuna, which they had fished less intensively while sardine were abundant. The main emphasis was on mackerel (both species). They joined a declining fleet of various types of less efficient vessels already fishing primarily for Pacific mackerel (Croker, 1938;

Figure 2.--Sardine and mackerel landings in California, 1916 to 1967. The data are from: Staff, Bureau of Marine Fisheries, 1949; Staff, Marine Fisheries Branch, 1954 and 1956; Staff, Marine Resources Operation, 1958; Biostatistical Section, Marine Resources Operations, 1960a, 1960b, 1961, 1963, 1964 and 1965; Greenhood and Mackett, 1965 and 1967; Helmann and Frey. 1968 a and 1968b.

Roedel, 1952). When sardines in some years became temporarily more abundant, they returned for short periods to that species, so that landings of sardines and mackerel showed an inverse relation between 1952 and 1962 (Figure 2). Since 1962, the landings of sardines have been negligible, so that fleet has depended primarily on mackerel. Thus, the wetfish boat fleet is essentially what is left of the sardine fleet. The newest boat in the fleet was built in 1947 (Table 1).

Table 2 shows the landings of the wetfish boats at San Pedro during 1963 through 1967. It also shows the percent of the total landings in California for each species making up the San Pedro wetfish boat landings. ${ }^{2}$ During this period, landings for the fleet closely paralleled the total landings for California (Figure 3). Because the species landed vary widely in ex-vessel price (Table 3), figures for landings alone do not illustrate the species base of the fleet in economic terms. Figure 4 shows the makeup of the landings in terms of the percentage of total value accounted for by each species during 1963 to $1967 .^{2}$ The year-to-year variations in the composition of the catch reflect:

1. The decreasing population of Pacific mackerel, due to overfishing (Ahlstrom, 1968).
2. Yearly fluctuations in the abundance of the migratory bluefin and albacore tuna, probably due to varying local oceanographic conditions within the range of the wetfish fleet.
[^0]Table 1.--Age structure of the San Pedro wetfish-boat fleet in 1968

Year of construction	Number of vessels	Year of construction	Number of vessels
1935	4	1942	
1936	5	1943	1944
1937	3	1945	8
1938	1	1946	1
1939		Total	1947
1940		24	

Note: These data were compiled from U.S. Bureau of Customs (1965) and from information provided by the Fishermen's Cooperative Association of San Pedro.

Table 2. --Landings of the San Pedro wetfish-boat fleet, 1963 to 1967 (with percent of tbtal California landings in parentheses)

Species	Landings in:				
	1963	1964	1965	1966	1967
	Pounds	Pounds	Pounds	Pounds	Pounds
Jack mackerel	$\begin{gathered} 68,783,000 \\ (72.1) \end{gathered}$	$\begin{gathered} 60,325,000 \\ (69.6) \end{gathered}$	$\begin{gathered} 47,523,000 \\ (71.1) \end{gathered}$	$\begin{gathered} 31,044,000 \\ (76.0) \end{gathered}$	$\begin{gathered} 29,447,000 \\ (77.1) \end{gathered}$
Pacific mackerel	$\begin{gathered} 29,595,000 \\ (73.5) \end{gathered}$	$\begin{gathered} 21,539,000 \\ (80.3) \end{gathered}$	$\begin{gathered} 4,566,000 \\ (64.8) \end{gathered}$	$\begin{gathered} 2,612,000 \\ (56.4) \end{gathered}$	$\begin{aligned} & 632,000 \\ & (54.2) \end{aligned}$
Sardines	$\begin{gathered} 3,538,000 \\ (49.6) \end{gathered}$	$\begin{gathered} 8,270,000 \\ (63.0) \end{gathered}$	$\begin{gathered} 1,110,000 \\ (57.6) \end{gathered}$	$\begin{aligned} & 406,000 \\ & (46.2) \end{aligned}$	$\begin{aligned} & 40,000 \\ & (26.8) \end{aligned}$
Bonito	$\begin{gathered} 2,606,000 \\ (64.8) \end{gathered}$	$\begin{gathered} 1,674,000 \\ (64.1) \end{gathered}$	$\begin{gathered} 4,019,000 \\ (71.3) \end{gathered}$	$\begin{gathered} 13,412,000 \\ (70.0) \end{gathered}$	$\begin{gathered} 12,314,000 \\ \cdot(58.0) \end{gathered}$
Bluefin tuna	$\begin{gathered} 3,295,000 \\ (10.9) \end{gathered}$	$\begin{gathered} 2,938,000 \\ (12.7) \end{gathered}$	$\begin{gathered} 2,220,000 \\ (13.9) \end{gathered}$	$\begin{gathered} 1,727,000 \\ (5.0) \end{gathered}$	$\begin{gathered} 1,585,000 \\ (11.5) \end{gathered}$
Albacore tuna	$\begin{aligned} & 375,000 \\ & (0.8) \end{aligned}$	$\begin{aligned} & 21,000 \\ & (0.1) \end{aligned}$	$\begin{aligned} & 694,000 \\ & (3.0) \end{aligned}$	$\begin{aligned} & 87,000 \\ & (4.8) \end{aligned}$	$\begin{aligned} & 1,000 \\ & <0.1) \end{aligned}$
Anchovies	$\begin{gathered} 1,000 \\ <0.1) \end{gathered}$	$\begin{aligned} & 170,000 \\ & (3.4) \end{aligned}$	$\begin{aligned} & 212,000 \\ & (3.7) \end{aligned}$	$\begin{gathered} 30,122,000 \\ (48.4) \end{gathered}$	$\begin{gathered} 37,342,000 \\ (53.6) \end{gathered}$
Other	83, 000	369, 000	351, 000	299, 000	236,000
Total	$\begin{gathered} 108,966,000 \\ (21.4) \end{gathered}$	$\begin{gathered} 95,602,000 \\ (19.4) \end{gathered}$	$\begin{gathered} 62,062,000 \\ (13.7) \end{gathered}$	$\begin{gathered} 80,523,000 \\ (17.6) \end{gathered}$	$\begin{gathered} 81,777,000 \\ (16.2) \end{gathered}$

Note 1: The data on landings of the San Pedro wetfish-boat fleet are from unpublished data furnished by the California Department of Fish and Game.

Note 2: The total California landings from which the percentages were calculated were from the Biostatistical Section, Marine Resources Operations, 1965; Greenhood and Mackett, 1966, 1967; Hẹimann and Frey, 1968a, 1968 b.

Note 3: The other species include: skipjack tuna Katsuwonus pelamis), bullet mackerel (Auxis thazard), Pacific pompano (Peprilus simillimus), blacksmith (Chromis punctipinnis), "smelt" (Atherinidae), halfmoon (Medialuna californiensis), "perch" (Embiotocidae), white croaker (Genyonemus lineatus), white sea bass (Cynoscion nobilis), "shark, " squid (Loligo opalescens), and small quantities (less than 2,000 pounds) of several other species.

Table 3. --Average prices paid to Sān Pedro wetfish boats for fish

Species	Prices in:											
	1963		1964		1965		1966		1967		$1968{ }^{1}$	
	$\frac{\text { Cents }}{\text { per }}$	$\left\|\begin{array}{\|c\|} \frac{\text { Dollars }}{\text { per }} \\ \text { short ton } \end{array}\right\|$	$\frac{\text { Cents }}{\frac{\text { per }}{\text { pound }}}$	$\begin{aligned} & \frac{\text { Dollars }}{\frac{\text { per }}{}} \\ & \text { shortton } \end{aligned}$	$\frac{\text { Cents }}{\text { per }}$ pound	$\begin{aligned} & \frac{\text { Dollars }}{\text { per }} \\ & \text { short ton } \end{aligned}$	$\frac{\text { Cents }}{\text { per }} \text { pound }$	Dollars per short ton	$\frac{\text { Cents }}{\text { per }} \text { pound }$	$\begin{aligned} & \frac{\text { Dollars }}{\text { per }} \\ & \text { short ton } \end{aligned}$	$\frac{\text { Cents }}{\frac{\text { per }}{\text { pound }}}$	$\frac{\text { Dollars }}{\frac{\text { per }}{\text { short ton }}}$
Bonito ${ }^{\text {a }}$	2.870	57.40	2.629	52.58	2. 780	55.60	4.067	81.34	4.146	82.92	4.248	84.96
Bluefin tuna ${ }^{\text {a }}$	10.212	204.24	11.114	228.28	13.135	262.68	14.484	289.68	12.396	247.92	--	--3
Albacore tuna ${ }^{\text {a }}$	16.190	323.80	15.944	318.62	16.081	321.62	24.738	494.76	19.500	390.00	--	--3
Mackerel (both spp) ${ }^{2}$	2.103	42.03	2. 294	45.88	2.713	54.26	3.430	68.60	3.625	72.50	3.771	75.42
Sardines ${ }^{\text {a }}$	3.307	66.14	3.261	65.22	3.234	64.68	18.649	$372.98{ }^{4}$	20.000	400.00^{4}	--	$--^{3}$
Anchovies	1.698	$33.96{ }^{5}$	1.649	32.66^{5}	1. 723	34.66^{5}	0.941	18.82^{3}	1.000	20.00^{3}	--	-- ${ }^{3}$
Skipjack tuna ${ }^{\text {a }}$	9.976	199.52	--	$\ldots{ }^{8}$	10.240	204.80	--		--	--8	--	--3
Average for all species	2.465		2.665		3.300		2.948		2.679		--	

Note 1: First quarter of 1968.
Note 2: Based on settlement data gathered in the present study (see the Data Base section).
Note 3: No fish were landed in the first quarter of 1968.
Note 4: Sold mostly to fresh-fish markets.
Note 5: Based on landings and value data in Biostatistical Section, Marine Resources Operations, 1965; Greenwood and Mackett, 1965 1967.

Note 6: Negligible quantities of skipjack were caught in these years by the wetfish fleet.

Figure 3.--San Pedro wetfish-boat landings and total California landings, 1963 to 1967. The total-landings data are from the Biostatistical Section, Marine Resources Operations, 1965; Greenhood and Mackett, 1965 and 1967; Heimann and Frey, 1968a and 1968b. The wetfish-boat landings are from unpublished data furnished by the California Department of Fish and Game.

VALUE OF SPECIES CATCH RELATIVE TO TOTAL CATCH VALUE (per cent)

Figure 4. --Species makeup by value of catch of San Pedro wetfish boat fleet, 1963 to 1967. The figures are based on unpublished landings data furnished by the California Department of Fish and Game.
3. Yearly fluctuations in the demand for bonito by the processors.
4. A legal moratorium on sardine fishing (as of 1967), following a drastic decline in abundance.
5. The legalization by the California state legislature of the taking of anchovies for reduction to fish meal (as of November 1965).

Although these data and observations indicate that the San Pedro wetfish industry is not in a strong position economically, they do not supply sufficient information for a complete analysis. The overall purpose of the work reported here therefore was to gain a complete view by means of a detailed economic study. The main specific aims of this study were:

1. To determine the condition of the wetfish boat fleet at San Pedro (as of March 1968) with respect to (a) productivity, revenue, and profits of the fleet, (b) capital structure and return on investment, (c) crew.earnings, and (d) employment.
2.. To present a model with which prospective wetfish operators may predict costs and earnings under varying conditions of such factors as composition of the catch, characteristics of the vessel, value of the vessel, and size of the crew.
2. Then, using the model developed, to examine the economic feasibility of constructing new wetfish boats and of expanding the fleet.

An understanding of the data in this report and of the discussion of the data requires an understanding of share-out procedures--that is, of the way in which the proceeds of the catch are divided up between owner and crew. A discussion of these procedures therefore follows.

A share-out, or "settlement, " is made by the boat owner when enough fish have been sold to more than cover expenses, usually once a month at the end of the "dark" (of the moon). Because the lunar month is 29-1/2 days, sometimes more than one settlement occurs in a calendar month. A settlement usually is not made, however, when insufficient fish are caught to cover operating expenses during the lunar period. In this event, income and expenses are held over until a successive period. Occasionally, a settlement may be made even when expenses are not met, and negative "!shares" are computed and deducted from the shares in the following settlement.

The settlement is computed on a "settlement sheet" having a standard format. Copies of the settlement sheet are retained by the boat owner and his accountant, and a copy is forwarded to the labor union representing the crew. Computing the settlement involves four steps as follows:
(1) Operating costs or "trip expenses" are deducted from gross revenue. By union agreement, only certain items of expense may be deducted from the gross. These deductible items include fuel, lubricating oil, salt, ice, foreign fishing licenses, seal and shark control (explosives and rifle ammunition), airplane spotting services, and contributions to the welfare fund, the pension fund, and the patrol agency.

The patrol agency is maintained by the union members. It has the duty of policing the collective bargaining agreement and of checking weights and payments.

Other expense items formerly deducted from the gross but not allowable under present agreements included: lobbying, attorneys' fees, donations, appliances, and rental and repairs of electronic equipment. Only the last item appeared frequently on settlement sheets included in the sample used in the present study.

The gross revenue as construed here excludes the value of rejected fish, overlimits, and fish transferred to other vessels, but it does include the value of fish transferred from other vessels.
(2) The net proceeds (gross income minus trip expenses) are divided into the boat share and the gross crew share. The division is made according to a schedule established by agreement with the labor unions (Table 4). When refrigeration equipment is used, the vessel receives an additional 3 percent of the net proceeds.
(3) The crew's gross share is split equally among the members of the crew, including any owners who serve as crew members. If a crewman was not on the boat for the entire fishing period, his share is prorated accordingly. This prorating is done by making a "split"--that is, by computing separate settlements for the segments of the period with crews of different sizes. For example, if 10 men worked for 14 days and 11 ren worked for an additional 12 days, a separate settlement is computed for 14 days with 10 shares and for 12 days with 11 shares. Fuel,

Table 4. --Share-out schedule for San Pedro wetfish boats

Boat's hatch capacity	Boat's share	Crew's share	Members in crew including skipper
$\frac{\text { Tons }}{1 \text { to } 25}$	$\frac{\text { Percent }}{34-3 / 4}$	$\frac{\text { Percent }}{65-1 / 4}$	$\frac{\text { Number }}{5 \text { to } 6}$
26 to 50	$36-1 / 2$	$63-1 / 2$	6 to 7
51 to 75	$37-1 / 2$	$62-1 / 2$	9 to 10
76 to 100	39	61	10 to 11
101 to 125	$39-1 / 2$	$60-1 / 2$	10 to 11
126 to 150	$41-1 / 2$	$58-1 / 2$	11 to 12
151 and up	$42-1 / 2$	$57-1 / 2$	11 to 12

Note: These data were furnished by the Fishermen's Cooperative Association of San Pedro.
welfare, pension, electronics, and most "other trip expenses" are prorated to the segments. Patrol and airplane spotting costs are deducted from the gross for the segment in which these costs occurred. Likewise, catch income belongs to the segment during which the fish were caught. For this report, the average size of crew to the nearest whole man during the month is used.
(4) The cost of provisions and of galley supplies such as crockery and cooking utensils is split equally among the members of the crew and is deducted from their shares.

The data for this report were obtained primarily from records maintained by bookkeeping and accounting firms for the vessel ownors. These records include: (1) copies of the settlement sheets together with copies of receipts for fish sold to wholesalers or processors during the period covered by each settlement and (2) balance sheets, profit-and-loss statements, tax forms, and other documents pertaining to the finances of the corporation or partnership operating the vessel.

Access was not gained to the company records of some vessels. For these vessels, settlement information was obtained from the copies of settlement sheets retained by the unions, but peither catch nor corporation financial data were obtainable.

Data on total landings by the wetfish-boat fleet were furnished by Marine Reisources Operations of the California Department of Fish and Game.

Estimates of costs of constructing new vessels were obtained by direct interview with shipbuilders. Market values of vessels in the existing fleet were obtained from county tax records. Information on insurance rates was obtained from marine insurance agents.

As was just indicated, complete data could not be obtained. Consequently, this report is based on sample data. The sizes of the samples for (1) the annual financial data, (2) the costs and earnings data for monthly settlements, and (3) the catch data were as follows:
(1) Annual financial data. The sample included annual data on finances for 12 vessels from 1963 to 1965 inclusive, for 14 vessels for 1966 , and for 15 vessels for 1967. These data represented about 44 percent of the total vessel years for the fleet during the period. The data were not strictly comparable on a time axis because the fiscal year used varied from company to company.
(2) Revenue and cost data for monthly settlements. We obtained access to monthly settlement sheets for 22 vessels. The sample included data on revenue, itemized trip expenses, and crew size from 940 settlements from January 1963 to March 1968, inclusive (Table 5). Three vessels entered the sample in 1965, one vessel entered in 1966, and the other 18 vessels were covered for the entire period. Each vessel was not represented by a settlement for each month during the sample period, because of tie-ups due to repairs, modifications, and labor disputes and because catches in some months were too small to justify settlement. The settlements in the sample represpnt from 52.4 percent (1963) to 78.8 percent (1967) of the total revenue of the wetfigh boat fleet (Table 5).

Table 5.-Sample size of revenue and cost data for monthly settlements

Year	Settlements in sample	Vessels in sample	Revenue in sample	Revenue relative to total revenue for fleet
1963	$\frac{\text { Number }}{169}$	$\frac{\text { Number }}{18}$	$\frac{\text { Dollars }}{1,413 ; 000}$	$\frac{\text { Percent }}{52.4}$
1964	163	18	$1,394,000$	54.7
1965	174	21	$1,499,000$	73.2
1966	194	22	$1,796,000$	75.6
1967	188	22	$1,726,000$	78.8
1968	52	22	346,000	

Note 1: The data on total revenue are estimates based on unpublished landings data furnished by the California Department. of Fish and Game and on price data from the present study.

Note 2: The data for 1968 are for only the first quarter of the year.
(3) Catch data. Data on species, weight, and price of the catch were gathered for 826 settlements for 18 of the 22 vessels for which cost and revenue data were obtained. For the remaining 4 vessels, catch data correlated with settlements were not available. Table 6 shows the percentage in the sample of the total wetfish boat fleet landings for each major species. Pacific mackerel and jack mackerel were combined into a single category "mackerel", because many of the cannery receipts used as the sources of data in this study did not specify the species of mackerel purchased. The sample is skewed toward tuna and away from sardines, anchovies, and bonito for most of the years. This bias for the higher-priced species is also reflected in a comparison of the elements of the last column of Table 5 with those of the last row of Table 6. For example, the sample for 1963 includes 38.2 percent of the total fleet landings but it includes 52.4 percent of the value of the landings. This skewness must be taken into account when an empirical costs-prediction model is constructed based on the present sample.

A portion of the catch in the sample for each year was classified as "other or unidentified (single price paid for a mixed catch, or itemized cannery receipt not available)." Table 7 shows the percentage of the value of the landings in the sample classified in this category for each year. 'The proportion of this value that for should pertain to each species--thereby providing a basis increasing the percentage by weight listed as included in the sample (Table 6)--is not known. A decreasing percentage for sardines ip Table 6, however, is almost certainly due in part to the fact that ${ }^{i}$ a greater percentage of the total landings of sardines in southern California are from mixed catches of mackerel and sardines (Greenhood, 1965). The composition of these mixed catches was estimated in the landings data furnished by the

Table 6. --San Pedro wetfish boat landings included in sample by species, 1963 to 1967

Species	Landings included in the sample relative to the total wetfish landings in:				
	1963	1964	1965	1966	1967
	Percent	Percent	Percent	Percent	Percent
Mackerel	44.4	46.9	58.0	62.4	71.2
Sardines	20.2	42.9	22.3	10.0	5.5
Bluefin tuna	68.0	63.0	73.0	74.1	60.1
Albacore tuna	67.1	-	57.3	71.4	-
Bonito	30.0	30.9	19.2	55.5	60.7
Anchovies	-	0.0	0.0	41.1	65.1
Average	38.2	38.9	38.3	52.4	54.8

Note: Where no data are given, the landings of the given species were nelegible (see Table).

Table 7. --Relative value of landings classified as "other or unidentified", 1963 to 1968

Sample year	Relative value of landings classi- fied as "other or unidentified"
1963	Percent
1964	2.4
1965	10.1
1966	8.3
1967	4.0
1968 (1st)	6.9

California Department of Fish and Game but not on the cannery receipts that were the sources of catch data for this study.

I. FINANCIAL CONDITION OF THE FLEET

In our evaluation of the financial condition of the fleet, we consider the following factors: (A) productivity, revenue, and profit, (B) capital structure and return on investment, (C) crew earnings and (D) employment.
A. Productivity, Revenue, and Profits

Productivity per vessel in terms of tons of fish landed showed no net gain from 1963 to 1967 (Table 8). Landings per vessel in 1967 ranged from 535 tons to 2,570 tons (Figure 5). The average vessel revenue showed a net increase, but the total fleet revenue decreased due to the decrease in the number of vessels. The vessel average annual revenue for the period ranged from 45,145 dollars to 119,610 dollars with the grand average being 77,557 dollars (Figure 6).

For the purpose of this analysis, profits (or losses) shown in Profit and Loss Statements have been adjusted by adding salaries paid to officers of the corporations. Wages, commissions, and bonuses paid to these officers for serving as crew members are part of the corporation's operating costs (included in crew wages). Salaries in general were a form of draws on account of future profits, but in some cases part of these salaries might be considered as managerial cost. Since, from the records made available, it was not possible to separate these two types of payments, all salaries paid to officers were added to profits. With

Figure 5. --Frequency distribution of total landings per vessel for 1967 by San Pedro wetfish boats. This graph is based on unpublished landings data furnished by the California Department of Fish and Game.

Table 8. --Productivity of San Pedro wetfish boat fleet

Year	Average landings per vessel	Average revenue per vessel	Total revenue of fleet
1963	Tons	Dollars	Dollars
1964	1,473	73,000	$2,697,000$
1965	1,366	73,000	$2,549,000$
1966	872	57,000	$2,048,000$
1967	1,184	70,000	$2,375,000$
	1,461	78,000	$2,191,000$

Note: These figures are based on unpublished data on landings furnished by the California Department of Fish and Game and on the price data in Table 3.

Figure 6.-- Frequency distribution of average annual gross revenue per vessel from 1963 to 1967. The graph is based on settlement data.
these adjustments, the average values of gross profit (before taxes) for the whole fleet ranged from 5,100 dollars per v ssel in 1963, to 10,726 dollars in 1966, as shown in Table 9A. While some of the vessels showed losses as the end result of their operations, the majority closed the year with profit. Out of 65 vessel-years analyzed, 51 (or 78.5 percent of them, were profitable.

The two subgroups of vessels 1 rom Table 9A are further characterized by the range of profits or losses in each year and by the quartile values of profits. Table 9B shows the range of profits, and Table 9C shows the range of losses. In general, the median values $\left(Q_{2}\right)$ are lower than are the mean values shown in Table 9A.

A regression of profit on gross revenue (Figure 7) shows that the breakeven point for a vessel in the fleet in 1967 was about 70,000 dollars gross revenue, In that year, gross revenue ranged to over 150,000 dollars.

B. Capital Structure and Return on Investment

The 1967 balance sheets for: 15 vessels showed total assets of 476,700 dollars, or 31,780 dollars per vessel. The assets for individual vessels ranged from 4,679 dollars to 63,844 dollars. On the average, 82.8 percent of the total assets were made up of fixed assets--that is, of the depreciated value of the vessels and equipment. Current assets (cash in the bank, accounts receivable, and other) formed the remaining 17.2 percent of the total assets.

Table 9A. --Average values of gross revenue and profit (or loss) per vessel, 1963 to 1967
\dot{r}

Year	Data for:								
	All vessels			Profitable vessels			Nonprofitable vessels		
	Vessels	Gross revenue	Profit before taxes	Vessels	$\begin{gathered} \text { Gross } \\ \text { revenue } \end{gathered}$	Profit before taxes	Vessels	Gross revenue	Profit before taxes
	Number	Dollars	Doliars	Number	Dollars	Doilars	Number	Dollars	Doilars
1963	12	77,770	5,100	9	84,893	7, 706	3	56,400	-2,719
1964	12	76,072	7,600	11	77,710	8,504	1	58,058	-2,355
1965	12	76,847	5,660	10	82,671	7, 191	2	47, 726	-1,992
1966	14	98,105	10, 726	12	103,950	13,329	2	63,034	-4,888
1967	25	$\because 78,110$	5,104	9	91,213	10,577	6	58,604	$-3,106$

Note: These figures are based on data from profit and loss statements.

Table 9B.--Range of profits on profitable vessels, 1963 to 1967

Year	Range of profits
	Dollars
1963	1,416 to 14,570
1964	1,453 to 27,568
1965	2,291 to 17,641
1966	1,869 to 39,558
1967	1,366 to 33,741

Table 9C.--Range of losses on unprofitable vessels, 2963 to 1967

Year	Range of losses
	Dollars
1963	803 to 3,737
1965	1,072 to 2,912
415 to 9,361	
1967	210 to 6,524

Note: In 1964, only one vessel closed the year with a loss.

Table 9D. --Quartile values of profits, 1963 to 1967

Year	Profits in quartile:		
	Q_{1}	Q_{2}	Q_{3}
	Dollars	Dollars	Dollars
1963	6,256	7,067	10,551
1964	2,180	6,708	11,534
1965	2,712	4,894	12,310
1966	3,971	8,249	31,159
1967	2,281	5,248	18,341

Figure 7.--Relationship between profit or loss and gross revenue for. 14 San Pedro wetfish boats in 1967. This plot is based on profit and loss statements.

The average market value of these vessels as estimated by the Office of Assessor, County of Los Angeles, was about 41,000 dollars--that is, it was about 1-1/2 times the book value.

10A

Table a shows the sources from which the total assets were financed.

This capital structure reflects rather unfavorable financial conditions in the fleet as a whole. The low amount of quick assets (which in this case is equivalent to current assets) relative to current liabilities, as indicated by a ratio of approximately $0.5: 1$, might be a reason for banks to refuse loans. While a sizable part of total assets (27.4 percent) was financed by stockholders in form of notes and loans, 51 percent of all notes and long-term liabilities (i.e. over 171,000 dollars) came from canneries, which are recipient of fish landed by this fleet. Needless to say, this financial dependence on canneries puts the vessel owners in a disadvantageous position when prices for fish are negotiated.

The low level of equity capital for the whole group (average 15.1 percent) is effected by six corporations, which show a deficit from 5,000 dollars to 36,000 10B dollars (average 13, 500 dollars). Table ${ }_{\wedge}$ shows the capital sturcture for the remaining nine companies.

In this group of nine vessels current liabilities exceeded current assets by about 2,500 dollars per vessel, indicating a need for working capital. The average equity capital for a vessel in this group was 17,500 dollars, while fixed assets showed

10A
Table a ---Sources from which the total assets of wetfish boats were financed in 1967

Sources	Amount relative to the total amount	
	Percent	Percent
Accounts payable	14.32	
Notes payable	8.25	
Notes from stockholders	8.99	
Total current liabilities		31.56
Mortgages and long-term loans	34.93	
Łoans from stockholders	18.40?	
Total long-term liabilities		53.33
Capital stock plus accumulated eainings		15.11
Total liabilities and capital $=$ assets		100.00

10B
Table ${ }^{(}$.--Sources from which assets of nine of the stronger corporations were financed

Sources	Amount relati	e total a
	Percent	Percent
Accounts payable	12.06	
Notes payable	9.38	
Total current liabilities		21.44
Mortgages and long-term loans	22.20	
Loans from stockholders	11.36	
Total long-term liabilities		33.56
Capital stock plus accumulated earnings		45.00
Total liabilities and capital		100.00

a value of 34,200 dollars per vessel. The average profit of 8,300 dollars per vessel indicates the following rates of return on investment:
47.4 percent - when related to equity capital,
24.3 percent - when related to fixed assets.

It should be pointed out that the high rate of return on equity capital
(47.4 percent) is artificially inflated by abnormal financing practices for these vessels. It was observed that a major part of profits is being drawn each year by the corporation's officers in the form of salaries or bonuses. This action leaves the corporations with low equity capital and with no working capital (see previous section).

For a group of five vessels, wi h equity capital ranging from 18,355 dollars to 37,970 dollars, the return on invest nent was 13.3 percent. The median value for this group, 28,162 dollars will be i sed below for predicting the return on investment for old vessels. An actual anticij ated value for equity capital should be substituted by a prospective vessel operat, r.

C. Crew Earnings

We calculated the individual cres share for each settlement by dividing the crew share of net proceeds (gross revenue minus trip expenses) by the average number of crewmen (to the nearest whole man) on the vessel during the period covered by the settlement.

1. Fleet Averages from 1963 to 1967

We calculated the average crewman's earnings in the fleet for each year by multiplying the average individual crew share per settlement (above) by the average number of settlements per vessel during the year (Table 11). The average crew earnings did not increase during the period, but the real earnings (actual earnings adjusted by consumer price index) decreased 9.2 percent during the period.

2. Vessel Variation in Crew Earnings

The average crewman's annual earnings for each vessel during 1963 through the first quarter of 1968 were calculated in the same manner described earlier and are presented in Table 12. In accordance with the wishes of the vessel owners, the estimates are not identified as to vessel. Figure 8 presents the frequency distribution of the estimates in 500 dollar intervals. The variation in crew earnings has two major components--namely, (1) the variation in the crewman's share per settlement and (2) the variation in the number of settlements per year. The latter variation is not amenable to analysis, because it is determined (1) by different response to labor disputes by management, (2) by different tie-up periods for gear and vessel modification and repairs, and (3) by different fishing success, but the factors affecting crewman's share per settlement, the other source of variation, are examined later in the section concerned with predicting earnings.

D. Employment

The size of crew on the vessels (Table 13) as well as the number of vessels in the fleet decreased during 1963 to 1967. The combined effect of these two factors

Table 11. --Average crewman's earnings in San Pedro wetfish boat fleet, 1963 to 1968

Year	Average crewman's share per settlement	Average settlements per vessel	Average crewman's earnings per year	Average crew man's real earnings for year	- Sample size	
					Settlements	Vessels
	Dollars	Number	Doilars	Dollars	Number	Number
1963	438	9.44	4134	4134	168	18
1964	440	9.11	4008	3953	159	18
1965	445	8.22	3658	3551	171	21
1966	493	8.90	4388	4140	191	22
1967	480	8.52	4090	3752	177	22
1968 (1st $\frac{1}{4}$)) 324	2.36	--	--	50	22

Note 1: The average crewman's earnings per year includes nontaxable provisions, which averaged $\$ 585$ per crewman in 1967.

Note 2: The average crewman's real earnings for the year was adjusted to the 1963 level with consumer price index (Long, 1969).

31
Table 12.--Average créwnian's earnings' for San Pedro wetfish bóat ; 1963 to 1968 (1st $\cdot \frac{1}{4}$)

Vessel Number	Average crewman's share per settlement	Average siettlements per year	Average crewman's earnings for year
	Dollars	Number	Dollars
1	353	6.29	2,219
2	358	6.67	2,387
3	292	9.53	2,781
4	322	10.48	3,374
5	352	9.67	3,402
6	366	9.53	3,486
7	414	8.57	3,549
8	400	8.95	3,582
9	359	10.29	3,692
10	420	8.95	3,761
11	392	9.72	3,809
12	467	8.57	4,004
13	472	8.57	4,047
14	467	8.76	4,171
15	457	9.14	4,179
16	537	8.57	4,601
17	486	9.91	4,814
18	534	9.53	5,086
19	582	8.95	5,211
20	580	10.27	5,957
21	735	8.95	6,581
22	591	11.36	6,716
Grand average	age 453	9.15	4,164

Note: These figures are based on settlement data. For vessels entering the sample after 1963, the crewman's earnings for the year was adjusted to the 1963 level with the consumer price index (Long, 1969).

Figure 8. --Frequency distribution of crewman's average annual earnings, 1963 to 1967 . The graph is based on settlement data.

Table 13. --Average size of crew in the San Pedro wetfish-boat fleet, 1963 to 1968

Year	Men in crew
1963	$\frac{\text { Number }}{10.29}$
1964	10.28
1965	9.94
1966	9.65
1967	9.74
1968 (1st $\frac{1}{4}$)	9.52

Note: These figures are based, on settlement data.
was a 30 -percent decrease in the number of fulltime jobs (Figure 9) from about 381 jobs in 1963 to 238 jobs in 1968. These estimated totals do not include employment in other phases of the wetfish industry such as processing, maintenance of vessels, and supply.

II. COSTS AND RARNINGS MODEL

Having looked into the financial condition of the fleet, we turn now to our second topic--namely, our costs and carnings model. In so doing, we first analyze costs and then predict earnings.

A. Analysis of Costs

Average total costs per vessel (operating costs or "trip expense" and owner's costs; crew's share not deducted) reached a high in 1966 (Table 14) and then decreased in 1967. The ratio of costs to value (total costs divided by the value of the catch) increased to a high in 1965 and then decreased coincidentally with the advent of the anchovy fishery to below the 1963 level.

Operating costs and owner's costs are discussed separately in the following section, and a submodel is developed for each cost category.

1. Operating Costs

Operating costs or "trip expenses" (described under Share-out procedures above) are shared by the owner and the crew. Two major items are the cost of fuel and of airplane spotting services. The price of diesel fuel in 1968 was 14.5 cents per gallon. When airplane spotting is used, 5 percent of the value of the catch
total
Table 14. --Average/costs per vessel (operating costs + owner's costs exclusive of the payments to the crew on "crew's share") for San Pedro wetfish boats--1963 to 1967

Year	Total costs	Ratio of cost to value of catch
	Dollars	
1963	31,547	0.432
1964	31,549	0.432
1965	31,022	0.544
1966	37,394	0.534
1967	32,882	0.422

Note: These figures are based on settlement data and annual financial data.

 ca: E:ullojuer:i in the San Peàro wetrish boat fleet, 1963 to 1968.
goes to the spotter. Welfare and other fund contributions are calculated as a percontago of gross revonue or as a charge per ton of fish landed. Other costs are related to the time spent at sea and to the size of the main engine. Still others include expenses that are incurred sporadically and that have no relation either to the time spent at sea or to the proceeds from fishing.

Average operating costs per vessel remained almost constant during 1963 to 1967 (Table 15). Costs per pound of fish landed increased to a high in 1965 and then decreased when anchovies entered the landings.

The multi-species makeup of the catch of the San Pedro wetfish fleet demands that operating costs be examined for varying compositions of catch. This requirement becomes even more important when we recognize that a future expanded wetfish fleet will perhaps have to depend more on low-priced fish--that is, on anchovies-and less on high-priced fish--that is, on tuna--than does the present fleet. Because two or more species are usually landed by each vessel during any given settlement period, operating costs could not be related directly to species. A multiple regression analysis based on monthly settlement data for 1967, however, indicated that a significant linear correlation exists between the amount of operating expenses (dependent variable), and landings of mackerel, tuna, bonito, and anchovies (independent variables). The regression is of the form:

$$
\hat{Y}=914+0.00103 X_{1}+0.00519 X_{3}+0.00399 X_{3}+0.00038 X_{4}
$$

where

$$
\hat{Y}=\text { operating costs, in ciollars }
$$

$$
\mathrm{X}_{1}=\text { pounds of mackerel (jack and Pacific) landed }
$$

Table 15. --Average, operating costs per vessel and per pound of fish landed by the San Pedro wetfish-boat fleet

Year	Operating costs	
	Dollars	Cents per 1963
1964	10,317	0.363
1965	10,597	0.378
1966	9,990	0.499
1967	10,341	0.412

Note: These figures are baser on settlement data.
$\mathrm{X}_{3}=$ pounds of tuna (bluefin, albacore, and skipjack) landed
$X_{3}=$ pounds of bonito landed
$\mathrm{X}_{4}=$ pounds of anchovies landed
(t_{b}, in order, $=4.63,3.33,11.91,3.78 ; \mathrm{p}<0.001, \mathrm{R}^{2}=0.75$).
The differences in operating costs coefficients between species reflect species differences in schooling behavior and in geographical distribution. Tuna are caught a few tons at a time, but a vessel may be loaded with anchovies in two sets of the net. Jack mackerel are often fished 50 to 100 miles offshore, but anchovies are fished usually within 10 miles of port.

A statistically significant and positive relation was found between operating costs and the horsepower of the main engine (in the range of 150 to 335 horsepower), but the maximum effect onpredicted costs at 150,000 dollars gross revenue for the present fleet was only 132 dollars; consequently, the variable was dropped from the equation. Capacity of the vessel was found to be of low significance ($t_{b}=1.67$), therefore that variable was also dropped from the regression.

Figure 10 shows the fit of predicted annual operating costs to actual operating costs for 15 vessels in 1967. To obtain the annual estimates, we multiplied the Y-intercept of the regression equation times the number of settlements made during 1967 and multiplied the coefficients time the landings of the four species. ${ }^{3}$

[^1]

Figure 10. - Fit of operating costs model to actual operating costs. The line is a 45° (slope $=1$, correlation coeffictent $=1$) along which the points would lie if the model were a perfect fit.

Using the levels of the prices of fish in 1967, we can rewrite the operating costs relation in terms of cost per dollars worth of fish landed annually:

$$
\begin{equation*}
\hat{Y}=8,052+0.0275 \mathrm{X}_{1}+0.0419 \mathrm{X}_{3}+0.0939 \mathrm{X}_{3}+0.0380 \mathrm{X}_{4} \tag{Equation1}
\end{equation*}
$$

where $\quad \hat{Y}=$ predicted annual operati ig costs, in dollars

$$
\begin{aligned}
& X_{1}=\text { value of mackerel landings, in dollars } \\
& X_{2}=\text { value of tuna landings, in dollars } \\
& X_{3}=\text { value of bonito landings, in dollars } \\
& X_{4}=\text { value of anchovy landings, in dollars }
\end{aligned}
$$

We obtained the value 8,052 dollars by multiplying the Y-intercept for the monthly operations cosț regression times 8.81 , the average number of settlements per year for the fleet during 1963 to 1967. If no strikes, lay-ups for repairs, or very slack fishing months are anticipated, the value 10,968 dollars (12 months multiplied by 914 dollars per month, the Y-intercept for the monthly operating costs regression) should be used as the constant. According to this relation, the maximum predicted effect of species composition of landings on annual operating costs at a gross-revenue level of 150,000 dollars (arbitrarily chosen) is the difference between the predicted cost for an all-mackerel catch and that for an all-. bonito catch, or 9,960 dollars.

2. Owner Costs

Owner costs are those costs that are deducted from the owner's share of the net proceeds and are categorized here under (a) parts and repairs, (b) netting ànd supplies, (c) insurance, (d) payroll taxes, (e) interest on loan, (f) moorage, (g) State and county taxes, (h) depreciation, and (i) a miscellaneous category "office expenses and other costs."

Table 16presents average values for these costs for the fleet for each year from 1963 to 1967. New engines and anchovy nets were purchased for many of the vessels in 1966, which accounts for the high values for that year. As a measure of dispersion, the coefficient of variation is included. Methods of estimating owner costs are outlined below. Where appropriate, different means of estimation are used for predicting costs for existing vessels of the type now in the fleet and for hypothetical newly constructed vessels.
a. Parts and repairs. --Included in parts and repairs are expenditures for repairs and maintenance, including parts, of the vessel, the seine skiff, and the gear exclusive of the net. Labor for repairs to the net is furnished by the crew, and the cost of webbing is included under "Netting and supplies."
(1) Existing vessels. --The vessels are put into drydock once a year on a regular basis for maintenance and insurance inspection. No relation was found between size of vessel, of capacity, and cost of repairs. The great variation in cost of repairs for vessels of similar size is explainable by two factors pointed out

Table 16. --Average annual owners costs per vessel, 1963 to 1967.

1. Parts and repairs
2. Netting and supplies
3. Insurance
4. Payroll taxes
5. Interest on loan
6. Moorage
7. State and county taxes
8. Depreciation
9. Office expenses and

other costs	1,619	22
Total	21830	2095

Costs in:					Gomfficiont of variation
1964	1965	1966	1967	1963-1967	
Dollars	Dollars	Dollars	Dollars	Dollars	Percent
5118	4,167	5398	4891	4855	45.6
2007	2720	3842	3456	3847	63.1
4261	4,827	4971	4692	4645	24.8
3923	3996	4329	3246	3270	29.7
251	436	790	420	504	121.6
438	464	431	438	465	30.5 .
666	607	614	750	688	41.0
3,004	3,075	4496	4410	3604	61.3
2284	1,740	2182	1,552	1,873	47.6
Q952	21,032	27,053	22,855	22751	19.4

Nute: These data were derived from statements of profit and loss.
by Green and Broadhead (1965) in their study of costs and earnings of tuna seiners. Some owners, especially those of vessels that do relatively poorly on the fishing grounds, habitually postpone upkeep and renovation, and they make only those repairs that are absolutely needed to keep the vessel in operation. Also, some owners with mechanical skills may take care of many of the repairs themselves and may thereby save on labor costs.

A significant relation was found between owner's share in net proceeds and repair costs, perhaps a reflection of the factors mentioned above. The estimating equation is of the form:

$$
\begin{equation*}
\hat{Y}=24+0.0787 \mathrm{X}_{3}+0.0552 \mathrm{X}_{3} \tag{Equation2}
\end{equation*}
$$

where $\hat{Y}=$ the costs of repairs in Year t, in dollars
$X_{2}=$ the owner's share in the net proceeds in Year t, in dollars.
$X_{3}=$ the owner's share in the net proceeds in Year $(t-1)$, in dollars (t_{b}, in order, $=3.92,2.36 ; F=18.96$ with $(2,41) D F ; R^{2}=0.48$).
(2) New vessels. --Presumably, owners of new seiners will possess adequate working capital and will want to keep their vessels in top condition. We therefore used comparable data on new steel shrimp trawlers, based in ports on the Gulf of Mexico, to estimate the maintenance and repair costs of new wetfish seiners. The sample consisted of 17 shrimp vessels, ranging from 61 to 85 feet registered length (the average was 72 feet). The actual costs for 1967 or 1968 were increased by 20 percent, to account for possible additional maintenance costs on wetfish seiners (such as for power block and refrigeration).

The estimating equation is of the form:

$$
\begin{equation*}
\hat{Y}=-17,619+341.15 \mathrm{X} \tag{Equation3}
\end{equation*}
$$

where $\hat{Y}=$ the maintenance and repair costs, in dollars
$\mathrm{X}=$ the registered length of the vessel, in feet;

$$
\left(t_{b}=3.12, \mathrm{p}<0.01, \mathrm{r}^{2}=0.39\right)
$$

b. Netting and supplies. --Netting and supplies include expenditures for net webbing, seine cables, line, hardware, tools, and miscellaneous supply items. Seine cables are replaced about once a year, at a cost of about 500 dollars. Worn webbing is replaced every other year on a routine basis, also at a cost of about 500 dollars, in addition to that replaced to repair the net when it is torn.

A linear correlation was found between these costs and the quantity of fish landed. The least squares regression based on data for 1967 is of the following form:

$$
\begin{equation*}
\hat{Y}=-240+2 \mathrm{X} \tag{Equation4}
\end{equation*}
$$

where $\hat{Y}=$ costs in dollars
$X=$ tons of fish landed;

$$
\left(t_{b}=3.77, p<0.005, r^{2}=0.53\right) .
$$

This regression indicates that the costs of nets and supplies increase by 2 dollars per ton of fish caught. The addition of the owner's share in proceeds, as a second possible variable in the regression, is not significant statistically.
c. Insurance. --Insurance is a major expense. Three types of coverage are carried by all boat owners. Hull and machinery insurance covers total loss of the vessel as well as damage caused by fire, stranding, and collision, with a usual deductible amount of 500 dollars per accident. The amount of the insurance is in the amount of the market value of the vessel. The seine skiff is covered under this insurance. Net insurance covers full value of the net (depreciated straight line over 5 years, with renovation added to the value) against loss or damage, with a 500 dollar deductible amount for fire only. Protection and indemnity insurance covers illness and injuries of crew members and a broad range of possible liability to other parties. The usual practice is to insure to 100,000 dollars for a single claim, with a 1,000 dollar deductible amount for property liability. Premiums are based on a complex formula that varies with the insurance company and that has to do with such factors as size of crew, age of vessel, and size of vessel. The premiums are about 2,000 dollars per year for a vessel with a crew of 10 .
(1) Existing vessels.--Analysis of costs categorized under "insurance" in the financial reports examined in the present study revealed a variability too great to allow us to estimate insurance costs empirically. This variation is due to differences in coverage and in premium-payment schedules. For purposes of cost prediction, hull and machinery premiums were computed at 6.75 percent of the market value, net insurance premiums were computed at 5 percent of the value
of the nets, and protection and liability premiums were computed at 200 dollars per crewman. In 1968, these premiuns provided the coverage described above. Values of vessels and nets are discussed below in the section ondepreciation (h).

The equation for insurance costs for existing vessels is as follows:
$\hat{Y}=0.0675 \mathrm{X}_{1}+0.0500 \mathrm{X}_{2}+20 i \mathrm{X}_{3}$
(Equation 5)
where $\hat{Y}=$ the estimated insurance costs
$X_{1}=$ the market value of the vissel, in dollars
$\mathrm{X}_{\mathrm{a}}=$ the market value of the nets, in dollars
$X_{3}=$ the maximum size of the srew.
(2) New vessels. --For new vessels, the cost of hull and machinery insurance is lower than for old vesselis. The estimating equation therefore becomes:

$$
\begin{equation*}
\hat{Y}=0.0375 \mathrm{X}_{1}+0.0500 \mathrm{X}_{2}+210 \mathrm{X}_{3} \tag{Equation6}
\end{equation*}
$$

where $\hat{Y}=$ the estimated insurance :osts
$\mathrm{X}_{1}=$ the market value of the vessel, in dollars
$\mathrm{X}_{2}=$ the market value of the nets, in dollars
$X_{3}=$ the maximum size of the crew.
d. Payroll taxes. --Social Security taxes are computed as a percentage of a maximum annual amount of wages for each crew member. If the membership of the crew changes during the year, the taxes paid by the owner are higher than during a year in which the crew is stable. The following least-squares regression accounts for 77 percent of the variance for 58 observations:

$$
\begin{equation*}
\hat{Y}=1,073+0.057 \mathrm{X} \tag{Equation7}
\end{equation*}
$$

where $Y=$ estimated annual payroll taxes, in dollars
$\mathrm{X}=$ annual crew wages, in dollars;

$$
\left(t_{b}=13.72, p<0.001, r^{2}=0.77\right)
$$

e. Interest on loans. --The amounts paid by various corporations for interest on loans range from a few dollars to more than 2,000 dollars in a given year. The dispersion of payments by any corporation over the years is also very high. In many profit-and-loss statements, no interest payments are shown, although a substantial loan is indicated in the balance sheet. The amounts shown in Table 2 therefore may not reflect the real situation. The grand average value (504 dollars) will be used below for predicting costs for old vessels; but, for the purpose of estimation for new vessels, the interest cost should be calculated from assumed loans. The rate used for predicting purposes below is 7.5 percent.
f. Moorage. --The moorage fee is computed by the Harbor Department on the basis of the length and of the type vessel. Out of 22 vessels analyzed, 16 (50 to 79 feet long, 60 -tons to 110 -tons capacity) paid 450 dollars per year, and 6 (80 feet and over, 110 -tons to 150 -tons capacity) paid 540 dollars per year.
g. State and county taxes. --In 1968, the California State income tax rate for corporations was 7 percent, with a minimum of 100 dollars. This rate is used for predicting purposes below. The companies, being small corporations, pay no Federal corporate income tax. Taxable income is reported in the personal returns of the shareholders.

The modal value for county property taxes was about 450 dollars. Under a new law (effective 1968), commercial fishing vessels registered in Los Angeles County are assessed at 1 percent of their market value. The current tax rate is about 10 dollars per hundred dollars assessed valuation, making the effective tax rate about 0.1 percent of market value per year.

In terms of an equation:

$$
\begin{equation*}
\hat{Y}=0.001 \mathrm{X}_{1}+0.07 \mathrm{X}_{2} \tag{Equation8}
\end{equation*}
$$

where $\hat{Y}=$ the estimated county and state taxes, in dollars
$\mathrm{X}_{1}=$ the market value of the v ssel, in dollars
$\mathrm{X}_{2}=$ the taxable income during previous year, in dollars.
$0.07 \mathrm{X}_{2} \quad \$ 100$
h. Depreciation. --Considered here is the depreciation both for vessels and for nets.
(1) Existing vessels. --The straight-line method and the decliningbalance method of computing depreciation are alternatively applied to the various component parts of the vessels (for example, vessel, engine, and skiff) and equipment (for example, power block, electronics, and netting). The vessels are old (all are more than 20 years old, and about half of the fleet is more than 30 years old), which explains why the cost of depreciation is rather low on the average
(Table 16). The vessels ranged in 1968 from $\mathbf{2 5 , 0 0 0}$ dollars to $\mathbf{6 0 , 0 0 0}$ dollars in market value, the average value being 41,530 dollars and the modal value being 45,000 dollars. (Note: The modal value is used below for predicting insurance
costs for existing vessels in sample calculations.) The depreciation claimed in 1967 does not show a significant linear relation with market value, the reason being that most of the depreciation claimed is on the items of nets, skiffs, electronics, refrigeration, and other vessel improvements, which retain a high market value beyond the span of their short book lives. The grand average value of depreciation for 1963-1967 (Table 16) is used below for predicting purposes.
(2) New vessels. --Depreciation is estimated for new vessels and skiffs at straight line for 15 years of 85 percent of the unsubsidized portion of new construction costs. Table 17 contains estimated costs of new-vessel construction for 12 steel vessels of various lengths, capacities, and horsepower. The total cost of a new net is depreciated straight line over 5 years. A new seine costs about 12,000 dollars. Most vessel operators own two seines--one for mackerel and one with a smaller mesh for anchovies. In equation form:

$$
\begin{equation*}
\hat{Y}=0.057 \mathrm{X}_{1}+0.2 \mathrm{X}_{3} \tag{Equation9}
\end{equation*}
$$

where $\hat{Y}=$ estimated depreciation, n dollars
$X_{1}=$ value of vessel and gear exclusive of nets, in dollars
(for 1st year, $=85$ percent of new construction cost of
full amount of unsubsidized cost for subsidized vessel)
$\mathrm{X}_{2}=$ value of nets, in dollars.

Table 17. --Estimated costs of new vessel construction (steel)

Note 1: The data on cost is for a vessel fully equipped for seining, except for nets and skiffe; excludes refrigeration. The estimates were obtained in the fall of 1968 .
Note 2: These figures are based on data furnished by vessel builders (see Acknowledgments).
i. Office expenses and other costs. --Table 18 shows the main components of office expenses and other costs.

The remainder of these costs consists of items such as licenses, legal fees, promotion expenses, telephone, donations, and "miscellaneous." For predicting purpose below, the average figure of 1,873 dollars for the fleet in 1967 , is used.

B. Model for Prediction of Earnings

Now that we have an analysis of costs, we can construct our model for the prediction of earnings. In so doing, we consider first the prediction of revenue and then the prediction of the aspects of earnings that depend on revenue--namely, profits, return on investment, and crew earnings.

1. Revenue

Predicting revenue turned out to be difficult--in fact, impossible at present. In this section, we described the problem and then how we handled it.
a. Problem of predicting earnings. --Revenue proved difficult to predict because little relation was found in the present study between landings or gross revenue and vessel characteristics such as length, capacity, horsepower of the main engine, or age. Three possible causes of this lack of observed relation are (1) the nature of the fishery, (2) an over-riding factor of skill, and (3) insufficient data.

Table 18 --Office expense and other costs

Item	Cost
	Dollars
Accounting	450 to 500
Automobile	400 to 500
Dues	200 to 300

(1) Nature of the fishery. --The vessels are seldom loaded to capacity (the usual load of mackerel is 10 to 50 tons), making differential capacity of minor importance. The exception to this underloading of the vessel occurs in the anchovy fishery, in which the vessels are loaded to capacity on most trips. Because the fishing grounds are within a few hours run from the harbor at most and, in some places, only a few minutes run, the importance of differential horsepower is minimized. Also, the catches of some species are subject to limits set by processors.
(2) Over-riding skill factor. --Setting a purse seine around a school of fish requires great skill. Schooling behavior varies widely from species to species and even from one school to another within a particular species, and empty hauls ("skunk sets") are common. Differences in the fishing ability of vessel captains may therefore be the major source of variation in landings and revenue.
(3) Insufficient data. --Few data were available for the present study on fishing effort (days at sea, scouting time, and number of net sets) correlated with landings data. The staff of Marine Resources Operations of the California Department of Fish and Game, however, is presently collecting effort data for the fleet. When adjustments çan eventually be made for differential fishing effort, we may find that differences in efficiency are correlated with vessel characteristics.
b. Solution to the problem of predicting earnings. --Because of the difficulty of predicting revenue, costs and earnings are predicted in the following section for arbitrary levels of revenue. The range of values used includes levels of revenue attained by vessels in the fleet in recent years (Figures 5 and 6).

2. Profit, Return on Investment, and Crew Earnings

Profit, return on investment, and crew earnings may be predicted for given levels of gross revenue by the use of the cost relations developed earlier. The details are given in the following subsection both for the older vessels of the type now in the fleet and for hypothetical new vessels.
a. Existing vessels. --In this section, we are concerned with sample cal-culations--that is, with showing the technique we used to calculate our predictions of profit, return on investment, and crew earnings. Table 19 is presented as a guide to illustrate the method used to estimate profit and return on investment. The following example, which is keyed to Table 19 by column numbers, illustrates the details of computation. Sources of the relations or values used in the computations are indicated in parentheses.

Given: Vessel size $\quad=100$ tons c .pacity
Market value $=45,000$ dollars (modal value for fleet; actual market value should be substituted by the prospective vessel operator)

Gross revenue $=150,000$ dollars
Catch = one-half mackerel and one-half anchovies, by value
Nets $\quad=$ one for anchovies and one for mackerel, at 12,000 dollars each.
Then:

Column in
Table 19

1. Operating costs $($ by Equation 1$)=8,052$ dollars $+0.0275 \times$
value of mackerel landings $+0.0419 x$ value of tuna landings + $0.0939 \times$ value of bonito landings $+0.0380 \times$ value of anchovy landings $=$

Column 12	Column 13	Column 14	Columin 15	Column 16	Column 17	Columin 18	Column 19	Colurnn 20	Column 21	Column 22	Column 23	Column 24	Column 25
Owner's share	Parts and repairs	Netting and supplics	Insurance	Payroll taxes	Interest on loans	Moorage	State and county taxes	Depreciation	$\begin{aligned} & \text { Office } \\ & \text { expenses } \end{aligned}$	Total owner's costs	Net profit	Equity capital investment	Return on investment
$\frac{\text { Dollars }}{50,524}$	$\frac{\text { Dollars }}{6,789}$	$\therefore \frac{\text { Dollars }}{5,480}$	$\frac{\text { Dollars }}{6,658}$	$\frac{\text { Dollars }}{5,873}$	$\frac{\text { Dollars }}{504}$	$\frac{\text { Dollars }}{450}$	$\frac{\text { Dollars }}{1,480}$	$\frac{\text { Dollars }}{3,604}$	$\frac{\text { Dollars }}{1,873}$	$\frac{\text { Dollars }}{32,711}$	$\frac{\text { Dollars }}{17,813}$	$\frac{\text { Dollars }}{28,162}$	$\frac{\text { Percent }}{63.3}$
52,545	7,060	5,480	6, 858	5,758	504	450	1,480	3, 604	1,873	33, 067	19,478	28,162	69.2
53,218	7,150	5,480	6,858	5,719	504	540	1,480	3, 604	1,973	33, 208	20,010	28,162	71.2
55,913	7,511	5,480	7, 058	5,566	504	540	1,480	3, 604	1,873	33,616	22, 297	28,162	79.2
51,388	6,905	9,248	6,658	5,955	504	450	... 1,235	3,604	1,873	36,442	14,946	28,162	53.1
53,444	7,180	9,248	6,858	5,838	504	450	1,235	3,604	1,873	36,790	16,654	28,162	59.1
54,129	7, 272	9,248	6,858	5,799	504	540	1,235	3, 604	1,873	36,943	17,186	28,162	61.0
56,870	7,639 ${ }^{\prime}$	9,248	7,058	5,642	504	540	1,235	3, 604	1,873	37, 353	19,517	28,162	69.3
51,093	6,865	15, 240	6,658	5,927	504	450	780	3, 604	1,873	41, 901	9,192	28,162	32.6
53,137	7,139	15,240	6, 858	5,810	504	450	780	3, 604	1,873	42, 258	10,879	28,162	38.6
53,818	7, 230	15,240	6,858	5,772	504	540	780	3,604	1,873	42,401	11,417	28,162	40.5
56,543	7,595	15, 240	7, 058	5,616	504	540	780	3, 604	1,873	42,810	13,733	28,162	48.8
								53a					

Table 19. --Sample calculations of predicted earnings for existing vessels, at gross revenue $=\$ 150,000$


```
8,052 dollars + 0.0275 \times75,000 dollars + 0.0380\times75,000
dollars = 12,965 dollars
2. Tons of mackerel \(=\) value of mackerel landings \(\div\) price per ton (fron Table 3; the current price should be substituted by the prospective vessel operator) \(=\mathbf{7 5}, 000\) dollars \(\div 75.42\) dollars per ton \(=994\) tons
3. Tons of anchovies \(=\) the value of the anchovy landings \(\div\) the price per ton (from Table 3; the current price should be substituted by the prospective vessel operator) \(=75,000\) dollars \(\div 20\) dollars per ton \(=3,750\) tons
4. Total tons of fish \(=\) Column \(2+\) Column \(3+\) Column \(4+\)
Column \(5=4,744\) tons
5. Minimum number of trips, assuming a capacity load each trip
\(=\) total tons (Column 6\() \div\) capacity of vessel \(=994\) tons \(+3,750\) tons
\(\div 100\) tons \(=48\) trips (= about 1 trip per week)
6. Net proceeds \(=\) gross revenue - operating costs (Column 1)


8. Gross crew share \(=\) percentage to crew (Column 9) x net
proceeds \((\) Column 8\() \div 100=61\) percent \(\times 137,035\) dollars \(\div 100\)
\(=83,591\) dollars
9. Individual crew share \(=\) gross crew share \((\) Column 10\() \div\) size of crew (from Table 4 ) \(=83,591\) dollaŕrs \(\div 11\) or \(10=\) 7, 599 dollars to 8,359 dollars per inc ividual
10. Owner's share \(=\) net proceeds \((\) Column 8\()-\) gross crew share \((\) Column 10\()=137,635\) dollars \(-83,591\) dollars \(=\) 53, 444 dollars
11. Parts and repairs (using Equation 2) \(=24\) dollars +0.0787 x owner's share (Column 12) \({ }^{i}+0.0552 \mathrm{x}\) owner's share in the preceding year (assumed here to be same as for the year 1969) \(=24\) dollars \(+0.0787 \times 53,444\) dollars \(+0.0552 \times 53,444\) dollars \(=7,180\) dollars
12. Netting and supplies (using Equation 4\()=240\) dollars +2 dollars per ton \(x\) tons of fish landed \((\) Column 6\()=-240\) dollars +2 dollars x \(4,744=9,248\) dollars
13. Insurance (using Equation 5) \(\mathbf{= 0 . 0 6 7 5 \times \text { market value of vessel }}\) +0.05 x value of nets +200 dollars per crew X maximum crew size \((\) from Table 4\()=0.0675 \times 45,000\) dollars \(+0.0500 \times 24,000\) dollars (assuming two new nets at 12,000 dollars each) +200 dollars \(\times 11\) \(=6,858\) dollars
14. Payroll taxes (using Equation 7) \(=1,073\) dollars \(+0.057 \times\) gross
crew share of net proceeds \((\) Column 10) \(=1,073\) dollars \(+0.057 x\)83,591 dollars \(=5,838\) dollărs[16]
15. Interest on loans (using average value for 1967 from Table 16;the prospective vessel operator should substitute his actualestimate \(=504\) dollars[17]
16. Moorage (using average paid by vessels under 80 feet long.
Moorage section ) \(=450\) dollars ..... [18]
17. State and county taxes (using Equation 8 ) \(=0.001 \times\) marketvalue of vessel +0.07 x previous year's profit (assumed here toby 17,000 dollars) with the limitation that this term may not beless than 100 dollars; the prospective vessel operator shouldsubstitute 100 dollars as the state tax during his first year ofoperation; \(=0.001 \times 45,000\) dollars \(+0.07 \times 17,000\) dollars \(=1,235\) dollars--[19]
18. Depreciation (using average value for 1963-1967 from Table 16;
the prospective vessel operator should substitute his actualestimate) \(=3,604\) dollars[20]
19. Office expenses and other costs (using average value for 1967
from Table 16) \(=1,873\) dollars[21]
20. Total owner's costs = parts and repairs (Column 13) + nettingand supplies (Column 14) + insurance (Column 15) + payroll taxes(Column 16) + interest on loans (Column 17) + moorage (Column 18)+ state and county taxes (Column 19) + depreciation (Column 20) +office expenses and other costs (Column 21 \(=7,180\) dollars +9,248 dollars \(+6,858\) dollars \(+5,838\) dollars +504 dollars +450 dollars \(+1,235\) dollars \(+3,604\) dollars \(+1,873\) dollars \(=\)36, 790 dollars[22]
21. Net profit \(=\) owner's share \((\) Column 12\()-\) total owner's cost\((\) Column 22\()=53,444\) dollars \(-36,790\) dollars \(=16,654\) dollars[23]
22. Equity capital investment (from Capital structure and return oninvestment section; the actual anticipated capital investment should besubstituted by the prospective vessel operator) \(=28,162\) dollars[24]
23. Return on investment \(=\) net profit \((\) Column 23\() \div\) capitalinvestment \((\) Column 24) \(=\) i 6,654 dollars \(\div 28,162\) dollars \(=\)59.1 percent
b. New vessels. --Before predicting profits and return on investment for new vessels, we must hypothesize a capital structure (Table 20).

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{4}{*}{\begin{tabular}{l}
Vessel type (from \\
Table 16)
\end{tabular}} & \multicolumn{13}{|c|}{Capital structure under:} \\
\hline & \multicolumn{9}{|l|}{} & \multicolumn{3}{|c|}{4:0-rercent subsiay:} & \\
\hline & \multicolumn{5}{|l|}{----- Fixat contit} & & \multirow[b]{2}{*}{\begin{tabular}{l}
Total \\
capital
\end{tabular}} & \multirow[b]{2}{*}{Borrowed capital} & \multirow[b]{2}{*}{Net wurth} & \multirow[b]{2}{*}{Vessel} & \multirow[t]{2}{*}{asets} & \multirow[b]{2}{*}{Total} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Working } \\
\text { capital }
\end{gathered}
\]} \\
\hline & cssel & Skifir & \begin{tabular}{l}
Reráieña \\
tion
\end{tabular} & Nets & Total & Working capital & & & & & & & \\
\hline \multirow[t]{2}{*}{1} & \(\frac{\text { Dollars }}{120,000}\) & \(\frac{\text { Dollars }}{8,000}\) & \(\frac{\text { Doliars }}{19,000}\) & & \(\frac{\text { Tbtal }}{\frac{\text { Dollars }}{171,000}}\) & \multirow[t]{2}{*}{\[
\frac{\text { Dollars }}{8,550}
\]} & \multirow[t]{2}{*}{\[
\frac{\text { Dollars }}{178,550}
\]} & \[
\frac{\text { Dollars }}{113,000}
\] & Dollars & \[
\frac{\text { Dollars }}{85,000}
\] & \[
\frac{\text { Dollars }}{\text { a } 4,000}
\] & \[
\begin{aligned}
& \text { Dollars } \\
& 112,0 \% j
\end{aligned}
\] & \[
\frac{\text { Dollars }}{8,550}
\] \\
\hline & 120,000 & 8,000 & & 24,000 & 17,000 & & & \multirow[b]{2}{*}{127,000} & \multirow[b]{2}{*}{73,600} & \multirow[b]{2}{*}{101,000} & \multirow[b]{2}{*}{24,000} & \multirow[b]{2}{*}{125,000} & \multirow[b]{2}{*}{9,600} \\
\hline 2 & 140,000 & 9,000 & 19,000 & 24,000 & 192,000 & 9,600 & 200,600 & & & & & & \\
\hline 3 & 160,000 & 9,000 & 19,000 & 24,000 & 2.2, 000 & 10,600 & 221,600 & 110,000 & 81,600 & 113,000 & 24,000 & 137,000 & 10,600 \\
\hline 4 & 240,000 & 10,000 & 21,000 & 24,000 & 195,000 & 9,750 & 203,750 & 129,000 & 74,750 & 103,000 & 24,000 & 127,005 & 9,750 \\
\hline 5 & 170,000 & 11,000 & 21,000 & 24,000 & 226,000 & 11,300 & 236,300 & \[
150,000
\] & 86,300 & 121,000 & 24,000 & 145,005 & i 11,300 \\
\hline 6 & 28\%,000 & 24,000 & 23,000 & 24,000 & 346,000 & 17,300 & 362,300 & 230,000 & 132,300 & 193,000 & 24,000 & 217,003 & 17,300 \\
\hline 7 & 200,000 & 24,000 & 23,000 & 24,000 & 261,000 & 13,050 & 273,050 & 173,000 & 100,050 & 142,000 & 24,000 & 166,000 & 13,050 \\
\hline 8 & 190,000 & 24,000 & 23,000 & 24,000 & 251,000 & 12,550 & 262,550 & \multirow[t]{2}{*}{\[
\begin{aligned}
& 166,000 \\
& 308,000
\end{aligned}
\]} & 96,550 & \multirow[t]{2}{*}{\[
\begin{aligned}
& 136,000 \\
& 264,000
\end{aligned}
\]} & \multirow[t]{2}{*}{24,000
24,000} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 160,000 \\
& 258,000
\end{aligned}
\]} & 12,550 \\
\hline 9 & 400,000 & 15,000 & 25,000 & 24,000 & 1464,000 & 23,200 & 486,200 & & 178,200 & & & & 23,200 \\
\hline 10 & 260,000 & 24,000 & 25,000 & 24,000 & 323,000 & 16,150 & 338,150 & \[
\begin{aligned}
& 308,000 \\
& 214,000
\end{aligned}
\] & 124,150 & \[
\begin{aligned}
& 264,000 \\
& 179,000
\end{aligned}
\] & \[
24,000
\] & 203,000 & 116,150 \\
\hline 21 & 230,000 & 24,000 & 25,000 & 21,000 & 293,000 & 24,650 & 306,650 & 194,000 & 112,650 & \[
161,000
\] & 24,000 & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { 105,000 } \\
& 22.2,000
\end{aligned}
\]} & 124,650 \\
\hline 12 & 290,000 & 25,000 & 25,000 & 24,000 & 354,000 & 17,700 & \multirow[t]{2}{*}{370,700} & \multirow[t]{2}{*}{235,000} & \multirow[t]{2}{*}{135,700} & \multirow[t]{2}{*}{198,000} & \multirow[t]{2}{*}{\(2^{14}, 000\)} & & \multirow[t]{2}{*}{\[
17,700
\]} \\
\hline & & & & & & & & & & & & & \\
\hline \multicolumn{14}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Note 1: The working capital consists of 5 percent of fixed capital. \\
Note 2: Borrowed capital consists of 66.6 percent of fixed capital.
\end{tabular}}} \\
\hline & & & & & & & & & & & & & \\
\hline \multicolumn{8}{|l|}{Note 3: For subsidized vessels, the fixed capital in the vessel includes the skiff and the refrigeration.} & \multicolumn{2}{|l|}{58} & & & & \\
\hline
\end{tabular}

Table 20. Capital structure for new vessel owners, under various levcls of government vessel-construction subsidy: (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & & 50-3 rere & Sisis: & & & \\
\hline Total c.pit. 21 & Borrowed capital & Net worth & Vessel & & Totel & Working capital & \[
\begin{aligned}
& \text { Total } \\
& \text { osy } 59
\end{aligned}
\] & Borrowed capital & \[
\begin{aligned}
& \text { :'ct } \\
& \text { worth }
\end{aligned}
\] \\
\hline Dollars & \(\frac{\text { Dollars }}{\text { 75,000 }}\) & \(\frac{\text { Dollars }}{45,550}\) & \[
\frac{\text { Dollars }}{73,500}
\] & \[
\frac{\text { Dollars }}{24,000}
\] & \[
\frac{\text { Dollars }}{97,500}
\] & \[
\frac{\text { Dollars }}{8,550}
\] & \[
\frac{\text { Dollars }}{105,650}
\] & \[
\frac{\text { Dollars }}{6 j, 000}
\] & \[
\frac{\text { pollars }}{41,050}
\] \\
\hline 134,600 & 83,000 & 51,600 & 84, 000 & 24,000 & 108,000 & 9,600 & 117,600 & 72,000 & -15,600- \\
\hline 147,600 & 91,000 & 56,600 & 94,000 & 24,000 & -118,000 & 10,600 & 128,600 & 79,000 & 1:9,600 \\
\hline 136,'750 & 85,000 & 51,750 & 86,000 & 24,000 & 1.10,000 & 9,750 & 119,750 & 73,000 & 46,750 \\
\hline 156,300 & 97,000. & 39,300 & 101,000 & 24,000 & 3.25,000 & - \({ }^{\text {- }}\) & \(\because 20\) & 83,uco & 53.300 \\
\hline 234,300 & 145,000 & 89,300 & 161,000 & 24,000 & 105,000 & 17,300 & 202,300 & 123,000 & 79,300 \\
\hline 179,050 & 'ill,000 & 63,050 & 118,000 & 24,000 & 242,000 & 13,050 & 1.55,050 & 95,000 & 60,050 \\
\hline 172,550 & 107,000 & -65,550 & 124,000 & 24,000 & 138,000 & 12,550 & 150,550 & 92,000 & 58,550 \\
\hline 311,200 & 192,000 & 119,200 & 220,000 & 24,000 & 244,000 & 23,200 & 267, 200 & 3.53,000 & 104,200 \\
\hline 219,150 & 135,000 & 84,150 & 150,000 & 24,000. & 171,000 & 16,150 & 190,150 & 116,000 & \(74, .150\) \\
\hline 199,650 & 123,000 & -76,650 & 135,000 & 24,000 & 159,000 & 24,650 & 113,\(6 ; 0\) & 106,000 & 67,650 \\
\hline 2ं39,700 & 148,000. & 91,700 & 165,000 & 24,000 & 189,000 & 17,700 & cosem & 1206000 & 8.3,160 \\
\hline
\end{tabular}

Table 21. --Sample calculations of predieted earnings for new vessels, at gross revenue \(=\$ 150,000\) and with mu construction subsidy
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & Column 1 & Column 2 k & Column & Column & 40olumn 5 & Column of & Column 7 & 7 Column 8 & Column : & Column 10 & Column 11 \\
\hline Catch composition by value & Vessel capacity & \begin{tabular}{l}
Operating \\
cost
\end{tabular} & Mackerel & Tuna & Bonito & Anchovies & Total fish & Trips & \[
\left\lvert\, \begin{aligned}
\text { Net Pr } \\
\text { proceeds }
\end{aligned}\right.
\] & roportion:te crew share & e Gross crew share & \begin{tabular}{l}
Individual \\
crew share
\end{tabular} \\
\hline & Tons & Dollars & Tons & Tons & Tons & Tons & Tons & Number & Dollars & Percent & Dollars & Dollars \\
\hline \multirow[t]{8}{*}{Approximate composition of 1967 fleet landings (Figure 4), i.e. , 50 percent mackerel, 10 percent tuna, 25 percent bonito, and 15 percent anchovies} & & & & & & & & & & & & \\
\hline & 66 & 15,119 & 1,034 & 60 & 452 & 1,125 & 2,671 & 41 & 134,881 & 62.5 & 84,301 & 8,430 to 9, 367 \\
\hline & 110 & 15,119 & 1,034 & 60 & 452 & 1,125 & 2,671 & 25 & 134,881 & 60.5 & 81,603 & 7,418 to 8,160 \\
\hline & 154 & 15,119 & 1,034 & 60 & 452 & 1,125 & 2,671 & 18 & 134,881 & 57.5 & 77,557 & 6,463 to 7,051 \\
\hline & 210 & 15,119 & 1,034 & 60 & 452 & 1,125 & 2,671 & 13 & 134,881 & 57.5 & 77,557 & 6,463 to 7,051 \\
\hline & 264 & 15,119 & 1,034 & 60 & 452 & 1,125 & 2,671 & 11 & 134,881 & 57.5 & 77, 557 & 6,463 to 7,051 \\
\hline & 66 & 12,964 & 1,034 & 0 & 0 & 3,750 & 4,784 & 73 & 137,036 & 62.5 & 85,647. & 8,565 to 9,516 \\
\hline & 110 & 12,964 & 1,034 & 0 & 0 & 3,750 & 4,784 & 44 & 137,036 & 60.5 & 82,907 & 7,537 to 8,291 \\
\hline \multirow[t]{3}{*}{50 percent mackerel and 50 percent anchovies} & 154 & 12,964 & 1,034 & 0 & 0 & 3,750 & 4,784 & 31 & 137,036 & 57.5 & 78,796 & 6,566 to 7,163 \\
\hline & 210 & 12,964 & 1,034 & 0 & 0 & 3,750 & 4,784 & 23 & 137,036 & 57.5 & 78,796 & 6,566 to 7,163 \\
\hline & 264 & 12,964 & 1,034 & 0 & 0 & 3,750 & 4,784 & 19 & 137, 036 & 57.5 & 78,796 & 6,566 to 7,163 \\
\hline \multirow{5}{*}{100 percent anchovies} & 66 & 13,752 & 0 & 0 & 0 & 7,500 & 7,500 & 114 & 136,248 & 62.5 & 85,155 & 8,516 to 9,462 \\
\hline & 110 & 13,752 & 0 & 0 & 0 & 7,500 & 7,500 & 69 & 136,248 & 60.5 & 82,430 & 7,494 to 8, 243 \\
\hline & 154 & 13,752 & 0 & 0 & 0 & 7,500 & 7,500 & 49 & 136,248 & 57.5 & 78,343 & 6,529 to 7,122 \\
\hline & 210 & 13,752 & 0 & 0 & 0 & 7,500 & 7,500 & 36 & 136,248 & 57.5 & 78,343 & 6,529 to 7,122 \\
\hline & 264 & 13,752 & 0 & 0 & 0 & 7,500 & 7,500 & 29 & 136,248 & 57.5 & 78,343 & 6,529 to 7,122 \\
\hline
\end{tabular}

Table 21.-- Sample calculations of predicted earnings for new vessels, at gross revenue \(=\$ 150,000\) and with no construction subsidy.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Column 12 & Column 13 & Column 14 & Column 15 & Column 16 & Column 17 & Column 13 & Column 19 & Column 21 & column 21 & Column 22 & Column 23 & Column 24 & Column 25 \\
\hline Orner's share & Parts and repairs & Netting and supplies & Insurance & Payroll taves & Interest on loans & Mooragel & State and ounty taxes & iat & Office T expenses & otal owner' costs & Cet profit & Equity capital investment & Return on investment \\
\hline Dollars & Percent \\
\hline 50,580 & 2,168 & 5,102 & 9,500 & 5,878 & 9,525 & 450 & 292 & 14,376 & 1,873 & 49,164 & 1,416 & 73,600 & 1.9 \\
\hline 53,278 & 4,897 & 5,102 & 10,975 & 5,724 & 11,250 & 450 & 226 & 16,314 & 1,873 & 56,811 & -3,533 & 86,300 & -4.1 \\
\hline 57,324 & 7,285 & 5,102 & 12,112 & 5,494 & 12,450 & 450 & 251 & 17,739 & 1,873 & 62,756 & -5,432 & 96,550 & -5.6 \\
\hline 57,324 & 10,696 & 5,102 & 13,688 & 5,494 & 14,550 & 540 & 293 & 20,133 & 1,873 & 72,369 & -15,045 & 112,650 & -13.4 \\
\hline 57,324 & 13,084 & 5,102 & 15,975 & 5,494 & 17,625 & 540 & 354 & 23,610 & 1,873 & 83,657 & -26,333 & 135,700 & -19.4 \\
\hline 51,389 & 2,168 & 9,328 & 9,500 & 5,955 & 9,525 & 450 & 192 & 14,376 & 1,873 & 53,367 & -1,978 & 73,600 & -2.7 \\
\hline 54,129 & 4,897 & 9,328 & 10,975 & 5,799 & 11,250 & 450 & 226 & 16,314 & 1,873 & 61,112 & -6,983 & 86,300 & -8.1 \\
\hline 58,240 & 7,285 & 9,328 & 12,112 & 5,564 & 12,450 & 450 & 251 & 17,739 & 1,873 & 67,052 & -8,812 & 96,550 & -9.1 \\
\hline 58,240 & 10,696 & 9,328 & 13,688 & 5,564 & 14,500 & 540 & 293 & 20,133 & 1,873 & 76,665 & \(-18,425\) & 112,650 & -16.4 \\
\hline 58,240 & 13,084 & 9,328 & 15,975 & 5,564 & 17,625 & 540 & 354 & 23,610 & 1,873 & 87,953 & -29,713 & 135,700 & -21.9 \\
\hline 51,093 & 2,168 & 14,760 & 9,500 & 5,927 & 9,525 & 450 & 192 & 14,376 & 1,873 & 58,771 & -7,678 & 73,600 & -10.4 \\
\hline 53,818 & 4,897 & 14,760 & 10,975 & 5,772 & 11,250 & 450 & 226 & 16,314 & 1,873 & 66,517 & -12,699 & 86,300 & -14.7 \\
\hline 57,905 & 7,285 & 14,760 & 12,112 & 5,539 & 12,450 & 450 & 251 & 17,739 & 1,873 & 72,459 & -14,554 & 96,550 & -15.1 \\
\hline 57,905 & 10,696 & 14,760 & 13,688 & 5,539 & 14,550 & 540 & 293 & 20,133 & 1,873 & 82,072 & -24,167 & 112,650 & -21.5 \\
\hline 57,905 & 13,084 & 14,760 & 15,975 & 5,539 & 17,625 & 540 & 354 & 23,610 & 1,873 & 93,360 & -35,455 & 135,700 & -26.1 \\
\hline
\end{tabular}
\(59 a\)

Table 21 illustrates the method used to predict earnings for hypothetical new vessels. The vessel types are selected from Table 17. The following example is keyed to Table 21 by column numbers.

Given: Vessel size \(\quad=110\) tons capacity (vessel-type Number 5 in Table 17)

Vessel cost (including skiff, two nets, and spray refrigeration) \(\quad=226,000\) dollars (Table 17)

Gross revenue \(\quad=150,000\) dollars
Catch \(\quad=1 / 2\) mackerel and \(1 / 2\) anchovies, by value.

Then:
1. Operating costs (using Equation 1) \(=8,052\) dollars + 0.0275 x value of mackerel landings \(+0.0419 \times\) value of tuna landings +0.0939 x value of bonito landings +0.0380
x value of anchovy landings \(=8,052\) dollars +0.0275 x
75,000 dollars \(+0.0380 \times 75,000\) dollars \(=12,964\) dollars
2. Tons of mackerel = value of mackerel landings \(\div\) price per
ton for 1967 (from Table 3; the current price should be substituted
by the prospective vessel operator) \(=75,000\) dollars \(\div 72.50\)
dollars per ton \(=1,034\) tons
3. Tons of anchovies = the value of anchovy landings \(\div\) the priceper ton of anchovies (from Table 3; the current price should besubstituted by the prospective vessel operator) \(=\mathbf{7 5}, 000\) dollars\(\div 20\) dollars per ton \(=3,750\) tons[ 5]
4. Total tons of fish \(=\) Column \(2+\) Column \(3=\) Column \(4+\) Column \(5=4,784\) tons ..... [ 6]
5. Minimum number of trips, assuming a capacity load eachtrip \(=\) total tons \((\) Column 6\() \div\) capacity of the vessel \(=4,784 \div\)110 tons per trip \(=44\) trips[ 7]
6. Net proceeds \(=\) gross revenue - operating costs (Column 1) \(=150,000\) dollars \(-12,964\) dollars \(=137,036\) dollars ..... [ 8]
7. Percentage to crew (frou Table 4 ) \(\mathbf{=} \mathbf{6 0 . 5}\) percent ..... [ 9]
8. Gross crew share \(=\) percentage to crew \((\) Column 9\() \times\) netproceeds \((\) Column 8\()=60.5\) percent \(\times 137,036\) dollars \(=\)82, 907 dollars[10]
9. Individual crew share \(=\) the gross crew share (Column 10)
\(\div\) the size of the crew (from Table 4\()=83,768\) dollars \(\div 11\) to10 \(=7,537\) dollars to 8,291 dollars

> 10. Owner's share \(=\) the net proceeds \((\) Column 8\()-\) the gross crew share \((\) Column 10\()=137,036\) dollars \(-82,907\) dollars \(=54,129\) dollars---
11. Parts and repairs (using Equation 3) \(=-17,619\) dollars +
341.15 dollars per foot \(x\) length of vessel \(=17,619\) dollars +
\[
\begin{equation*}
341.15 \text { dollars per foot } \times 66 \text { feet (from Table 21) }=4,897 \text { dollars }-\cdots- \tag{13}
\end{equation*}
\]
12. Netting and supplies (using, Equation 4) \(=-240\) dollars +

2 dollars per ton \(x\) tons of fisa landed (Column 6) \(=240\) dollars + 2 dollars \(\times 4,784=9,328\) dollars -
13. Insurance (using Equation 6) \(=0.0375 \times\) value of vessel (including skiff and refrigeration) \(+0.05 \times\) value of nets + 200 dollars per crew member x maximum crew size (from Table 4) \(=0.0375 \times 202,000\) dollars \(+0.05 \times 24,000\) dollars +200 dollars \(\times 11=10,975\) dollars
14. Payroll taxes (using Equation 7) \(=1,073\) dollars \(+0.057 x\) gross crew share of net proceeds (Column 9) \(=1,073\) dollars + \(0.057 \times 82,907\) dollars \(=5,799\) dollars
15. Interest on loans ( 7.5 percent of borrowed capital for vessel number 5 in Table 20) \(=11,250\) dollars
16. Moorage (using average paid by vessels under 80 feet long, Moorage section) \(=450\) dollars
17. State and county taxes (using Equation 8) \(=0.001 \times\) value of fixed assets (Table 20) \(+0.07 \times\) previous years profit (assumed here to be 0 dollars) \(\approx 0.001 \times 226,000\) dollars + \(0.07 \times 0\) dollars \(=226.00\) dollars
18. Depreciation (using Equation 9 ) \(=0.057 \times\) value of vessel and gear (unsubsidized portion) exclusive of nets +0.2 x value of nets \(=0.057 \times 202,000\) dollars \(+0.2 \times 24,000\) dollars \(=16,314\) dollars
19. Office expenses and other costs (using the average value for

1967 from Table 16) \(=1,973\) dollars
20. Total owner's costs \(=\) parts and repairs \((\) Column 13) + netting and supplies (Column 14) + insurance (Column 15) + payroll taxes (Column 16) + interest on loans (Column 17) + moorage (Column 18) + STtate and county taxes (Column 19) + depreciation (Column 20) + office expenses and other costs \((\) Column 21\()=4,897\) dollars \(+9,328\) dollars \(+10,975\) dollars, 5,799 dollars \(+11,250\) doplars +450 dollars +226 dollars + 16,314 dollars \(+1,873\) dollars \(=61,112\) dollars
21. Net profit \(=\) owner's share \((\) Column 12\()-\) total owner's costs \((\) Column 22\()=54,129\) dollars \(-61,112\) dollars \(=-6,983\) dollars \(-\ldots\)
22. Capital investment (net worth in Table 20) \(=\)
[24]
23. Return on investment \(=\) net profit \((\) Column 23\() \div\) capitalinvestment \((\) Column 24\()=-6,983\) dollars \(\div 86,300\) dollars\(=-8.1\) percent[25]

\section*{III. ECONOMIC FEASIBILITY OF FLEET EXPANSION AND NEW VESSEL CONSTRUCTION}

Now having a model, we can use it to calculate the feasibility of expanding the fleet and of constructing new vessels. We consider first the expansion of the fleet with existing vessels and then consider the addition of new construction.
A. Fleet Expansion with Existing Vessels

In this section, we present a table summarizing predicted earnings for old vessels, and then analyze the table and reach a conclusion as to the economic feasibility of fleet expansion with existing surplus vessels from other fisheries.

\section*{1. Summary Table}

Table 22 summarizes predicted earnings for old vessels under varying condition of gross revenue.

Table.22. --Summary table of predicted annual earnings for existing vessels
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Gross revenue} & \multirow[b]{3}{*}{\[
\left\lvert\, \begin{gathered}
\text { Vcssel } \\
\text { size } \\
\text { (capacity }
\end{gathered}\right.
\]} & \multicolumn{4}{|c|}{Summary of carning data for:} & \multicolumn{12}{|c|}{Summary of earning data when landings are composed, by value, of:} \\
\hline & & \multicolumn{4}{|c|}{1967 (Figure 4)} & \multicolumn{4}{|c|}{100 percent mackerel} & \multicolumn{4}{|l|}{50 percent mackerel, 50 percent anchovies} & \multicolumn{4}{|c|}{100 percent anchovies} \\
\hline & & Landings & \(1 \mathrm{crcw}-\) share & Profit or loss & Return on investment & Landings & 1 crewshare & Profit or loss & \[
\begin{array}{|c|}
\hline \text { Return on } \\
\text { invest- } \\
\text { ment }
\end{array}
\] & Landings & 1 crewshare & Profit or loss & \[
\begin{array}{|c|}
\hline \text { Return on } \\
\text { invest- } \\
\text { ment }
\end{array}
\] & Landings & 1 crewshare & Profit or loss & Return on investment \\
\hline \multirow[t]{4}{*}{\[
\frac{\text { Dollars }}{50,000}
\]} & \(\frac{\text { Tons }}{70}\) & \(\frac{\text { Tons }}{871}\) & \(\frac{\text { Dollars }}{2,745}\) & \(\frac{\text { Dollars }}{-4,882}\) & \(\frac{\text { Percent }}{-17.3}\) & \(\frac{\text { Tons }}{663}\) & \(\frac{\text { Dollars }}{2,258}\) & \(\frac{\text { Dollars }}{-3,187}\) & \(\frac{\text { Fercent }}{-11.3}\) & \(\frac{\text { Tons }}{1,561}\) & Dollar's & \(\frac{\text { Dollars }}{-6,037}\) & \(\frac{\text { Percent }}{-21.4}\) & \(\frac{\text { Tons }}{2,500}\) & \(\frac{\text { Dollars }}{2,781}\) & \(\frac{\text { Dollars }}{-7,934}\) & \(\frac{\text { Percent }}{-28.2}\) \\
\hline & 100 & 871 & 2,411 & -4,534 & -16.1 & 663 & 2,204 & -2,970 & -10.5 & 1,561 & 2,459 & -5,678 & -20.2 & 2,500 & 2,443 & -7,635 & -27.1 \\
\hline & 120 & 871 & 2,392 & -4, 442 & -15.8 & 663 & 2,186 & -2,878 & -10.2 & 1,561 & 2,439 & -5,583 & -19.8 & 2,500 & 2,423 & -7,541 & -26.8 \\
\hline & 150 & 871 & 2,102 & -3, 913 & -13.9 & 663 & 2,114 & -2,343 & -8.3 & 1,561 & 2,144 & -5,038 & -17.9 & 2,500 & 2,130 & -7, 001 & -24.9 \\
\hline \multirow[t]{4}{*}{100,000} & 70 & 1,742 & 6,068 & 5,828 & 20.7 & 1,326 & 6,080 & 7, 328 & 26.0 & 3,122 & 6,157 & 4,576 & 16.2 & 5,000 & 6,121 & 919 & 3.3 \\
\hline & 100 & 1,742 & 5,330 & 6,829 & 24.2 & 1,326 & 5,340 & 8,341 & 29.6 & 3,122 & 5,408 & 5,604 & 19.9 & 5,000 & 5,377 & 1,911 & 6.8 \\
\hline & 120 & 1,742 \({ }^{\prime}\) & 5,287 & 7,142 & 25.4 & 1,326 & 5,297 & 8,745 & 31.1 & 3,122 & 5,365 & 5,917 & 21.0 & 5,000 & 5,333 & 2,200 & 7.8 \\
\hline & 150 & 1,742 & 4,647 & 8,696 & 30.9 & 1,326 & 4,656 & 10, 071 & 35.8 & 3,122 & 4,715 & 7, 361 & 26.1 & 5,000 & 4,688 & 3,528 & 12.5 \\
\hline \multirow[t]{4}{*}{150, 000} & 70 & 2,620 & 9,350 & 17,813 & 63.3 & 1,988 & 9,396 & 19,188 & 68.1 & 4,744 & 9,516 & 14,946 & 53.1 & 7,500 & 9,462 & 9,192 & 32.6 \\
\hline & 100 & 2,620 & 8,219 & 19,478 & 69.2 & 1,988 & 8,254 & 20,861 & 74.1 & 4,744 & 8,359 & 16,644 & 59.1 & 7, 500 & 8,311 & 10,879 & 38.6 \\
\hline & 120 & 2,620 & 8,151 & 20,010 & 71.2 & 1,988 & 8,186 & 22, 004 & 78.1 & 4,744 & 8,291 & 17,186 & 61.0 & 7, 500 & 7,971 & 11,417 & 40.5 \\
\hline & 150 & 2,620 & 7,165 & 22, 297 & 79.2 & 1,988 & 7,196 & 23, 694 & 84.1 & 4,744 & 7,288 & 19,517 & 69.3 & 7,500 & 7,246 & 13,733 & 48.8 \\
\hline \multirow[t]{5}{*}{200, 000} & 70 & 3,484 & 12,696 & 29, 035 & 103.1 & 2,652 & 12, 719 & 30,544 & 108.5 & 6,244 & 12,875 & 24,728 & 87.8 & 10,000 & 12,802 & 17,324 & 61.5 \\
\hline & 100 & 3,484 & 11,152 & 31, 373 & 111.4 & 2,652 & 11,132 & 32,881 & 116.8 & 6,244 & 11, 309 & 27, 037 & 96.0 & 10,000 & 11,245 & 19,683 & 69.9 \\
\hline & 120 & 3,484 & 11,061 & 32, 121 & 114.1 & 2,652 & 11, 081 & 33,629 & 119.4 & 6,244 & 11,217 & 27, 893 & 99.0 & 10,000 & 11, 153 & 20,445 & 72.6 \\
\hline & 150 & 3,484 & 9,723 & 35,353 & 125.5 & 2,652 & 9,740 & 36,817 & 130.7 & 6,244 & 9,860 & 31, 026 & 110.1 & 10,000 & 9,804 & 23,431 & 83.2 \\
\hline & & & & & & & & & 66 & & & & & & & & \\
\hline
\end{tabular}
(2) Analysis of summary table and conclusions. Within the limits of the summary table (Table 22), the crew share is most affected by the size of the vessel (maximum effect at 200,000 dollars gross revenue \(=2,998\) dollars) and is little affected by the species composition of the catch (maximum effect at 200,000 dollars gross revenue \(=179\) dollars). The highest crew share at any level. of revenue is achieved on a 70-ton vessel with a half-mackerel, half-anchovy catch, by value. For the vessel operator, profit and return on investment are most affected by the composition of the catch (maximum effect at 200,000 dollars. gross revenue \(=13,386\) dollars, between 100 percent mackerel and 100 percent anchovy catch). A dichotomy of interest exists between the crewman and the vessel owner in that the effect of vessel size on profit and return on investment is opposite to that on crew share (maximum effect at 200,000 dollars \(=2,730\) dollars). The highest profit and return on investment at any level of revenue is on a 150ton vessel with an all-mackerel catch. The break-even point for a 150-ton vessel ranges from a gross revenue of about 65,000 dollars for an all-mackerel catch to about 90,000 dollars for an all-anchovy catch. We conclude that, given favorable market conditions, it is economically feasible to expand the wetfish fleet with surplus vessels from other fisheries at present levels of landings and prices.

\section*{B. Fleet Expansion and Boat Replacement with New Boats}

Using the same approach as with old vessels, we first present our tables summarizing the data and then present our analyses of the tables and our conclusions regarding the economic feasibility of new vessel construction.

\section*{1. Surmary Tables}

Tables 23A, 23B, 23C, and 24 sumarize predicted earnings under varying conditions of gross revenue, size of vessel, composition of catch, and construction subsidy. For these computations we assumed an arbitrary 7.5 percent interest rate on borrowed capital, which in turn was set also arbitrarily at 66.6 percent of fixed capital (Table 20). In this way the return to total capital has been split into two parts: return to borrowed capital (in the form of interest paid, as part of fixed costs) and return to equity capital in the form of profits as shown in Tables \(23 \mathrm{~A}, \mathrm{~B}\), and C ). The rate of return to equity capital depends then on the assumed interest rate on borrowed capital. Since this interest rate may vary greatly, it is appropriate to calculate the rate of return to total capital is an alternative way of expressing the return on investment. For this purpose the interest costs were added to profits, and the new profit values were then related to total capital from Table 20. These rates of return to total capital are summarized in Table 24.

Table A.-Summary table of prodicted annual earnings for new vessels, with no construction subsidy
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Gross revenue} & \multirow[b]{3}{*}{\[
\begin{aligned}
& \text { Vessel } \\
& \text { size } \\
& \text { (capacity) }
\end{aligned}
\]} & \multicolumn{4}{|c|}{Summary of earning data for:} & \multicolumn{12}{|c|}{Sumin ary of earning data when landings are composed by value, of:} \\
\hline & & \multicolumn{4}{|c|}{1967 (Figure 4)} & \multicolumn{4}{|c|}{100 percent mackerel} & \multicolumn{4}{|l|}{50 percent mackerel, 50 percent anchovies} & \multicolumn{4}{|c|}{100 percent anchovies} \\
\hline & & Landings & 1 crew share & Profit or loss & Return on investment & Landings & 1 crew share & \begin{tabular}{l}
Profit \\
or loss
\end{tabular} & Return or investment & Landings & 1 crew share & Profit or loss & Return on investment & Landings & 1 crew share & Profit or loss & Return on investment \\
\hline \multirow[t]{3}{*}{Dollars} & Tons & Tons & Dollars & Dollars & Percent \\
\hline & 66 & 1,781 & 6,058 & \(-12,873\) & -17.5 & 1,379 & 6,194 & -11,404 & -15.5 & 3,190 & 6,158 & -15,204 & -20.7 & 5,000 & 6,121 & -19,001 & -25.8 \\
\hline & 110 & 1,781 & 5,278 & -18,930 & -21.9 & 1,379 & 5,396 & -17,419 & -20.2 & 3,190 & 5,365 & -21,230 & -24.6 & 5,000 & 5,333 & -25,040 & -29.0 \\
\hline \multirow[t]{3}{*}{100,000} & 154 & 1,781 & 4,560 & -22,339 & -23.1 & 1,379 & 4,663 & -20,765 & -21.5 & 3,190 & 4,635 & -24,493 & -25.5 & 5,000 & 4,608 & -28,419 & -29.4 \\
\hline & 210 & 1,781 & 4,560 & -31,952 & -28.4 & 1,379 & 4,663 & -30,378 & -27.0 & 3,190 & 4,635 & -34,206 & -30.4 & 5,000 & 4,608 & -38,032 & -33.8 \\
\hline & 264 & 1,781 & 4,560 & -43,240 & 31.9 & 1,379 & 4,663 & -41,666 & -30.7 & 3,190 & 4,635 & -45,494 & -33.5 & 5,000 & 4,608 & \(-49,320\) & -36.3 \\
\hline \multirow{5}{*}{150,000} & 66 & 2,671 & 9,367 & 1,416 & 1.9 & 2,069 & 9,571 & 3,476 & 4.7 & 4,784 & 9,516 & -1,978 & -2.7 & 7,500 & 9,462 & -7,678 & -10.4 \\
\hline & 110 & 2,671 & 8,160 & -3,533 & -4.1 & 2,069 & 8,338 & -1,269 & -1.5 & 4.784 & 8,291 & -6,983 & -8.1 & 7,500 & 8,243 & -12,699 & -14.7 \\
\hline & 154 & 2,671 & 7,051 & -5,432 & -5.6 & 2,069 & 7,204 & -3,037 & -3.1 & 4,784 & 7,163 & -8,812 & -9.1 & 7,500 & 7,122 & -14,554 & -15.1 \\
\hline & 210 & 2,671 & 7,051 & -15,045 & -13.4 & 2,069 & 7,204 & -12,650 & -11.2 & 4,784 & 7,163 & -18,425 & -16.4 & 7,500 & 7,122 & -24,167 & -21.5 \\
\hline & 264 & 2,671 & 7,051 & -26,333 & -19.4 & 2,069 & 7,204 & -23,938 & -17.6 & 4,784 & 7,163 & -29,713 & -21,9 & 7,500 & 7,122 & -35,455 & -26.1 \\
\hline \multirow{5}{*}{200,000} & 66 & 3,561 & 12,676 & 14,864 & -20.2 & 2,759 & 12,948 & 17,609 & 23.9 & 6,378 & 12,874 & 10,512 & 14.3 & 10,000 & 12,803 & 3,407 & 4.6 \\
\hline & 110 & 3,561 & 11,042 & 11,088 & 12.8 & 2,759 & 11,280 & 13,908 & 16.1 & 6,378 & 11,217 & 5,854 & 6.8 & 10,000 & 11,153 & -358 & -. 4 \\
\hline & 154 & 3,561 & 9,542 & 10,724 & 11.1 & 2,759 & 9,745 & 13.730 & 14.2 & 6,378 & 9,691 & 6,513 & 6.7 & 10,000 & 9,636 & -242 & -. 3 \\
\hline & 210 & 3,561 & 9,542 & 1,740 & 1.5 & 2,759 & 9,745 & 4.746 & 4.2 & 6,378 & 9,691 & -2,644 & -2.3 & 10,000 & 9,636 & -9,855 & -8.7 \\
\hline & 264 & 3,561 & 9,542 & -9,426 & -6.9 & 2,759 & 9,745 & -6,210 & -4.6 & 6,378 & 9,691 & -13,932 & -10.3 & 10,000 & 9,636 & -21,143 & -15.6 \\
\hline \multirow{5}{*}{250,000} & 66 & 4,452 & 15,984 & 28,310 & 38.5 & 3,449 & 16,325 & 31,743 & 43.1 & 7,974 & 16,233 & 22,867 & 31.1 & 12,500 & 16, 142 & 13,991 & 19.0 \\
\hline & 110 & 4,452 & 13,925 & 25,475 & 29.5 & 3,449 & 14,222 & 29,001 & 33.6 & 7,974 & 14,142 & 20,101 & 23.3 & 12,500 & 14,063 & 11,200 & 13.0 \\
\hline & 154 & 4,452 & 12,031 & 26,524 & 27.5 & 3,449 & 12,286 & 30.298 & 31.4 & 7,974 & 12,219 & 21,258 & 22.0 & 12,500 & 12,151 & 12,316 & 12.8 \\
\hline & 210 & 4,452 & 12,031 & 17,540 & 15.6 & 3,449 & 12,286 & 21,314 & 18.9 & 7,974 & 12,219 & 12,274 & 10.9 & 12,500 & 12,151 & 3,332 & 3.0 \\
\hline & 264 & 4,452 & 12,031 & 6,991 & 5.2 & 3,449 & 12,286 & 10.765 & 7.9 & 7,974 & 12,219 & 1,725 & 1.3 & 12,500 & 12,151 & -7,723 & -5.7 \\
\hline
\end{tabular}

23B.
Table -Summary table of predicted annual carnings for now vessels, with 40 percent construction subsidy
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Gross revenue} & \multirow[b]{3}{*}{\[
\begin{aligned}
& \text { Vessel } \\
& \text { size } \\
& \text { (capacity) }
\end{aligned}
\]} & \multicolumn{4}{|c|}{Summary of carning data for:} & \multicolumn{12}{|c|}{Summary of earning data when landings are composed by valuc, of:} \\
\hline & & \multicolumn{4}{|c|}{1967 (Figure 4)} & \multicolumn{4}{|c|}{100 percent mackerel} & \multicolumn{4}{|l|}{50 percent mackerel, 50 percent anchovies} & \multicolumn{4}{|c|}{100 percent anchovies} \\
\hline & & Landings & 1 crew share & Profit or loss & Return on investment & Landings & 1 crew share & \begin{tabular}{l}
Profit \\
or loss
\end{tabular} & Return or investment & Landings & 1 crew share & Profit or loss & Return on investment & Landings & 1 crew share & Profit or loss & Return on investment \\
\hline pollars & Tons & Tons & Dollars & Dollars & Percent \\
\hline \multirow{5}{*}{100,000} & 66 & 1,781 & 6,058 & -5,754 & -11.2 & 1,379 & 6,194 & -4,28i & -8.3 & 3,190 & 6,158 & -8,085 & -15.7 & 5,000 & 6,121 & -11,882 & -23.0 \\
\hline & 110 & 1,781 & 5,278 & -10,338 & -17.4 & 1,379 & 5,396 & -8,827 & -14.9 & 3,190 & 5,365 & -12,638 & -21.3 & 5,000 & 5,333 & -16,448 & -27.7 \\
\hline & 154 & 1,781 & 4,560 & -12,727 & -19.4 & 1,379 & 4,663 & -11,153 & -17.0 & 3,190 & 4,635 & -14,981 & -22.9 & 5,000 & 4,608 & \(-18,807\) & -28.7 \\
\hline & 210 & 1,781 & 4,560 & -20,471 & -26.7 & 1,379 & 4,663 & -18.897 & -24.7 & 3,190 & 4,635 & -22,725 & -29.6 & 5,000 & 4,608 & -26,551 & -34.6 \\
\hline & 264 & 1,781 & 4,560 & -29,191 & -31.8 & 1,379 & 4,663 & -27,617 & -30.1 & 3,190 & 4,635 & -31,445 & -34.3 & 5,000 & 4,608 & -35,271 & -38.5 \\
\hline \multirow{5}{*}{150,000} & 66 & 2,671 & 9,367 & 8,070 & 15.6 & 2,069 & 9,571 & 9,722 & 18.8 & 1,784 & 9,516 & 4,805 & 9.3 & 7,500 & 9,4i2 & -559 & -1.1 \\
\hline & 110 & 2,671 & 8,160 & 4,728 & 8.0 & 2,069 & 8,338 & 6,633 & 11.2 & 4,784 & 8,296 & 1,504 & 2.5 & 7,500 & 8,243 & -4,107 & -6. 9 \\
\hline & 154 & 2,671 & 7,051 & 3,907 & 6.0 & 2,069 & 7,204 & 6,161 & 9.4 & 4,784 & 7,163 & 700 & 1.1 & 7,500 & 7,122 & -4,942 & -7.5 \\
\hline & 210 & 2,671 & 7,051 & -3,564 & -4.6 & 2,069 & 7,204 & -1,169 & -1.5 & 4,784 & 7,163 & -6,944 & -9.1 & 7,500 & 7,122 & -12,686 & -16.6 \\
\hline & 264 & 2,671 & 7,051 & -12,638 & -13.8 & 2,069 & 7,204 & -9,889 & -10.8 & 4,784 & 7,163 & -15,664 & -17.1 & 7,500 & 7,122 & -21,406 & -23.3 \\
\hline \multirow{6}{*}{200,000} & 66 & 3,561 & 12,676 & 21,518 & 41.7 & 2,759 & 12,948 & 23,449 & 45.4 & 6,378 & 12,874 & 17,165 & 33.3 & 10,000 & 12,803 & 10,059 & . 19.5 \\
\hline & 110 & 3,561 & 11,042 & 19,118 & 32.2 & 2,759 & 11,280 & 21,515 & 36.3 & 6,378 & 11,217 & 14,818 & 25.0 & 10,000 & 11,153 & 7,695 & 13.0 \\
\hline & 154 & 3,561 & 9,542 & 19,708 & 30.7 & 2,759 & 9,745 & 22,713 & 34.6 & 6,378 & 9,691 & 15,496 & 23.6 & 10,000 & 9,636 & 8,339 & 12.7 \\
\hline & 210 & 3,561 & 9,542 & 12,471 & 16.3 & 2,759 & 9,745 & 15,475 & 20.2 & 6,378 & 9,691 & 8,258 & 10.8 & 10,000 & 9,636 & 1,079 & 1.4 \\
\hline & 264 & 3,561 & 9,542 & 4,322 & 4.7 & 2,759 & 9,745 & 7,326 & 8.0 & 6,378 & 9,691 & 17 & 0 & 10,000 & 9,636 & -7,541 & -8.2 \\
\hline & & & & & & & & & & & & & & & & & \({ }^{i}:\) \\
\hline \multirow{5}{*}{250, 000} & 66 & 4,452 & 15,984 & 34,964 & 67.8 & 3,449 & 16,325 & 37,176 & 72.0 & 7,974 & 16,233 & 29,520 & 57.2 & 12,500 & 16,142 & 20,644 & 40.0 \\
\hline & 110 & 4,452 & 13,925 & 33,505 & 56.5 & 3,449 & 14,222 & 36,397 & 61.4 & 7,974 & 14,142 & 28,131 & 47.4 & 12,500 & 14,063 & 19,259 & 32.5 \\
\hline & 154 & 4,452 & 12,031 & 35,508 & 54.2 & 3,449 & 12,286 & 30,281 & 59.9 & 7,974 & 12,219 & 32,358 & 49.4 & 12,500 & 12,151 & 21,299 & 32.5 \\
\hline & 210 & 4,452 & 12,031 & 28,270 & 36.9 & 3,449 & 12,286 & 32, 043 & 41.8 & 7,974 & 12,219 & 23,004 & 30.0 & 12,500 & 12,151 & 14,062 & 18.3 \\
\hline & 264 & 4,452 & 12,031 & 20,121 & 21.9 & 3,449 & 12,286 & 23,894 & 26.0 & 7,974 & 12,219 & 14,901 & 16.2 & 12,500 & 12,151 & 5,912 & 6.4 \\
\hline
\end{tabular}

23 C
Table , -Summary table of predicted annual carnings for newv vessèls, with 50 percent construction subsidy
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Gross revenue} & \multirow[b]{3}{*}{\[
\begin{array}{|c}
\text { Vessel } \\
\text { size } \\
\text { (capacity) }
\end{array}
\]} & \multicolumn{4}{|c|}{Summary of earning data for:} & \multicolumn{12}{|c|}{Summary of earning data when landings are composed by value, of:} \\
\hline & & \multicolumn{4}{|c|}{1967 (Figure 4)} & \multicolumn{4}{|c|}{100 percent mackerel.} & \multicolumn{4}{|l|}{50 percent mackerel, 50 percent anchovies} & \multicolumn{4}{|c|}{100 percent anchovies} \\
\hline & & Landings & \[
\begin{aligned}
& 1 \text { crew } \\
& \text { share }
\end{aligned}
\] & \begin{tabular}{l}
Profit \\
or loss
\end{tabular} & \[
\begin{gathered}
\text { Return on } \\
\text { invest- } \\
\text { ment }
\end{gathered}
\] & Landings & \[
\begin{aligned}
& 1 \text { crew } \\
& \text { share }
\end{aligned}
\] & Profit or loss & Return or investment & Landings & 1 crew share & Profit or loss & Return on investment & Landings & 1 crew share & Profit or loss & Return on investment \\
\hline \multirow[t]{3}{*}{pollars} & Tons & Tons & Dollars & Dollars & Percent \\
\hline & 66 & 1,781 & 6, 058. & -3,960 & -8.7 & 1,379 & 6,194 & -2,491 & -5.5 & 3,190 & 6,158 & -6,291 & -13.8 & 5,000 & 6,121 & -10,088 & -22.1 \\
\hline & 110 & 1,781 & 5,278 & -8,148 & -15.3 & 1,379 & 5,396 & -6,637 & -12.4 & 3,190 & 5,365 & -10,448 & -19.6 & 5,000 & 5,333 & -14,258 & -26.8 \\
\hline \multirow[t]{3}{*}{100,000} & 154 & 1,781 & 4,560 & -10,348 & -17.7 & 1,379 & 4,663 & -8,774 & -15.0 & 3,190 & 4,635 & -12,602 & -21.5 & 5,000 & 4,608 & -16,428 & -26.1 \\
\hline & 210 & 1,781 & 4,560 & -17,714 & -26.2 & 1,379 & 4,663 & -16,140 & -23.7 & 3,190 & 4,635 & -19,968 & -29.5 & 5,000 & 4,608 & -23,794 & -35.2 \\
\hline & 264 & 1,781 & 4,560 & -25,660 & -31.8 & 1,379 & 4,663 & -24,086 & -29.8 & 3,190 & 4,635 & -27,914 & -34.6 & 5,000 & 4,608 & -31,740 & -39.3 \\
\hline \multirow{5}{*}{150,000} & 66 & 2,671 & 9,367 & 9,747 & 21.4 & 2,069 & 9,571 & 11,806 & 25.9 & 4,784 & 9,516 & 6,481 & 14.2 & 7,500 & 9,462 & 1,135 & 2.5 \\
\hline & 110 & 2,671 & 8,160 & 6,781 & 12.7 & 2,069 & 8,338 & 8,891 & 16.7 & 4,784 & 8,296 & 3,551 & 6.7 & 7,500 & 8,243 & -1,917 & -3.6 \\
\hline & 154 & 2,671 & 7, 051 & 6,130 & 10.5 & 2,069 & 7,204 & 8,368 & 14.3 & 4,784 & 7,163 & 2,971 & 5.1 & 7,500 & 7,122 & -2,563 & -4.4 \\
\hline & 210 & 2,671 & 7,051 & -807 & -1.2 & 2,069 & 7,204 & 1,484 & 2.2 & 4,784 & 7,163 & -4,187 & -6.2 & 7,500 & 7,122 & -9,929 & -14.7 \\
\hline & 264 & 2,671 & 7, 051 & -8,753 & -10.8 & 2,069 & 7,204 & -6,358 & -7.9 & 4,784 & 7,163 & -12,133 & -15.0 & 7,500 & 7,122 & -17,874 & -22.1 \\
\hline \multirow{5}{*}{200,000} & 66 & 3,561 & 12,676 & 23,194 & 50.8 & 2,759 & 12,948 & 25,905 & 56.8 & 6,378 & 12,874 & 18,842 & 41.3 & 10,000 & 12,803 & 11,736 & 25.7 \\
\hline & 110 & 3,561 & 11,042 & 21,164 & 39.7 & 2,759 & 11,280 & 23,984 & 45.0 & 6,378 & 11,217 & 16,865 & 31.6 & 10,000 & 11,153 & 9,742 & 18.3 \\
\hline & 154 & 3,561 & 9,542 & 21,931 & 37.4 & 2,759 & 9,745 & 24,936 & 42.6 & 6,378 & 9,691 & 17,719 & 30.3 & 10,000 & 9,636 & 10,562 & 18.0 \\
\hline & 210 & 3,561 & 9,542 & 15,047 & 22.2 & 2,759 & 9,745 & 18,052 & 26.7 & 6,378 & 9,691 & 10,835 & 16.0 & 10,000 & 9,636 & 3,678 & 5.4 \\
\hline & 264 & 3,561 & 9,542 & 7,621 & 9.4 & 2,759 & 9,745 & 10,626 & 13.2 & 6,378 & 9,691 & 3,409 & 4.2 & 10,000 & 9,636 & -4,008 & -5.0 \\
\hline \multirow{5}{*}{250,000} & 66 & 4,452 & 15,984 & 36,640 & 80.4 & 3,449 & 16,325 & 40,005 & 87.7 & 7,974 & 16,233 & 31,196 & 68.4 & 12,500 & 16,142 & 22,321 & 48.9 \\
\hline & 110 & 4,452 & 13,925 & 35,551 & 66.7 & 3,449 & 14,222 & 39,077 & 73.3 & 7,974 & 14,142 & 30,178 & 56.6 & 12,500 & -14,063 & 21,276 & 39.9 \\
\hline & 154 & 4,452 & 12,031 & 37,731 & 64.4 & 3,449 & 12,286 & 41,504 & 70.9 & 7,974 & 12,219 & 32,465 & 55.4 & 12,500 & 12,151 & 23,522 & 40.2 \\
\hline & 210 & 4,452 & 12,031 & 30,847 & 45.6 & 3,449 & 12,286 & 34,620 & 51.2 & 7,974 & 12,219 & 25,580 & 37.8 & 12,500 & 12,151 & 16,638 & 24.6 \\
\hline & 264 & 4,452 & 12,031 & 23,421 & 29.0 & 3,449 & 12,286 & 27,194 & 33.7 & 7,974 & 12,219 - & 18,194 & 22.5 & 12,500 & 12,151 & 9,212 & 11.4 \\
\hline
\end{tabular}

Table 24 -- Sunmary table of predicted returns to capital for new vessels
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Gross revenue} & \multirow[b]{3}{*}{\[
\begin{gathered}
\text { Vessel } \\
\text { size } \\
\text { (capacity) }
\end{gathered}
\]} & \multicolumn{4}{|c|}{No construction subsidy} & \multicolumn{4}{|c|}{40 percent construction subsidy} & \multicolumn{4}{|r|}{50 percent construction subsidy} \\
\hline & & \multicolumn{4}{|c|}{Composition of landings by value:} & \multicolumn{4}{|c|}{Composition of landings by value:} & \multicolumn{4}{|r|}{Composition of landings by value:} \\
\hline & & \[
\begin{gathered}
\text { As in } 1967 \\
(\text { Fig. } 4)
\end{gathered}
\] & 100 percent mackerel & 50 percent mackerel 50 percent anchovies & 100 percent anchovies & \[
\begin{gathered}
\text { As in } 1967 \\
(\text { Fig. } 4)
\end{gathered}
\] & 100 percent mackerel & 50 percent mackerel 50 percent anchovies & 100 percent anchovies & \[
\begin{gathered}
\text { As in } 1967 \\
(\text { Fig. } 4)
\end{gathered}
\] & 100 percent mackerel. & 50 percent mackerel 50 percent anchovies & 100 percent anchovies \\
\hline \multirow[t]{3}{*}{Dollars} & Tons & Percent \\
\hline & 66 & - 1.7 & - 0.9 & - 2.8 & - 4.7 & 0.3 & 1.4 & - 1.4 & - 4.2 & 1.2 & 2.4 & - 0.7 & - 4.0 \\
\hline & 110 & - 3.2 & - 2.6 & - 4.2 & - 5.8 & - 2.0 & - 1.0 & - 3.4 & - 5.9 & - 1.4 & - 0.3 & - 3.1 & - 5.9 \\
\hline \multirow[t]{5}{*}{100,000} & 154 & - 3.8 & - 3.2 & - 4.6 & - 6.1 & - 2.7 & - 1.3 & - 4.0 & - 6.2 & - 2.3 & - 1.2 & - 3.8 & - 6.3 \\
\hline & 210 & - 5.7 & - 5.2 & - 6.4 & - 7.6 & - 5.6 & - 4.8 & - 6.8 & - 8.7 & - 5.6 & - 4.7 & - 6.9 & - 9.1 \\
\hline & 264 & - 6.9 & -6.5 & - 7.5 & - 8.6 & - 7.5 & - 6.9 & - 8.5 & -10.1 & - 7.8 & - 7.1 & - 8.9 & -10.8 \\
\hline & 66 & 5.5 & 6.4 & 3.7 & 0.9 & 10.6 & 11.8 & 8.1 & 4.2 & 12.8 & 14.6 & 10.1 & 5.5 \\
\hline & 120 & 3.3 & 4.2 & 1.8 & - 0.6 & 7.6 & 8.9 & 5.6 & 2.0 & 9.5 & 11.0 & 7.1 & 3.1 \\
\hline \multirow[t]{5}{*}{150,000} & 154 & 2.7 & 3.6 & 1.3 & - 0.8 & 6.9 & 3.2 & 5.0 & 1.7 & 8.6 & 10.1 & 6.5 & 2.8 \\
\hline & 210 & - 0.2 & 0.6 & - 1.3 & - 3.1 & 2.8 & 4.0 & 1.1 & - 1.7 & 4.1 & 5.4 & 2.1 & - 1.1 \\
\hline & 264 & - 2.3 & - 1.7 & - 3.3 & - 4.8 & - 0.6 & 0.5 & - 1.9 & - 4.3 & 0.3 & 1.5 & - 1.3 & - 4.1 \\
\hline & 66 & 12.1 & 13.5 & 10.0 & 6.4 & 20.6 & 22.0 & 17.3 & 12.0 & 24.3 & 26.6 & 20.6 & 14.5 \\
\hline & 110 & 9.4 & 10.6 & 7.2 & 4.6 & 16.8 & 18.4 & 14.1 & 9.5 & 20.0 & 22.1 & 16.9 & 11.7 \\
\hline \multirow[t]{3}{*}{200,000} & 154 & 8.8 & 10.0 & 7.2 & 4.6 & 16.0 & 17.8 & 13.6 & 9.4 & 19.1 & 21.1 & 16.3 & 11.5 \\
\hline & 210 & 5.3 & 6.3 & 3.8 & 1.5 & 10.8 & 12.3 & 8.7 & 5.1 & 13.2 & 14.9 & 10.8 & 6.6 \\
\hline & 264 & 2.2 & 3.0 & 1.0 & - 0.9 & 6.4 & 7.6 & 4.6 & 1.4 & 8.2 & 9.7 & 6.2 & 2.6 \\
\hline \multirow{5}{*}{250,000} & 66 & 18.8 & 20.5 & 16.1 & 11.7 & 30.6 & 32.2 & 26.5 & 19.9 & 35.7 & 38.6 & 31.1 & 23.5 \\
\hline & 110 & 15.5 & 17.0 & 13.2 & 9.5 & 26.0 & 27.9 & 22.6 & 16.9 & 30.6 & 33.2 & 26.7 & 20.1 \\
\hline & 154 & 14. 8 & 16.2 & 12.8 & 9.4 & 25.2 & 27.4 & 23.4 & 16.9 & 29.6 & 32.1 & 26.1 & 20.2 \\
\hline & 210 & 10.4 & 11.7 & 8.7 & 5.8 & 18.7 & 20.6 & 16.1 & 11.6 & 22.3 & 24.5 & 19.3 & 14.1 \\
\hline & 264 & 6.6 & 7.6 & 5.2 & 2.6 & 13.0 & 14.6 & 10.8 & 7.0 & 15.9 & 17.7 & 13.3 & 9.1 \\
\hline
\end{tabular}

\section*{2. Analysis of Summary Tables and Conclusions}

As was found for existing-type vessels (Table 22), the crew share is most affected by the size of the vessel. Profit is also greatly affected by the size of the vessel (maximum effect at 250,000 dollars gross revenue with a 50 -percent subsidy \(=14,310\) dollars). Profit is most affected by the species composition of the catch (maximum effect at 250,000 dollars gross revenue with 50 -percent subsidy \(=17,982\) dollaré). The highest profit and return on the investment at the 250, 000 dollar level of gross revenue are attained on the 154-ton vessel with an all-mackerel catch. At lower levels of gross revenue, the profit is greatest with the smallest vessel (66 tons capacity). The break-even point for a 66-ton vessel 'with no subsidy and with an all-mackerel catch is about 140,000 dollars, which is near the upper end of the range of gross revenue for the existing flect in 1967 (Figure 7). For a new 66-ton vessel landing a catch with the same species composition as that in the 1967 landings of the fleet to achieve the levels of profit obtained by the top boats in the existing fleet in 1967 ( 30,000 dollars, about a \(30-\) percent return on investment for a new 66 -ton vessel), it would have to have a gross revenue of over \(\mathbf{2 5 0 , 0 0 0}\) dollars, which is well above the maximum level achieved by the existing fleet in any year. With a 50 -percent construction subsidy, the amount of revenue needed drops to about 225,000 dollars, which is still a very high figure relative to the revenue obtained by the fleet in the past. For an allanchovy catch, the break-even point for a 66 -ton vessel with a 50 -percent subsidy is about 145,000 dollar gross revenue ( 7,250 tons of anchovies, or 110 capacity
loads), and the profit at 250,000 dollars gross revenue \((12,500\) tons of anchovics, or 190 capacity loads--a probably unachievable rate of catch) is only 22,321 dollars, which is less than the profit for the top vessels in the existing fleet in 1967.

The predicted unprofitability of new vessels is caused by the high investment base. The lowest cost of a new vessel from Table 20 is 147, 000 dollars (vessel with skiff and refrigeration), while the average market value of a vessel in the existing fleet is 45,000 dollars. This difference in value causes an extremely high increase in the following categories of fixed costs: insurance, depreciation, and interest on capital. The increase in fixed costs is partly offset by lower repair costs on new vessels. On two comparable vessels, for example, shown in the sample calculations of foregoing sections, the total owner's costs at a level of 150,000 dollars gross revenue have risen from 36,800 dollars on the old vessel, to 61,112 dollars on the new one. This means a 66 percent increase in owner's cost effected by higher investment costs, while the owner's share in net proceeds from fishing remained on the same level (about 54,000 dollars).

We must conclude that, at present catch rates and fish prices, the construction of new wetfish seiners, even with construction subsidies, for either vessel replacement or fleet expansion is not economically feasible. This situation may change in the future if the efficiency of wetfish scining operations can be improved through technological research or if new markets can be developed that will yield higher prices for wetfish.

\section*{SUMMARY}

The San Pedro wetfish boat fle \(t\) has dwindled to half its size of 10 years ago. Large underexploited stocks of \(v\) etfish (jack mackerel and anchovies) exist in the California Current. If these resources are to be harvested, the wetfish fleet must expand through the construction of new vessels or through the acquisition of surplus vessels from other fisheries. The purposes of the study that this paper reports were to describe and document the financial condition of the fleet, to develop a model of wetfish boat costs and earnings, and by means of this model, to examine the economic feasibility of fleet expansion and vessel replacement.

The findings of the study with respect to the financial condition of the fleet are that the fleet is antiquated, corporate profits are low, corporate net worth is low, working capital is inadequate, crew earnings are very low and are not increasing in pace with inflation, and employment in the fleet has decreased by 30 percent in the last 5 years.

Analysis of costs in several categories yielded equations to be used in predicting earnings at various levels of revenue and with various combinations of vessel size and composition of the catch. Their use showed that, of the four principal wetfish species, mackerel cost the least to land (per value), anchovies and tuna cost about the same (more than mackerel) to land, and bonito cost the most to land.

Predicted crew earnings, profit, and return on investment based on the relations developed in the analysis of costs showed that although the expansion of the fleet through recruitment of existing vessels from other fisheries is feasible, fleet expansion or vessel replacement through construction of new vessels is not economically feasible at present rates of catch and prices of fish.

\section*{ACKNOWLEDGMENTS}

Invaluable cooperation and assistance were provided in the data-gathering phase of this study by the following individuals and organizations: Fishermen's Cooperative Association of San Pedro (Anthony Pisano, Manager); Fishermen's Union, Local 33, I.W.L.U. (John J. Royal, Secretary-Treasurer); Seine and Line Fishermen's Union of San Pedro (Steven J. Hoinski, Business Agent); Robinson, Pettie and Company; Rafalovich and Rafalovich, Public Accountants; Trani Realty; Steve Muskatelo, Public Accountant; Commercial Fishermen's Inter-Insurance Excahnge; Star-Kist Foods, Incorporated; Los Angeles County Assessor's Office; Marine Construction and Design Company; J. M. Martinac Shipbuilding Corporation; Tacoma Boatbuilding Company, Incorporated; Marine Resources Operations, California Department of Fish and Game; and others. James R. Zweifel assisted in data processing. Kenneth S. Raymond drafted the figures. Roger E. Green, Clark E. Blunt, Jr., Frank J. Hester, Frederick W. Bell, James D. Messersmith, David Kłamer, Lawrence Van Meir, Richard F. H. Heimann, Ernest W. Carlson, and Adam Sokoloski read the manuscript and made many helpful suggestions.

\section*{REFERENCES CITED}

Ahlstrom, E. H.
1968. An evaluation of the fishery resources available to California fishermen.

In: D. E. Gilbert (ed.) The future of the fishing industry of the United States. University of Washington Publication in Fisheries New Series 4: 65-80.

Biostatistical Section, Marine Resources Operations.
1960a. The marine fish catch of California for the years 1957 and 1958.
California Department of Fish and Game, Fish Bulletin 108, 74 p.

1960b. The marine fish catch of California for the year 1959. California
Department of Fish and Game, Fish Bulletin 111, 44 p.
1961. The marine fish catch of California for the year 1960. California Department of Fish and Game, Fish Bulletin 117, 45 p.
1963. The California marine fish catch for 1961. California Department of Fish and Game, Fish Bulletin 121: 1-47.
1964. The California marine fish catch for 1962. California Department of Fish and Game, Fish Bulletin 125, 45 p.
1965. The California marine fish catch for 1963. California Department of Fish and Game, Fish Bulletin 129, 45 p.

Croker, R. S.
1938. Historical account of the Los Angeles mackerel fishery. California Department of Fish and Game, Fish Bulletin 52, 62 p.

Green, R. E. and G. C. Broadhead.
1965. Costs and earnings of tropical tuna vessels based in California. Fishery Industrial Research 3(1): 29-45.

Greenhood, E. C.
1965. Statistical report of fresh, canned, cured, and manufactured fishery products for 1964. State of California Department of Fish and Game Circular \(39,16 \mathrm{p}\).

Greenhood, E. C., and D. J. Mackett. 1965. The California marine fish catch for 1964: California Department of of Fish and Game, Fish Bulletin 132, 45 p.
1967. The California marine fish catch for 1965. California Department of Fish and Game, Fiṣh Bulletin 135: 1-42.

Heimann, R. F. G., and H. W. Frey. 1968a. The California marine fish catch for 1966. California Department of Fish and Game, Fish Bulletin 138: 1-48.

1968b. The California marine fish catch for 1967. California Department of Fish and Game, Fish Bulletin 144, 47 p.

Long, L. H.
1969. The World Almanac and Book of Facts. Doubleday, N.Y., 934 p.

McNeely, R. L.
1961. The purse-seine revolution in tuna fishing. Pacific Fisherman 59(7): 27-58.

Roedel, P. M.
1952. A review of the Pacific mackerel (Pneumatophorus diego) fishery of the Los Angeles region with special reference to the years 1931-1951. California Fish and Game 38(2): 253-273.

Scofield, W. L.
1951. Purse seines and other roundhaul nets in California. California Department of Fish and Game, Fish Bulletin 81, 83 p.

Staff, Bureau of Marine Fisheries.
1949. The commercial fish catch of California for the year 1947 with an historical review 1916-1947. California Division of Fish and Game, Fish Bulletin 74, 267 p.
1951. The commercial fish catch of California for the years 1948-1949 with yield per area of the California sardine fishing grounds 1937-1949. California Division of Fish and Game, Fish Bulletin 80, 87 p.
1952. The commercial fish catch of California for the year 1950 with a description of methods used in collecting and compiling the statistics. California Department of Fish and Game, Fish Bulletin 86, 120 p.
1953. The commercial fish catch of Califormia for the year 1951 with an evaluation of the exis'ing anchovy case pack requirements. California Department of Fish and Game, Fish Bulletin 8؟, 68 p.

Staff, Marine Fisheries Branch.
1954. The commercial fish catch of Califoriaia for the year 1952 with proportion of king and silver salmon in Cal fornia's 1952 landings. California Department. of Fish and Game, Fish Bulletin 95, 64 p.
1956. The marine fish catch of California for the years 1953 and 1954 with jack mackerel and sardine yield per area from C'alifornia waters 1946-47 through 1954-55. California Department of Fish and Game, Fish Bulletin 102, 99 p.

Staff, Marine Resources Operation.
1958. The marine fish catch of California for the years 1955 and 1956 with rockfish review. California Department of Fish and Game, Fish Bulletin 105, 104 p.

United States Bureau of Customs. 1965. Merchant Vessels of the United States 1965. U.S. Government Printing Office, Washington, Q. C. , 1314 p.
(continued from inside front cover)
14. A Price Incentive Plan for Distressed Fisheries by A. A. Sokoloski and E. W. Carlson.
15. Demand and Prices for Shrimp by D. Cleary.
16. Industry Analysis of Gulf Area Frozen Processed Shrimp and an Estimation of Its Economic Adaptability to Radiation Processing by D. Nash and M. Miller.
17. An Economic Evaluation of Columbia River Anadromous Fish Programs by J. A. Richards.
18. Economic Projections of the World Demand and Supply of Tuna, 1970 - 90 by F. Bell.
19. Economic Feasibility of a Seafood Processing Operation in the Inner City of Milwaukee by-D. Cleary.
20. The 1969 Fishing Fleet Improvement Act: Some Advantages of its Passage by the Division of Economic Research.
21. An Economic Analysis of Policy Alternatives for Managing the Georges Bank Haddock Fishery by L..W. Van Meir.
22. Some Analyses of Fish Prices by F. Waugh and V. Norton.
23. Some Economic Characteristics of Pond-Raised Catfish Enterprises by J. E. Greenfield
24. Elements Crucial to the Future of Alaska Commercial Fisheries by D. Nash, A. Sokoloski, and D. Cleary.
25. Effects on the Shrimp Processing Industry of Meeting the Requirements of Wholesome Fishery Products Legislation by D. Nash and M. Miller.
26. Benefit Cost Analysis of a Proposed Trawl Systems Program by M. Miller.
27. An Economic Analysis of Future Problems in Developing the World -
20. Wibis, Wanings and Borrowing Capacity for Selected ü. s. Z゙inexice, dy A. Sokolocki, E. Carlson, and B. Nectzel.

3v. Zsin Cycics: A hamonic analysis by F. Waugh and M. Killer.
3ミ. Buariticost Analysis as Applied to Comsercial Fisheries :20jiams, by F. Bell.
32. Economic Study of San Pedro Wetfish Boats by W. F. Perrin and 3. Noetzel.
33. A Survey of Fish Purchases by Socio-Economic Characteristics First Quarterly Report - February, May; April, 2969 by Darrel A. Nash.
34. A Survey or Fisi Purchases by Socio-Economic Characteristics, Second Quarterly Report - May June July by D. Nash.
35. \(\therefore\) Simplified Guide to Benefit-Cost Analysis for BCF Programs by F. Bell.
36. Estimation of the Optimai Number of Vessels in a Fishery: Georetical and Empirical Basis for Fishery Management by ?. Bell.
37. Vajor Economic Trends in Selected U.S. Master Plan Fisheries: A Graphical Survey by Richard K. Kinoshita and Frederick W. Bell
33. Varket Potential for the San Pearo Wetiish Fishery by D. Nash

The goal of the Division of Economic Research is to engage in economic studies which will provide industry and government with costs, production and earnings analyses; furnish projections and forecasts of food fish and industrial fish needs for the U. S.; develop an overall plan to develop each U. S. fishery to its maximum economic potential and serve as an advisory service in evaluating alternative programs within the Bureau of Commercial Fisheries.

In the process of working towards these goals an array of written materials has been generated representing items ranging from interim discussion papers to contract reports. These items are available to interested professionals in limited quantities of offset reproduction. These "Working Papers" are not to be construed as official BCF publications and the analytical techniques used and conclusions reached in no way represent a final policy determination endorsed by the U. S. Bureau of Commercial Fisheries.```


[^0]:    ${ }^{1}$ From unpublished data furnished by the California Dcpartment of Fish and Game.
    ${ }^{2}$ From unpublished landings data furnished by the California Department of Fish and Game and from price data gathered in the present study.

[^1]:    ${ }^{3}$ The landings data were furnished by the California Department of Fish and Game.

