
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


Thelyniversity of Western Australia

GIANNINI FOUNLetriON t- - -
AGRICULTURA *.4 MCONON4k--41

LIB Y

AGRICULTURAL ECONOMICS

SCHOOL OF AGRICULTURE)

PESTS AND PESTICIDES,
RISK AND RISK AVERSION

David J Pannell

Discussion Paper 10/89

Nedlands, Western Australia 6009





PESTS AND PESTICIDES,
RISK AND RISK AVERSION

David J Pannell

Discussion Paper 10/89

Agricultural Economics, The University of Western Australia, Nedlands 6009
and

W A Department of Agriculture, South Perth 6151, Western Australia



PESTS AND PESTICIDES, RISK AND RISK AVERSION

Abstract

Theoretical and applied literature on risk in pest control
decision making is reviewed. Risk can affect pesticide
decision making either because of risk aversion or because
of its influence on expected profit. It is suggested that
pesticide application does not necessarily reduce risk and
that risk does not necessarily lead to increased pesticide
use by individual farmers. Analyses need to consider more
sources of risk than has usually occurred. The influence
of pest information on risk is discussed. A range of
analytical techniques for analysing risk in pest control
is reviewed. Gaps in existing literature are identified.

Introduction

Risk has been perceived and discussed as an area of considerable
importance in literature on the economics of pest control in agriculture.
Reichelderfer (1980) and Wetzstein (1981) went so far as to claim that
risk reduction is the main motivation for application of pesticides. While
this seems to understate the importance of profit improvements resulting
from pesticide use, there is widespread consensus in the literature that,
in many circumstances, risk considerations influence pesticide use (e.g.
Carlson and Main 1976; Conway 1977; Reichelderfer and Bottrell 1985; Antle
and Capalbo 1986; Lichtenberg and Zilberman 1986).

The aim of this paper is to review the literature on the impact of
risk and risk aversion on decisions to control agricultural pests by
application of chemical pesticides. A number of specific issues are
addressed including: the impact of risk on control decisions by risk
neutral decision makers, the impact of risk aversion on pest control
decisions, the effect of uncertainty on the level of pesticide use, the
effect of pesticide use on the .level of risk, the impact of information
use on risk, which sources of risk may be important in the pesticide
problem and whether these sources of risk have been adequately considered
in applied studies. In addition a range of methods for examining risk in
pest control decisions are reviewed and examples given from the
literature. Aspects of the topic which have been neglected in the
literature are identified.

Theoretical Framework

Although the first publication on risk in pest management used the
concept of "degree of potential surprise" (Hillebrant 1960), the dominant
paradigm for risk analysis in economics has been expected utility
maximisation (e.g. Anderson et al. 1977). In response to evidence that
many people systematically violate predictions of expected utility theory
(e.g. Allais 1953; MacCrimmon and Larsson 1979) there has been a recent
growth of more "generalised" versions of the theory (e.g. Machina 1982;
Quiggan 1982; Chew 1983). However there have, as yet, been no applications
of any of the generalized utility theories to problems of damage agent
control. Of the studies reviewed in this paper, those which account for
risk aversion consider the decision maker's objective to be expected
utility maximisation or, in a couple of cases, maximin (maximisation of
the minimum return). It seems likely-that, so long as the probability
distribution of net returns is not dramatically skewed, expected utility
maximisation will reasonably approximate the more general theories
(Quiggan and Fisher 1989).
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Although the studies reviewed here are all concerned with risk, they
vary widely in many respects. The assumed objective of decision makers
ranges from expected profit maximisation through expected utility
maximisation to the extreme degree of risk aversion implied by the maximin
principle. Different studies treat different parameters of the damage
agent/crop system as being uncertain. There has been a range of analytical
frameworks employed including DP, Bayesian decision theory and stochastic
efficiency. The following discussion elaborates on these differences and
reviews particular studies.

Risk Neutrality

The broadest categorization of the risk literature is into those
studies which assume risk neutrality and those assuming risk aversion. The
assumption of risk neutrality is often made for the purposes of simplicity
and tractability (e.g. Marra and Carlson 1983; Moffitt et al. 1984; Taylor
and Burt 1984; Gold and Sutton 1986; Johnston and Price 1986; Zacharias et
al. 1986). The first part of this discussion considers the validity of
this assumption. Given the extreme statements made by some authors about
the importance of risk aversion as the prime motivation for damage
control, it may seem that the assumption of risk neutrality is
indefensible. However there have been studies which found that risk
aversion had minimal impact on decision making. Webster (1977) found that
for a fungicide spraying problem in the U.K., the decision of whether or
not to spray was very insensitive to the degree of risk aversion. Only
individuals with extreme decision criteria, such as maximin, would adjust
their spraying decision in response to risk. No farmers in a sample of 29
were found to be this risk averse.

Similarly Thornton (1984) found that decisions on control of a fungal
disease of barley in New Zealand were almost unaffected by risk aversion.
In many simulations of disease epidemics, differences in recommendation
between expected profit and expected utility maximisation occurred with a
frequency of approximately 0.03.

In addition to these indications that risk aversion may have little
impact on damage control decisions, there is also evidence that, at least
in Australia, farmers are, on average, only slightly risk averse (Bond and
Wonder 1980). Finally, Carlson (1984) and Musser et al. (1986) have
suggested that risk may not be an important consideration in farmers'
decisions on pest control. Taken together, these studies appear to provide
some support for use of a risk neutral framework. However there are
reasons to question the general applicability of the results reported by
Webster (1977) and Thornton (1984). In Thornton's study, the insensitivity
of decisions to risk aversion may have been exaggerated by basing the
elicitation of utility functions on a range of payoffs corresponding to
just 10 hectares. This in itself would not have been a major concern but
for the assumption that decisions are independent of the scale of the
problem. This assumption implies that a farmer wishing to spray a 100
hectare crop would be no more or less concerned about risk than a farmer
with just 10 hectares. Given that a risk averse individual is concerned
about income variability and that the standard deviation of income from a
100 hectare crop will be 10 times as great as that from a 10 hectare crop,
this assumption appears unrealistic. In Thornton's study all decisions are
made on the basis of a small scale problem in which risk is bound to be of
minor importance. Zacharias and Grube (1984) addressed this issue in their
application of stochastic dominance to weed control. They argued that

"the decision makers will tend to exhibit more risk neutral behaviour
when confronted with per acre outcomes rather than farm level
returns. If the bounds of the risk preference function are constant
across income levels ... the rankings [of strategies] associated
with per acre and farm level distributions will be different"
(Zacharias and Grube 1984, p.116).

4
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A second factor which may have contributed to the apparent
insensitivity of decisions to risk aversion is the use of a simple binary
decision rule: don't treat or treat at the recommended dose. This ensures
that there are wide ranges of parameter values for which the optimal
strategy is unchanged. If dosage rate were treated as a continuous
variable, the sensitivity of decisions to changes in all parameters,
including risk aversion, would increase.

Webster (1977) also used a binary decision rule. The scale of the
problem analysed by Webster was not reported in the article, but it may be
that he, too, restricted the decision problem to a small scale problem.

In addition to these reasons for questioning the conclusions of
Webster and Thornton, there are reasons for caution in the interpretation
of Bond and Wonder's (1980) main finding. Although the average degree of
risk aversion amongst Australian farmers was found to be small, there was
found to be considerable variation in the degree of risk aversion. A
substantial number farmers were found to be highly risk averse.

Finally, a number of authors have reported finding that risk aversion
does substantially affect decision making (e.g. see following discussions
of risk aversion and associated modelling techniques). Also, in reports of
empirical studies of farmer behaviour, authors have reported finding that
reliance on chemical pest control increases as risk aversion increases
(Burrows 1983; Pingali and Carlson 1985). However the strength of this
conclusion should not be overstated. Burrows (1983) conducted an
econometric study to determine which variables influence demand for
pesticides. In the estimation, the degree of producers' aversion to risk
was represented by a very crude proxy variable: the ratio of acres planted
in cotton to total acres. Conclusions about risk based on this variable
should be very tentative. In another regression study, Pingali and Carlson
(1985) found that the level of damage control inputs used was positively
related to the variance of damage. Although they attributed this to risk
aversion on the part of decision makers, the evidence is purely
circumstantial. They did not recognise that there are several ways in
which risk can affect decision making even if the decision maker's
objective is to maximise expected profit (see below).

Despite these reservations and the findings of Thornton and Dent
(1984a) and Webster (1977) it seems that even if risk aversion can,, in
some circumstances, be safely ignored, in others it cannot. On this basis
it would seem prudent to assume that risk aversion is an issue of
importance until results show otherwise.

Of those studies which assume risk neutrality, the majority adopt a
deterministic decision framework [e.g. most of the studies cited in
bibliographies by McCarl (1981) and Osteen et al. (1981)]. This approach
can sometimes be defended on the basis that if risk does not affect profit
non-linearly, the decision which maximises expected profit in a stochastic
framework corresponds to the profit maximising decision in a deterministic
framework using expected values of parameters. This implies that if all
relationships in a model are strictly linear and expected profit
maximisation is assumed, the inclusion of stochastic parameters introduces

.unnecessary complexity to the analysis without affecting results. Such was
the case in a study by Marra and Carlson (1983) who developed a threshold
model for weed control in soy beans. They explicitly included a discrete
probability distribution for the length of the spraying period, but this
was unnecessary since all non-linear relationships in the model were
approximated by linear functions.

Nevertheless there are several ways in which risk can affect the
decisions of individuals whose, objective is to maximise expected profit.
Tisdell (1986) showed that uncertainty about a parameter value can affect



the optimal level of pest control by affecting expected profit. He argued
that

"in many cases the expected level of application is greater under
uncertainty than under full information but . . . this depends on
convexity conditions of relevant functions" (p.161)

and that
"convexity conditions may sometimes be such as to give rise to the

• opposite consequence" (p.159).
He did not discuss which parameters are likely to increase and which to
decrease treatment levels under uncertainty. Auld and Tisdell (1986, 1987,
1988) showed that because of convexity of the relationship between weed
density and crop yield; uncertainty about weed density reduces expected
yield loss. Auld and Tisdell (1987) argued (but did not prove) that this
increases •the economic threshold, reducing the overall level of pesticide
use. They noted that this does not seem consistent with comments in the
literature that risk• increases pesticide use. They attributed the
difference to the influence of risk aversion dominating the effect of risk
on expected profit.

Another circumstance where risk can affect the decisions of "risk
neutral" decision makers is where the problem is dynamic (Antle 1983).
Zacharias et al. (1986) tested this hypothesis in their dynamic
programming study of soybean cyst nematode. They found modest support for
the hypothesis, with very small differences between the results of their
deterministic and stochastic models.

A third possibility is where the decision maker is subject to a
progressive marginal taxation rate. Taylor (1986) showed that the effect
of this on decision making is essentially the same as the effect of risk
aversion; it just makes the decision maker behave in an apparently more
risk averse manner than they otherwise would have.

Risk Aversion

. This section of thereview examines ,the widely. accepted views that
risk increases pesticide usage and that pesticide _usage reduces risk. The
importance of risk as a -determinant, of pesticide usage has -been'emphasised
in the literature with the dominant view being that pesticide use reduces
risk. so that if risk is included in a model, risk aversion will cause the
optimal treatment rate to be increased. This is in contrast to other types
of inputs, such as fertilizers, which are usually supposed to be used at
loWer. levels under risk aversion ,than.under.,risk neutrality. Feder (1979)
is commonly cited As having established the theoretical basis for the
presumed positive relationship between degree .of risk and level of
pesticide usage. Feder showed that under risk aversion, uncertainty about
the level of pest infestation•increases .the optimal level of pesticide
.use. However crop • damage was ,approximated by a linear, function, • so the
effect - of uncertainty about pest density on. expected profit (see above)
was not considered. Auld and Tisdell (1987).  showed that,. at least for
weeds, uncertainty about .damage .agent density. reduces. expected yield loss,
and argued that, this reduces the probability of treatment being justified.
This effect at least partially offsets the positive- effect of risk
aversion .on chemical usage

Moffitt (1986). in his extension of the M-threshold concept (Moffitt
et al. 1984) to allow for risk aversion, further questions the accepted
wisdom of greater risk. leading to greater pesticicie usage. He showed in
his theoretical model that, under risk, a. higher dosage can be more than
offset • by less frequent use (i.e. a -higher threshold) although this was
not found to occur in an empirical application of the approach by Osteen
et al. (1988).

4
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A further relevant issue which has received almost no comment in the
literature is the fact that the reputation of pesticides as "risk reducing
inputs" (Carlson 1984; Robison and Barry 1987) appears to be mainly based
on analyses which only consider uncertainty about the level of damage
agent infestation or chemical efficacy (e.g. Feder 1979; Robison and Barry
1987; Osteen et al. 1988). However there are numerous other sources of
uncertainty in the chemical/damage agent/crop system which may or may not
result in reduced risk as control inputs are increased. Feder (1979) did
consider uncertainty about pesticide effectiveness but was equivocal about
its impact on pesticide usage. Chisaka (1977) showed that the level of
crop yield loss caused by weeds can be a significant source of
uncertainty. Auld and Tisdell (1987) considered uncertainty about crop
yield loss in a risk neutral setting, finding that it would not affect
decision making. They did not consider its effect on a risk averse
decision maker. Robison and Barry (1987) commented in passing that the
Feder model could be expanded to allow for uncertainty about output price.
They observed that

"two random variables, however, quickly complicates our analysis,
forcing us into numerical rather than analytical approaches.
Furthermore, we could find the threshold level for N as before but
the solution would require solving a quadratic formula with few
deterministic results" (p.110).

This may explain some of the reticence of most analysts to consider
uncertainties other than pest density. However this reticence may have
resulted in the perpetuation of a general false impression that damage
control inputs always reduce risk. No author has conducted a theoretical
analysis of the effects of risk aversion on pesticide or herbicide usage
under uncertainty about output price or final pest-free yield. Because
returns are positively and multiplicatively related to output price and
yield, uncertainty about either variable appears likely to result in
higher risk at higher levels of pest control. In many environments these
may be more important sources of uncertainty than are damage agent density
or control input effectiveness. In all environments, the question of
whether control input use results in higher or lower income variability
depends on the balance of forces of positive and negative effects on risk.
Control input usage will result in risk being increased in some
circumstances and reduced in others.

A number of authors have considered multiple sources of risk. While
they have not provided analytical proof, they have produced some support
for the proposition that control inputs do not always reduce risk. Hawkins
et al. (1977) conducted budgeting analysis of field results from weed
control trials. These would have implicitly included several biological
sources of risk including weed density, herbicide effectiveness and weed-
free yield. They found that herbicide use increased the standard deviation
of returns, which suggests that weed-free yield was the major source of
variability in the trials. In studies by Cochran et al. (1985) and Greene
et al. (1985), simulation approaches were used to estimate probability
distributions of income for analysis using stochastic dominance
techniques. The uncertain variables considered by Greene et al. (1985)
were wheat yield, wheat price, soybean price, July temperature and August
rainfall. They assumed that these variables followed a multivariate normal
distribution which was estimated from 20 years of historical data. Cochran
et al. (1985) allowed for uncertainty about the weather, yield, prices,
the determination of infestation periods and the calculation of yield
loss. It is very interesting that in both these studies, integrated pest
management (IPM) strategies,, which generally involve reduced pesticide
use, were found to be efficient for risk averse decision makers. In the
Greene et al. study, IPM strategies clearly dominated conventional
strategies for even the highest level of risk aversion considered. If
pesticide use did reduce risk, one might have expected risk averse
decision makers to prefer prophylactic pesticide use. Cochran et al.
(1985) used a number of stochastic dominance criteria with different
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powers of discrimination. IPM strategies were part of the efficient set
under all criteria. As the criterion was made more discriminating,
strategies involving calendar spraying (i.e. pre-determined prophylactic
treatments) were removed from the efficient set until the most
discriminating criterion resulted in a unique ranking with IPM as the only
efficient strategy. Again, if pesticides were risk reducing, IPM
strategies involving lower pesticide use might involve higher risk and not
be clearly efficient for risk averse decision makers.

While these detailed studies are suggestive that pesticides may not
reduce risk, there is a need for caution in ascribing this interpretation
to the results. It may be that the use of information in IPM strategies is
itself risk reducing. Evidence in support of this is provided by Antle
(1988a) who found that pesticides used in an IPM programme were more risk
reducing than those used prophylactically. He also found that the value of
information use in IPM strategies was substantially higher for more risk
averse decision makers. Even if lower pesticide use increases risk,
information may be sufficiently risk reducing to more than offset this,
making the IPM strategy attractive to risk averse decision makers.
Nevertheless it does appear that the risk reducing nature of pesticides is
by no means proven. This seems to be an issue deserving further attention.

Finally note that even if pesticide applications do reduce income
risk, it does not necessarily follow that a stochastic decision model will
lead to greater pesticide usage than will a deterministic model. As
discussed earlier, the introduction of risk into the decision process may
affect expected profit in such a way that chemical use tends to be
reduced. In some circumstances this effect may more than offset increases
in chemical usage due to risk aversion.

The remainder of the paper is a review of applied studies which have
allowed for risk. The various techniques which have been used are
described. Advantages and disadvantages of the techniques are suggested.

Bayesian Decision Theory

Bayesian decision theory is concerned with the revision of risky
decisions in response to information about the problem at hand. Many
Bayesian studies calculate the expected value of information to be used in
a decision.

Anderson et al. (1977) described the application of Bayesian decision
theory to a range of problem types in agriculture. One of the earliest
applications of the approach to damage control was by Carlson (1970) who
examined the disease control practices of Californian peach growers. He
elicited prior probability distributions of disease, loss from growers and
used these to show that if the number of applications of chemicals is
optimally adjusted in response to disease forecasts, chemical usage can be
substantially reduced. -

Webster (1977) conducted a Bayesian analysis of a fungal parasite
problem on wheat. He elicited (quadratic) utility functions from farmers
and, as discussed earlier, found that the decision of whether to spray was
very insensitive to risk attitudes. In a follow up study, Menz and Webster
(1981) used a Bayesian approach to estimate the expected value of
information which would be provided by a hypothetical advisory scheme
proposed by Webster (1977). They found that the expected value of
information was very high so that benefits of the proposed scheme would be
very likely to outweigh costs. In a later publication, Webster (1982) •gave
a general discussion of the value of information in pest control and
presented examples for a disease control program. The analysis was
simplified by assuming expected profit maximisation and by assuming that
the values of different types of information are additive and independent.

Z-1

r,
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Mumford (1981) emphasised the subjective aspects of pest control
decisions. He found that pest control decisions by members of a particular
group of surveyed farmers was consistent with a simple Bayesian model in
their pest control behaviour. He assumed that the objective of the more
risk averse farmers in the group approximated to "maximin" although
Webster (1977) found no farmers in a group of 29 who were that risk
averse.

Thornton and Dent (1984a, 1984b) focused on revision of optimal
disease control strategies in response to up to date information on
climate and disease information levels. They described their approach as
"implicitly Bayesian" (Thornton and Dent 1984a, p.123) and presented a
framework for implementing it for use by farmers. They found that the
expected value of climate and disease level information "increases with
decreasing partial risk aversion, since the value is dependent on the
recommendation' not to spray, risk averse individuals being loath not to
apply spray" (Thornton and Dent 1984b, p. 241).

The study by Antle (1988a, 1988b) might also be considered as
"implicitly Bayesian" in its emphasis on risk and sequential decision
making. Interestingly, in a case study of IPM strategies for tomato
production, he obtained the opposite result to Thornton and Dent (1984b);
greater degrees of risk aversion were associated with substantially higher
values of information. Another interesting finding was that although
insecticides as a group were found to be marginally risk reducing inputs,
those pesticides applied with relatively low frequency in the IPM
programme were found to be substantially more risk reducing than those
applied prophylactically. Clearly the degree of risk reduction obtained
from pesticide use depends not just on the level of pesticide used, but
also on the way, it is used. Antle's finding suggests that information
which aids in determining optimal pesticide use may be more risk reducing
than pesticides per se.

Moffitt et al. (1986) examined the value of publicly provided
information on pest levels in a situation where private scouting service
were available. They found that the value depended on the reliability of
public information. If it were slightly less reliable than private
information, public information still had a positive net value to farmers
by virtue of its lower cost. However below a certain level of reliability,
public information had no value.

Stefanou et al. (1986) presented a Bayesian model incorporating
decisions on both whether to scout and whether to spray. They applied the
model to cotton lygus bug in California and conducted wide ranging
sensitivity analysis.

The studies discussed above all allowed for risk aversion on the part
of decision makers. Bayesian decision theory can also be applied in a risk
neutral setting. For example Johnston and Price (1986) assumed risk
neutrality in calculating the expected values of perfect and imperfect
information in the problem of stored grain insect control. Cammell and Way
(1977) applied a risk neutral Bayesian model to estimate the value of
forecasting black bean aphid populations. They found that basing treatment
decisions on this information was substantially more. profitable than
routine treatment or no treatment.

All of the farm level studies cited in this section treat the control
input as a binary variable to be applied at the recommended rate or not at
all. There does not seem to have been an application of Bayesian decision
theory in which treatment dosage has been treated as a continuous
variable. It is also notable that none of these studies examine a problem
of weed control. It appears that a Bayesian approach to probability
revision is highly applicable to problems of tactical weed control.
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Stochastic Efficiency

In the Bayesian studies described above, particular utility functions
were elicited or assumed for use in the analysis. If a specific utility
function is used then it is possible to give an unambiguous ranking of all
strategies under consideration. However these rankings are not necessarily
consistent with the preferences of individuals who do not have the exact
utility function used in the analysis. Thus recommendations resulting from
the analysis will not necessarily be generally applicable.

The problem can be overcome, to some extent, by repeating the
analysis for several different degrees of risk aversion. Even then,
however, use of a particular functional form has implications for the way
risk aversion changes in response to changes in wealth and income, and
there may be many individuals whose preferences are not captured by any of
the utility functions used. There may be occasions when advice may be
required which is applicable, for example, to all decision makers who are
risk averse. Stochastic efficiency analysis is used to generate
information which is applicable to broadly defined groups of decision
makers. There are a number of different stochastic efficiency criteria
used depending on how broadly defined a group of decision makers isbeing
targeted:

(a) first degree stochastic dominance (FSD) applies to all decision
makers who prefer more income to less (Quirk and Saposnik 1962),

(b) second degree stochastic dominance (SSD) applies to those
decision makers from (a) who are risk averse (Hadar and Russell
1969),
third degree stochastic dominance (TSD) applies to those decision
makers from (b) whose degree of risk aversion decreases with
increasing wealth (Whitmore 1970),

(d) stochastic dominance with respect to a function (SDWRF) is
applicable to decision makers whose degree of risk aversion lies
between that of two given functions. The breadth of the decision
group can be varied by adjusting the functions which define the
bounds (Meyer 1977a, 1977b).

The greater generality of these techniques is only obtained at the
cost of reduced specificity of their recommendations. In general they do
not provide a unique ranking of the available strategies. Rather they
identify groups of strategies which are "efficient". All elements of the
efficient set of strategies would be preferred to all strategies not in
the efficient set by all members of the relevant group of decision makers.
A potential problem with the technique is that the efficient set can be
vary large, in some cases including most of the available strategy
options. In this circumstance the information provided by the technique
can be of little value. Greater discriminatory power can be obtained by
more closely defining the group of decision makers (e.g. using third
degree, rather than second degree, stochastic dominance) but then results
are less generally applicable. Techniques such as convex set stochastic
dominance can be used to increase the discriminatory power of any of the
above criteria (Cochran et al. 1985). However, as Tolley and Pope (1988)
observed, "second degree stochastic dominance has been easily
implementable and continues to have a preeminent place in efficiency
analysis" (p. 694). Furthermore Tolley and Pope noted that sampling errors
in the estimation of probability distribution functions are usually not
considered. They showed that if sampling errors are considered, the size
of the efficient set is increased even further.

Finally in this background information on stochastic efficiency, it
should be noted that a very common method of identifying efficient
strategies for risk averse decision makers is E-V analysis (Markowitz
1952). However E-V analysis has been widely criticised because it has very
strong requirements for validity (Lambert and McCarl 1985). Either returns
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must be distributed normally or the decision maker must have a quadratic
utility function. The former is frequently not the case and the latter is
generally dismissed as unrealistic because it implies increasing risk
aversion with increasing wealth.

The literature on the economics of damage agent control includes five
applications of stochastic dominance: two in problems of insect control,
one on a disease problem, one on weeds and one encompassing weed, pest and
disease control. Between them, these studies have included most of the
efficiency criteria described above (all except TSD).

Papers by Greene et al. (1985) and Cochran et al. (1985) were
described above in the discussion of whether pesticides are necessarily
risk reducing inputs. Greene et al. (1985) used SDWRF to rank various
strategies for insect pest control in soybeans. They found that IPM
strategies are efficient relative to prophylactic spraying for a wide
range of risk attitudes. Cochran et al. (1985) used FSD, SSD, SDWRF and
SDWRF with convex set stochastic dominance to evaluate strategies for
Apple scab control. Again IPM strategies were favoured.

Moffitt et al. (1983) used FSD and, SSD to evaluate a range of
alternative citrus thrip control methods for inland Southern California
orange groves. Of the eight strategies considered, six were in the FSD
efficient set while three 'were in the SSD efficient set.

Zacharias and Grube (1984) examined a range of crop rotations in
conjunction with different weed control methods. They used SDWRF to
examine strategy rankings for risk averse, risk neutral and risk
preferring decision makers. Their conclusions about the effect on risk of
using information to Adjust herbicide usage were the reverse of Antle's
(1988a).

"Successively altering herbicides on an annual basis as compared to
applying a single major herbicide was found to increase both net
returns and risk" (p.113).

Finally Musser et al. (1981) compared the results of E-V analysis and
FSD/SSD in ranking four sets of strategies for controlling weeds, pests
and diseases in Georgia. They found that, in an E-V framework, both
conventional strategies and IPM strategies were efficient. IPM had higher
mean net income but also higher variance of income and so was not clearly
preferred to conventional control in an E-V framework. However IPM was
found to be FSD over conventional strategies and so would be preferred by
all decision makers regardless of their risk preferences. Note again that
use of an IPM strategy was not found to reduce risk. Apparently in both of
these studies, chemical sprays were risk reducing and information was not
sufficiently risk reducing to offset the increase in risk resulting from
lower chemical use.

Studies employing an E-V approach to assessing risk in damage agent
control have included Carlson (1970), King et al. (1986) and Lybecker et
al. (1988).

Dynamic Programming

Pest control in a crop or pasture .may have either positive or
negative carry-over effects in subsequent crops or pastures. For example,
one of the advantages of including the legume crop, lupins, in rotation
with cereals in Western Australia is that they allow use of the herbicide
simazine for weed control, reducing the costs of grass weed competition
and control in subsequent cereal crops. In general, the number of weed
.seeds with potential to germinate in a given year depends on the degree of
control in previous years. A negative effect of weed control in crops is
that the density of subsequent pastures can be reduced. Dynamic factors
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such as these may affect optimal weed control practices and so may need to
be considered.

A dynamic analytical framework is even more important for problems of
pest and disease control. Reproduction rates are very high for these
organisms so that infestation levels can increase rapidly. For weeds, the
life cycle takes at least a year so that population dynamics are not as
essential to the economic problem as they are for pests and diseases.
Techniques used to address dynamic problems include simulation (discussed
in the next section) and dynamic programming (DP). •

Christine Shoemaker stands out as the major contributor to the
literature in the DP field, particularly for management of alfalfa weevil.
In two of her papers, stochastic DP was used to assess the effect of risk
on decision making (Shoemaker and, Onstad 1983; Shoemaker 1984). In
Shoemaker (1984) the issues of multiple pesticide applications and
carryover of pesticide from one season to the next were considered. As
well as using more than one variable to determine whether to treat, she
has also considered more than one type of treatment: pesticide application
and biological control (Shoemaker and Onstad 1983).

Taylor and Burt (1984) used stochastic DP to determine whether or not
to spray and/or fallow to control wild oats in spring wheat in the US.
Pandey (1989) used deterministic and stochastic DP to determine optimal
herbicide rates for control of wild oats in Western Australia.

There has also been an application of stochastic DP to a problem of
disease control. Zacharias et al. (1986) used stochastic DP to evaluate
management strategies for controlling soybean cyst nematode. They tested
and upheld Antle's (1983) hypothesis that risk neutral (i.e. expected
profit maximizing) decision makers can respond to risk if the problem is
dynamic.

In each of these studies, expected profit maximisation was assumed to
be the objective; there was no allowance for risk aversion on the part of
decision makers.

The obvious advantage of DP as a solution method is its efficient
handling of dynamics. The main disadvantage is the "curse of
dimensionality": as the number of state variables in the model increases,
the number of calculations required for solution increases exponentially
and can become impractically large. Hence DP generally requires that
complex systems be greatly simplified before they can be analysed.

Another facet of DP which may be considered a disadvantage is that it
can only handle discrete decision problems. Only discrete alternative
strategies can be evaluated, not continuous variables such as chemical
dosage, although this can be overcome to a degree by considering a
discrete number of chemical dosages as alternative strategies (e.g. Pandey
1989).

Simulation .

Simulation models of various kinds have been used in a number of
different ways to evaluate the economics of pest, disease or weed control.
Risk aversion has been analysed in a number of ways in these studies: by
numerical solution of the expected utility maximisation problem (Lazarus
and Swanson 1983; Thornton and Dent 1984a, 1984b), by &TV analysis (King
et al 1986) and by stochastic dominance approaches (Cochran et al. 1985;
Greene et al 1985).

An advantage of simulation models is that they allow estimation of
technical relationships which would be. expensive, time consuming or
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impractical to estimate from field experiments. A second advantage is
that, relative to optimization techniques such as dynamic programming or
mathematical programming, they allow more detailed representation of
biological and technical components of the system (Shoemaker 1984). A
disadvantage is that in most economic applications they must be solved
numerous times to reach a conclusion. For example, Shoemaker (1979) noted
that to conduct a similar analysis to that carried out by a particular DP

model, a simulation model would have to be solved 1 380 000 times.
Simulation models do not imply use of a particular economic framework;
rather they can be used to provide inputs to economic analyses of several
types.

There have been several studies in which simulation models were used
to estimate probability distributions of technical parameters which were
then used to estimate thresholds under risk. For example Thornton and Dent
(1984a; 1984b) described the design, operation and implementation of such
a system for evaluating control of the fungal disease Puccinia hordei in
New Zealand barley crops. The effect of climatic variation on the variance
of profit was estimated by simulation and used to calculate thresholds
under risk aversion. Their study was discussed earlier in the context of
Bayesian decision theory. King et al. (1986) estimated thresholds for weed
control in continuous corn (Zea mays). Although they did not consider the
impact of risk aversion on the decision, they estimated the variance of
profit for different strategies. Lazarus and Swanson (1983) did allow for
risk aversion in their evaluation of rootworm control in corn. Although
their representation of biological relationships was relatively
simplistic, this allowed them to analyse a more complex decision problem.
They estimated not just pest thresholds at which chemical application was
justified, but also a higher threshold at which it was worth rotating to
another crop.

A somewhat similar use of simulation models has been to estimate
probability distributions of net returns for evaluation using stochastic
dominance techniques. Cochran et al. (1985) used this approach in their
application of convex set stochastic dominance to evaluation of various
apple scab control strategies, as did Greene et al. (1985) in their use of
generalised stochastic dominance to evaluate soybean integrated pest
management strategies.

Analytical/Numerical Approaches

In a number of applied studies of risk in damage control, direct
numerical solution of theoretical constructs has been employed. Moffitt et
al. (1984) numerically solved for the optimal parameters of their M-
threshold model for corn nematode control under uncertainty about pest
density. Osteen et al. (1988) conducted a similar study of corn nematode
control which, unlike Moffitt et al. (1984), allowed for risk averse
decision making. Liapis and Moffitt (1983) used the exponential utility
moment generating function approach to calculate certainty equivalents of
alternative cotton pest control strategies under different degrees of risk
aversion. The use of this approach was attacked by Scott et al. (1986) but
defended by Liapis and Moffitt (1986). Lazarus and Swanson used numerical
solution in conjunction with a simulation model to calculate pest density.
thresholds for application of pesticide and for switching crop rotation.

The numerical solution techniques employed in these studies can be
very useful when the problem is not amenable to analytical solution or to
solution by common optimization techniques such as DP or LP. This can be
the case, for example, when the profit function has more than one local
optimum, when it has several state variables or when close links with a
simulation model are desired.
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In a number of studies relevant to pesticide application, Lichtenberg
and Zilberman have used marginal analysis to derive optimal regulatory
standards for reducing the probability of negative effects on health
(Lichtenberg and Zilberman 1988a, 1988b; Lichtenberg et al. 1988). In each
of these analyses allowance was made for "aversion to uncertainty" (i.e.
risk in the common economic usage). No other studies of public or social
pest control problems have considered uncertainty except by conducting
sensitivity analysis (e.g. Pannell 1984; Denne 1988).

Conclusion

In the course of this review, some commonly made assertions about the
influence of risk in pest control have been challenged. In addition some
gaps, unresolved issues and possible methodological deficiencies in the
existing literature have been identified.

It was concluded that in many circumstances, risk does have an
influence on decision making for pest control. In addition to the effect
due to risk aversion, risk can also affect pest control by its influence
on expected profit. It was concluded that, contrary to the usual
presumptions, pesticides do not necessarily reduce risk and risk does not
necessarily increase pesticide use. This may be because the reduction in
pesticide use resulting from the effect of risk on expected profit is
greater than the increase due to risk aversion or it may be because risk
associated with several variables tends to increase with pesticide use.
This leads to the conclusion that it may be important to consider more
sources of risk than the one most commonly considered: uncertainty about
pest density.

Information about the crop/pest/pesticide system not only increases
expected profits but can also be a very useful source of risk reduction.
On the other hand some studies have indicated that use of information
results in higher levels of risk.

The review has covered a wide range of analytical techniques, with
different strengths and weaknesses, which can be used to analyse risk in
decisions on control of damage agents. Regardless of the technique used,
virtually all published applied studies have treated the control input as
a binary variable to be used at recommended rates or not at all. There
appears to be scope for analysing risk and risk aversion when input level
is treated as a continuous variable. There has been no comparison of the
relative performance of fixed and variable rate approaches and no
comparison of the value of information for each approach. It is also
notable that analysis of the effects of risk aversion on weed control
decisions has been all but non-existent. There have only been a couple of
studies analysing weed control in an expected utility maximisation
framework, but these have been stochastic dominance analyses of local
field trial results with little general relevance.
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