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A MODEL OF WHEAT YIELD RESPONSE TO APPLICATION OF DICLOFOP-METHYL
TO CONTROL RYEGRASS (LOLIUM RIGIDUM)

Abstract

A general model of crop yield response to herbicide
application is proposed. The model includes three
components: the effect of herbicide dosage on weed
density, the effect of surviving weed density on crop
yield and the effect of herbicide directly on the
crop.. The model 1is used to estimate the response of
wheat yield to application of diclofop-methyl to
control ryegrass (Lolium rigidum) in Australia. It is
found that the competitiveness of ryegrass plants
surviving treatment 1s reduced by the treatment and
that the proportion of yield lost at a given ryegrass
density is not independent of the absolute weed-free
yield. The response function is used to calculate
economic thresholds and optimal herbicide dosages for
ryegrass control in = wheat by diclofop-methyl.

Introduction

In order to determine economically optimal herbicide dosages (Pannell
1987) or economic thresholds for herbicide application (Auld et al 1987)
it - is important to estimate the relationship between the 1level of
herbicide application and the crop yield (the "production function"). This
type of relationship has been illustrated in theoretical discussions by
Auld et al (1987) and Davidson (1974) but they did not discuss the issues
involved in estimating such a production function and neither included an
empirical example.

Some production functions have been estimated for pesticides in the
United States (eg, Headley 1968, Fischer 1970, Campbell 1976, Neal 1983).
In each of these cases, the models involved simple single equation forms
commonly employed by agricultural economists for analysis of response.
However Lichtenberg and Zilberman (1986) showed that accurate
representation and estimation of the production function requires the use
of functional forms consistent with the technology and biology of damage
control. 1In particular the effect of pesticides should be represented as
occurring through their effect on pest levels. Two equations are required:
one describing the effect of pesticide on the pest level and the other
giving the effect of surviving pests on crop yield. In the case of
herbicides there may be an additional direct effect of the herbicide on
the crop (eg, Bowran et al 1987).

In this paper the appropriate form of a yield response model to
herbicide application is considered in more detail. The proposed model is
consistent with  Lichtenberg and Zilberman's call for biologically
realistic functions. The general form of the model is presented in the
next section together with more specific discussions of the effect of
herbicides on weed survival and the effect on crop yield of the number of
weeds surviving treatment. The parameters of the model are estimated for

post-emergent application of diclofop-methyl (as HoegrassR) for control of
ryegrass (Lolium rigidum) in wheat.

The Production Function for Herbicide

In this study, the general functional forms used are

Y = Yoo [1 - D(W)]-N(H)




3

and W= Woe[1 - K(H)] (2)

where Y is crop yield,
Y, is yield obtained with no weeds present and no herbicide applied

(hereafter termed the "weed-free yield"),

W is post-treatment weed density,

D(W) is the damage function giving the proportion of yield lost at
weed density W,

H is herbicide dosage, )

N(H) is one minus the proportion of yield lost through phytotoxicity
of the herbicide to the crop. '

Wo is initial or pre-treatment weed density, and

K(H) is the kill function giving the proportion of weeds killed at
herbicide rate H.

Now consider the specific functional forms for components of this
model. '

Weed survival function

In this section the specific form of the kill function, K(H) is
considered. Pest mortality from application of pesticides is an example of
a quantal response: a response which "permit[s] of no graduation and can
be expressed only as ’‘occurring’ or ’‘not-occurring’" (Finney 1971, p.-1).
There exists an extensive literature on statistical considerations in the
estimation of all-or-nothing or quantal responses (eg, see reference lists
in Finney 1971 or Hewlett and Plackett 1979). Although there have been a
few economic studies in which the relationship between pesticides and pest
kill has been considered, the relationship has often been approximated by
an exponential function (eg, Auld et al 1987, Doyle et al 1984, Feder
1979, Moffitt et al 1984). Only occasionally has the relevant statistical
theory and its implications for appropriate functional forms been
mentioned in the literature on pest control economics (eg, Talpaz and
Borosh 1974, Talpaz et al 1978, Moffitt and Farnsworth 1981) and never for
weed economics.

The ‘two most common approaches to modelling quantal responses are the
probit and logit models. The probit model is based on the normal
cumulative distribution function (CDF) while the logit model is based on
the logistic CDF. In practice the two models leads to almost identical
fitted values and predictions. However it has some analytical and
computational advantages due to the simplicity of the logistic CDF
relative = to the normal CDF. For this reason the logistic CDF will be used
as the basis of the model estimated here. The functional form used is

P = 1/[1 + exp(-pH)] (3

where p is the proportion of individuals which respond,
- H is herbicide rate, and
B is the parameter to be estimated.

An important consideration for herbicide applications to weeds is
that mortality at a particular input level may depend on a range of
factors other than the herbicide rate. For example environmental
conditions such as temperature, humidity and soil moisture may influence
herbicide effectiveness (Casely 1987). In addition the proportion of weeds
killed may be dependent on the absolute weed density. At very high
densities, overtopping might occur, reducing the probability of an
individual weed receiving a lethal dose. On the other hand, intraspecific
competition at high weed densities may act to reduce tolerances to
herbicides. In these circumstances an appropriate model may be
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K(H) = 1/(1 + exp[-(a + vG)H]) (4)

~where G is a variable which affects herbicide efficacy and a and vy are the
parameters to be estimated. In this function, G only affects K(H) via its
influence on the parameter B from (3). f is assumed in this example to
depend linearly on G

B =a+ G (5)
but other forms of the relationship could be investigated.

Crop yield function

The general form of the crop yield functions used in this paper is
given in equation (1). In contrast to the weed kill' function, there has
been discussion in the weed economics literature of the form of the
relationship between weed density and production loss. Various functional
forms have been proposed and used in the literature including exponential
(Auld and Tisdell 1986, Auld et al 1987, Poole and Gill 1987a, 1987b),
hyperbolic (Chisaka 1977, Cousens 1986, Cousens et al 1985, 1986, Lapham
1987) and sigmoidal functions (Taylor and Burt 1984, King et al 1986). A
linear function has occasionally been used to approximate crop damage in
studies of pest and disease control (eg, Feder 1979, Moffitt et al 1984,
Walker 1987, Lichtenberg and Zilberman 1986). :

Cousens (1985) conducted tests of a wide range of functional forms to
see how well they could be fitted to published data on crop damage under
weed competition, concluding that hyperbolic forms gave the best results.
He was particularly critical of sigmoidal forms claiming that empirical
evidence does not support their use. Cousens (1985) provided both
empirical and theoretical justification for the use of strictly concave
crop damage functions such as the hyperbolic and exponential forms.

Damage functions used in this study will be of the following
hyperbolic form:

D(W) = ;t)W/(l + bW/a) . (6)

This is the form which gave best fit in Cousens’ analysis. It also has the
advantage of readily interpretable parameters; a is the maximum yield loss
at high weed densities and b is the marginal yield loss as weed density
tends to zero.

Kropff (1988) commented that:

"although the hyperbolic yield-density equation fits very well with
data of additive experiments where only the weed density is
varied, model parameters may vary strongly among experiments, due
to the effects of other factors on competition processes" (p.466).

Proportional yield loss resulting from a particular weed density is
likely to be influenced by a number of factors. This could be allowed for
by estimating a and/or b as functions of other variables. Such variables
might include the weed-free crop yield, climatic variables, the date of
weed emergence relative to the crop and the amount of herbicide applied to
the weeds. :

Herbicides may also enter the crop damage function in another way: by
directly affecting crop yield. This possibility was raised by Hillebrant
(1960) in the context of pest control and has been widely studied (eg,
Bowran et al 1987) but there appears to have been no attempt to include
this factor in a response function for any pesticide. Resistance to
herbicides is rarely absolute, so that the weed-free yield is effectively
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changed by the addition of herbicides to a crop. The term N(H) in equation
(1) captures this effect. ’

Production Function for Diclofop-methyl

This section covers statistical estimation of the production function
for post-emergent application of diclofop-methyl to control ryegrass in
wheat. Farmers in Western Australia consider ryegrass to be one of their
most important crop weeds (Roberts et al 1988) and diclofop-methyl is the
chemical most commonly used for its control. Details of data obtained,
statistical problems encountered, procedures used and resulting parameter
estimates are presented. '

Fortunately there 1is no problem with simultaneous equations bias in
the model since causality flows sequentially from herbicide rate to weed
density to crop yield. This means that the two functions can be estimated
separately without bias and combined to give the overall response
function. The following two sections provide estimation details for weed
survival and crop yield respectively.

Weed survival function

Data. Data from numerous field trials of ryegrass control by
diclofop-methyl at sites throughout ' Australia over several years were

obtained from Hoechst Australia Ltd, the manufacturers of HoegrassR
Unfortunately the weed density prior to herbicide application. was
frequently not recorded. Since this variable constitutes the information
about weed density available to farmers at the time when spraying
decisions are made, it was considered crucial for this study. However
excluding trials in which pre-treatment weed densities were not estimated
reduced the data set to only four trials.

There were 96 observations in the data set. Variables used in the
estimation were herbicide rate, pre-treatment weed density and post-
treatment weed density. Weed-free crop yield was estimated separately for
each trial by fitting a hyperbolic model 1like equation (1) and
extrapolating to zero weed density. Herbicide rate was measured as kg
active ingredient (a.i.) per hectare. Six herbicide rates from zero to 0.9
kg a.i./ha were represented in the sample.

Estimation procedure. If the logistic CDF is expressed as a function
of a 1linear predictor it can be estimated using Generalised Linear
Modelling (GLM) (Nelder and Wedderburn 1972, Baker and Nelder 1986). The
standard assumption in probit or logit analysis is that the error term is
binomially distributed (eg, Finney 1971). However the assumption 1is not
appropriate for this data set since the data displays variance increasing
monotonically with weed survival. The reason for the difference is that in
standard logit analysis, the number of organisms treated is known (or
assumed to be known) exactly, whereas in this study the pre-treatment
density has to be estimated by sampling. (For a similar problem see Wadley
1949). It was found that the error was almost exactly Poisson distributed.
The microcomputer version of GLIM was used for the estimation.

It is usual in logit analysis to use the logarithm of the treatment
variable (in this case herbicide rate) as the independent variable due to -
the common occurrence of a right skew in the distribution of tolerance to
control inputs. This appears to be the case for diclofop-methyl
application to ryegrass, so the logarithmic form of the model is wused
here. Unfortunately, use of the log form precludes the inclusion of zero
herbicide rates in the estimation. Rather than leave these points out of
the estimation, it was assumed that they were associated with a very low
herbicide rate (0.001 kg a.i./ha).
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A similar problem occurred with observations in which 100% weed kill
was achieved, resulting in zero survival. The estimation algorithm
involves taking logarithms of post-treatment density, so it was assumed
that in all cases at least one weed per square metre survived treatment.

Results and discussion. Table 1 shows descriptions of the variables
used in the following discussion. The first criterion used for including a
variable in the model was that it should pass a t test for difference from
zero at p=0.05. The second criterion used to evaluate a particular set of
independent variables was their ability to give sensible predictions of
weed survival for situations not encompassed by the trial results used in
the estimation. This test was necessary because of the small number of
trials used (four) so that only a few of the possible combinations of
independent variables were included. To illustrate, there were two trials

with weed-free yields of less than 1500 kg ha'l and both of these had high
'soil moisture levels at the time of treatment. Although a model with all
independent variables included fit these trials well, it gave wunrealistic
predictions for 1low or medium soil moisture levels at this weed-free
yield.

Table 1: Variable descriptions and units

Variable ‘ Description

Herbicide rate : ka a.i. ha-1

Post-treatment weed density plants m-2

Pre-treatment weed density plants m-2

Actual crop grain yield tonnes ha”t

Weed-free crop grain yield tonnes ha'1

Table 2: Parameter estimates for weed survival model

Variable Parameter estimate Standard error

Constant -2.848 0.5187
In(H) -0.9948 0.4042
Wo -0.005588 0.001751

1n(H) +W, -0.00361 0.001289




It was found that a model including 1n(H), W, and In(H) W, as

independent variables passed both tests and fitted the data well.
Estimated parameters for the model are shown in Table 2. Each parameter in
Table 2 is significantly dlfferent from zero at p = 0.05 and the value of

r (calculated as 1 - (¢ - ¢) /2[¢ - E(¢)] where ¢ = WM, Iis hlgh at

0.86. The sign of the parameter on 1n(H) is negative, as expected,
implying that higher herbicide rates result in lower weed survival.

The significance of the parameters for terms including W, indicates

that the proportion of weeds killed at a particular herbicide rate is not
independent of the pre-treatment weed density. Rather, there is a complex
interplay between herbicide rate and weed density in determining the level
of weed mortality. The parameter for W, is negative, indicating that

higher pre-treatment weed densities result in higher weed survival.
However there 1is also an interaction between herbicide rate and initial
weed density such that at higher herbicide rates, increasing initial weed
density reduces weed survival. It appears that at higher weed densities,
competition for 1light and nutrients acts to increase herbicide
effectiveness. The combined effect of these two terms can be seen in
Figure 1. At low herbicide rates, weed survival is greatest at high weed
densities. As herbicide rate increases, weeds surviving the herbicide
application are much weakened and are made more susceptible to
competition. At herbicide rates above 0.2 kg a.i./ha the effect of
competition dominates and higher weed densities result in lower
proportional survival.

2 Weed survival (proportion)

Initial weed
density (per m”)

0.4 0.6 .
Herbicide rate (kg a.i./ha)

Figure 1: Effect of initial weed density on relationship between
herbicide dosage and weed survival

It should be stressed that these results are based on just four
trials. so they should be interpreted tentatively. Further trials are
needed to test the finding and to investigate the influence of weed-free
yield on weed mortality for other herbicides and other weeds.

Crop yield function

Data. Data used to estimate the crop yield function were obtained
from the same set of trials described above. Variables measured were
herbicide rate, post-treatment weed .density; weed-free crop yield and
actual crop yield. The data set used included 339 observations from 14




trials in Western Australia, New South Wales and Victoria from 1975 to
1981. )

Estimation procedure. Parameters of the crop yield function were
estimated by non-linear regression using the microcomputer package Shazam
(White 1978). ~ '

The estimation procedure in Shazam is maximum 1likelihood on the
assumption of homoscedasticity. However a Goldfeld-Quandt test (Judge et
al 1982) led to rejection of the null hypothesis of homoscedasticity at
p= 0.01, so a weighted estimation was performed using the approach
described by Taylor and Burt (1984).

Initially it was assumed that a and b are linear functions of Y, and

H and that the direct effect of herbicide on the crop is a linear function

a=a; +a,.Yy + az.H ' (7)
b =b; +b,.Yy + bs.H (8)

N(H) = 1 + cH 9)

Although this model fit the sample data quite well, problems were
encountered when attempting to apply the model. The cause of the problems
was the assumption that a and b depend linearly on Y, and H. At

sufficiently high levels of Y, and/or H, negative values were be predicted

for a and/or b implying that yield increased with weed density. If
possible a functional form should be chosen to reflect the fact that as Y,

and H reach high levels, a and b may approach zero but cannot become
negative. The forms chosen were as follows.

a = aj;*exp(az*Y,)-exp(ag+H) (10)
b = by ~exp(by+Yo) - exp(by-H) (11)

Results and discussion. It was found that a,, as and c were not

significantly different from zero, so they were dropped from the equation
leaving the final model as

a
v e [ - T e ¢ a2

Table 3: Parameter estimates for yield model

Parameter " Parameter estimate Standard error

0.5436 0.07114
0.01722 0.008487

-0.8010 o 0.1934

-5.705 - 2.0308




Parameter estimates for this model are shown in Table 3. All parameter
estimates pass a t test for significant difference from zero at p = 0.05

2 2 A2
and r (calculated as 1 - Z(Y - Y) /2[Y - E(Y)] ) is 0.90 indicating very
good fit by the model. This model effectively overcomes the problem of
negative values for b. Parameters for b, and by are negative, indicating

that marginal yield loss declines with increases in Y, or H.

The estimated effect of weed-free yield on proportional yield loss is
shown in Figure 2. In low yielding crops, the proportion of yield lost

increases rapidly as weed density increases from zero to 100 plants m-2,
but then remains relatively stable at higher densities. The graph shows
that in higher yielding crops, proportional yield loss increases less
rapidly and is much less at a given weed density.

Note, however, that although proportional yield losses are less,
absolute yield losses may still be greater. For example Table &4 shows
proportional and absolute yield loss for an untreated weed density of 300

m-2. The fall in proportional yield loss with increasing yield is not
sufficient to reduce absolute yield loss.

. Crop yield (prop'n of weed—free yield)

Weed—free
yield (t/ha)
3

2

1
0.1

1 1
100 200
Weed density (per square m)

Effect of weed-free yield on relationship between weed density
and crop, yield if no herbicide applied

Table 4: Relative and absolute yield loss for various weed-free yields

(weed density = 300 m_2; herbicide rate = 0)

Weed-free yield (t ha'l) 0.1

Yield loss (%) 49

Yield lost (t ha V)

Previously published relationships between weed density and crop
yield have not included weed-free yield as a determinant of yield 1loss
(eg, Poole and Gill 1987a, 1987b). The potential impact of this omission
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- on predicted yields is illustrated in Table 5. The table shows predicted
yield losses for a model which is similar to equation (12) but excludes
the exp(b,+Y,) term. Model parameters were estimated using the same data

Table 5: Relative and absolute yield loss if relative yield loss not

dependent on weed-free yield (weed density = 300 m-z; herbicide
rate = 0) ‘

Weed-free yield (t haﬁl)

Yield loss (%)

1

Yield lost (t ha )

set as previously. A comparison of Tables 4 and 5 reveals that for weed-

 free yields up to 2 t ha-l, errors resulting from the simpler model are
less than 100 kg ha but at higher yields the prediction error may be quite

substantial; 400 kg ha-l ifYo =3¢ ha-l.

Figure 3 illustrates the way in which higher herbicide rates result
in lower competitive abilities in those weeds which survive treatment.

Note that if weed density is reduced by applying herbicide, the shape
of the yield function will depend on the level of herbicide applied. This
means that two sites with the same weed density and the same yield
potential can yield differently if different herbicide rates have been
applied. For example, consider two sites with different pre-treatment weed
densities (points A and C in Figure 4). If neither site is treated, the

Crop yield (prop'n of weed free yield)

Herbicide
rate (kg
a.l./ha)

0.36
0.18
0.0

1 1 1
100 ) 200 300
Weed densily (per square m)

Effect 'of herbicide rate on relationship between weed density

and crop yield (weed-free yield = 1 T ha-l)

relevant yield function is the same for each site (the darkest line on
Figure 4). Imagine now that both sites are treated but that the high
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density site receives a higher herbicide dose such that the final weed
density is the same at each site (points B and D). At the site where a
higher dose of herbicide is applied, weeds are less competitive and the
relevant yield function is given by the dashed line in Figure 4. At the

Crop yield (t/ha) -

Herbicide
rate

(kg a.i./ha)

1 1 1
50 100 160 -
Weed density (per square m)

Figure 4: Crop yield versus weed density for different herbicide rates

other site weeds have not been so damaged and yield is given by the thin
line passing through D. Thus although the weed density is the same at each
site, yields differ.

Thus as herbicide rate is increased there is no movement along a
given yield function. Rather there is movement across yield functions as

illustrated in Figure 5. If an initial density of 200 weeds m % is not
treated, yield is given by point A. As herbicide rate -increases, weed
density decreases and the yield function rises so that yield moves along
the path ABCDE. This pattern of movement across functions is relevant to
the yield response model being developed here, since the increase in yield
resulting from herbicide application occurs only via a reduction in weed
competition.

L2 Crop yield (t/ha)

Herbicide
rate (kg
a.i./ha)

1 1 1 1 1 1 1 1 1 1
20 40 60 80 100 120 140 160 180 =200 =220
Weed density (per square m)

Figure 5: Relationship between weed density and crop yield obtained by
"applying herbicide




Yield response to herbicide

In this section, the functions estimated above are combined to give the
model of yield response to herbicide application. Figure 6 shows response
functions for three situations with the same weed-free yield but different

initial weed densities. If W, is 450 plants m-2 the response model has a
sigmoidal shape. As herbicide rate is increased from zero to 0.1 kg a.i.

ha'l, weed density is substantially reduced but not sufficiently to leave
the relatively flat section of the function relating yield to weed
density. Eventually, enough weeds are killed to reach the relatively steep
part of the yield-weed density function so the response function rises
~more rapidly. Finally the response function flattens out again due to
diminishing marginal weed kill and reductions in weed competitiveness at
higher herbicide rates. Lower initial weed densities may already lie on
the steep section of the yield-weed density function, in which case there
is no section of the yield response curve with increasing marginal returns
(eg, the dashed line in Figure 6)

L2 Crop yield (T/ha)

Initial weed density (per square m)

150 —— 450

0.1 ' 02 : 0.3
Herbicide rate (kg a.i./ha)

Figure 6: Production functions for various initial weed densities

Economic Analysis

The response model derived above is useful for determining
economically optimal weed management strategies. Two decision frameworks
are considered here: the economic threshold approach and the optimal rate
approach (Mumford and Norton 1984). In the traditional economic threshold
approach the herbicide dosage is assumed to be fixed at the recommended or
label rate. The decision maker simply has to calculate whether the
recommended rate will be more profitable than no herbicide application.
This calculation is wusually summarised as a density threshold: a weed
density above which treatment with the recommended dosage is more
profitable than no treatment. It has been noted that the economic
threshold is not a fixed value for a particular weed/herbicide combination
(Cousens 1987). It depends on many variables in the system including the
cost of herbicide, the price of crop output, the expected crop yield and
the recommended herbicide rate. Figure 7 illustrates the way the threshold
density is affected by the expected weed-free yield. The graph shows
combinations of yield and weed density for which herbicide application is
economic. The border of this region represents a multidimensional
threshold. Assumptions underlying this graph are: wheat grain price,




$160/tonne; recommended dosage of diclofop-methyl,

herbicide price $48 kg a.i,-l.

. Expected weed—free yield (tonnes per ha)

Do not apply herbicide

1 1 - 1 1 1

20 40 60 80 100

Initial weed density (per square m)

Figure 7: Multidimensional economic threshold based on weed density and
expected weed-free crop yield.

~ Economists have noted that higher profits can be obtained if
herbicide dosages are adjusted to suit particular circumstances rather
than fixed at a recommended rate (eg, Pannell 1987, Moffitt 1988). Table 6
shows optimal rates of diclofop-methyl for ryegrass control for a range of
weed densities, crop prices and weed-free yields.

Table 6: Optimal herbicide dosages

Weed-free Grain Initial weed density (m_z)
yield ' price V

(T ha™1y . ¢ 1 h 200 300

120 .29 .32
160 0.31 0.34
200 .33 .36

120 0.29 0.32
160 0.32 0.35
200 0.34 0.37

The optimal ' dosage is  quite insensitive to weed-free yield,
moderately sensitive to grain price and relatively sensitive to initial
weed density. It is notable that in many of the .circumstances examined the
economically optimal dosage 1is substantially less than the officially
recommended dosage in Australia.

It should be acknowledged that these results are for a single season
only. If benefits and costs in future years are considered when evaluating
current weed control practices, the selected dosage or threshold may be
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different. Pandey (1989) showed that if the area is to be cropped in
subsequent years, there are net benefits from increasing the current level
of control. On the other hand, Abadi Ghadim and Pannell (1989) showed that
if the crop 1is part of a crop-pasture rotation, the optimal level of
control in the crop may be reduced relative to what is optimal for a
single year of crop. This is due to increased feed availability in the
pasture if fewer weeds are killed in the crop.

The other issue not considered in calculating these results is
resistance. Lower levels of control reduce the rate of resistance
development (Gressel 1987) This means that it may be economically optimal
to reduce the dosage or increase the threshold for treatment relative to a
situation where resistance does not occur.

Conclusion

A general model for representing yield response to herbicide
application has been proposed. Parameters of the model were estimated for
control of ryegrass in wheat by post-emergent application of diclofop-
methyl in Australia. It was found that the proportion of weeds killed at a
particular herbicide dose 1is not independent of the absolute number of
weeds. The proportional yield 1loss at a particular weed density was
decreased at higher weed-free yields. Competitiveness of weeds which
survive herbicide treatment was found to be inversely related to the
herbicide dose. Economic analysis showed that the optimal herbicide dosage
is most sensitive to the initial weed density and relatively insensitive
to the weed-free yield.
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