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RESPONSES TO RISK IN WEED CONTROL DECISIONS
UNDER EXPECTED PROFIT MAXIMISATION

Abstract

Risk is an important characteristic of decisions about
weed control in crops. In this paper it is shown that risk
can affect weed control decisions even if the objective of
the decision maker is to maximise expected profits: that
is, even if the decision maker is "risk neutral” in the
usual economic sense. This is shown for two decision
frameworks: the optimal rate approach and the economic
threshold approach. Empirical results are presented for
control of ryegrass in wheat in Western Australia. It is
found that, in general, risk reduces the optimal level of
herbicide use under expected profit maximisation. Although
individual sources of risk have a small impact on the
optimal decision rules, combinations of uncertain
variables can have a relatively large effect.

Introduction

In many studies of the economics of pest or weed control, the assumed

objective of decision makers is maximisation of expected profit (eg, Marra
and Carlson 1983, Moffitt et al. 1984, Taylor and Burt 1984, Gold and
Sutton 1986, Johnsﬁon and Price 1986, Zacharias et al. 1986). There is
evidence that, in some circumstances, optimal pesticide decisions under
expected profit maximisation differ little to decisions made under risk
aversion (Webster 1977, Thornton 1984).

Of those studies which assume risk neutrality, the majority adopt a
deterministic decision framework. This approach can sometimes be defended
on the basis that the decision which maximises expected profit in a
stochastic framework corresponds to the profit maximising decision in a
deterministic framework using expected values of pafameters. This is why
expected profit maximisers are often referred to as "risk neutral”.

Nevertheless there are several ways in which risk can affect the
decisions of individuals whose objective is to maximise expected profit.
Tisdell (1986) showed that uncertainty about a parameter value can affect
the optimal level of pest control by affecting expected profit. He argued
that:

"in many cases the expected level of application is greater under

uncertainty than under full information but . . . this depends on
» convexity conditions of relevant functions" (p.161)
and that
"convexity conditions may sometimes bé such as to give rise to the
opposite consequence" (p.159).
He did not discuss which parameters are likely to increase and which to

decrease treatment levels under uncertainty. Auld and Tisdell (1986, 1987,
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1988) showed that because of convexity of the relétionship between weed
density and crop yield, uncertainty about weed density reduces expected
yield loss. Auld and Tisdell (1987) argued that this increases the
economic threshold, reducing the overall level of pesticide use. They
noted that this does not seem consistent with comménts in the literature

that risk increases pesticide use. They attributed the difference to the

influence of risk aversion dominating the effect of risk on expected

profit. ‘

Another circumstance where risk can affect the decisions of "risk
neutral" decision makers is where the problem is dynamic (Antle 1983).
Zacharias et al. (1986) tested this hypothesis in their dynamic
programming study of soybean cyst nematode. They found modest support'for
the hypothesis, with very small differences between the results of their
deterministic and stochastic models.

A third possibility is where the decision maker is subject to a
progressive marginal taxation rate. Taylor (1986) showed that the effect
of this on decision making is essentially the same as the effect of risk
aversion; it makes the decision maker behave in a more risk averse manner
than they otherwise would have. v

This paper is an examination of the effects of risk on weed control
decisions made by "risk neutral" farmers. Attention is focused on effects
due to non-linearities in the response model rather than dynamic or tax
induced effects. Sources of risk which affect expected profit are
identified and analysed in the context of a theoretical response model for
herbicide application. The directions of response to different sources of
risk are derived using the theoretical model and the magnitudes of the
responses are estimated for a particular empirical example: ryegrass

(Lolium rigidum) control in wheat in Western Australia.

Response Model

Lichtenberg and Zilberman (1986) showed that yield response to
pesticides must be represented as an indirect response; pesticides kill
pests and it is the removal of pests which increases yield. Use of a
response model which does not recognise this two stage process leads to
biased predictions of response and erroneous conclusions about the optimal
pesticide strategy.

In this paper, crop yield (Y) is represented using the following

general form.

(1) » Y = Yo[l - D(W)]
where Yo is production with no weeds present and D is the damage function

representing the proportion of production lost at weed density W.
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Cousens (1985) conducted tests of a wide range of functional forms
for the damage function. He found that the following hyperbolic form best

fitted published data on weed competition:
(2) D(W) = a/[1 + a/(bW)]

The parameter a can be interpreted as the asymptotic yield loss as W =+ o,

Crops typically give some positive yield even at very high weed densities,

so é is normally less than one. The parameter b is the yield loss per weed

as W- 0. . _ ‘
W is a function of pre-treatment weed density (Wo) and K(H), the

proportion of weeds killed at herbicide rate H.

(3) W="u [1-K®H]

The kill function must be bounded by zero and one. It is usually
represented in. the literature by the following exponential function (eg,
Feder 1979, Doyle et al 1984, Moffitt et al 1984, Auld et al 1987):

(4) K(H) = 1 - exp(-kH)

Substituting (2), (3) and (4) into (1) gives the response function:

(5) = Yo[l - a/{l + a/[bwoexp(-kﬂ)]}]

Profit (n) is given by:

(6) o= PyY - PhH -A-F

where Py is output price, P, is herbicide cost, A is herbicide application

h
cost (which is independent of the application rate, H) and F represents
costs from all other ihputs which are assumed to be fixed at optimal

levels.

Theoretical Analyses
~ In the following analyses, two decision frameworks are used. Firstly
the herbicide rate which maximises expected profit is derived. Although it
selects economically efficient control strategies, this approach is not
widely used in the weed economics literature. The usual approach is to fix
the herbicide rate at some fixed "recommended" rate and to calculate the
threshold weed density above which it is worth applying that rate. The

threshold density approach is the second framework used here.
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Stochastic pre-treatment weed density
There are two sources of stochasticity related to the initial weed

density (Wo). One is uncertainty about the mean value of Wo. The other is
spatial variability in weed density on the ground. Weeds do not grow in
uniformly spaced formation. Rather they tend to grow in "clumps" of high
density mixed with areas of relatively low density. Greater variability of
Wo leads to less precision in inferences about the mean value of Wo. The
variability also means that under the usual practice of applying a uniform
herbicide rate to a large area of crop, some regions will receive less
than their optimal dosage and others more. Auld and Tisdell (1986, 1987,
1988) have noted that uncertainty about, or variability in W _ can affect
expected profit. They suggested that this would increase the threshold
density, although they did not rigorously prove this claim. They also did
not consider the question in the context of a variable herbicide rate.
Figure 1 illustrates the way in which a stochastic initial weed

density affects expected yield and, consequently, expected profit.

Crop yield

=

Weed density

Figure 1: Effect of stochastic weed density on expected crop yield

Consider a crop containing a uniform distribution of weeds at density W,.
The crop yield function shows that the crop would give a yield of Y,. Now
consider a similar crop in which half the area of crop is infested with
weeds uniformly distributed at density W, while the other half is infested
at density W;. The mean weed density in this mixed crop is W, but the mean
yield 1is Y, the average of Y; and Y3. Note that, because of the convexity
of the yield function, ¥ is greater than Y,. In other words the same
number of weeds causes less yield loss if they are unevenly distributed

than if they are evenly distributed. The biological explanétion for this
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is that in the uneven distribution, those weeds clumped together at high
densities are forced to compete with each other for resources as well as
" with the crop plants. In these weeds, the competitive abilitygper weed
plant is reduced so that, on average, yield loss is reduced.

Now consider what effect this reduction in yield loss has on the
optimal herbicide rate. The aim of the following analysis is to determine
whether greater variance of Wo increases or reduces the optimal herbicide
rate (H*), i.e. to determine the sign of 8H*/8var(wo). Assume that a
farmer has a subjective distribution of initial weed density such that
W =vﬁo + e  where Wo is the mean of the distribution and €, is a random
variable with mean zero. After application of herbicide, the weed density
is reduced from Wo to W. The variance in WO leads to variance in W. That
is, W=W + €y where €, is another random variable with mean zero. Note
that € is simply a transformation of € In this analysis it does not
incorporate uncertainty about the level of weed kill which is analysed
separately'later. Although herbicide application reduces the variance of W
to less than that of Wo it is not reduced to zero. For convenience, it
will be assumed that post-treatment weed density is normally distributed,
i.e. € = N(O,aé). The distribution of weed density may not be normal in
practice (indeed it cannot be since it must be truncated at zero) but
examination of weed count data from field trials in Western Australia
shows that the normal distribution gives a reasonable approximation of the’
actual distribution. From (1) and (6), prbfit () is given by:

(7 o= PyY 1-DW)] -PH-A-F.

o[ h

An approximation will simplify the analysis. The damage function,
D(W), is approximated by a second order Taylor series approximation about

W, the expected value of W:
(8) D(W) = D(W) + (W -'W)D'(W) f G;S(W - W)2D' ' (W)
where primes denote deriyatives. This can be rearfanged to.give:
9 D(W) = a + AW + yW?
where a _ D(W) - W D'(W) + 0.5 W2D' "' (W)
B =D'(W) - WD'' (W

¥y = =D'"'(W).
Note that B8 > 0 since

D' (W) = [a2/[bw2[1 + a/(BW)]2]] >0 and
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D'' (W) = D'(W)(a2/b)[[-2)w]'- [a/bw2[1 + a/(bW)]]] <0

Also note that this latter result implies that y is negative. The use of
this approximation is defended on the grounds that the important features
of the damage function for this analysis are preserved, in particular that
D'(W) > 0 and D'’ (W) < 0. Now substituting (9) into the profit function
(7) gives:

= - - - 2 - - Z
(10) o PyYo[l a - AW - W ] PH-A:F.

The objective is to maximise expected profits. Since it is assumed that
weed density is the only uncertain variable and that it is normaily

distributed, expected profit is given by:

- - a - B - v(W2+02)| - - A -
(11) E(r) Pqu[l a - W - y(W +aw)] PH - A F.
The first and second order conditions for selecting the herbicide

rate which maximises expected profit are:

(12) 3E(x)/8H = 0
and
(13) " 32E(x)/8H2 < O

The response model presented above can have regions where (13) is not

satisfied as well as regions where it is. We will assume here and in the
vsubsequent discussion that the optimal herbicide rate is correctly
determined in a region where (13) is satisfied. This means that (12)
becomes a necessary and sufficient condition for expected profit

maximisation. From (1l1) the first order condition is:
. _ ) ; ; L ) ) )
(14) dE(x)/8H PyYo[ B 8W/3H - ~v(2W 8W/8H + aaw/an)] P, = 0.

% :

Although there is no closed form solution for H available from (14),
Hey (1981, p.38) demonstrated how the comparative static properties of a
solution like this can be found by total differentiation.

(15) [an*/anﬂ ~ 0 as [aiE(w)/aHax] / [a2E(w)/aH2]

where X is a variable in (14) and the partial derivatives on the right
* *
hand side of (15) are evaluated at H . But to ensure that H is a maximum,

we have already assumed in (13) that 32E(x)/dH? is negative. Therefore the
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sign of aﬂ*/ax depends on the sign of the cross partial derivative,
32E(n)/3H3X, evaluated at H*.
* >

(16) [GH /aﬂ] <0 as,[a2E(w)/3H8X]
This result will be used in this and the next section.

Return now to the problem of finding the direction of response to an
increase in'var(Wo) (i.e. the sign of an*/aog). From (16) we seek the sign
of 62E(w)/6Haag and from (14),

2 2 . . 03252 2
(17) d E(w)/aﬂaao PyY°7 d2%0 /aﬂaao.
To clarify what this means, 603/8H is the rate at which the variance of
weed density changes in response to changes in herbicide rate. Examination
of field trials shows that variance of weed density decreases with
increased herbicide rate. The issue here is whether a; decreases at a
higher or lower absolute rate if az is increased; i.e. is 3206/8H603
positive or negative. In addressing this, recall that W = Wo(l - K).
Assuming that W is normally distributed [Wo ~ N(Wo,ag)],
(18) 03 = var(W) = var[Wo(l - K)] = ag(l - K)2
(19) 303/6H = 02(2)(1 - K)(-8K/8H).
Now taking the partial derivative with respect to ag

(20) a2a;/aHaag = (2)(1 - K)(-8K/38H)

which, when substituted into (17), gives:

(21) 82E(1r)/aﬂaog = B Y 7(2)(1 - K) (3K/8H)

which is negative since v is the only negative term. So from (16) 8H /aa2
is also negative. As the variance of initial weed density increases, the
herbicide rate which maximises expected profit decreases. This is counter
to the usually presumed result that risk increases herbicide use. At least
for decision makers whose obJective is to maximise expected profits
uncertalnty about W reduces H . It does so because increasing the
variance of weed den51ty reduces the expected yield loss at a given mean
weed density (after treatment). Expected crop yield at each herbicide rate

is increased such that the yield response function moves upwards to the
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left, reducing the herbicide rate at which the price line is tangent to
the response function. ' '

Now consider the effect of ag on the traditional economic threshold,
WE. The derivation of the traditional economic threshold is quite
different to the derivation of the optimal dosage. The latter requires
marginal analysis, as demonstrated above, whereas the threshold is
determined by comparing profits from two discrete input levels. The result
of the marginal analysis is an input level, whereas the result of the
threshold analysis is a pest density at which a fixed input level should
be used. The threshold is derived as follows.

If the recommended herbicide rate (Hr) is used, profit is given by:

(22) w(H) = PY (L - D(W)] - BH - A-F

where Wr is weed density surviving application of the recommended

herbicide rate. If no herbicide is applied, profit is:
(23) n(0) = PyYo[l - D(Wo)] - F.

Without herbicide application, weed density is higher (W0 > Wr) so the
level of yield loss is greater. On the other hand, savings are made on
herbicide costs (PhHr) and application costs (A). The threshold (Wz) is
the lowest density at which application of Hr is at least as profitable as
application of no herbicide, i.e. where w(Hr) = n(0). Setting (22) equal
to (23) and simplifying gives:

(24) D(w'g) - [PhHr + A] / [PyYo] + D(W.)

“This expression for the threshold applies to a deterministic model but
‘here, Wo-is a random variable so the interpretation of WE is problematic.
The most reasonable solution seems to be to redefine the threshold in

terms of the mean weed density, Wo' Thus:

(25) D(W.) = [PhHr + A] Y, [PyYo] + D(W)

If 02 = 0, equations (24) and (25) are equivalent and WE - WO? However, as
we have seen in the previous discussion, if ag is increased to a value
greater than zero, the level of yield loss at a given mean weed density
will be reduced. That is, both D(ﬁo) and D(ﬁr) will be reduced by the
increase in ag. However application of high rates of herbicide
substantially reduces the variance of weed density, so var(wr) will‘be

very much less than var(Wo). This also means that any change in var(Wr)
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following an increase in og is small. Thus the main effect of an increase
in g is a reduction in D(ﬁo). But if the left hand side of (25) is
reduced while the right hand side is almost unchanged, the equality will
not be satisfied. To maintain the equality it is necessary to increase the
left hand side by increasing Wo. Wz is the new, higher value of Wo which
reinstates the equality. Thus if the decision maker maximises expected
profit, the traditional economic threshold is increased by uncertainty
about Wo. This is consistent with the findings above for H* in that a
higher threshold results in a lower expected level of herbicide use. Again
it contradicts the conventional wisdom in the literature that risk

increases use of inputs for damage control.

Stochastic weed competitiveness

The actual level of yield loss per weed is unknown until the end of
the growing season. In this analysis, uncertainty about weed
competitiveness is characterised by uncertainty about the value of
parameter b in the damage function. All other parameters and variables are
assumed to be deterministic.

Consider the actual yield function:

(26) Y'w Yo[l - D(W)] - Yo[l - [a]/Il +'a/(bW)]]

The damage function can be approximated by a second order Taylor series as
follows

(27) D =~a+ B(bW) + v(bW)2

where 8 > 0 and v < 0. Note that a, B and vy are different in this example
than in the previous example. Now let the parameter b be a random variable
b =0b + ¢ where ¢ ~ N(O,ag). The problem is to’find th: direction of
response to an increase in var(b) (i.e. the sign of dH /80%). From (16) we
seek the sign of 82E(w)/aﬂaa§. Expected damage 1is:

(28) E(D) = a + BBW + W2 (b2 +»a§)’

and expected profit is:

(29)  E(n) = PyYo[l - & - BB - qW2(B2+ 02)] -RH-A-F.

It follows that:

(30) B3E(m)/3H = ByYo[-ﬂBbaW/aH - Y2W 8W/3H (b2 + aﬁ)] -P =0




and
(31) 62E(ﬂ)/aﬂaa§ - -2PyY67W.6W/6H

which is negative. Given equation (31), equation (16) implies that an
increase in var(b) reduces the optimal herbicide rate. The result is
similar to that for uncertainty about initial weed density and it again
runs counter to conventional wisdom about the effect of risk on herbicide
use.

Uncertainty about b also affects the traditional economic.threshold.
From (28) it can be seen that an increase in ag decreases yield loss (v is
negative). The subsequent reduction in yield loss associated with
untreated weeds will be much greater than the reduction in yield loss for
the few weeds surviving treatment with the recommended dosage. In that
case an increase in ag causes a larger decrease in the left hand side of
the threshold equation (24) than the right hand side. To maintain the
equality it is necessary to increase the left hand side by increasing'wo.
Wz is the new, higher value of Wo which reinstates the equality.

Again these conclusions are counter to the usual claims made about
risk and herbicide/pesticide use. Uncertainty about b is another possible

cause of reductions in herbicide use.

Stochastic weed kill

As well as uncertainty about the damage caused at a particular weed
density, there can also be uncertainty about the number of weeds killed by
a particular herbicide dosage. This seems to loom large in the minds of
Western Australian wheat farmers. However its effects on H* and Wg are
ambiguous. A direct effect of introducing stochasticity to the kill
function is to reduce the level of weed mortality (in a similar fashion to
that illustrated in Figure 1). This tends to increase the optimal
herbicide rate. There is, however, a further impact of stochastic weed
kill; it leads to uncertainty about W and from the first part of this
subsection, uncertainty about W reduces H*. Thus uncertainty about weed
kill has two effects on H*: (a) expected weed survival is increased, which
tends to increase H* and (b) weed density is made uncertain, decreasing
H*. The net effect depends on the balance of forces; numeric examples are
presented later.

The total effect of stochastic kill on the traditional economic
threshold is also ambiguous. The direct effect of uncertainty about kill

is a tendency to reduce WZ, but stochastic kill also leads to uncertainty

about the weed density which tends to increasexwz. The net effect depends

on the convexity properties of the kill and damage functions.




Stochastic herbicide rate

Although the farmer selects the herbicide dosage to apply, he or she
does not have perfect control over dosage. In particular there is likely
to be spatial variation in the dosage, especially with some of the modern
herbicides which are applied at rates of just a few grams active
ingredient per hectare. Although the farmer controls the mean dosage
applied to a crop, dosage received by different areas of the crop will
follow some distribution. Chiao and Gillingham (1989) analysed the
implications for optimal fertilizer pfactices of spatial variation in

fertilizer rate.

*
The effects of stochastic herbicide rate on H and Wz are similar to

the stochastic weed kill example above. Again there are two responses with

an ambiguous net effect. Numerical examples are presented below.

Empirical Results

There are several reasons for considering empirical examples of the
principles derived in the previous subsection. Firstly, the theoretical
results indicate only the directions of response to the changes
considered. There may be considerable variation in the magnitudes of the
responses for different parameters. An empirical analysis will suggest the
variables to which H* and Wz'are most sensitive. Secondly, two of the
results were ambiguous due to tendencies to move in both directions.
Empirical results may indicate which direction of response tends to
dominate in practice. Thirdly, the response model was simplified to make
theoretical analyses more tractable. Empiricai results can help by
indicating whether these simplifications have affected results. Finally,
the theoretical results were derived under the aséumption that all
variables other than the one under consideration were deterministic. Even
with this simplification some of the analyses were not straightforward and
produced ambiguous results. In this circumstance, theoretical analyses for
combinations of uncertain variables are likely to be equivocal and
unproductive. However it is much easier to include comBinaﬁions of
uncertain variables in an empirical/numerica1 analysis. In the following
discussion, numerical results are presented for uncertain variables

individually and in combination.

Method

The problem selected for analysis was control of ryegrass in wheat by
application of Hoegrass (active ingredient diclofop-methyl). This problem
was selected because of its economic importéncé in Western Australia where

farmers consider ryegrass to be one of their most important crop weeds
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(Roberts et al 1988). The basic biological relationships were taken from
Pannell (1989). Weed survival is given by

(32) W = Wd/[l + exp(F)]

where
(33) F=-2.85-0.995 1In(H) - 0.00559 Wo - 0.00366 ln(H)Wo.

This function differs from the kill function in equation (4) in that the
functional form is logistic and the proportion of weeds killed at a given
herbicide dose is not independent of the weed density. The simplified
version in (4) was adopted to facilitate theoretical analysis. Pannell

(1989) estimated the following yield function:

(34) ‘ Y = Yo(l - 0.149H)[1 - [0.544])/[1 + 0.544/(bW)]]

where:
(35) ‘ b = 0.0172-exp(-0.801Yo)~exp(-5.70H)

‘This differs from the daﬁage function given in equation (2) in two
respects. Firstly, the parameter b is not fixed but depends on the weed-
free yield and herbicide rate and, secondly, there is an additional term
representing direct damage to the crop by herbicide.

Templates for a microcomputer spreadsheet program were developed for
deriving optimal herbicide rates and denéity thresholds under uncertainty.
The empirical analyses were conducted using mean values for costs, prices,
weed densities and yields considered reasonable for the shire of Merredin
in Western Australia’'s eastern wheatbelt: wheat price $144 tonne_l,
Hoegrass cost $48 per kg a.i., weed-free yield 1.14 tonnes ha-l, initial
weed density 200 m 2 and recommended herbicide rate 0.375 kg a.i. ha'l.

Risk was included in the spreadsheets in two ways. In the case of the
weed-free yield, the probability distribution was estimated by solving a
biological simulation model of wheat growth for each of 76 years for which
the required rainfall data were available for Merredin (1912 to 1987). The
discrete distribution of 76 points obtained by this procedure was used
directly in the spreadsheet. Each of the 76 values of weed-free yield were
used to calculate actual yield for a particular set of assumptions
regarding herbicide rate, weed density etc. These were used to calculate
the distribution of profit for given prices and costs. Finally expected
profit was calculated based on the assumption that each of the 76

observations was equally likely to occur. The distribution of weed-free
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yields obtained from the simulation model had a mean of 1.14 tonne ha-1
and a standard error of 0.626 tonne ha-l.

Uncertainty about variables other than weed-free yield was
represented in a similar way except that the probability distributions
were generated by a normal random number generator. For consistency with
the yield data, each randomly generated distribution consisted of 76
observations. The.coefficient of variation of weed density was estimated
from field trials as 40 per cent. Coefficients of variation used for other
variables were: herbicide rate, weed kill, and weed competitiveness, 40
per cent; output price, 20 per cent.

In the spreadsheet used to calculate optimal herbicide rates, the
effect of risk on decision making was evaluated by directly calculating
the solution which maximised expected profit. The herbicide rate was
increased by discrete increments until expected profit started to decline.
This was repeated with progréssively smaller increments until an
arbitrarily accurate solution was obtained. Checks were included to ensure
that the solution obtained was a global optimum."

A somewhat similar approach was taken in the threshold spreadsheets
except that the variable being solved for was the weed density and the
criterion for stopping was when expected profits from treatment with the
recommended dose just exceeded expected profits from non-treatment. In
both spreadsheets, solutions were obtained using a combination of
spreadsheet formulae to calculate expected profit for a given set of
parameter values and macro programs to control changes in parameter values

and tests for optimality/thresholds.

Results
Results are shown in Table 1. First consider the results for the
variables considered individually in the earlier theoretical analyses.

Results for Wo and b are consistent with the theoretical findings that

uncertainty decreases H and increases WZ. However despite this

consistency with the theory, it can be seen that the magnitudes of the
effects are vefy small. At least for this problem and this set of
assumptions it seems that the effect of uncertainty about WO or b on
expected profit is unlikely to significantly affect farmer behaviour.
Theoretical results for the effects on H*Aof uncertainty about weed
kill and herbicide rate were ambiguous but in each empirical example H* is
reduced by uncertainty. At the éame time density thresholds are increased.

‘However, as with Wo and b, the effects are quite small.
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5 *
Tablg 1: Optimal herbicide rates (H ) and density thresholds»(wz) for risk

neutral decision makers under different sources of uncertainty

Stochastic variable- H* WZ
(kg a.i. ha ) ’ (plants m )

.265 ' 40
.264 43
.263 43
.262 . 41
.259 43
.249 51
.248 53
.237 57
241 58

Nil

Initial weed density (WO)
Weed competitiveness (b)
Weed kill (K)
Herbicide rate (H)
Weed-free yield (Yo)
Y and W

o o
Y and H

o
Y, Hand W

o o

©O O O ©O O © © ©o o

Table 1 also includes results for weed-free yield. This was not
included in the theoretical analysis because the simplified response model
did not include the mechanism by which uncertainty about Y affects
expected profit. In the more detailed model of equations (32) to (35), Yo
affects weed competitiveness but it does so non-linearly. The result is
that uncertainty about Yo increases expected yield loss, reducing expected
profit. In the empirical model, uncertainty about Yo' like all the other
variables, reduced H* and increased Wz. The impact of Yo on H* and Wz was
greater than any of the other individual variables.

The final three sets of results in Table 1 show that even if
individual sources of risk have a small impact oﬁ decision making, in the
realistic case of multiple sources of risk the effects can be more
substantial. If the effect of multiple sources of risk on expected profit
are considered, H* can be reduced by over 11 per cent and Wz increased by

as much as 45 per cent.

Conclusion
Results presented above highlight the importance of using
biologically realistic relationships for analysis of response. Without
them, the implications of riék for decision making under expected profit
maximisation would not have been apparent.
A second general conclusion to be drawn here is that it can be
important to consider multiple sources of risk in estimating the

magnitudes of effects of risk on decision making. Although individual
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sources of risk had small effects on optimal decision making for weed

control, combinations of risky variables had relétively large impacts.
Finally,‘it is remarkable that in all the numerical results presented
here, the effect of risk was to reduce herbicide use, either by reducing
the optimal herbicide rate or by increasing the threshold for herbicide
use. This runs directly counter to the usual presumption about the impact
of risk on use of herbicides and other types of pesticides. Whether the
effect of risk aversion on herbicide use is sufficient to counter these

effects is a subject for further investigation.
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