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1 INTRODUCTION

The nature of farm firms has special implications for the choice of risk
management strategies. Most farms are small and have a noncorporate ownership
structure which prevents spreading of risks among many individuals. Benefits derived

from specialization in production and resource limitations restrict opportunities for
enterprise diversification. This has spurred an interest in finding alternative methods
of reducing the variability of cash flows and introducing greater diversity into the asset
and liability structure of farm firms (Young and Barry). One method which has received
limited attention is investment in financial assets. By allocating resources outside of
the farm, cash flows may be stabilized without the inherent losses in productive efficiency
which often accompany diversification into other agricultural enterprises. Young and
Barry approached the problem of holding financial assets as part of a long term portfolio.
Their results suggest that investment in financial assets may stabilize long term cash
flows.

To date, very few studies have explicitly considered the stochastic, dynamic nature
of investment returns in models of firm growth and investment (Schnitkey and Taylor;
Larson, Stauber and Burt). Theoretical studies (Robison and Barry; Robison and

Brake) have outlined the limitations of conventional portfolio theory as a farm planning
and decision making tool. Since conventional portfolio analysis is static, it does not
result in an operational investment strategy and ignores some key determinants of
financial performance. Portfolio models fail to incorporate the implications of asset
indivisibility, the liquidity characteristics of assets, tax impacts, and the costs of altering
investment portfolios. Farm managers are concerned with the distinction between cash
returns and asset appreciation and how these factors influence the firm's operating
structure and growth. In a dynamic world, decisions made in one time period affect
decisions in later periods by altering financial structure and the nature of productive
assets. The dynamics of asset accumulation are thus a major point of interest as well.
The analysis of investment decisions should incorporate these dynamic
interrelationships in a multiperiod model.

The objective of this paper is to address the issue of dynamic investment problems
in agriculture. Specifically, the potential effects of stock investment outside of an
agricultural enterprise on a firm's financial structure are analyzed. The study also
considers the influence of financial structure and returns to the agricultural enterprise
on optimal investment decision rules. This is accomplished by specifying and
numerically solving a stochastic dynamic programming (SDP) model for an Illinois hog
finishing operation.
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The paper also addresses some of the inherent problems associated with firm level

financial models. Specifically, the issues of modelling bankruptcy and dealing with

multiple stochastic state variables are considered. The calculation and use of

conditional probability methods which have been adapted to the dynamic programming

framework are also discussed and illustrated.

2 THE DYNAMIC PROGRAMMING MODEL

A monthly stochastic dynamic programming model was specified and solved to

determine the optimal stock investment decision rule for an Illinois hog finishing

operation. It was assumed that the decision maker could invest his funds into either
stocks (S) or other financial instruments (OF) such as a money market fund. The stock

investment could be easily achieved through a mutual fund. Returns to stock investment

were calculated as changes in the price of the fund from period to period plus any
dividend income. The model contained three stoch,,astic state variables: hog returns

(HR),defined as revenue minus variable costs, stock prices (PS), and return on other

financial instruments (ROF), and two deterministic state variables: holdings of other

financial instruments (OF), and stock holdings (S). Investments in other financial
instruments represented an asset when held in positive amounts or a liability when
negative (ie. operating credit). The decision in each period was the level of stocks to
buy or sell (DS).

The stock investment model was formulated as a terminal wealth maximization
problem rather than the standard present value maximization. Denoting the terminal
year as T, terminal wealth can be written as a function of the state variables:

VT (HR T , PST, ROFT , OFT, ST)

(PST*ST) + OFT + FarmAssetsT — TermDebtT

where V T(• ) is the recursive objective function for year T and FannAssets were those

assets devoted to the production of finished hogs and TennDebt is the level of long term

debt. This function leads to the following general recursive equation:

V t_ 1(HR t_ 1 ,ROF, ,OF t_ i , S11)=

MaxE[V t(HR t, PS ROF t,OF t,S 1)]
DS,

where E[•]is the expectations operator and V t(.) is the value of wealth assuming that

optimal decisions are made.
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This maximization is subject to the following state transition equations:

H R = f ,(H R ,)

PS t= 2(PS t-1,ROF t-1)

RO F t.= I 3(RoF t-i)

s t= „I + DS ,

OF = OF .1 - With - t* PS t 4- • DIV E + HogRet,

where the terms in the state transition equations are:

DS ,= {200,0,-200}

Borrowing/Lending Di f I erential(B LD)= 3%

If OF ,5_0 then .ROF ROF ,+ BLD

HogReturn, (HogRet,) = HR,*A4HP - FC*MHP

Withdrawals(With) = MCW + Payment on Term Debt

05_S5_2000

100 5_PSt _10

-20 5_RH t 5_40

-350000 5_ OF , 350000

.06 ROFt .16

Monthly Hog Production (MH P) =750

Monthly Consumption Withdrawal (MCW) =2,000

Fixed Cost. Per Hog (FC) =5.00

Stock Dividend (DIV ,)= .083*S

Farm Assets, = 450,000

Bankruptcy E ealth,5_ 0)

Beginning T erm Debt = 100,000

Rather than discounting returns, as in a present value maximization, returns in
the terminal wealth maximization problem are compounded. Within the stock
investment model, compounding is achieved through the other financial instruments
holding variable (OF).



3 ESTIMATION OF TRANSITION PROBABILITIES -

Numerical solution of the investment model required state transition probabilities

which were derived from estimated state transition equations. This section describes

the data and estimation procedures for the hog return (HR), stock price (PS) and

interest rate (ROF) state transition equations.

Monthly hog returns were based on budgets reported in the Livestock Meat 

Situation and Outlook Report published by USDA. Data from the Illinois Farm

Business Farm Management Association (FBFM) were used to adjust the return series

to reflect Illinois costs of production as closely as possible.

Monthly stock prices (S&P 500 index) were collected from the Standard and Poor's

Statistical Reporting Service and dividend data were based on information provided by

Ibbotson and Associates. Short term interest rate data were from the Economic Report 

of the President. All series covered the period from the beginning of 1974 to the third

quarter of 1987.

Modelling of multiple stochastic state variables.provides a special problem in that

transition relationships originate from multivariate stochastic processes. Thus, a state

variable's transition relationship may include not only its own lagged variables but other

lagged state variables as well.

The nature of the economic variables in this model provided an additional

problem. An index was used to represent stock prices. The index showed a continual

upward trend which was the result of economic growth. Likewise, interest rates,

expressed in nominal terms, have also trended upwards over the sample period. In

terms of time series analysis, the existence of trends results in non-stationary data.

Stationarity is required to ensure that the estimated transition probabilities are derived

from a process which is time invariant. Stationarity was achieved by differencing the

stock price and interest rate series once.

Tentative dynamic interrelationships between hog returns, stock prices and

interest rates were originally identified through time series techniques (Granger and

Newbold). Sample autocorrelations and cross-correlations suggested that hog returns

were not correlated with either interest rates or stock prices. Hog returns showed

evidence of lower order autoregressive structure. Autocorrelations and partial

autocorrelations for stock price and interest rate suggested that these variables were

interrelated and that lower level autoregressive models would adequately capture their

Markovian relationships.
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3.1 Hog Return Transition Relationship

• Examination of autocorrelations and partial autocorrelations suggested that the
hog return relationship could be modelled with a second order autoregressive process,
AR(2). A goal of reducing the number of state variables prompted the estimation of
a first order process (AR(1)) as well as the AR(2) model.

Estimation of the AR(1) model produced the following equation (t-statistics in
parentheses):

= 1.895 .811 HR t_ l
. (2.58) (18.70)

2 = .684 a, =8.003

where o e is the standard error of the estimate. This formulation resulted in

autocorrelated errors indicating that an AR(1) model did not adequately capture the
series' time dependent nature.

Estimation of the AR(2) model resulted in the equation:

HRi . = 2.430 + 1.177HR 1.I — .439 HR,_2
(3.60) (16.54) (-6.29)

R2=.736 a =7.239

which showed no sign of autocorrelation and yielded normally distributed errors as

judged by the Jarque-Bera test statistic.

Based upon these results, and analyses of higher order models, the AR(2) model
was judged to adequately describe the series' Markovian nature. To reduce the

dimension of the DP model only one hog return variable was included. The reduction

was accomplished using Burt and Taylor's method of reducing the order of an

autoregressive process. This procedure resulted in the following form:

HR i = 1.688 + .8177HR 1 _ 1 a =8.058
From this equation, transition probabilities were estimated using a hyperbolic tangent
method (Taylor).

Table 1 shows the resulting transition probability matrix for hog returns as well as
the limiting distribution which is approached within one year of any beginning state
level. This table illustrates the extreme variability of returns in hog feeding enterprises.
This variability provided some of the rationale for the choice of a monthly rather than
an annual mode1.1

1 Quarterly and annual models were investigated for all three stochastic state
variables but no Markovian structure could be identified.
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Table 1: Transition Probabilities for Hog Returns

-20 -5 +10 +25 +40

HR ,

-20 .6063 .3760 .0176 .0001 .0000

-5 .1064 .6217 .2644 .0075 .0000

+10 .0032 .1778 .6462 .1699 .0029

+25 .0000 .0082 .2744 .6167 .1007

+40 .0000 .0001 .0190 .3869 .5940

Limit .0719 .2544 .3786 .2342 .0608

3.2 Interest and Stock Price Transition Relationships

Autocorrelations, partial-correlations and cross-correlations were examined to

identify autoregressive relationships within the first differenced stock price and interest

rate series. These plots suggested a first order autoregressive structure for each variable

and across variables.

Estimation of the AR(1) model for stock price resulted in the following parameters

(t-statistics in parentheses; all variables in log form):

PS, - PS,_, = .124(PS1_ 1 - PS1_2) - .126/, + .118/1 _2
(3.13) (-3.63) (3.27)

e = .035

which reduced to:

PS, = 1.124PS 1 - .124PS1_2 - .126/, + .1181,_2

Estimation of the AR(1) model for first differenced interest rates resulted in the

following parameters:

it - = .328(/,_, - /,-2)
(4.95)

a =.0636

which reduced to:

it = 1.328/NI - .328I 2

Residuals from both of the above equations were normally distributed as judged by the

Jarque-Bera statistic and were independent across equations based on

cross-correlations.



As was the case with the hog return transitions, a reduction in the number of state
variables was preferred to lower the dimension of the DP model. Burt and Taylor's
method for reducing the order of interdependent autoregressive equations was
employed to produce the following equations:

St = St-1 • 0064/t_ l Q = . 0 3 8 1

it. = It-1 =.0717

s1 = - •0035 4 p =-.1267

From these equations transition probabilities for stock prices and interest rates were
estimated using a numerical integration routine (Gerald and Wheatley).

4 OPTIMAL STOCK INVESTMENT DECISION RULE

The optimal stock investment decision rule was derived using a value-iteration
dynamic programming algorithm. Numerical solution required specification of discrete

state and decision variable levels. Four hog return intervals ranging from -$20 to $40
produced state levels of -20, 0, 20, and 40 dollars respectively. Stock prices covered 15

intervals ranging from 100 to 310 and stock holdings ranged from 0 to 2,000 units in

increments of 200. Financial instrument holdings covered the range -$350,000 to

$350,000 in $70,000 increments and return on financial instruments ranged from 6

percent to 16 percent in• two percent increments. This formulation resulted in 43,560

states. The stock purchase decision was allowed to take on values of -200 (sell), 0, or
200 (buy).2

The optimal investment rule was obtained by backward recursion beginning at the

final year of the planning horizon. Linear interpolation of the objective function was
used to increase the convergence rate and reduce biases resulting from discretizing the
state variables. Interpolation was used on the financial holdings variable because the
ending values for this variable did not necessarily match the state interval midpoints.
Optimal decisions were found for all state intervals except those combinations which
defined technical bankruptcy (i.e. negative wealth). In the case of bankruptcy, the
farming operation was presumed to be liquidated.

Optimal decision rules were generated until the optimal decision rules donverged,

which occurred by month six of year three. Thus, the converged decision rule was
applicable to all periods up to the thirty months before the end of the planning horizon.
For example, if the planning horizon is ten years long, the converged decision rule would
be applicable from year one through to month six of year seven.

2 The model was also solved using a finer grid.with 6 hog return states and 11 interest
rate states for a total of 127,776 states. The results were essentially the same as for
this smaller version.
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The large size of the optimal decision rule prevents a complete description within
this paper. A graphical presentation of a portion of the decision rule follows in figures
1 and 2.

Figure 1 presents the optimal decision rule when hog returns are at the $20 level
and stock holdings are 400 units. Panels A through C illustrate the effects of changing
stock price levels for the complete range of interest rates and financial holdings.

For given levels of stock price and financial holdings, the graphs illustrate the
dampening effects of higher interest rates on the desirability of stock purchases. For
example, at a stock price of $115 (Panel A) and financial holdings of $0, stock purchases
occur up to an interest rate of 12 percent. Over a range of 12 to 14 percent, existing
stocks are held, and stocks are sold at rates above 14 percent. This interest rate effect
exists at all stock price levels although the absolute values of interest rates at which
decisions change vary with stock price.

For fixed levels of stock price and interest rates, the graphs illustrate the effects
of higher financial holdings levels on stock purchases. As financial holdings increase,
the firm has more funds to purchase stocks. At a 12 percent interest rate and stock
price of 115, for example, financial holdings of less than -$70,000 are associated with
stock sales. The range from -$70,000 to $70,000 are associated with a decision not to
purchase or sell stocks, and levels above $70,000 are associated with stock purchases.
As was the case with interest rates, this wealth effect is consistent across stock price
levels although the breakpoints differ for each stock price.

Figure 2 illustrates the effects of three different hog return levels on stock
purchases. At constant stock prices of $190 and stock holdings of 400 units, panels A
through C illustrate the the effects of three different hog return levels across the range
of interest rates and financial holdings. Note that the interest rate and financial holdings
effects discussed above occur for different hog return levels. The effect of changes in
hog returns is seen in the positioning of buy and sell breakpoints. For example, at an
interest rate of ten percent,a hog return of -$20 (panel A) implies almost no purchases
at lower levels of financial holdings. A return level of $0 (panel B) implies purchases
at lower levels of financial holdings up to an interest rate of 12 percent. A $20 return
also allows purchases up to an interest rate of 12 percent at most levels of financial
holdings and infers no stock sales until 12 percent even at the lowest level of financial
holdings.
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Figure 1 Portions of the Optimal Decision Rule for Hog

Returns of $20 and Stock Holdings of 400.
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Figure 2 Portions of the Optimal Decision Rule for

Stock Holdings of 400 and Stock price of 190.
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5 CALCULATION OF CONDITIONAL PROBABILITIES

Discrete conditional probability methods were used to determine ex ante

distributional forecasts of financial holdings and stock holdings. The general approach

for calculating conditional probabilities requires constructing an N dimensioned state

probability vector denoted as.11„ where N is the number of state intervals and t equals

the number of the stage. The i'th element of this vector (11 t ()) gives the probability

of being in the i'th state at time t. To satisfy the basic properties of probabilities, each

element must be between zero and one and the sum of all elements must equal one.

The state probability vector for the initial state 1l0 contains one element that is one

while the rest are zero, indicating that the beginning state is known with certainty.

The movements of the system between points in time are given by an N by N

transition matrix (P). The rows Of P correspond to states at the current point in time
while the columns correspond to states at the next point in time. The elements of the

i'th rew give the probability of moving from state i to any of the N possible states at the

end of the period.
Multiplication of the initial state probability vector by the transition matrix yields

the state probability vector for the next time period:

L = L- P
The i'th element of the TT vector gives the probability of being .in state i in period one

conditional on the probabilities in the Fl ° vector. In general, the transition during time

period L is given by:

FIL

= FIL-2PP

= noPL
where P L indicates that the P matrix is postmultiplied L times. The 11 1. vector gives the

probabilities of being in each of the states at time L. These probabilities represent an
ex ante forecast given the initial state.

The investment model's state probabilityvector contains five dimensions with each
element represented as: •

it t(h,r,ps,rof,of,$)

where hr,ps,rof,of,and s are state interval indices for hog returns, stock price, interest
rate, financial holdings and stock holdings respectively.

The *same state variable discretation was used in solving the conditional probabilities
as was used in solving the dynamic programming model. In addition, a bankruptcy state
was added. This state accumulated the probability associated with state intervals
resulting in bankruptcy. Thus, each state probability Vector contained 43,561 elements
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(4 hog return states x 15 stock price states x 6 interest rate states x 11 financial holdings

states x 11 stock holdings level states + 1 bankruptcy state). Each element of the state

probability vector representing a solvent state was referenced as:

Itt(hr,ps,rof,of,$)

where hr, ps, rof, of, and s were state interval indices for the hog return, stock price,

return on other financial assets, financial holdings and stock holdings level respectively.

The final element represented bankruptcy.

The transition matrix was constructed using the state transition equations and the

optimal stock investment decision rule. This matrix was a square matrix of dimension

43,561. The 43,561st row represented bankruptcy. The remaining rows of the transition

matrix were decomposed as follows:

• [HR] 0 [PSR] 0 [OF S hr, ps,roj

where [HR] was the hog • returns state transition matrix, [PSR] was the stock

price--interest rate state transition matrix, and [OFS hr ps,rof] were. matrices giving

other financial holdings and stock holdings. This partitioning was possible because the

[HR] matrix depended only on the hog returns state transition equation and the [PSR]

matrix depended only on the stock price and interest rate state transition equations.

The [HR] matrix was a square matrix of dimension 4. The [PSR] matrix was a square

matrix of dimension 90(15 stock price states x 6 interest rate states). The [ 0 F S hr ps,rof]
matrices were square matrices with dimension 121 (11 financial holding states x 11 stock

holding states). To calculate these matrices, the hog return, stock price, and return on

other financial asset states had to be known. Thus, there were 360 matrices, with one

matrix corresponding to each hog return, stock price, and return on other financial asset

combination. These matrices were calculated using all state transition equations and

the optimal decision rule.
Within the computer program which calculated conditional probabilities, the [HR]

and [PSR] matrices were calculated once and stored in RAM. Elements within the

[OFShr, ps, ro  ]were calculated as needed. By repeating the above process, conditional

probabilities were found for a five year horizon.

Resulting state probability vectors represented a joint probability density function,

conditional on the beginning state variable levels, presuming that the optimal decision

rule was followed. Sthndard discrete probability techniques (see, for example, Hogg
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and Craig) were used to find a state variable's marginal distribution. This required

finding the probability of being in each of the state variables' intervals. For example,

the probability of occupying the of i financial holdings state interval equaled:

Pr(of3= >2 >2 >2 >2 Tt t (hr, ps, rof, , of s)
hr ps ro f s

Repeating the above operation for all financial holdings state intervals resulted in the

marginal distribution. Marginal distributions were found for financial holdings and

stock holdings levels.
Application of conditional probability theory (Hogg and Craig) to the marginal

distributions developed above yields important information on the linkages between -

the state variables. The probability of being in the of i finanical holdings state interval

given a particular stock holding, si is calculated as:

11,(hr,ps,rof ,of osi)
=

Pr(of List) 
hr ps ro f

Pr(oft)

Completing this calculation for all financial holdings states gives the financial holdings

distribution conditional on the stock holdings state si.

The effects of bankruptcy were investigated using this method. Financial holdings

and stock holdings distributions Conditional on being solvent were calculated. For

example, the conditional probability of being in the of i state equaled:

Pr(of1 I soluent)= Pr (o f i) / (1 — Pr (Bankrupt))

where Pr(bankrupt) equals the probability in the bankruptcy state. Repeating the above

operation for all state intervals resulted in the conditional distribution. A similar process

was conducted for the stock holdings interval.
Also, expected wealth levels were calculated using the state probability vector.

This was accomplished by summing the result of each state interval's probability times
each state interval's wealth.

6 CONDITIONAL PROBABILITY RESULTS

Conditional probabilities were calculated for three different initial financial

holdings levels: -$70,000, $0, and $70,000. The initial values for the remaining state

variables were the same for the above three conditional probability calculations. These

state variables were a $10 hog return, a 130 stock price, a 10 percent interest rate, and
a 0 unit stock holding level.

Panel A of figure 3 shows marginal financial holdings distributions at the end of
years 1, 3, and 5 for an initial financial holdings level of $0. At the end of year 1, the
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majority of the probability is in the negative financial holdings region, indicating that

debt has been accumulated. Most of this debt results from stock purchases, as illustrated

in panel B. This panel shows the probability .associated with each stock holdings level.

As can be seen, the majority of the probability is associated with stock holding levels

greater than 1,600 units.

Over time, probabilities associated with financial holdings and stock holdings

become more evenly distributed across the respective states. This is illustrated by the

general flattening of both the financial holdings and stock holdings distributions in years

3 and 5 (Figure 3). More evenly distributed probability results because of wider possible

ranges of stock prices and returns on other financial instruments. As adverse stock

prices result, stock holdings will be reduced, resulting in higher financial holdings.

A correlation exists between stock holdings and other financial holdings. This is

illustrated in figure 4, which shows financial holdings distributions conditional on stock

holdings levels of 0,600, and 1,800. As can be seen, higher stock holdings are associated

with lower financial holdings. Higher stock holdings require debt purchases, yielding

the resulting skewed distributions. Note also that the 0 stock holding level has

considerable probability associated with financial holdings levels above $200,000. This

high *probability, along with the .23 marginal probability of having 0 stock holdings,

suggest that stock price and interest rate combinations exist in which stock is not a wise

investment. This result is supported by the decision rule presented earlier.

The bankruptcy probability in year 5 is .3343 for the initial financial holdings level

of $0. As initial financial holdings increase, the probability of bankruptcy decreases.

For example, initial financial holdings of -$70,000, $0, and $70,000 result in year 5

bankruptcy probabilities of .4564, .3097, and .2441, respectively. Initial financial

holdings levels also have large impacts on wealth in year. 5. Expected wealth levels of

$292,467, $380,210, and $467,016 respectively result from initial financial holdings levels

of -$70,000, $0, and $70,000.

The interaction between initial financial holdings, bankruptcy and ending financial

and stock holdings distributions was of great interest. The results above indicated that

beginning financial holdings affect both bankruptcy and ending stock and financial

holdings distributions. In order to isolate the effect of bankruptcy on these distributions,

we calculated these distributions conditional on solvency. The resulting distributions

(figure 5) indicate that initial financial holdings have little impact on the distributions

once bankruptcy is taken into account.

Higher initial wealth results in more probability being in the higher financial levels

(panel A). This difference in probability, however, is relatively small when compared

to the $140,000 difference in initial financial holdings. Stock holdings are much more
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closely distributed (panel B). The financial holdings and stock holdings distributions

tend to converge towards some particular distribution, given that the firm is solvent and

that the optimal stock investment rule is followed.

Figure 3 Yearly Conditional Distributions
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Figure 4 Financial Holdings Given Differing Stock Levels
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Figure 5 Conditional Distributions for Stock
and Financial Holdings - Year 5
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7 SUMMARY AND CONCLUSIONS

The first objective of this paper was to address the issue of off-farm investment in
a dynamic framework, incorporating the effects of farm financial structure and market
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conditions. A second objective was to illustrate some of the important issues and

techniques which arise when developing and solving stochastic dynamic firm level

decision models.

Methods were presented for estimating transition probabilities for interrelated

stochastic state variables and reducing model dimensions. Conditional probability

methods which enhance the information available from stochastic dynamic

programming models were discussed and illustrated.

The dynamic programming model of a hog finishing operation identified the

effects of interek rate levels, stock prices and financial structure on optimal stock

purchases. Higher interest rates were shown to dampen stock purchases over all ranges

of financial holdings and stock prices. The absolute levels for buy/sell breakpoints were

dependent upon both financial holdings and stock prices. The model also identified

the effects of different hog return levels on investment decisions. Greater profits in hog

production implied greater stock purchases for given levels of interest rates or financial

holdings.

Conditional probability methods were used to project future financial structure

and investment holdings for different beginning states. A correlation between stock

holdings and financial holdings was identified and illustrated. Greater stock holdings

implied the use of larger amounts of short term debt. Initial financial holdings were

shown to affect the probability of bankruptcy and expected terminal wealth but had

little influence on distributions of financial and stock holdings.

It is worth noting that static investment models would only provide information

on the mix of investments given some static objective function. The dynamic investment

model provides an operational investment strategy as well as providing ex ante forecasts

of future financial structure and investment mix when the optimal decision rule is

followed. The extra information obtained from the dynamic model should be of interest

to decision makers.
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