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RESPONSES TO RISK IN WEED CONTROL DECISIONS
UNDER EXPECTED PROFIT MAXIMISATION

Abstract

Risk is an important characteristic of decisions about
weed control in crops. In this paper it is shown that risk
can affect weed control decisions even if the objective of
the decision maker is to maximise expected profits: that
is, even if the decision maker is "risk neutral" in the
usual economic sense. This is shown for two decision
frameworks: 'the optimal rate approach and the economic
threshold approach. Empirical results are presented for
control of ryegrass in wheat in Western Australia. It is
found that, in general, risk reduces the optimal level of
herbicide use under expected profit maximisation. Although
individual sources of risk have a small impact on the
optimal decision rules, combinations of uncertain
variables can have a relatively large effect.

Introduction

In many studies of the economics of pest or weed control, the assumed

objective of decision makers is maximisation of expected profit (eg, Marra

and Carlson 1983, Moffitt et al. 1984, Taylor and Burt 1984, Gold and

Sutton 1986, Johnston and Price 1986, Zacharias et al. 1986). There is

evidence that, in some circumstances, optimal pesticide decisions under

expected profit maximisation differ little to decisions made under risk

aversion (Webster 1977, Thornton 1984).

Of those studies which assume risk neutrality, the majority adopt a

deterministic decision framework. This approach can sometimes be defended

on the basis that the decision which maximises expected profit in a

stochastic framework corresponds to the profit maximising decision in a

deterministic framework using expected values of parameters. This is why

expected profit maximisers are often referred to as "risk neutral".

. Nevertheless there are several ways in which risk can affect the

decisions of individuals whose objective is to maximise expected profit.

Tisdell (1986) showed that uncertainty about a parameter value can affect

the optimal level of pest control by affecting expected profit. He argued

that:

"in many cases the expected level of application is greater under

uncertainty than under full information but . . . this depends on

convexity conditions of relevant functions" (p.161)

and that

"convexity conditions may sometimes be such as to give rise to the

opposite consequence" (p.159).

He did not discuss which parameters are likely to increase and which to

decrease treatment levels under uncertainty. Auld and Tisdell (1986, 1987,
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1988) showed that because of convexity of the relationship between weed

density and crop yield, uncertainty about weed density reduces expected

yield loss. Auld and Tisdell (1987) argued that this increases the

economic threshold, reducing the overall level of pesticide use. They

noted that this does not seem consistent with comments in the literature

that risk increases pesticide use. They attributed the difference to the

influence of risk aversion dominating the effect of risk on expected

profit.

Another circumstance where risk can affect the decisions of "risk

neutral" decision makers is where the problem is dynamic (Antle 1983).

Zacharias et al. (1986) tested this hypothesis in their dynamic

programming study of soybean cyst nematode. They found modest support for

the hypothesis, with very small differences between the results of their

deterministic and stochastic models.

A third possibility is where the decision maker is subject to a

progressive marginal taxation rate. Taylor (1986) showed that the effect

of this on decision making is essentially the same as the effect of risk

aversion; it makes the decision maker behave in a more risk averse manner

than they otherwise would have.

This paper is an examination of the effects of risk on weed control

decisions made by "risk neutral" farmers. Attention is focused on effects

due to non-linearities in the response model rather than dynamic or tax

induced effects. Sources of risk which affect expected profit are

identified and analysed in the context of a theoretical response model for

herbicide application. The directions of response to different sources of

risk are derived using the theoretical model and the magnitudes of the

responses are estimated for a particular empirical example: ryegrass

(Lolium rigidum) control in wheat in Western Australia.

Response Model

Lichtenberg and Zilberman (1986) showed that yield response to

pesticides must be represented

pests and it is the removal of

as an indirect response; pesticides kill

pests which increases yield. Use of a

response model which does not recognise this two stage process leads to

biased predictions of response and erroneous conclusions about the optimal

pesticide strategy.

In this paper, crop yield Y) is represented using the following

general form.

(1)
Y Yo[1 - D(W)]

where Y is production with no weeds present and D is the damage function

representing the proportion of production lost at weed density W.
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Cousens (1985) conducted tests of a wide range of functional forms

for the damage function. He found that the following hyperbolic form best

fitted published data on weed competition:

(2) D(W) a/[1 + a/(bW)] .

The parameter a can be interpreted as the asymptotic yield loss as W -4 co.

Crops typically give some positive yield even at very high weed densities,

so a is normally less than one. The parameter b is the yield loss per weed

as W -4 0.

W is a function of pre-treatment weed density (W
o 

and K(H), the

proportion of weeds killed at herbicide rate H.

(3) - K(H)] .

The kill function must be bounded by zero and one. It is usually

represented in. the literature by the following exponential function (eg,

Feder 1979, Doyle et al 1984, Moffitt et al 1984, Auld et al 1987):

(4) K(H) = 1 - exp(-kH

Substituting ( 3) and (4 into (1) gives the response function:

(5) Y = Y0(1 - a/(1 + a/[bWoexp -kH)1))

Profit (n) is given by:

(6) it=PY- P
h
H -

Y

where P is output price, P is herbicide cost, A is herbicide application

cost (which is independent of the application rate, H) and F represents

costs from all other inputs which are assumed to be fixed at optimal

levels.

Theoretical Analyses

In the following analyses, two decision frameworks are used. Firstly

the herbicide rate which maximises expected profit is derived. Although it

selects economically efficient control strategies, this approach is not

widely used in the weed economics literature. The usual approach is to fix

the herbicide rate at some fixed "recommended" rate and to calculate the

threshold weed density above which it is worth applying that rate. The

threshold density approach is the second framework used here.
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Stochastic pre-treatment weed density

There are two sources of stochasticity related to the initial weed

density (W0). One is uncertainty about the mean value of W. The other is

spatial variability in weed density on the ground. Weeds do not grow in

uniformly spaced formation. Rather they tend to grow in "clumps" of high .

density mixed with areas of relatively low density. Greater variability of

W
o 
leads to less precision in inferences about the mean Value of W . The

variability also means that under the usual practice of applying a uniform

herbicide rate to a large area of crop, some regions will receive less

than their optimal dosage and others more. Auld and Tisdell (1986, 1987,

1988) have noted that uncertainty about, or variability in Wo 
can affect

expected profit. They suggested that this would increase the threshold

density, although they did not rigorously prove this claim. They also did

not consider the question in the context of a variable herbicide rate.

Figure 1 illustrates the way in which a stochastic initial weed

density affects expected yield and, consequently, expected profit.

Crop yield

Weed density

Figure 1: Effect of stochastic weed density on expected crop yield

Consider a crop containing a uniform distribution of weeds at density W2.

The crop yield function shows that the crop would give a yield of Y2. Now

consider a similar crop in which half the area of crop is infested with

weeds uniformly distributed at density W1 while the other half is infested

at density W3. The mean weed density in this mixed crop is W2 but the mean

yield is the average of Y1 and Y3. Note that, because of the convexity

of the yield function, Y is greater than Y2. In other words the same

number of weeds causes less yield loss if they are unevenly distributed

than if they are evenly distributed. The biological explanation for this

•
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is that in the uneven distribution, those weeds clumped together at high

densities are forced to compete with each other for resources as well as

with the crop plants. In these weeds, the competitive ability per weed

plant is reduced so that, on average, yield loss is reduced.

Now consider what effect this reduction in yield loss has on the

• optimal herbicide rate. The aim of the following analysis is to determine

whether greater variance of W increases or reduces the optimal herbicide

rate (11*), i.e. to determine the sign of aH /avar(w ). Assume that a
farmer has a subjective distribution of initial weed density such that

W =t,77. + e where 171 is the mean of the distribution and e is a randomo o o o 0
variable with mean zero. After application of herbicide, the weed density

is reduced from W to W. The variance in W leads to variance in W. That

is, W = W + ew where ew is another random variable with mean zero. Note

that e is simply a transformation of e . In this analysis it does not

incorporate uncertainty about the level of weed kill which is analysed

separately later. Although herbicide application reduces the variance of W

to less than that of W
o 
it is not reduced to zero. For convenience, it

will be assumed that post-treatment weed density is normally distributed,

i.e. N(0,a2). The distribution of weed density may not be normal in

practice (indeed it cannot be since it must be truncated at zero) but

examination of weed count data from field trials in Western Australia

shows that the normal distribution gives a reasonable approximation of the

A actual distribution. From (1) and (6), profit (70 is given by:

(7) 7r P Y [1 - D(W)]
y o

P H

An approximation will simplify the analysis. The damage function,

D(W), is approximated by a second order Taylor series approximation about

1-47, the expected value of W:

(8) ' D(W) D(17.7) + (W - 171)D'(7) + 0.5(W - 1702D"N)

where primes denote derivatives. This can be rearranged to give:

(9) D(W)a + pW + 7W2

where a = D(W) - W D'(W) + 0.5 1-42D"(1-4

fl= D'(W) - W D"(177)

7 —

Note that fi > 0 since

D'(W) = [a2/[bW2[1 + a/(bW)]2) > 0 and



D"(W) =D'(W)(a2/b)[(-2/W) (a/bW2 [1 + a/(bW) ])] < 0

Also note that this latter result implies that 7 is negative. The use of

this approximation is defended on the grounds that the important features

of the damage function for this analysis are preserved, in particular that

D'(W) > 0 and D"(W) < 0. Now substituting (9) into the profit function

(7) gives:

(10) P Y [1 - a
Y o

pw _ 71,72] F.

The objective is to maximise expected profits. Since it is assumed that

weed density is the only uncertain variable and that it is normally

distributed, expected profit is given by:

(11) E(n) P
y 
Y 
o
[1 - a - _ 707724.a )] - A - F.

The first and second order conditions for selecting the herbicide

rate which maximises expected profit are:

(12) OE(7r)/OH —

and

(13) .92E(7)/49H2 < 0

The response model presented above can have regions where (13) is not

satisfied as well as regions where it is. We will assume here and in the

subsequent discussion that the optimal herbicide rate is correctly

determined in a region where (13) is satisfied. This means that (12)

becomes a necessary and sufficient condition for expected profit

maximisation. From (11) the first order condition is:

(14) OE( PyY0[-fl - 7(2177 aVali + aoziaH)] - Ph - 0.

Although there is no closed form solution for H* available from (14),

Hey (1981, p.38) demonstrated how the comparative static properties of a

solution like this can be found by total differentiation.

(15) [ae/aH] .0 as [a Eorvaliad / [32E(70/3H2]

where X is a variable in (14) and the partial derivatives on the right

hand side of (15) are evaluated at H . But to ensure that H is a maximum,

we have already assumed in (13) that 02E(70/3112 is negative. Therefore the

•

61,
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sign of all /ax depends on the sign of the cross partial derivative,
32E( evaluated at H

(16)
* >
H as [a E(70/8HaX]

This result will be used in this and the next section.

Return now to the problem of finding the direction of response to an
increase in var(W ) (i.e. the sign of all /aa2). From (16) we seek the sign
of 32E(70/0H3a2 and from (14),

(17) 82E(70/8118a2 = -P Y .a 2/alia0-4!„.y o

To clarify what this means, &val.' is the rate at which the variance of
weed density changes in response to changes in herbicide rate. Examination
of field trials shows that variance of weed defisity decreases with
increased herbicide rate. The issue here is whether 072 decreases at a
higher or lower absolute rate if is increased; i.e. is a2a /aHaa

positive or negative. In addressing this, recall that W = W0(1 - K).
Assuming that W is normally distributed [W N(W ,a )],

(18) a2 = var(W) = var[W ( - K)] = a2(1

(2)(2)(1 - 10(-8K/3H).

-K

Now taking the partial derivative with respect to a2
0

(20) a (7,7/aHaas, — (2)(1 - ic)(-avali

which, when substituted into (17), gives:

(21) 82E00/3H0472 P y Y 07(2)(1 - imaK/aH,

2

which is negative since 7 is the only negative term. So from (16) 3il
*
/3a2

0
is also negative. As the variance of initial weed density increases, the
herbicide rate which maximises expected profit decreases. This is counter
to the usually presumed result that risk increases herbicide use. At least
for decision makers whose objective is to maximise expected profits,
uncertainty about W reduces H It does so because increasing the
variance of weed density reduces the expected yield loss at a given mean
weed density (after treatment). Expected crop yield at each herbicide rate
is increased such that the yield response function moves upwards to the



left, reducing the herbicide rate at which the price line is tangent to

the response function.

Now consider the effect of a2 on the traditional economic threshold,

W. The derivation of the traditional economic threshold is quite

different to the derivation of the optimal dosage. The latter requires

marginal analysis, as demonstrated above, whereas the threshold is

determined by comparing profits from two discrete input levels. The result

of the marginal analysis is an input level, whereas the result of the

threshold analysis is a pest density at which a fixed input level should

be used. The threshold is derived as follows.

If the recommended herbicide rate (Hr) is used, profit is given by:

(22) lr(Hr) PyY0[1 - D(W )] - PhHr - A - F

where W is weed density surviving application of the recommended

herbicide rate. If no herbicide is applied, profit is:

(23) w(0) P Y 
y 0 

[1 - D(W 
0
)] - F.

Without herbicide application, weed density is higher (Wo > Wr) so the

level of yield loss is greater. On the other hand, savings are made on

herbicide costs (P
h 
H 
r
) and application costs (A). The threshold (WT) is

the lowest density at which application of Hr is at least as profitable as

application of no herbicide, i.e. where w(Hr) w(0). Setting (22) equal

to (23) and simplifying gives:

(24) D(W
T

+ / [P Y + D(W )hr 
 .y 0

This expression for the threshold applies to a deterministic model but.

here, W is a random variable so the interpretation of W
T 

is problematic. /

The most reasonable solution seems to be to redefine the threshold in

terms of the mean weed density, 1.4 . Thus:

(25) -T
D(140) — [yr + A] / [PyY0] + D 171

-TIf a2 = 0, equations (24) and (25) are equivalent and W
o 

W . However, as

we have seen in the previous discussion, if as) is increased to a value

greater than zero, the level of yield loss.at a given mean weed density

will be reduced. That is, both D(W ) and D(171 ) will be reduced by the

increase in a2. However application of high rates of herbicide

substantially reduces the variance of weed density, so var(W) will be

very much less than var(W ). This also means that any change in var(W )



10

following an increase in is small. Thus the main effect of an increase

in 2 is a reduction in D(W ). But if the left hand side of (25) is

reduced while the right hand side is almost unchanged, the equality will

not be satisfied. To maintain the equality it is necessary to increase the
-T

left hand side by increasing -CI . W is the new, higher value of 171'o 
which

o 0
reinstates the equality. Thus if the decision maker maximises expected

profit, the traditional economic threshold is increased by uncertainty

about W . This is consistent with the findings above for H in that a

higher threshold results in a lower expected level of herbicide use. Again

it contradicts the conventional wisdom in the literature that risk

increases use of inputs for damage control.

Stochastic weed competitiveness

The actual level of yield loss per weed is unknown until the end of

the growing season. In this analysis, uncertainty about weed

competitiveness is characterised by uncertainty about the value of

parameter b in the damage function. All other parameters and variables are

assumed to be deterministic.

Consider the actual yield function:

(26 41 - D(W)] Y
o
[1 [a]/[1 + agbW)]] .

The damage function can be approximated by a second order Taylor series as

follows

(27) D = a + fl(bW) + (bW)2

where /3 > 0 and 7 < 0. Note that a, fi and 7 are different in this example

than in the previous example. Now let the parameter b be a random variable

b = + where e N(0,a123). The problem is to, find the direction of

response to an increase in var(b) (i.e. the sign of al /act). From (16) we

seek the sign of 82E(7)/810(7123. Expected damage is:

(28) E(D) = a + /31314 + -1W2(152 +a)

and expected profit is:

(29) P Y [1 -
y o

It follows that:

(30) aEorvali P Y
yo

- 1313w - 714 1324. d2)]. _

3W/3H - 72w 0W/3H

- A -

S2 4. 6.123)
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and

(31) 82E(70/3H3u — -2P Y W awali
y o

which is negative. Given equation (31), equation (16) implies that an

increase in var(b) reduces the optimal herbicide rate. The result is

similar to that for uncertainty about initial weed density and it again

runs counter to conventional wisdom about the effect of risk on herbicide

use.

Uncertainty about b also affects the traditional economic.threshold.

From (28) it can be seen that an increase in a2 decreases yield loss (7 is

negative). The subsequent reduction in yield loss associated with

untreated weeds will be much greater than the reduction 41 yield loss for

the few weeds surviving treatment with the recommended dosage. In that

case an increase in a2 causes a larger decrease in the left hand side of

the threshold equation (24) than the right hand side. To maintain the

equality it is necessary to increase the left hand side by increasing Wo.

W is the new, higher value of Wo 
which reinstates the equality.

Again these conclusions are counter to the usual claims made about

risk and herbicide/pesticide use. Uncertainty about b is another possible

cause of reductions in herbicide use.

Stochastic weed kill

As well as uncertainty about the damage caused at a particular weed

density, there can also be uncertainty about the number of weeds killed by

a particular herbicide dosage. This seems to loom large in the minds of

Western Australian wheat farmers. However its effects on H
* 

and W
T 

are

ambiguous. A direct effect of introducing stochasticity to the kill

function is to reduce the level of weed mortality (in a similar fashion to

that illustrated in Figure 1). This tends to increase the optimal

herbicide rate. There is, however, a further impact of stochastic weed

kill; it leads to uncertainty about W and from the first part of this

subsection, uncertainty about W reduces H*. Thus uncertainty about weed

kill has two effects on H-: (a) expected weed survival is increased, which

tends to increase H
* 

and (b) weed density is made uncertain, decreasing

H The net effect depends on the balance of forces; numeric examples are

presented later.

The total effect of stochastic kill on the traditional economic

threshold is also ambiguous. The direct effect of uncertainty about kill

is a tendency to reduce W, but stochastic kill also leads to uncertaintyo T
about the weed density which tends to increase-

W
o
. The net effect depends

on the convexity properties of the kill and damage functions.
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Stochastic herbicide rate

Although the farmer selects the herbicide dosage to apply, he or she

does not have perfect control over dosage. In particular there is likely

to be spatial variation in the dosage, especially with some of the modern

herbicides which are applied at rates of just a few grams active

ingredient per hectare. Although the farmer controls the mean dosage

applied to a crop, dosage received by different areas of the crop will

follow some distribution. Chiao and Gillingham (1989) analysed the

implications for optimal fertilizer practices of spatial variation in

fertilizer rate.

The effects of stochastic herbicide rate on H and W
o 
are similar to

the stochastic weed kill example above. Again there are two responses with

an ambiguous net effect. Numerical examples are presented below.

Empirical Results

There are several reasons for considering empirical examples of the

principles derived in the previous subsection. Firstly, the theoretical

results indicate only the directions of response to the changes

considered. There may be considerable variation in the magnitudes of the

responses for different parameters. An empirical analysis will suggest the

variables to which H
* 

and W are most sensitive. Secondly, two of the

results were ambiguous due to tendencies to move in both directions.

Empirical results may indicate which direction of response tends to

dominate in practice. Thirdly, the response model was simplified to make

theoretical analyses more tractable. Empirical results can help by

indicating whether these simplifications have affected results. Finally,

the theoretical results were derived under the assumption that all

variables other than the one under consideration were deterministic. Even

with this simplification some of the analyses were not straightforward and

produced ambiguous results. In this circumstance, theoretical analyses for

combinations of uncertain variables are likely to be equivocal and

unproductive. However it is much easier to include combinations of

uncertain variables in an empirical/numerical analysis. In the following

discussion, numerical results are presented for uncertain variables

individually and in combination.

Method

The problem selected for analysis was control of ryegrass in wheat by

application of HOegrass (active Ingredient diclofop-methyl). This problem

was selected because of its economic importance .in .Western-Australia :where

.farmers consider..ryegrass to be one of their. most important Crop weeds
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(Roberts et al 1988). The basic biological relationships were taken from

Pannell (1989). Weed survival is given by

(32) W W0/[1 + exp(F)]

where

(33) F — -2.85 - 0.995 ln(H) - 0.00559 Wo - 0.00366 ln(H)Wo.

This function differs from the kill function in equation (4) in that the

functional form is logistic and the proportion of weeds killed at a given

herbicide dose is not independent of the weed density. The simplified

version in (4) was adopted to facilitate theoretical analysis. Pannell

(1989) estimated the following yield function:

(34) Y = Yo(1 0.149H)[1 - [0.544]/[1 + 0.544/(bW)]]

where:

(35) b-0.0172•exp(-0.801Y0)•exp(-5.70H) .

•This differs from the damage function given in equation (2) in two

respects. Firstly, the parameter b is not fixed but depends on the weed-

free yield and herbicide rate and, secondly, there is an additional term

representing direct damage to the crop by herbicide.

Templates for a microcomputer spreadsheet program were developed for

deriving optimal herbicide rates and density thresholds under uncertainty.

The empirical analyses were conducted using mean values for costs, prices,

weed densities and yields considered reasonable for the shire of Merredin

in Western Australia's eastern wheatbelt: wheat price $144 tonne
-1

,

Hoegrass cost $48 per kg a.i., weed-free yield 1.14 tonnes ha
-1

, initial
-1

weed density 200 m
-2 

and recommended herbicide rate 0.375 kg a.i. ha .

Risk was included in the spreadsheets in two ways. In the case of the

weed-free yield, the probability distribution was estimated by solving a

biological simulation model of wheat growth for each of 76 years for which

the required rainfall data were available for Merredin (1912 to 1987). The

discrete distribution of 76 points obtained by this procedure was used

directly in the spreadsheet. Each of the 76 values of weed-free yield were

used to calculate actual yield for a particular set of assumptions

regarding herbicide rate, weed density etc. These Were used to calculate

the distribution of profit for given prices and costs. Finally expected

profit was calculated based on the assumption that each of the 76

observations was equally likely to occur. The distribution of weed-free

4
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yields obtained from the simulation model had a mean of 1.14 tonne ha
-1

and a standard error of 0.626 tonne ha
-1
.

Uncertainty about variables other than weed-free yield was

represented in a similar way except that the probability distributions

were generated by a normal random number generator. For consistency with

the yield data, each randomly generated distribution consisted of 76

observations. The•coefficient of variation of weed density was estimated

from field trials as 40 per cent. Coefficients of variation used for other

variables were: herbicide rate, weed kill, and weed competitiveness, 40

per cent; output price, 20 per cent.

In the spreadsheet used to calculate optimal herbicide rates, the

effect of risk on decision making was evaluated by directly calculating

the solution which maximised expected profit. The herbicide rate was

increased by discrete increments until expected profit started to decline.

This was repeated with progressively smaller increments until an

arbitrarily accurate solution was obtained. Checks were included to ensure

that the solution obtained was a global optimum.

A somewhat similar approach was taken in the threshold spreadsheets

except that the variable being solved for was the weed density and the

criterion for stopping was when expected profits from treatment with the

recommended dose just exceeded expected profits from non-treatment. In

both spreadsheets, solutions were obtained using a combination of

spreadsheet formulae to calculate expected profit for a given set of

parameter values and macro programs to control changes in parameter values

and tests for optimality/thresholds.

Results

Results are shown in Table 1. First consider the results for the

variables considered individually in the earlier theoretical analyses.

Results for W
o 
and b are consistent with the theoretical findings that

Tuncertainty decreases H
* 
 and increases W . However despite this

consistency with the theory, it can be seen that the magnitudes of the

effects are very small. At least for this problem and this set of

assumptions it seems that the effect of uncertainty about W
o 
or b on

expected profit is unlikely to significantly affect farmer behaviour.

Theoretical results for the effects on H
* 

of uncertainty about weed

kill and herbicide rate were ambiguous but in each empirical example H
* 

is

reduced by uncertainty. At the same time density thresholds are increased.

However, as with W and b, the effects are quite small.
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Table 1: Optimal herbicide rates (H
*
) and density thresholds (Wo

) for risk

neutral decision makers under different sources of uncertainty

Stochastic variable H
* 

W
T

(kg a.i. ha ) (plats m

Nil

Initial weed density

Weed competitiveness

Weed kill (K)

Herbicide rate (H)

Weed-free yield (Y0)

Y and W
o o
Y and H

Y
o' 

H and W

0.265 40

0.264 43

0.263 43

0.262 41

0.259 43

0.249 51

0.248 53

0.237 57

0.241 58

Table 1 also includes results for weed-free yield. This was not

included in the theoretical analysis because the simplified response model

did not include the mechanism by which uncertainty about Yo affects

expected profit. In the more detailed model of equations (32) to (35), Yo

affects weed competitiveness but it does so non-linearly. The result is

that uncertainty about Yo increases expected yield loss, reducing expected

profit. In the empirical model, uncertainty about Y
o
, like all the other

variables, reduced H and increased W. The impact of Yo 
on H

* 
and W

o 
was

greater than any of the other individual variables.

The final three sets of results in Table 1 show that even if

individual sources of risk have a small impact on decision making, in the

realistic case of multiple sources of risk the effects can be more

substantial. If the effect of multiple sources of risk on expected profit

are considered, H can be reduced by over 11 per cent and Wo 
increased by

as much as 45 per cent.

Conclusion

Results presented above highlight the importance of using

biologically realistic relationships for analysis of response. Without

them, the implications of risk for decision making under expected profit

maximisation would not have been apparent.

A second general conclusion to be drawn here is that it can be

important to consider multiple sources of risk in estimating the

magnitudes of effects of risk on decision making. Although individual
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sources of risk had small effects on optimal decision making for weed

control, combinations of risky variables had relatively large impacts.

Finally, it is remarkable that in all the numerical results presented

here, the effect of risk was to reduce herbicide use, either by reducing

the optimal herbicide rate or by increasing the threshold for herbicide

use. This runs directly counter to the usual presumption about the impact

of risk on use of herbicides and other types of pesticides. Whether the

effect of risk aversion on herbicide use is sufficient to counter these

effects is a subject for further investigation.
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