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DYNAMICALLY OPTIMAL ADOPTION OF FARMING PRACTICES WHICH
DEGRADE OR RENEW THE LAND

Abstract

Many farming decisions are choices among discrete practices. This is particularly true for decisions
that degrade or renew the land over time. Most models of soil erosion, acidity, or salinity, however,
try to approximate discrete choices by a static model or by a dynamic model with continuous control.
This study constructs a dynamic model for the optimal adoption of discrete practices. The model is
an extension of free-time optimal control. Each discrete practice has its own optimal control problem
and these control problems are linked over time to study optimal switching among practices. Land
is often considered an exhaustible resource, but several practices renew rather than degrade the
land. It is found that an optimal time path typically has an initial phase of degradation followed by a
steady-state rotation between degrading and renewing practices. The initial phase could be one of
renewal and the final phase one of abandoning or selling the land. The renewal of soil acidity,
salinity and, perhaps, erosion makes agriculture sustainable into the indefinite future and shifts the
focus of public policy from conserving an exhaustible land resource to attaining the optimal steady-
state. It also shown that a discrete but static model or a dynamic but continuous model has no
optimality properties whatever. This is unfortunate because the dynamic discrete-choice model is
more difficult to solve. A few special cases may be easily solved but the general model requires
large-scale mathematical programming with special gradient calculations.
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DYNAMICALLY OPTIMAL ADOPTION OF FARMING PRACTICES WHICH
DEGRADE OR RENEW THE LAND

Land degradation and renewal are dynamic processes, controlled by the adoption of farming

practices. Should a farmer plant an erosive but profitable crop?--adopt conservation tillage?--plant a

nitrogen-fixing legume?--rotate crops for weed and disease control?--establish trees?--install contour

banks?--or just sell the farm? Farming practices can be managed at greater or lesser intensity but,

fundamentally, they are discrete alternatives.

In 1942, Bunce proposed a dynamic model for the adoption of soil-conserving practices. With

the exception of Walker (1982; see also Walker and Young, 1986), and Miranowski (1984), more recent

authors either do not include the dynamics or assume that discrete practices can be approximated by a

continuous control variable.

For example, many empirical studies, too many to list, are an extension of traditional farm-

planning. Usually, a large number of practices are included in a static model which is solved by linear

programming. But to ignore the dynamics is to ignore the cost of degrading future productivity. A

practice may be profitable now but unprofitable over the long term. The static solution may not be

optimal.

Other empirical and some strictly theoretical studies (examples are Burt, 1981; and McConnell,

1983) are based on the well-developed literature in natural resource economics. Continuous control of

degradation is assumed and medium-sized problems are sometimes solved by either dynamic

programming or mathematical programming. No harm is done if continuous control is simply a

convenient approximation. Unfortunately, it is not. As will be shown, discrete practices may be adopted

in ways that continuous control cannot model.

This study adds to the literature by constructing and applying a dynamic model for the optimal

adoption of discrete farming practices. The model is an extension of free-time optimal-control and is

analyzed, not in real time, but in what might be called artificial time. In real time, a switch from one

practice to another occurs instantaneously. But in artificial time, a switch happens in "slow-motion". This

Dynamic Adoption of Land Degrading or Renewing Practices
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makes the model almost as simple to analyze as an ordinary control model and solvable by dynamic

programming or mathematical programming.

Speeding back up to real time, an optimal time-path has an initial degradation phase and a final

steady-state phase. During the initial phase, degradation declines as practices which degrade less and less

are adopted in succession. During the final phase, degradation is balanced by renewal as practices which

degrade and renew are rotated. The initial phase might be absent or could be one of renewal rather than

degradation. The final phase could be one of abandoning rather than sustaining the land.

The models of Walker (1982) and of Miranowski (1984) initially degrade and then abandon the

land. Models of crop rotations have only a steady-state of sustained farming (El-Nazer and McCarl, 1986;

Lazarus and Swanson, 1983). In related literature, forests, machinery and livestock are managed by

rotations of discrete alternatives (Clark 1976; Perrin, 1972; Karp et al., 1986; Chavas et al., 1985). As will

be shown, these and other special cases are relatively easy to solve. The general model, however, is not so

easy. It can be large. It is highly nonlinear and requires unusual gradients to optimize for discrete

practices. Therefore it wise to understand the theory of optimal adoption and examine special cases

before attempting to solve a more general problem.

The model for the dynamically optimal adoption of discrete farming practices is formulated in

the next section. A discussion of the theory follows. Then the model is applied to three important types

of land degradation: erosion, acidity and salinity. In the applications, land is degraded by erosion and

then abandoned, degraded by acidity and sustained in a steady-state and renewed from a saline state and

sustained.

Dynamic Discrete-Choice Model

If a farmer had only one farming practice available but could operate that practice at any

intensity, the value of the farm would be maximized by solving an ordinary control problem with

continuous control.

ti
1) jo(x. = max ft e_5(t-to)no(Xt,zo)dt + e-6(t )Ji(Xti)

o

subject to:

•
Xt = go(Xt,z0); and

Xt given.
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The value of the farm, Jo, would depend upon the stock of the land resource, X, at initial time to. It would

equal the net present value of annual profits, Ho, where the subscript, 0, is to be explained later. The net

present value is maximized by choosing continuous control variable, zo, over the farmer's working life

until retirement at time ti. Then the farm might be sold for price J1 which depends on the remaining land

resource. The discounted sale price adds to the initial value of the farm. The maximization is dynamic

because the choice of intensity can speed degradation or renewal of the land at rate go.

The farmer may not only choose how intensely to farm but also when to retire from farming.

There would be two very different alternatives to consider: continue farming as before or sell out.

Problem (1) for maximizing the value of the farm becomes a free-time control problem. This is the

simplest possible discrete-choice model.

Now suppose the farmer could adopt a second farming practice at time ti. Retirement would be

a third alternative at time t2. The farm's value at ti would be the maximized net present value from the

second farming practice plus the discounted sale price.

t
2

2) ji(xt ) . Max ft e_5(t- 1 t_ ) Hi(Xt,zi)dt + e-6(t2 ti)J2(Xt )
i 1 2

subject to:

•
Xt = gi(Xt,z1).

Where the first practice had annual profit Ho and changed the land resource at rate go,

depending on intensity zo, the second practice has profit Hi and rate gi depending on zi. The subscripts 0

and 1 denote the practices adopted at times to and ti. The two practices are linked because the final stock

of the resource from the first practice is the initial stock for the second.

In general, there could be n different farming practices, each with a different profit function and

rate of change. There would be n successive control problems, Jo, Ji, through J, linked together.

Substitute these n control problems into Problem (1).

f ti+i
Jo(Xt = E Max t e-6(t-to) Hi(Xlizi)dt +

o i i

subject to:

Xt = gi(Xt,zi); i=0,...,n- , t1• < t ti+i, and

Xt given.

_6 (tn-to
n)j-n(Xt )

Dynamic Adoption of Land Degrading or Renewing Practices
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Problem (3) is the discrete choice model in real time. Practices are listed in the order in which

they will be adopted. Real time starts and stops for the first practice at to and ti, for the second practice at

t1 and t2, and so on until real time starts and stops for the nth practice at tn_i and tn. However, the order of

the practices may not be known a priori and the sudden starting and stopping makes analysis intractible.

These difficulties can be overcome by transforming the problem into artificial time which runs

continuously and doesn't require ordering of the practices. Robson (1981) and Seierstad (1984) introduce

artifical time to derive sufficient conditions for a free-time control problem. ICamien and Schwartz (1981,

p 226) discuss artificial time for discrete jumps in the state variable. Problem (3) is more elaborate than

these models but still can be transformed. Let s denote artificial time running from 0 to T. As artificial

time runs, the farmer chooses whether or not real time also runs.

dt/ds =

The variables control real time. Choosing a Oi to be positive means the ith practice has been adopted

and the real-time clock is running. The O's cannot be negative and make the clock run backwards nor can

they collectively exceed unity and make the clock run faster than artificial time. The clock will run at the

same rate as artificial time until none of the farming practices are as profitable as selling out. Then the

clock will stop.

Only when the clock is running can profits be earned and the land resource changed. In

artificial time, profits and the rate of change for the ith practice become Sjll and Oigi. Transform Problem

(3) into artificial time.

iT

Jo(Xo,to) = Maxi eo _6 (ts )-
u 
t„ ds + e-5(tn4o)Jn(XT)

subject to:

dX/ds = Oigi(Xs,zi ;

dt/ds =

0 Oi; i=0,...,n-

Di :5 1; and

Xo and to given.
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In Problem (3) there were n independent practices, each with a distinct maximization in the objective and

a distinct equation of motionfor changing the land resource. Because the clock could run for only one

practice at a time, there was no way of evaluating which of the practices might be most profitable. The

critical distinction of Problem (4) is a single maximization subject to only one equation of motion for the

land resource. Artificial time runs the same for all practices which are evaluated simultaneously. The real

clock runs only for that practice with a of one.

Miranowski (1984) and Lazarus and Swanson (1983) developed models with fixed time horizons

and with control variables, not for adoption times, but for the acreages devoted to each practice. A also

could be interpreted as an acre of land if the II's were profits per acre and, collectively, the O's always

summed to unity. Then the clock couldn't stop. Elapsed time, ts-to, would always equal artificial time, s,

and the equation of motion relating real to artificial time would be unnecessary. Otherwise, a (/) must be

interpreted as a time variable. Depending on the choice of 0, elapsed time may be less than artificial time

and discounting of the future may be effected.

Optimal Adoption

Maximizing the value of the farm in Problem (4) is similar to solving an ordinary control

problem. Instead of maximizing the value directly, a Hamiltonian can be maximized for each time period.

A Hamiltonian is a dynamic profit function. It is formed by subtracting total user-costs from annual

profit. Total user-cost of the land resource equals the implicit price of the resource multiplied by the

quantity used. The implicit price is a costate variable and the quantity used is the right-hand side of the

equation of motion. Total user-cost of real time is analagous. Finally, the Hamiltonian must be

augmented for contraints on the times of adoption.

Hs = (ts40) + As Dkigi + E0i +
i
iliOi v5[1

A and V) are costate variables for the implicit prices of the land resource and of time. p and v are

Lagrange multipliers for the inequality constraints. Because annual profits are discounted, the

Hamiltonian, costate variables and multipliers are denominated in dollars at time to. ,

In addition, each practice has its own dynamic profit.

= (ts-to) + Asgi; i=0,...,n-1.

Dynamic Adoption of Land Degrading or Renewing Practices
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Thus the overall Hamiltonian is a combination of dynamic profits from the individual practices,

augmented for time constraints.

6) Hs = DkiHi + Dips + pi - vs] + vs

The Hamiltonian is to be maximized for intensities, z, and adoption times, 0. It is not possible,

however, to maximize for intensities by simply differentiating equation (6) with respect to the z's and

setting the derivatives to zero. The derivatives may already be zero because the O's may be zero. It would

then be impossible to know which practice was the most profitable and should be adopted. Instead, the

optimality conditions for the z's must maximize dynamic profit for each practice in equation (5). The

optimality conditions for the O's and for the state variables X and t, on the other hand, are derived by

differentiating equation (6).

7a) 3H/3z i = 0 = e-6(ts- )allitazi + Asagi/azi; i=0,...,n-1,

7b) aHs/a0i = 0 = Hi + + jq - 5; i=0,...,n-1;

7c) -3H5/3X5 = - DfiiaHi/aXs = dA/ds = -E
i 
Oi[e-6(ts-to)alliiaXs Asagi/aXs];

7d) -3H5/3t5 = -E0jaHi/at5 = diNds = 6

7e) AT =.e-5 (tn-tdaJniaXT;

7f) vyr _se-5 (tn-to)jn.

Optimality conditions also include the equations of motion and initial conditions in Problem

(4) plus complementarity slackness conditions for the time constraints.

(7g) 0 is. pi; = 0;

xoje-5 (ts-to)ni;

(7h) 0 :5_ vs; vs[1 - ZOi] = 0.

How profitable is each practice? Condition (7a) maximizes each dynamic profit with respect to

its intensity, z, by equating annual marginal profit to marginal user-cost. Deriving this condition from

equation (5) and not (6) has a practical implication. Mathematical programming cannot simultaneously

maximize the profits from each discrete practice and choose among those practices without special

gradient calculations.



Should the land be farmed or sold? Condition (7b) compares each dynamic profit, maximized

for intensity, to the costate variable for time. The costate is interpreted as the change in the farm's value

due to the passage of time and, after integrating conditions (7d) and (71), equals the negative of the

interest rate multiplied by the value of the farm.

= _6 
fse 

—5 (tr-to) d
T 

i 1
+ e-6(tn-to)Jn].

Thus, condition (7b), compares dynamic profits to the opportunity cost of interest foregone by investing

on the farm rather than off. If none of the practices meet the opportunity cost, the p multipliers must be

positive and, by complementary slackness in condition (7g), the O's must equal zero. None of the

practices should be adopted and the farm should be sold. If any practice is to be adopted, its multiplier,

p, must be zero and its dynamic profit from production must meet or exceed the opportunity cost of

investment.

Which practice should be adopted? Any two of the n practices can be compared by combining

equations from (7b).

9) 0 = Hi - Hk + pi - pk; j=1,...,n-1, k=0,...,j-1.

If practice k is not as profitable a practice j, its multiplier, p, must be positive and, by

complementary slackness, it cannot be adopted. If practice j is to be adopted it must be at least as

profitable as every other practice.

A practice may not be the most profitable now, but will it be in the future? Dynamic

profitability can change over time for two reasons. First, degradation or renewal changes the land

resource. Second, discounting decreases the value of future profits denominated in dollars at time to•

Discounting applies equally to all practices and can be eliminated by denominating in dollars at time ts.

Then dynamic profitability changes only because of degradation or renewal.

d(e6(ts-to)Hyds = e6(ts-to)p5giE0i + (allyaXs)ZOigi - (ZOialli/aXs)gi].

If the farm is to be sold and none of the practices adopted, dynamic profitability can no longer change and

the right-hand side of this equation is zero. If practice j is currently being used, dynamic profitability must

change to match the interest expense on the total user-cost of the land resource.

Dynamic Adoption of Land Degrading or Renewing Practices
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10) 
d(e6 

(ts-to)Hyds =es(ts-to)6AA
The costate on the right-hand side is the change in the value of the farm per unit change in the

land resource. Total user-cost, the costate times the amount used of the resource, is the total change in

the value of the farm from using rather than selling it. Multiplying by the interest rate gives the change in

the opportunity cost of investment. Therefore in equation (10), dynamic profit must change to match the

changing opportunity cost. If the land is degraded with gi negative, dynamic profit of practice j will

decline in Figure 1 along the path labeled H. Usually, profit will fall more rapidly over time as the

increasingly scarce land resource becomes more costly to use.

Because practice k is not currently used, its dynamic profit will be shifted as practice j degrades

or renews the land.

11) d(e6(ts- )Hk)/ds = eS(ts-to)[6A5gk + (31-1k/3Xs)gi (31-1.03X0g0.

The first term in square brackets is the change that would occur if practice k was adopted. The second two

terms shift the profit because practice j is used instead. The more the dynamic profitability of practice k is

affected by a change in the land resource, the greater the damage and the greater the magnitude of the

shift.

Practice k may be less degrading but initially less profitable. As the land resource becomes

more costly to use, practice k might become relatively more profitable along path Hk in Figure 1 and be

adopted at time tk. Profit of practice k would decline even more slowly if it were not being shifted down

by practice j. An example of a practice evolving along path Hk is conservation tillage following

conventional tillage.

The dynamic profit of a third practice, practice ,e, might follow path HI. Initially, practice ,e is

not only less profitable but more degrading. In an equation analogous to (11), however, that profitability

may decline slowly if it is not damaged by a change in the land resource. Eventually, practice ,P could be

adopted. This result is more than a curiosity. One example is a drought-resistant crop such as beans, peas

or safflower, which would leave little residue on the surface for erosion control but will withstand the

reduced water-holding capacity of soil after years of erosion. Another example is a salt-tolerant crop such
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as barley or salt bush, which would transpire less moisture than other crops and contribute to a higher

water table if it were used early on but will withstand the salts after years of salinization by other practices.

Of course, a practice that

Dynamic
is easily damaged by degradation,

Profit

like practice m along path Hm in

Figure 1, may never be adopted. A

practice will converge toward

adoption if its profit declines more

slowly than that of the currently

used practice--if equation (11)

subtracted from equation (10) is

less than zero.

t• t2 tn Time

Figure 1. Degradation and Optimal Adoption.

12) d(e6(ts4o)(Hi - Hk))/ds = e6 (ts-to) [6 As(gj - gk) - (31-1k/aXs)gi + (81-1i/3X5)gk].

In Figure 1, equation (12) is less than zero as practice k converges toward adoption After the switch at

time tk, a similar equation could be derived to compare the newly adopted practice k with the old practice

j. This equation, however, would be the negative of equation (12). Because equation (12) remains less

than zero after the switch, practice j becomes increasingly unprofitable and, probably, will not be used

again. Subsequently, practice k is replaced by practice ,e and eventually the farm is either sold or

abandoned.

Smooth convergence toward adoption depends upon the good behavior of the costate. The

costate is interpreted as the implicit price of the land resource or the change in the farm's value due to a

change in the resource. After integrating conditions (7c) and (7e), it equals the net present value of

damage to the future caused by a current change.

r

13) As e-5(ts-to)[ 
J
s e—f s6—E01agiMX dT E0j3ni/ax, +

fs6_zoia gim X dT a jnia

Damage to the future takes two forms: lower annual profits and faster rates of degradation. The smaller

the land resource, the smaller the annual profits and, perhaps, the faster the rate of degradation. The

effect of a faster rate of degradation is similar to discounting the future more heavily.

Dynamic Adoption of Land Degrading or Renewing Practices
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Like dynamic profit, the costate can change because of degradation and discounting. But

denominated in dollars at time t, the costate changes only because of degradation.

14) d(e6(ts-to)As)/ds = [6 — Eoiagilaxs]es(ts-to)As - Diallilaxs.

If both annual profits and the rate of degradation were linear in the land resource and independent of

which practice might be adopted, and if the time horizon were infinite, then the integration of equation

(13) would simplify in the limit to the marginal annual profit divided by a discount factor equal to the rate

of interest minus the marginal rate of degradation. Substituting into equation (12), the change in the

costate would be zero and the value of the land resource would be constant over time. But if annual

profits are concave and increasing in the land resource or the rate of degradation is convex and decreasing,

damage intensthes as degradation proceeds. The costate will be large in equation (13) and increase over

time in equation (14). As the land resource becomes scarce and its value increases, alternative practices

will converge toward adoption in Figure 1. A finite time-horizon would have a small countervailing effect.

Near the time a farm is to be abandoned, however, the value of the land must fall to zero. It might

become optimal to switch back to a previous practice.

Renewal of the land is discussed only briefly in the literature but examples abound. Cover

crops, fallowing and deep ripping can renew organic matter and soil tilth. Legumes replace lost nitrogen.

Small grains can allow better weed and pest control. Periodic liming ameliorates acidity. Trees and

drainage can restore salt land.

If practice j renews instead of degrades the land, with gi positive, it will receive total user-

benefits from renewal rather than pay total user-costs. Dynamic profit will rise in Figure 2 along path

but rise more slowly over time as it becomes less beneficial to renew an increasingly abundant resource.

Initially, practice k may be less renewing and also less profitable because it receives fewer total user-

benefits. As the benefits of renewal decline, practice k could become relatively profitable along path Hk

and be adopted at time tk.



Dynamic
Profit

t•

Figure 2. Renewal and Optimal Adoption.

available.

Time
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In the literature, crop

rotations are invariably at a steady-

state. Soil erosion, acidification

and salinization will have a lengthy

phase of either degradation or

renewal. But this phase may

eventually be followed by a steady-

state rotation if both degrading

and renewing practices are

In Figure 3, practice j degrades and practice k renews the land. Practice j, with gi negative, pays

total-user costs for its degradation. Practice k, with gk positive, receives total user-benefits. As the land

resource becomes scarce and its value increases in equation (14), the costs to practice j and the benefits to

practice k increase. Practice k becomes relatively more profitable in equation (12) and is adopted at time

tk. But in this instance, the dynamic profit of practice j doesn't continue to decline. As the land is

renewed by practice k its value falls. The total user-costs to practice j and the total user-benefits to

practice k fall. Practice j becomes relatively more profitable and will be adopted again. Then practice j

will degrade the land making practice k more profitable in rotation.

The proportion of the

time each practice will be used in

rotation can be solved from the

equation of motion for the land

resource in the steady-state.

Ojfikk

If degradation is rapid and renewal

is slow, the degrading practice,

practice j, will be used very little of

the time. Only two practices will

be rotated if the land resource is

Dynamic

Profit

Hi and Hk

t• tk Time

Figure 3. Degradation, Renewal and
Optimal Rotation.

described by a single equation of motion. More complex rotations
•

Dynamic Adoption of Land Degrading or Renewing Practices
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require two or more equations of motion describing, for example, soil depth, acidity, salinity, nutrients,

pests or diseases.

Finally, how well can either a static but discrete or a dynamic but continuous model

approximate the adoption of discrete practices? More technically, in Problem (4) can the equation of

motion be eliminated to make the model static or can one function interpolate between the many annual

profit functions and another function interpolate between the rates of degradation to make the model

continuous? Figure 4 shows the annual profits at time to of four practices sorted by increasing rates of

degradation. As an approximation, a smooth frontier is fit and passes through the annual profits for

practices j and m. Practice 2 seems most unpromising and is eliminated from the approximation. But

practice k, with the second highest annual profit and next to lowest rate of degradation, must also be

eliminated to maintain concavity of the frontier function.

Annual
Profit

Rate of
Degradation

Figure 4. Annual Profits Sorted by
Increasing Rates of Degradation.

The static model will

choose practice j. This may or may

not be correct. There is no

guarantee that a less degrading

practice paying lower total user-

costs won't have a higher dynamic

profit. The continuous control

model will choose a combination

of practices j and m and decrease

the rate of degradation over time

by using more of practice m. Unfortunately, the optimal order of adoption could be the same as in Figure

1: practice j followed by practice k and finally practice 2. Practice m might never be used. Or it might be

used exclusively. Or any of 13 other combinations might occur. The frontier function has no meaning.

Over time, annual profits can shift up, down, left or right relative to each other. Even if the practices are

damaged equally and shifts don't occur, practice k will often be optimal. To answer the question, either a

static model or a continuous control model may happen on the correct practice by serendipity but there

are no guarantees.
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Conclusions

Practices to manage the land are discrete and linked over time by the degradation or renewal

they cause. The difficulties of modelling both dynamic and discrete practices have forced most authors to

assume away either the dynamics or the discreteness. A static model or a dynamic but continuous model

may select the optimal practice by happenstance. Neither can guarantee optimality.

In this study, a model of the dynamically optimal adoption and rotation of discrete practices is

constructed and applied. An initial phase of degradation or renewal should often be followed by a steady-

state rotation of degrading and renewing practices. Soil erosion seldom may be renewable but acidity and

salinity usually will be. The possibility of a steady-state has received little attention in the literature but

has profound implications for public policy. Policy would no longer be concerned with conserving an

exhaustible land resource to forestall eventual starvation. Instead, policy would be concerned with the

much less urgent task of achieving the optimal steady-state for a sustainable agriculture.

Finally, farm decisions other than land management require a dynamic discrete-choice model.

An optimal decision must not only equate the marginal conditions for a given production function but

choose among production functions and the choice may affect the future. Models of machinery and

livestock investment will differ in their equations of motion, but the method of analysis developed here,

linking free-time control problems and translating to artificial time, should apply equally well.
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