
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


ThetUniversity of Western Australia

.".41N11 
i'OUNDATION

AGRICULTURAL 
ECONOMICS

LIBRARS'

AP 

AGRICULTURAL ECONOMICS

, SCHOOL OF AGRICULTURE

DEBUGGING MATHEMATICAL
PROGRAMMING MODELS:

PRINCIPLES AND PRACTICAL STRATEGIES

David Pannell, Ross Kingwell* and Steven Schilizzi#

Agricultural Economics
—Discussion Paper: 2/92

Nedlands, Western Australia 6009





•

DEBUGGING MATHEMATICAL
PROGRAMMING MODELS:

PRINCIPLES AND PRACTICAL STRATEGIES

David Pannell, Ross Kingwell* and Steven Schilizzi#

Agricultural Economics
Discussion Paper: 2/92

The University of Western Australia, Nedlands WA
*Department of Agriculture, South Perth WA
#INRA-LECSA, Montpellier Cedex 1, France



•

DEBUGGING MATHEMATICAL PROGRAMMING

MODELS: PRINCIPLES AND PRACTICAL STRATEGIES

DAVID PANNELL, ROSS KINGWELL AND STEVEN SCHILIZZI

University of Western Australia, Nedlands WA 6009;
Department of Agriculture, South Perth WA 6151;

INRA-LECSA, Montpellier Cedex 1, France.

Bugs are an unavoidable aspect of mathematical programming (MP)
modelling. In this paper we discuss the prevention and diagnosis of
bugs in IVIT models. The topic is rarely addressed in the literature but
is crucial to the success of modelling projects, especially for large
models. We argue that finding a bug and understanding an unexpected
results (whether or not it is due to a bug) are very closely related
activities. We identify different types of bugs and suggest practical
strategies for dealing with each. Adopting procedures for prevention of
bugs is essential, especially for large models. We outline the
prevention strategies we have adopted and found successful for the
MIDAS and MUDAS models.

Validation of mathematical programming (MP) and other types of models has been
discussed by a number of authors (e.g. Gass, 1983; McCarl, 1984). Debugging is one
component of the validation process but it has generally been given a cursory
treatment in the validation literature. For example, McCarl's (1984) "procedure for
model validation" includes the following:

If the model has failed, discover why. ... Repair the model and go to step
2. (p. 161)

Readers who have constructed large MP models will know how difficult and time
consuming it can be to obey these simple instructions.

Debugging has also been neglected in the many texts which deal with construction
and solution of MP models. We hope, in this paper, to counter some of this neglect.
Our ideas are based on experience over the past decade developing, using and
actively maintaining the MIDAS whole-farm model (e.g. Morrison et al., 1986;
Kingwell and Pannell, 1987) and more recently MUDAS, a much larger version
including seasonal variation (Kingwell et al., 1992).

Our aims in this paper are: to identify some principles of bugs and debugging, to
discuss some implications of these principles, to identify types of bugs and their
symptoms, and to create checklists of strategies for (a) debugging and (b)
preventing bugs.

Guiding Principles

In this section we draw on our experiences to identify and discuss some useful
principles of bugs and debugging. We have two areas of interest in this paper:
diagnosing suspected bugs and preventing bugs. Our principles are:



1. Prevention is better than cure.

This is an old but apt adage which applies as much in debugging MP modelling as

anywhere. We discuss prevention of bugs at some length later on.

2. An unexpected model result is due to a bug unless you can convince yourself
otherwise.

This implies a conservative approach to interpreting model results. It means
that you do not accept a plausible explanation for a result without examining
and testing the alternative explanation that the result is at least partly due
to a bug. In our experience, it is easy to invent a more or less convincing
explanation for almost any result in a complex model. Such explanations should
not be accepted uncritically. On the other hand, you can't prove there is no bug
(in much the same way as in the dominant paradigm for science it is possible to
disprove a hypothesis, but not to prove it. See Magee, 1973). In the end it
comes down to the modeller taking "reasonable" care, a matter of subjective
judgement.

3. Maintaining a bug-free (or at least low-bug) model requires discipline.

Most importantly, you need discipline to pursue every unexpected result or
suspicious looking matrix coefficient to the point where you are convinced that
it is or isn't due to a bug. It's all too easy to go onto the far more
interesting task of doing further model runs. Discipline is also required to
keep model documentation up to date. This leads to:

4. A well documented model is easier to debug and maintain.

This is possibly the most obvious but also the most frequently ignored of our
principles.

5. Knowledge of the model is essential for debugging.

Knowledge of the model's assumptions and structure is essential for uncovering
some bugs. Further, detailed knowledge of the real-world system being modelled .
is also useful, particularly for recognising model runs which are symptomatic of
a bug.

6. In a well maintained model, the number of bugs in a matrix decreases over time
as they are discovered and fixed, but not to zero.

After a long period of model use and maintenance any remaining bugs are unlikely
to be serious, or at least to conflict with your expectations. Such bugs can
remain undetected for a long time. For example, we recently found 15 wrong
coefficients in the EWM version of MIDAS which had been there for several years.
MIDAS is an intensively maintained and used MP model and it is not especially
large as MP matrices go, yet it still harboured at least 15 undiscovered bugs
for several years. Fortunately they weren't serious.

Long-standing bugs like these will generally only be discovered if the model is
used in a new and innovative way, model input or output is examined in different
ways or a new person joins the modelling team. The 15 bugs mentioned above were
discovered when a new format for output was created. However these new
approaches to model use rapidly dissipate their capacity for revealing bugs as
they too become routine.

2



7. The number of bugs in a matrix increases exponentially with the size of the
matrix.

For example, suppose there is a one in 10,000 chance of any coefficient chosen
at random being wrong. If you have a small 100 x 100 matrix, the expected number
of bugs in coefficients is 1, the probability of no bugs is 0.37 and the
probability of five or more coefficients being wrong is 0.0037. Table 1 shows
how these probabilities change as matrix size increases.

The probability of there being at least one bug in the matrix increases to be
over 99 percent for a matrix with 50,000 coefficients. Even more worrying, the
probability of there being five or more errors in the matrix is almost 20
percent for a 30,000 coefficient matrix, which would not be considered
particularly large.

Table 1. Probabilities of errors in coefficients if the probability of an error
in a randomly chosen coefficient is 0.0001 (N = number of errors)

Matrix size E(N) P(N = 0) P(N 5) P(N 10)
(rows x cols)

10,000 1 0.37 0.0037 *
20,000 2 0.14 0.053 *
30,000 3 0.050 0.18 0.0011
40,000 4 0.018 0.37 0.0080
50,000 5 0.0067 0.56 0.030

* p < 0.001

The probabilities in Table 1 are based on the assumption that the probability of
an error is independent of the size of a matrix. In reality, the probability may
increase with matrix size due to the fact that it is more difficult to examine
larger matrices and more difficult to recognise a bug when you see one. Table 2
is similar to Table 1 except that it is based on the assumption that the
probability of an error in a randomly chosen coefficient is proportional to the
matrix size (0.0001 for a 10,000 coefficient matrix, 0.0002 for 20,000 etc.).

Table 2. Probabilities of errors in coefficients if the probability of an error
in a randomly chosen coefficient is proportional to matrix size (N = number of
errors)

Matrix size E(N) P(N = 0) P(N 5) P(N 10)
(rows x cols)

10,000 1 0.37 0.0037 *
20,000 4 0.018 0.37 0.0081
30,000 9 * 0.94 0.41
40,000 16 * 0.9996 0.96
50,000 25 * 0.9999 0.9998

* p < 0.001

This assumption has a big effect on the probabilities. A 30,000 coefficient
matrix now has a 94 percent chance of containing five or more errors and a 41
percent chance of 10 or more errors.



These probabilities are based on simple assumptions and should be viewed as

illustrative only. However they do highlight the great risk of bugs in large

matrices especially when you consider that the matrix sizes used here are by no

means large. Matrices with millions of coefficients are certainly in use.

With modern software and hardware, human ability to maintain and debug models is

the only factor limiting their size and complexity. It does pose real limits

which need to be recognised and respected. There is a matrix size beyond which

no amount of resources can ensure the correctness of the matrix. It is difficult

to say how big is too big due to the repetith/eness of some models. MIDAS has

little repetition. With allocation of adequate resources (0.3 to 0.5 person

years per year) and strict adherence to the sorts of bug prevention strategies

suggested here, its 400 x 300 matrix can be maintained with only occasional

errors. MUDAS is much bigger (1500 x 1300) but it is also more repetitive.

Nevertheless we feel that a matrix of this size is right at the limit of what

can realistically be maintained in a usable and fairly error-free state.

Taking money to build models of the size one sometimes hears about (tens of

thousands of columns) may be self deluding if not outright dishonest and can

reflect badly on modellers, on the agricultural economics profession and on the

individuals involved. There is little or no prospect of satisfactorily debugging

such a model, so any results from them must be subject to grave doubts.

8. Maintaining a large MP model in a fairly bug-free state requires a large

commitment of human resources.

Rarely are sufficient resources provided. We consider it likely that many large

MP models in active use contain important bugs.

9. Bugs you thought you had fixed can easily come back to haunt you.

Anyone who has been responsible for debugging a large model over a long period

of time will be well acquainted with this principle. Later in our discussion of

prevention strategies we suggest model naming and updating strategies which

should avoid this problem.

10. When you are actively searching for one bug, you are quite likely to discover

other, unsuspected bugs.

The act of searching for a bug requires a high degree of mental acuity. It may

also require you to critically examine aspects of the model which have

previously been neglected. Both of these factors can lead to the modeller

stumbling onto previously unsuspected bugs.

11. Good hardware and software can make debugging much less of an onerous task.

Debugging often involves making numerous changes to the model and conducting

several model runs. Obviously, using the fastest available hardware minimises

the response time for tests of hypotheses.

Software can probably make an even bigger difference. Here are some software

tools which we have found valuable during debugging. All are for DOS computers

which, to our knowledge, is the only microcomputer operating system for which

the most powerful MP software is available.

- GULP: GULP is a linear programming package written by one of us (Pannell 1988)

which eases the process of viewing and editing a matrix. It allows easy

4



movement of rows, columns or blocks of data to assist with visual inspections

of the matrix. As well as being useful for debugging, it has features which
help prevent the occurrence of common bugs when entering or editing a matrix

(e.g. guards against typing errors). It uses MPS data format.

- DESQview or Windows: Often when debugging it is necessary to swap quickly
between several different programs (e.g. GULP, a spreadsheet, a text editor
and the MP algorithm). Multi-tasking packages like DESQview and Windows allow
several programs to coexist in the computer's memory and can save a lot of
time and frustration. For high powered modelling we recommend DESQview 386 and
a 80486 processor with at least 3 MB of RAM.

- A spreadsheet (e.g. Quattro Pro, Lotus 1-2-3): Spreadsheets are probably the
most flexible and most generally useful of all software. The uses to which we
have put them include identification of differences between similar matrices
and identification of all differences between two solutions. This is in
addition to our use of spreadsheet templates to calculate model coefficients
from basic assumptions and to provide a user-friendly tabular interface for
data entry.

- COMPARE: This is a public domain program which undertakes intelligent
comparisons of text files. Rather than just indicating that two files are not
identical (a trivial exercise) it uses heuristics to identify and highlight
the differences. This is a very quick way of identifying minor differences
between two matrix data files.

Symptoms of Bugs

The more serious bugs are usually detected through one of the following symptoms
appearing in the model solution.

- an unlikely model solution,

- no feasible solution,

- an unbounded solution.

The majority of these symptoms are observed during the model development and
testing phase but they can also occur when the model is changed for a particular
analysis. The change may introduce a new bug or it may allow an existing bug to
express itself.

Infeasible or unbounded solutions are clearly indicated in the output from the
computer program, but identification of unlikely solutions requires a degree of
subjective judgement. An unlikely solution can be blatantly obvious or very subtle.
In general an unlikely solution is one in which one of the elements of the solution
is outside the range within which you judge it should fall. The suspect element may
be the level of an activity, the shadow cost (marginal or dual value) of an
activity, the level of slack for a constraint or the shadow price for a constraint.
Examples of various types of unlikely solution include:

- an activity is selected at a level judged to be too high.

- an activity which you judge should be included in the solution at non-zero level
is not included. .

- an activity which you judge should not be included in the solution at non-zero

5



level is included.

- the shadow price of a constraint is very different from the range within which

you judge it should fall.

- the shadow cost of an activity is very different from the range within which you
judge it should fall.

- a constraint which you judge should be binding in the solution has a non-zero
slack value.

- you have two similar copies of a model which you believe should give the same
basic solution but they do not.

- the solution seems consistent with the relationships and constraints which you
have included in the model, but an expert in the system being modelled advises
that the solution is not consistent with the real world.

Later we suggest strategies for determining what type of bug, if any, is causing
these symptoms.

The symptoms listed above all relate to problems with the model solution. However
many bugs are too subtle or minor to have a detectable effect on the solution. It
may be that a bug affects the levels of several activities, but that the resulting
levels are plausible, even though they are incorrect. Alternatively the model user
may have no prior expectation about which of a range of activities will be included
in the optimal solution. In this situation a mis-typed coefficient could
dramatically alter the optimal basis without arousing suspicion.

There are two ways of dealing with these more subtle bugs. One is to detect them
through careful examination of the model's coefficients, checking their consistency
with the underlying assumptions of the model. The potential for tedium in this task
is great, especially in large models. The other weapon against subtle or minor bugs
is to prevent them occurring in the first place, as we discuss later.

Types of Bugs

Once a symptom has been detected, the next step is diagnosis of the cause. An
important element of the diagnosis is an awareness of the full range of possible
causes of the observed symptom. Table 3 shows one way of categorising the range of
possible -diagnoses.

Strategies for Debugging

Here we are concerned with symptoms which occur in a model solution, not with bugs
which are initially detected through checking of model inputs. There is no fool-
proof strategy which will lead you directly to the diagnosis of a bug and it is
difficult to generalise about the best strategy. However a methodical approach is
bound to be more productive than a random search. A useful analogy can be drawn
between debugging and scientific research. The practice of science and efficient
debugging involve similar elements.

- First there is the requirement that the scientist (or modeller) immerses herself
or himself in the .problem. This involves detailed study of the general field of
research (or of the model and its assumptions).

6



Table 3. Possible diagnoses of a suspected bug

1. The model is not consistent with the underlying assumptions.

1.1 A coefficient is incorrect.
1.1.1 A coefficient has
1.1.2 A coefficient has
1.1.3 Inconsistent units

the value for a c
1.1.4 A coefficient has
1.1.5 A coefficient has
1.1.6 A coefficient has

been mistyped.
been given the wrong sign.
of measurement have been used when deciding on

oefficient.
been miscalculated.
been omitted from the matrix.
been placed in the wrong place in a matrix.

1.2 A constraint is incorrect.
1.2.1 A constraint is operating in the wrong direction (e.g. as a

"greater than" when it should be a "less than").
1.2.2 A needed constraint is omitted.
1.2.3 A constraint is ill-conceived (e.g. coefficients omitted or in the

wrong activities).
1.2.4 The model is over-constrained; an extra, unnecessary constraint has

been included.

1.3 An activity is incorrect.
1.3.1 An activity is ill-conceived (e.g. coefficients omitted or placed

in the wrong constraints).
1.3.2 A needed activity is omitted.

2. The model is consistent with the underlying assumptions.

2.1 The underlying assumptions are consistent with the real world.
2.1.1 The unexpected result is a new insight about the real world.

2.1.2 The model result is correct but is being misinterpreted (e.g. the

level of an activity may be interpreted using incorrect units of
measurement).

2.1.3 There is a bug in the software used to solve the model.
2.1.4 Bad or inadequate control instructions were given to the software

used to solve the model (e.g. instruct program to maximise the
objective function when it should be minimised).

2.1.5 The model is badly scaled, resulting in an accumulation of rounding

errors when the model is solved.

2.2 The underlying assumptions are not consistent with the real world. The model

may need new constraints or activities or changes in the values of some

coefficients.

- The second element is identification of a range of possible explanations for the

problem being addressed.

- Thirdly, specific hypotheses are formulated and tested in experiments.

- Fourthly if the process is successful, information from the experiments is

integrated with information about the general field to provide an understanding

of the problem.

- Finally, the new understanding may allow improved management of the system b
eing

studied (or correction of the bug).

7



,

Just like science (Koestler 1964) debugging cannot be a cold, calculating and

linear process. Both involve essential elements of inspired guesswork, hunches and

sudden flashes of insight which cut through the mist. Also neither process will

proceed neatly and linearly through the stages described above. There will be
overlap between stages and possibly feedback of information to an earlier stage.

Let us now examine these elements of the debugging process in more detail. Suppose
a model solution causes you to suspect the existence of a bug but you have not yet
identified what the bug is.

The first stage will be already partially complete since, presumably, the person
doing the debugging is thoroughly familiar with the model. The other element of
this phase is to become familiar with the behaviour of the bug. Extra model runs
may be needed to reveal circumstances in which the bug does and does not occur.

In general terms, the second phase (identification of a range of possible
explanations) simply requires familiarity with Table 3. However it is sometimes
possible to narrow down the range of reasonable diagnoses. Table 4 shows a
checklist of how the range of possible diagnoses can be narrowed down for
particular symptoms apparent in the model solution. Where the table indicates that
a diagnosis can be ruled out, it means it can be ruled out as the cause of the
symptom indicated. Clearly it doesn't necessarily mean that the problem is
completely absent from the matrix. Some diagnoses cannot be ruled out altogether
but are quite unlikely to cause the indicated symptom.

Table 4. Diagnoses from Table 3 which can be ruled out as the cause of particular
symptoms or are unlikely to be the cause

Symptom Ruled out Unlikely

diagnosesa diagnoses

No feasible solution

Unbounded solution

2.1b, 2.2
1.2.2

2.1 b, 2.2
1.2.4

The solution includes elements which not
possible in the real
world system being modelled 2.1.1, 2.2

2:1.3, 2.1.4

2.1.3

The solution algorithm includes an
automatic facility for icaling a
matrix and this
facility is switched on 2.1.5

a Ruling out a diagnosis at one level also rules out all diagnoses at a lower
level. For example, if diagnosis 2.3 is ruled out then so too are diagnoses 2.3.1
and 2.3.2.

Although unlikely if you are using a reputable solution algorithm, diagnoses
2.1.3 and 2.1.4 should not be completely ruled out. Occasionally adjustments to
the feasibility tolerance used in a package will cure the problem of not being
able to find a feasible solution in perfectly valid and feasible model.

8



Notice that most diagnoses indicated in Table 2 fall under heading 2: the model is
consistent with the underlying assumptions. It is usually impossible to rule out
the converse diagnosis (that the model is not consistent with the underlying
assumptions) without further checking of the matrix structure and contents.

Techniques for testing hypotheses

The third element of the debugging process listed above is to formulate and test
hypotheses. There are many techniques for looking at a model's inputs and/or
outputs or of manipulating and comparing model solutions which can help to test for
particular problems. These techniques vary in their usefulness for dealing with
different symptoms but many are useful for several different symptoms. First we
will present the various techniques categorised according to the diagnoses in Table
3. Then we suggest the order in which the different techniques should be applied,
depending on the symptoms observed.

Diagnosis 1: Testing for an error in the matrix coefficients is, conceptually,
quite simple. It requires that you examine coefficients in the appropriate region
to ensure that they are consistent with the underlying assumptions of the model. In
practice the problem is deciding which coefficients to examine. Several of the•
techniques suggested here are designed to help narrow down the focus of your search
for bugs. Searching for a bug generally involves employing a technique to identify
a suspicious section of the matrix followed by a detailed examination of this
section. This is repeated until a bug is found or you decide to pursue the
hypothesis that there is no bug.

For now, suppose that you have narrowed down the hunt to a section of the matrix: a

row or column or small block of coefficients. At this stage there is no alternative

to a visual examination of all coefficients in the suspect region. You can use a
text editor to look at data in the format used by the computer algorithm, but it is
probably more productive to examine the data in situ in the matrix. This provides
additional visual cues (presuming that the model has been thoughtfully and
consistently constructed) which can make a difference in recognising a problem. A
matrix editor like GULP is invaluable for this purpose as it allows you to see
coefficients in context without having to print out the matrix. Clearly the person
undertaking the examination needs to be thoroughly familiar with the modelling
technique and the model's assumptions so that they can recognise an incorrect
coefficient when they see it. They need to be aware of all the ways in which a
coefficient, constraint or activity can be in error, as listed in Table 3, and
check thoroughly for each. Identification of an error must, in the end, involve an

examination of this type.

First however there is the problem of deciding where to look. Here are our

suggestions of techniques which can help to narrow your focus.

- Often, the symptom observed in the model solution provides valuable clues. Be

sure to make the most of any clues which are provided. If the problem area is

not obvious, examine the solution for logical inconsistencies in the relative
levels of different activities or for unrealistic shadow costs of non-basic
activities or shadow prices of binding constraints. If this leads you to
question a particular section of the matrix, proceed to a detailed examination

of the coefficients in that section.



- Conduct model runs to determine circumstances where the bugl does and does not

occur. Does it always have an impact on the solution or does it only express

itself when some parameters take particular values? For example if a bug occurs

in a coefficient of activity A which causes the selection of unrealistic levels

of activity B, the bug will only be apparent when activity A is included in the

optimal solution. A series of runs in which a key parameter is varied over a

wide range is a good way of examining the behaviour of the bug. Try to use

information about its behaviour to determine which constraints and which

activities are the root of the problem.

- If you suspect that a bug occurs in a particular, activity but are unable to

identify the specific problem, a potentially useful technique is to compare the

solutions of two very similar models: one with the activity constrained to zero

level and the other with the activity constrained to a low level (e.g. 1 unit).

Then calculate the difference between the solutions in the level of each

activity and the degree of slack for each constraint. This reveals all the
direct and indirect impacts of the activity on other activities and constraints.

This can sometimes reveal a linkage between the suspect activity and another

activity which should not be occurring, leading you to examine the matrix for

unintended links.

Undertaking such a comparison can be a very tedious operation without some

computerisation. A custom written program in a high level programming language

is one obvious approach. For those without the skills to write such a program,

an alternative is to use a spreadsheet package. Import the two solutions into

adjacent areas of the spreadsheet in such a way that the numerical values in the

solution are stored in cells as individual numbers (rather than strings of

text). Then create a column of formulae which calculate the differences between

the two solutions. Non-zero values reveal where the differences occur.

- If you are lucky enough to have a recent previous version of the model in which

the unexpected result does not occur, conduct a comprehensive comparison of the

data for the two versions. This may reveal a bug which has been introduced

inadvertently. However it is possible that the bug was present in the previous

version without manifesting itself in the model solution. In this case the bug

will not be revealed directly by the comparison of data. However, the comparison

will at least show which coefficients have changed, allowing you to search for

the change which has caused the bug to reveal itself. Such information should

give clues to the location of the actual bug.

If the data is stored in a text file (e.g. in MPS format), a spreadsheet
approach, similar to that described above for comparing solutions, can greatly

ease comparison of data files. Alternatively if the files are not too different

you can use the COMPARE utility to identify differences. Failing that you will

need to custom write a program to do it.

- Another technique is to delete sections of the matrix (groups of rows or
columns) and see if the problematic result still occurs. This is only possible
in some circumstances. You need to be quite careful about which parts to delete

as it is easy to introduce new problems by removing a crucial constraint or

activity. The safest approach is to limit such deletions to discrete and fairly

self contained sections of the model. For example if a model includes several

different regions, it will probably be possible to delete one of the regions

without disturbing the functionality of the other regions.

1 In general, reference to a "bug" in this section should be interpreted as a

"hypothesised bug".

10



If the model data is stored in MPS format, deletion of a constraint with more
than a couple of coefficients is a very tedious task. Coefficients for each
activity are grouped together but this means that coefficients for any one
constraint can be distributed throughout the data file. The solution is to use
GULP, which makes deletion or addition of constraints a simple task.

Tests of hypotheses which do not involve bugs in the matrix tend to be quite
specific to particular diagnoses:

Diagnosis 2.1.1: Testing a hypothesis that an unexpected result is correct and that
the model is free of bugs is, unfortunately, impossible. McCarl (1984) states that

Models can never be validated, only invalidated. ... The outcome of a model
validation process is either a model that has been proved invalid or a model
about which one has an increased degree of confidence. (p. 157)

Although this is strictly true, it is possible to indirectly test the validity of a
particular result. Suppose that you have searched thoroughly for a bug without
finding one but are unable to convince yourself that a particular unexpected
results is valid. Even if you do have a plausible explanation, some results clash
so strongly with prior expectations that any attempt to publicise them without very
convincing supporting arguments will threaten your credibility. One approach is to
try to reproduce the result using a different technique; try using a different
modelling approach (e.g. dynamic programming, simulation) or a much simpler MP

mode12. If you can independently reproduce the result it at least gives you
confidence that the result is correct and it may also provide that elusive
convincing explanation of the result.

Apart from this, one is limited to validation through absence of invalidation. If
you do have a plausible explanation, conduct additional model runs to attempt to
falsify it. This can be done by preventing the mechanism for your plausible
explanation from operating. For example, suppose you have two similar models but
there is an unexpected difference in the level of activity A between the two
solutions. You hypothesise that this is due to changes in the level of activity B.
Try constraining the level of activity B to be the same in both solutions. If the
difference in activity A then disappears, this lends support to your hypothesis
about the mechanism and helps dispel doubts that it may be simply due to a bug.

Diagnosis 2.1.2: This is simply a matter of careful checking. For example if the
level of an activity seems wrong, refer to your documentation and check that the
coefficients for that activity are consistent with the unit of measurement you are
using to interpret the result.

You should also check that the solution you are puzzling over is reported by the
software as being optimal. It may be that the activity levels are so strange
because the solution is infeasible or unbounded.

Diagnosis 2.1.3: Implementing an accurate and reliable computer package for
mathematical programming is notoriously difficult. Even the most highly reputed
packages are not immune from bugs. For example Tice and Kletke (1984) reported a
serious bug in a version of MPSX, a powerful and widely used package for mainframe
computers. We have also found occasional problems with AESOP (a purely linear
version of MINOS). We have found that AESOP (which lists shadow costs as negative
numbers in the optimal solution) occasionally fails to reach the true optimum. This

2 Thanks to Brian Hardaker for this suggestion.

11



is revealed by the presence of positive shadow costs in the solution. However this

is not a reliable indicator of problems if the model includes bounds which can

themselves result in positive shadow costs.

After a period of experience with your model you may gain confidence that your

software is in fact correctly finding the optimal solution. However, in the

development phase the possibility of errors associated with an algorithm should not

be ruled out.

Diagnosis 2.1.4: Occasionally, a problem of bizarre and puzzling model solutions

can be resolved by correctly informing the algorithm that the objective is

maximisation or minimisation.

Some MP computer packages allow you to adjust the "tolerances" used to test whether

a given solution is feasible or optimal. A feasibility tolerance is a small number

(e.g. 1 x 10
-8) which gives the maximum sum of infeasibilities for all constraints

before the basis is considered to be feasible. If the package is reporting that it

cannot find any feasible solution but you are unable to find any problem with the

model's structure or coefficients, adjustments to the feasibility tolerance may
-

solve the problem. For example, try relaxing the tolerance to 1 x 10
6 . The

documentation for your algorithm may give guidance about which values to try.

Failing that, random adjustments may be successful.

The optimality tolerance is the minimum improvement to the objective function which

an activity must make before it will be brought into the basis. If the computer

package appears to be getting stuck in a loop so that it never reaches the optimal

solution, adjustments to the optimality tolerance may solve the problem.

Diagnosis 2.1.5: A badly scaled matrix is one in which there is a big difference in

the magnitudes of coefficients used. A badly scaled matrix has a greater chance of

failing to solve. This can occur because of the accumulation of rounding errors

which occur in every mathematical operation on real numbers in a computer. Such

rounding errors are exacerbated by poor scaling. Symptoms of accumulated rounding

errors can include an unbounded solution, an infeasible solution or an apparently

optimal solution which is actually not consistent with the constraints of the

model.

There is no hard and fast rule about how bad scaling can be before serious rounding

errors occur. Many packages include warning messages based on a rule of thumb •

regarding the ratio between the largest and smallest coefficients in the matrix.

If you feel you need to change scaling, it is simply a matter of using different

units of measurement for some rows and/or columns. Converting the units of

measurement entails multiplying all the coefficients in a row or column by the same

value. This can be done for as many rows or columns as necessary to ensure that

coefficients are not too different. It is wise to use scaling multipliers which do

not make the interpretation of output too difficult.

Diagnosis 2.2: Sometimes you will come to believe that the model is correct within

itself but that it is failing to capture some aspect of the real world. Typically

you may feel the need for new constraints or for. distinguishing between similar but

slightly different activities or constraints. This requires interaction with an

expert in the biological or technical system being modelled. Such interaction

should be viewed as part of the ongoing process of model development (e.g.

Morrison, 1987). Your expert may volunteer suggestions that such changes are

needed. A thorough and up-to-date documentation is very helpful for facilitating

productive interaction with outside experts.

12



Matching hypotheses to symptoms

Having surveyed the available techniques and tools, let us now consider how one
should approach particular symptoms. In what order should hypotheses be tested and
these techniques applied? The suggestions which follow are certainly not exhaustive
in their coverage of the full range of symptoms. They also cannot be applied in an
unthinking "cookbook" manner; as we have observed, successful debugging requires
careful thought as well as creativity and inspiration.

There are two considerations when deciding on the order in which hypotheses should
be tested: the relative likelihood of alternative hypotheses and the ease with
which they can be tested. Commonly there are several hypotheses which could equally
well explain the symptom and which are about as likely as each other to be true.
However the difficulty of testing different hypotheses can vary widely, so we
recommend that, in the absence of any reason to suspect a particular type of bug,
ease of testing should initially be the main criterion used.

No feasible solution: For infeasible and unbounded solutions, one part of the
diagnosis problem requires no effort: there clearly is something wrong with your
matrix. You also are given a clue about where to start looking; one or more
constraints is indicated as being infeasible or one of the activities is listed as
unbounded. Unfortunately, the clue rarely leads to easy identification of the cause
of the problem. This applies particularly to infeasible models, where the cause of
the problem may lie in a constraint which is not reported as being infeasible.

Start by observing which rows are reported as being infeasible in the program
output. If there are not too many infeasible rows, carefully check their
coefficients. Coefficients being entered with the wrong sign (i.e. positive when
they should be negative) are a possible cause of infeasibility.

The next step, if needed, is to check that all constraints are operating in the
correct direction. Do you have any "less than" constraints which should actually be
"greater than" constraints?

Next see if there are any "equals" constraints in the model which can be relaxed to
"less than" or "greater than" constraints. Some modellers are prone to overuse
"equals" constraints and this can easily lead to unnecessary infeasibilities.

If you are still searching, try deleting other constraints (singly or in groups)
until the problematic constraint can be satisfied. When you know which constraints
are in conflict, you can focus on finding out why.

If you suspect that there is actually nothing wrong with the matrix, try adjusting
the feasibility tolerance in your computer program. Alternatively starting the
algorithm with a different basis, so that the optimal solution is approached from a
different direction, will sometimes yield dividends.

Other techniques listed previously may also be relevant in some cases.

Unbounded solution: Start by checking that the direction of optimisation
(maximisation or minimisation) used by your computer program is consistent with
your model. If not, that may be the whole problem.

Secondly identify the unbounded column from the program output. The problem is that
there is nothing preventing this activity from being selected at an infinite level.
Thus you should work through all constraints of the model and check whether one of
them should be affecting the activity but is not. Possible reasons for the problem
include:

13



- coefficients with the wrong sign,
- constraints operating in the wrong direction,
- coefficients missing or in the wrong place

Alternatively it may be that a constraint has been omitted from the model.

Solution conflicts with expectations: It is common to be surprised by a result
obtained from a large MP model. As we have argued earlier, such surprise should be

met with skepticism and followed by a careful search for causes. We suggest that

the search proceed in the following steps, which are in order of increasing
difficulty: (a) check your interpretation of output, (b) check for errors in
computer commands used and for obvious errors made by the computer algorithm, (c)
check for bugs in the model and (d) check hypothetical explanations why the result
may be correct.

Checking interpretation of output includes checking that the solution is reported
as being optimal, not infeasible or unbounded. If so, check the units of
measurement you are using to interpret the solution.

Technical problems to check for include the direction in which the model was
optimised and other problems with the control instructions given to the program.
Bugs with the computer package you are using may leave obvious symptoms (e.g. a mix
of positive and negative shadow costs of activities). If you suspect that the
solution is not truly optimal, check that the tolerances being used by your
algorithm are consistent with any instructions given in program documentation.

If you have not identified the problem by this stage, there is no alternative to
searching for bugs in the matrix. In practice you are likely to investigate
alternative hypotheses in the order suggested to you by the particular symptoms
observed. However we put forward the following suggested order in which to test
hypotheses in cases where the modeller is uncertain how to proceed.

If the problem is apparently in a particular activity or constraint, examine it for
obvious errors in coefficients: typing errors, coefficients with the wrong sign,
coefficients missing or in the wrong place, inconsistent units of measurement or an
error of calculation. If appropriate, check that constraints are operating in the
right direction.

Unexpected solutions are usually associated with one or more activities being
selected at levels outside the range judged to be reasonable. (For convenience let
us call these "target activities"). If you don't initially find any problem with
the coefficients or constraints of the model, add a new constraint which forces the
target activity to be selected at a level which corresponds to your prior
expectations. It may be that there is some error which is forcing a high or low
level of the activity. This will be revealed either by an infeasible solution or by
behaviour of the constrained model.

Possibly the target activity is having a larger or smaller beneficial impact on the
objective function than you realise. To test this use the technique described
earlier for comparing two solutions in which the level of an activity is
constrained to differ by a small amount (say one unit). First constrain the
activity to a low level (e.g. zero) and then to a slightly higher level. The
difference in objective function values Can easily be calculated but it is also
possible to determine which factors are contributing to the difference. Do this by
(a) calculating the difference between the two solutions in the level of each
activity and (b) multiplying differences by the ,objective function value for that
activity. The sum of these values gives you the net difference in the objective

14



function value. You may find unexpected indirect effects on the objective function
which explain the unusual result; check that these are not due to bugs.

Possibly the reason for the high or low level of the target activity is a problem
with an alternative activity which competes with the target activity for resources.
Check for activities which compete with your target activity and in each case
examine them for bugs. If the level of the target activity seems too low, search

for bugs which bias the model toward high levels of the alternative activity.

It is still possible to suspect a bug even if all activity levels conform to your
prior expectations. Inappropriate values for shadow prices, shadow costs or
constraint slacks may be symptomatic of a bug which will affect activity levels if
the model is altered (e.g. in sensitivity analysis).

A very high shadow price can be investigated by comparing two solutions in which
the constraint limit (right hand side term) is varied by a small amount (say one
unit). Calculate all differences in activity levels. Unexpected large differences
may indicate a bug.

A very large shadow cost for an activity is fundamentally the same situation as an
activity being selected at a lower level than expected. Investigate it using the
strategy described above for unusual activity levels.

A large constraint slack may indicate (a) an error in the right hand side term for
that constraint, (b) a low or missing positive coefficient or an erroneous negative
coefficient in the activity (for "less than" constraints) or (c) a problem with low
availability or high usage of a resource represented in another constraint.

Diagnosis of an unusual model result is sometimes particularly elusive. In these
cases adopt the techniques described earlier for locating the bug (or other
explanation) within the matrix: conduct model runs to determine situations where
the bug does and does not occur; if possible delete sections of the matrix and see
if the problem still occurs. A deletion which cures the symptoms of a bug may
indicate that the bug occurs in the deleted section.

If no bug has been found by now, it may be that there is no error in the matrix
coefficients or solving algorithm. Instead the problem may be a failure to
correctly represent the system being modelled. Some aspect of the system may have
been incorrectly' excluded from the model or included in the model in a way which
fails to accurately represent its nature. Alternatively you may need to look for
hypotheses which explain why the result is, in fact, correct. If possible, conduct
tests to attempt to refute these hypotheses.

Strategies for Preventing Bugs

Debugging is difficult, frustrating and time consuming. The discovery of a bug
after a set of model results has been publicised is potentially quite damaging to
the credibility of the model and its developers. Many bugs go undetected for a very

long time, possibly forever. For these* reasons, prevention of bugs is crucial to

the success of a modelling project. Key elements of bug prevention are discipline

and care, but there is also a range of relatively simple strategies which can
contribute to prevention of bugs. In our experienee with the MIDAS and MUDAS

models, the following are useful elements of an overall bug prevention strategy.

Many of these are simply a matter of discipline and common sense but some are the

result of hard-learned lessons.

- During model development- and construction, proceed in small steps. Thoroughly

15



test and debug the model before adding the next component or the next level of
complexity.

- Don't type in data with a text editor unless absolutely necessary (as it is, for
example, in the GAMS system). Use GULP or similar to dramatically reduce the risk
of typing errors and to save considerable time. Also you are more likely to spot
existing errors if you are working with a matrix format (GULP) than in awkward
formats like MPS. Use of a text editor to change MPS data should be limited to
small and simple changes.

- If a text editor is used to edit data and several repetitious changes are
necessary, use a "macro" to automate the repeated key strokes. Some editors have
a macro facility built in, or it can be made available via a separate program
(e.g. DESQview). Macros not only save time but also reduce the likelihood of
errors being introduced through typing fatigue.

- For models with an intended long life, develop computerised data entry systems.
We have created user-friendly spreadsheet templates which allow users to view and
change model assumptions without them needing to be familiar with the matrix of
the model. A simple example is given by Pannell and Falconer (1987) and a full
listing of current spreadsheets is given by Pannell and Bathgate (1991). These
spreadsheets allow users to view parameters in a format and with units of
measurement to which they can relate easily. The spreadsheets perform arithmetic
operations on the parameters to calculate the required matrix coefficients. Of
course there is a risk that the formulae entered in the spreadsheet themselves
contain errors but at least these errors only need to be detected and corrected
once. Without such a system, coefficients must be calculated by hand and are more
prone to error.

The GAMS system provides an alternative approach to data entry which also may
contribute to bug prevention. Data are presented to the package in tables and
algebraic inequalities rather than the usual matrix format. Data changes are made
using a text editor to alter the main data file. This provides some of the
advantages of the spreadsheet approach described above.

- Occasionally print out part or all of the matrix showing numbers. Some computer
packages include the facility to print out very compact summaries of the matrix
using symbols to represent coefficients of different magnitudes. While this can
be very convenient, it can also mask errors which would be obvious from an
examination of the complete matrix.

- Have one person with ultimate responsibility for changes to the model and for
ensuring that it is up to date and free of bugs. Personal responsibility is very
important. We are aware of a research institution at which a major model was
generating impossible solutions but because of a lack of individual
responsibility, the problems went undiagnosed and unresolved. This general
problem is compounded by the general lack of recognition among research
administrators of the importance and resource requirements of model maintenance
and debugging. There is often little incentive for individuals to take on this
role; they can earn more kudos in other activities.

- Have only one master copy of the matrix to which changes can be made. (Of course
keep back-ups of this). Failure to do this is the usual cause of bugs which
return after you thought you had fixed them.

- Have a meaningful and consistent system for naming model data files according to
model version. MIDAS model versions are named something like EWM91-4. The EWM
indicates the region represented, 91 is the year and the 4 indicates that this is

16



the fourth version of the model to be released during the year. It is essential

to assign a new version name after every significant change or set of changes to

the model. On DOS microcomputers, consistent use of file extensions is also

helpful. All our MPS data files are allocated the extension "MPS".

- Have a meaningful and consistent system for naming rows and columns. Make sure a

legend is• included in the model documentation and that the documentation if

readily available.

- Use intuitively obvious units for rows and constraints. Don't worry about scaling

unless you have to. Record units of measurement within the legend of row and

column names.

- Structure of the matrix (i.e. order of rows and columns) can be important. Group

related rows and columns together and be consistent about the order used so that

the visual pattern of coefficients can help highlight a coefficient out of place

or with the wrong sign.

- Have a good system for reporting bugs or problems or suggested changes to the

person responsible for the model. We distribute "Bug report sheets" with

appropriate headings and questions to all model users.

- Have a system for recording all changes to a model. Keep a file or log book

showing the date, the reason and the substance of each change and the revised

name of the new version produced. It can also be helpful to record the sources of

information used to make the change.

- If you use a system for summarising and condensing output, be sure to examine a

complete model solution occasionally. The reason is the same as for the

summarised (symbolic) matrix printout.

- Employ someone who is unfamiliar with the model and have them go over the entire

matrix in detail, checking calculations and questioning the logic of matrix

structure. The aim should be to convince themselves that they understand the

reasoning behind and derivation of every coefficient. This should occur whenever

a new person is employed to work on an existing model. As well as giving them a

thorough knowledge of the model, even quite subtle bugs in the model can be

detected given such detailed attention. It is also helpful to have as many people

as possible examine the assumptions and logic of the model, even if each only

covers a small subsection of the model.

Concluding Comments

How many bugs are too many? In practice there is a need to equate the marginal cost

of reducing bugs with the marginal benefit of their exposure. With large models the

cost of debugging is high, but presumably the value of the information is also high

otherwise resources wouldn't have been put into the model. It comes down to a

difficult judgement about the probability of bugs, importance of the information,

size of the model, personal reputation, etc. On the other hand fear of potential

(but unknown) bugs should not prevent use of the model. All reasonable care is care

enough.

Keeping a large model up to date and bug-free is a difficult, thankless, under

recognised task. No large MP modelling project should be contemplated without

recognition of and adequate allowance given for debugging and maintenance. Given

the exponential increase in probability of bugs in large models, "adequate"

probably means more than is usually allocated.

17



probably means more than is usually allocated.

References

Gass, S.I. (1983), Decision-aiding models - validation, assessment and related
issues, Operations Research 31(4), 603-631.

Kingwell, R.S. and Pannell, DJ. (Eds) (1987), MIDAS, A Bioeconomic Model of a
Dryland Farm System, Pudoc, Wageningen, 207pp.

Kingwell, R.S., Morrison, D.A. and Bathgate, A.D. (1992), MUDAS: Model of an

uncertain dryland agricultural system, Agricultural Systems (in press).
Koestler, A. (1964), The Act of Creation, Hutchinson, London.
Magee, B. (1973), Popper, Fontana/Collins, London.
McCarl, B.A. (1984), Model validation: an overview with some emphasis on risk

models, Review of Marketing and Agricultural Economics 52(3), 153-173.
Morrison, D.A. (1987), Background to the development of MIDAS, In: R.S. Kingwell

and D.J. Pannell (Eds). MIDAS, A Bioeconomic Model of a Dryland Farm System,

Pudoc, Wageningen, 5-14.
Morrison, D.A., Kingwell, R.S., Pannell, D.J. and Ewing M.A. (1986), A mathematical

programming model of a crop-livestock farm system, Agricultural Systems 20(4),
243-268.

Pannell, D.J. (1988), An integrated package for linear programming, Review of
Marketing and Agricultural Economics 56(2), 234-5.

Pannell, D.J. and Bathgate, A. (1991), MIDAS, Model of an Integrated Dryland
Agricultural System, Manual and Documentation for the Eastern Wheatbelt Model
Version EWM9I-4, Miscellaneous Publication 28/91, Department of Agriculture,
Perth, Western Australian, 162 pp.

Pannell, D.J. and Falconer, D.A. (1987), Solution, interpretation and revision of

MIDAS, In: R.S. Kingwell and D.J. Pannell (Eds). MIDAS, A Bioeconomic Model of a

Dryland Farm System, Pudoc, Wageningen, 55-63.
Tice, T.F. and Kletke, M.G. (1984), Reliability of linear programming software: an

experience with the IBM Mathematical Programming System series, American Journal

of Agricultural Economics 66(1), 104-7.

This paper was presented at the 36th Annual Conference of the Australian
Agricultural Economics Society, Canberra, February 10-12 1992.

18



iir

1




