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Abstract

The parameter values and assumptions of any economic model are subject to change and
error. Sensitivity analysis (SA), broadly defined, is the investigation of these potential
changes and errors and their impacts on conclusions to be drawn from the model. There is
a very large literature on procedures and techniques for SA, but it includes almost nothing
from economists. This paper is a selective review and overview of theoretical and
methodological issues in SA. There are many possible uses of SA, described here within
the categories of decision support; communication; increased understanding or
quantification of the system; and model development. The paper focuses somewhat on
decision support. It is argued that even the simplest approaches to SA can be theoretically
respectable in decision support if they are applied and interpreted in a way consistent with
Bayesian decision theory. This is not to say that SA results should be formally subjected to
a Bayesian decision analysis, but that an understanding of Bayesian probability revision will
help the modeller plan and interpret a SA. Many different approaches to SA are described,
varying in the experimental design used and in the way results are processed. Possible
overall strategies for conducting SA are suggested. It is proposed that when using SA for
decision support, it can be very helpful to attempt to identify which of the following forms
of recommendation is most appropriate: (a) do X, (b) do either X or Y depending on the
circumstances, (c) do either X or Y, whichever you like, (d) if in doubt, do X. A system for
reporting and discussing SA results is recommended.

1. Introduction

The parameter values and assumptions of any economic model are subject to change and
error. Sensitivity analysis (SA), broadly defined, is the investigation of these potential
changes and errors and their impacts on conclusions to be drawn from the model (e.g.
Baird, 1989). SA can be easy to do, easy to understand and easy to communicate. It is
possibly the most useful and most widely used technique available to applied economists
(including agricultural economists). The importance and usefulness of SA is widely
recognised.

"A methodology for conducting a [sensitivity] analysis.. is a well established
requirement of any scientific discipline. A sensitivity and stability analysis should be
an integral part of any solution methodology. The status of a solution cannot be
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understood without such information. This has been well recognised since the
inception of scientific inquiry and has been explicitly addressed from the beginning of
mathematics". (Fiacco, 1983, p3).

There is a very large and diverse literature on SA, including a number of reviews (e.g.
Clemson et al., 1995; Eschenbach and Gimpel, 1990; Hamby, 1994; Lomas and Eppel,
1992; Rios Insua, 1990; Sobieszmnski-Sobieski, 1990; Tzafestas et al., 1988). However,
the existing literature is limited in a number of respects. Most of what has been written
about sensitivity analysis has taken a very narrow view of what it is and what it can be
useful for. A large proportion of the literature is highly mathematical and rather theoretical
in nature. Even those papers with a focus on applied methodology have tended to
concentrate on systems and procedures which are relatively time consuming and complex to
implement. There has been almost no discussion of procedures and methodological issues
for simple approaches to sensitivity analysis. (Eschenbach and McKeague, 1989, is a rare
exception). This is remarkable, considering the usefulness and extremely wide usage of
simple approaches.

The other area of notable neglect is the entire discipline of economics. Despite countless
applications of SA in the various areas of applied economics (e.g. Dungan and Wilson,
1991; Nordblom et al., 1994), there has been hardly any discussion of methodological
issues for SA of economic models. Recent exceptions include Canova (1995), Eschenbach
and McKeague (1989), Eschenbach and Gimpel (1990), and Harrison and Vinod (1992).
Agricultural economists appear to have contributed nothing to the literature about
sensitivity analysis.

This paper is an attempt to redress some of these areas of neglect. The focus is on

"normative" usage of models to develop recommendations for decision makers, such as

managers. Many techniques and procedures will be discussed, ranging from simple to

complex. While it is acknowledged that some of the complex procedures which have been

proposed are potentially of high value, the primary objective of this paper is to provide

guidance and advice to improve the rigour and value of relatively simple approaches. It

will be argued that even the simplest approaches to SA can be theoretically respectable in

decision support if they are applied and interpreted in a way consistent with Bayesian

decision theory. The paper is relevant to both optimisation and simulation models used for

decision support, although there is a greater emphasis on optimisation models in the

discussion.

2. Uses of Sensitivity Analysis

There is a very wide range of uses to which sensitivity analysis is put. An incomplete list is

given in Table 1. The uses are grouped into four main categories: decision making or

development of recommendations for decision makers; communication; increased

understanding or quantification of the system; and model development. While all these are

potentially important, the primary focus of this paper is on making decisions or

recommendations.

In all models, parameters are more-or-less uncertain. The modeller is likely to be unsure
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of their current values and to be even more uncertain about their future values. This applies
to things like prices, costs, productivity and technology. Uncertainty is one of the primary
reasons why sensitivity analysis is helpful in making decisions or recommendations. If
parameters are uncertain sensitivity analysis can give information like:
(a) how robust the optimal solution is in the face of different parameter values (use 1.1

from Table 1),
(b) under what circumstances the optimal solution would change (uses 1.2, 1.3, 1.5),
(c) how the optimal solution changes in different circumstances (use 3.1),
(d) how much worse off would the decision maker be if he or she ignored the changed

circumstances and stayed with the original optimal strategy or some other strategy
(uses 1.4, 1.6),

Table 1. Uses of sensitivity analysis

1. Decision Making or Development of Recommendations for Decision Makers

1.1 Testing the robustness of an optimal solution.
1.2 Identifying critical values, thresholds or break-even values where the optimal strategy
changes.
1.3 Identifying sensitive or important variables.
1.4 Investigating sub-optimal solutions.
1.5 Developing flexible recommendations which depend on circumstances.
1.6 Comparing the values of simple and complex decision strategies.
1.7 Assessing the "riskiness" of a strategy or scenario.

2. Communication

2.1 Making recommendations more credible, understandable, compelling or persuasive.
2.2 Allowing decision makers to select assumptions.
2.3 Conveying lack of commitment to any single strategy.

3. Increased Understanding or Quantification of the System

3.1 Estimating relationships between input and output variables.
3.2 Understanding relationships between input and output variables.
3.3 Developing hypotheses for testing

4. Model Development

4.1 Testing the model for validity or accuracy.
4.2 Searching for errors in the model.
4.3 Simplifying the model.
4.4 Calibrating the model.
4.5 Coping with poor or missing data.
4.6 Prioritising acquisition of information.
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This information is extremely valuable in making a decision or recommendation. If the
optimal strategy is robust (insensitive to changes in parameters) this allows confidence in
implementing or recommending it. On the other hand if it is not robust, sensitivity analysis
can be used to indicate how important it is to make the changes to management suggested
by the changing optimal solution. Perhaps the base-case solution is only slightly
sub-optimal in the plausible range of circumstances, so that it is reasonable to adopt it
anyway. Even if the levels of variables in the optimal solution are changed dramatically by
a higher or lower parameter value, one should examine the difference in profit (or another
relevant objective) between these solutions and the base-case solution. If the objective is
barely affected by these changes in management, a decision maker may be willing to bear
the small cost of not altering the strategy for the sake of simplicity.

If the base-case solution is not always acceptable, maybe there is another strategy which is
not optimal in the original model but which performs well across the relevant range of
circumstances. If there is no single strategy which performs well in all circumstances, SA
identifies different strategies for different circumstances and the circumstances (the sets of
parameter values) in which the strategy should be changed.

Even if there is no uncertainty about the parameter values, it may be completely certain

that they will change in particular ways in different times or places. In a similar way to that

outlined above, sensitivity analysis can be used to test whether a simple decision strategy is
adequate or whether a complex conditional strategy is worth the trouble.

SA can be used to assess the "riskiness" °fa strategy or scenario (use 1.7). By observing
the range of objective function values for the two strategies in different circumstances, the
extent of the difference in riskiness can be estimated and subjectively factored into the
decision. It is also possible to explicitly represent the trade-off between risk and benefit

within the model.

3. Theoretical Framework for Using Sensitivity Analysis for Decision Making

In this discussion, a decision variable is a variable over which the decision maker has
control and wishes to select a level, a strategy refers to a set of values for all the decision

variables of a model, and an optimal strategy is the strategy which maximises the value of

the decision maker's objective function (e.g. profit, social welfare, expected utility). It is

assumed that the modeller has subjective beliefs (internal held beliefs, hunches or guesses)

about the performance of different strategies and about what is the objective of the decision

maker who will use the information generated by the model. The modeller's subjective

beliefs are influenced by the model but also by other factors and they may or may not be

close to the objective truth.

Bayesian decision theory provides two tools which are helpful in the use of SA for

decision support: (a) decision theory provides a framework for comparing strategies under

risk or uncertainty; and (b) Bayes' rule provides a rigorous and consistent method for

revising probability distributions of uncertain output variables after new information is

obtained from the SA. Together these elements provide a tool for rational and consistent

adjustments to strategies and decisions as new information is obtained. SA is a process of
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creating new information about alternative strategies. When viewed in this light, the
relevance of Bayesian decision theory to SA is obvious.

Conceptually, the process of conducting a SA to choose an optimal strategy can proceed
as follows. Following an initial run with a "base-case" model which incorporates "best-bet"
values of parameters, a belief about the optimal strategy can be formed. This belief is based
on the modeller's perceptions of the probability distributions of profit (or another measure
of benefit or welfare) for the preferred strategy, and other strategies. Based on decision
theory, the initial optimal strategy is the one which maximises the expected value of the
objective function, given the initial or "prior" set of subjectively perceived probability
distributions of profit for different strategies. These prior distributions could also be used to
make statements about the modeller's level of confidence that the initial strategy is optimal.

Following a sensitivity analysis based on one or more of the techniques outlined later, the
modeller employs Bayes' rule to revise the subjectively perceived probability distributions
of profit for different strategies (resulting in a set of "posterior" distributions). Depending
on how the perceptions change, the optimal strategy may or may not be altered. The
posterior distributions are less uncertain, due to the information obtained from the SA, so
the modeller can make improved statements about his or her confidence in the strategy.

It is not necessary for the modeller to literally use Bayes' rule or a formal decision theory
framework for this general view of the process to be valuable. In my opinion, merely
conceptualising the process in this way will probably improve the rigour and consistency of
the SA. Even if the modeller operates subjectively as a Bayesian decision theorist, it may
be that an unstructured "what if?" approach to the SA is adequate for some studies. On the
other hand, the modeller may be encouraged to adopt a structured, explicitly-probabilistic
approach based on decision theory.

One potential conceptual difficulty with the framework arises when this type of SA is
conducted with an optimisation model. A perceived benefit of SA is that it conveniently
allows assessment of the consequences of parameter uncertainty, even with a deterministic
model. However SAs with a deterministic optimisation model most commonly generate
only a single optimal result for each combination of parameter values being tested. If, as is
normal, the value of the uncertain parameter will not be definitely known until after the
strategy is fixed in place, there is in fact a range of possible profit outcomes (a probability
distribution of outcomes) for each possible strategy. Thus if a standard SA approach is
used to investigate parameter uncertainty in a deterministic optimisation model, the
resulting output will not be easy to relate to the Bayesian decision theory framework; it
provides only a subset of the relevant information. Note that this problem is unlikely to
arise if a simulation model is used, since the tendency with a simulation model is to
generate a full set of SA results for each strategy under consideration, providing more
information about the probability distribution of outcomes for that strategy.

There are three possible responses to this difficulty with optimisation models:

(a) Deal with the parameter uncertainty by explicitly representing it within a stochastic
model, rather than by using SA with a deterministic model;
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(b) Constrain the optimisation model to a particular strategy and generate solutions for that
strategy for each combination of parameter values. This provides the probability
distribution of outcomes for that strategy. Repeat the process for each strategy of
interest. In this approach, the model is really being used for simulation rather than
optimisation. However the optimisation capacity is still useful for helping select which
strategies to simulate.

(c) Using subjective judgement and mindful of the correct decision theory approach,
estimate the posterior distributions based only on the single optimal result for each
scenario. While the quality of posterior distributions obtained in this way is likely to
be somewhat lower than those obtained by approaches (a) or (b), this approach is

computationally much easier. In practice, a set of single SA results from an

optimisation model could still be very useful if considered within the type of

conceptual framework outlined earlier. An awareness of the inconsistency between the

SA results and the Bayesian decision theory framework should at least help the

modeller interpret the significance and implications of the results.

4. Approaches to Sensitivity Analysis

In principle, sensitivity analysis is a simple idea: you change the model and observe its

behaviour. In practice there are many different possible ways to go about changing and

observing the model. The section covers what to vary, what to observe and the

experimental design of the SA.

4.1 What to vary

One might choose to vary any or all of the following:
(a) the contribution of an activity to the objective,
(b) the objective (e.g. minimise risk of failure instead of maximising profit),

(c) a constraint limit (e.g. the maximum availability of a resource),

(d) the number of constraints (e.g. add or remove a constraint designed to express personal

preferences .of the decision maker for or against a particular activity),

(e) the number of activities (e.g. add or remove an activity), or

(f) technical parameters.

Commonly, the approach is to vary the value of a numerical parameter through several

levels. In other cases there is uncertainty about a situation with only two possible

outcomes; either a certain situation will occur or it will not. Examples include:

. What if the government legislates to ban a particular technology for environmental

reasons?
. In a shortest route problem, what if a new freeway were built between two major centres?

. What if a new input or ingredient with unique properties becomes available?

Often this type of question requires some structural changes to the model. Once these

changes are made, output from the revised model can be compared to the original solution,

or the revised model can be used in a sensitivity analysis of uncertain parameters to

investigate wider implications of the change.
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4.2 What to observe

Whichever items the modeller chooses to vary, there are many different aspects of a model
output to which attention might be paid:
(a) the value of the objective function,
(b) the value of the objective function for sub-optimal strategies (e.g. strategies which are

optimal for other scenarios, or particular strategies suggested by the decision maker),
(c) the difference in objective function values between two strategies (e.g. between the

optimal strategy and a particular strategy suggested by the decision maker),
(d) the values of decision variables,
(e) in an optimisation model, the values of shadow costs, constraint slacks or shadow

prices, or
(f) the rankings of decision variables, shadow costs, etc.

4.3 Experimental design

The experimental design is the combinations of parameters which will be varied and the
levels at which they will be set. The modeller must decide whether to vary parameters one
at a time, leaving all others at standard or base values, or whether to examine combinations
of changes. An important issue in this decision is the relative likelihood of combinations of
changes. If two parameters tend to be positively correlated (e.g. the prices of two similar
outputs) the possibility that they will both take on relatively high values at the same time is
worth considering. Conversely if two parameters are negatively correlated, the modeller
should examine high values of one in combination with low values of the other. If there is
no systematic relationship between parameters, it may be reasonable to ignore the low risk
that they will both differ substantially from their base values at the same time, especially if
they are not expected to vary widely.

In selecting the parameter levels which will be used in the sensitivity analysis, a common
and normally adequate approach is to specify values in advance, usually with equal sized
intervals between the levels (e.g. Nordblom et al., 1994). The levels selected for each
parameter should encompass the range of possible outcomes for that variable, or at least the
"reasonably likely" range. What constitutes "reasonably likely" is an arbitrary choice of the
modeller, but one possible approach is to select the maximum and minimum levels such
that the probability of an actual value being outside the selected range is 10 percent.

If combinations of changes to two or more parameters are being analysed, a potential
approach is to use a "complete factorial" experimental design, in which the model is solved

for all possible combinations of the parameters. While this provides a wealth of
information, if there are a number of parameters to analyse, the number of model solutions

which must be obtained can be enormous. To conduct a complete factorial sensitivity
analysis for eight parameters each with five levels would require 390,625 solutions. If these
take one minute each to process, the task would take nine months, after which the volume

of output created would be too large to be used effectively. In practice one must
compromise by reducing the number of variables and/or the number of levels which are
included in the complete factorial. Preliminary sensitivity analyses on individual parameters
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are helpful in deciding which are the most important parameters for inclusion in a complete
factorial experiment.

Alternatively one may reduce the number of model solutions required by adopting an
incomplete design with only a sub-set of the possible combinations included. Possibilities
include central composite designs (e.g. Hall and Menz, .1985), Taguchi methods (e.g.
Clemson et al., 1995) or some system of random sampling or "Monte Carlo" analysis (e.g.
Clemson et al., 1995; Uyeno, 1992).

5. Processing of Sensitivity Analysis Results

A great deal of information can be generated in sensitivity analysis, so much so that there is
a risk of the volume of data obscuring the important issues (Eschenbach and McKeague,
1989). For this reason, the modeller must process and/or summarise the information to
allow decision makers to identify the key issues. The following sub-sections cover various
possible methods for processing results of a sensitivity analysis, ranging from very simple
to very complex. For many of the methods of analysis, I suggest possible layouts for
graphs and tables. There are many other possible layouts which may be more suitable than
these for particular purposes. A number of examples are drawn from my research in
agricultural economics.

5.1 Summaries of activity levels or objective function values: one dimension

The simplest approach to analysis of sensitivity analysis results is to present summaries of
activity levels or objective function values for different parameter values. It may be
unnecessary to conduct any further analysis of the results.

A simple example of such a summary is presented in Figure 1. This example (like several

which follow) is from MIDAS (Morrison et al., 1986; Kingwell and Pannell, 1987), a

linear programming model which selects optimal combinations of farming enterprises for
representative farms in a region of Western Australia. Figure 1 shows how the optimal area

of wheat varies as a number of parameters are varied either side of their standard values. -

Each of the parameters in this example is varied up or down by amounts reflecting their

realistic possible ranges. The format in Figure 1 allows results from several parameters to

be presented on a single graph. This allows easy comparison of the relative impacts of these

parameters when varied over their realistic ranges, and these ranges are communicated by

the horizontal span of the lines. In this example one can see that wheat yields have the

biggest impact on the optimal area of wheat. Eschenbach and McKeague (1989) refer to

this type of graph as a "spider diagram", for obvious reasons.

Spider diagrams like these can also be constructed with the objective function value rather

than an activity level as the dependent variable, allowing the decision maker to assess the

sensitivity of the objective function value to parameter changes. For example if the

objective is to maximise profit, this type of diagram reveals whether any parameter changes

would result in a negative profit.
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A potential problem with the use of percentage changes in spider diagrams is that if the
parameter is small (e.g. variation is centred around zero), percentage changes may be large
relative to those for other variables. In fact if the initial parameter value is zero, percentage
changes to the parameter are not defined. For these parameters, it may be appropriate to
use an absolute change.

Spider diagrams are usually only practical for displaying the levels of a single activity.
Where there are several important variables to display, one normally needs to limit results
to changes in a single parameter. Figure 2 is an example from MIDAS showing production
of wheat grain, lupin grain, pea grain and wool as a function of wheat price. Because of the
different scales of production, wool is shown on the right hand axis. This graph reveals that
the main effect of increasing wheat price is to increase wheat production at the expense of
wool. There are also smaller changes in the production of lupin grain and pea grain.

A different way of summarising the same model results is to show the allocation of a
particular input or resource to the different possible outputs. The way these allocations vary
can be effectively displayed by stacking the lines or bars, as shown in Figure 3. This shows
the allocation of land to production of each of the four products, with the allocations
mirroring the trends in Figure 2. .
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5.2 Summaries of activity levels or objective function values: higher dimensions

In Figure 1, because all parameters but one were were held constant for each line on the
graph, it was possible to display results for several parameters on the same graph. In
displaying the results of changing parameters simultaneously, it is difficult to handle more
than two parameters in a graph without it becoming complex and difficult to follow. Figure
4 shows an example of a method for displaying results from sensitivity analyses on two
parameters. This figure shows the impacts of changing wheat price and wool price on the
optimal area of wheat selected by MIDAS. There are many other formats for three
dimensional graphs which can be used for this purpose.
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Results for more than two parameters require a series of graphs or a table. Well structured
tables are probably the better option. Another approach is to develop an interactive
database of model results, allowing decision makers to select the parameter values and
displaying the corresponding optimal solution. This type of database acts as a simplified
(and much quicker) version of the full model.

A final possible approach to the analysis of multi-dimensional sensitivity analysis is to use

statistical regression techniques to fit a smooth surface to the results (Kleijnen, 1992). This

approach provides an equation which approximates the functional relationship between the
parameter values and the dependent variable (e.g. the activity level or objective function
value). Such an equation will be smoother than the step functions typically produced by
linear programming models and this may be useful for producing graphs or for conducting
some of the analyses outlined below.



Sensitivity Analysis 12

5.3 Slopes and elasticities

The rate of change (the slope) of an activity level or of the objective function with respect
to changes in a parameter is an even briefer summary of the issue than the graphs shown so
far. An issue is the need to compare slopes for different parameters. The units of measure
of different parameters are not necessarily comparable, so neither are absolute slopes with
respect to changes in different parameters. One can often overcome this problem by

calculating "elasticities", which are measures of the percentage change in a dependent
variable (e.g. an activity level) divided by the percentage change in an independent variable

(e.g. a parameter).

(1) e = (70AY/%AX

or

(2) c = OY/SX X/Y

A comparison of elasticities of an activity level with respect to different parameters

provides a good indication of the parameters to which the activity is most sensitive. Table 2

is an example of such a comparison for MIDAS. The elasticities have been calculated

assuming base values for parameters other than the one in question. Results have been

smoothed using regression and elasticities calculated from the fitted smooth curves.

Table 2. Elasticities of optimal wheat are with respect to changes in various parameters

Parameter Elasticity of optimal wheat area

Wheat price
Wheat yield
Wool price
Lupin price
Machinery size

1.5
1.4
-0.5
-0.3
0.0

5.4 Sensitivity indices

A sensitivity index is a number calculated by a defined procedure which gives information

about the relative sensitivity of results to different parameters of the model. A simple

example of a sensitivity index is the elasticity of a variable with respect to a parameter

(Sub-section 5.3). The higher the elasticity, the higher the sensitivity of results to changes

in that parameter. Hamby (1994) has outlined 14 possible sensitivity indices for cases

where only a single output variable is to be evaluated, including the "importance index",

the "relative deviation" index, the "partial rank correlation coefficient", the Smimov test,

the Cramer-von Mises test and a number of others. These are not outlined in detail here

because many of the are complex and time-consuming to calculate. Furthermore, Hamby

(1995) conducted a detailed comparison of the performance of each of the indices relative

of a composite index based on ten of them. None of the complex indices tested performed

as well a simple index proposed by Hoffman and Gardner (1983):
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(3) SI = (D. - DmidiDnm

where D is the output result when the parameter in question is set at its maximum value
and D is the result for the minimum parameter value.

Alexander (1989) suggested a number of complex indices for use in situations where the
• modeller wishes to assess the sensitivity of several output variables simultaneously. For
example, for cases where the result of interest is a ranking of several variables, Alexander
provides an index which indicates the sensitivity of the ranking to changes in a parameter.

5.5 Break-even values

Consider the question, "if parameter X were to change from its current value, by how
much would it have to change in order for the optimal solution to change in a particular
way?" This break-even approach addresses the issue of uncertainty about parameter values
in a way which is often particularly helpful to decision makers. It helps in the assessment
of whether the critical value of the variable falls within the range of values considered
reasonable for the variable. If not, the decision maker can be advised, for the purposes of
planning, to disregard the possibility of the variable taking a different value. If the break-
even value is in the realistic range, this information can be used to justify collection of
additional information to help predict the actual value of the parameter.

Table 3 shows an example from MIDAS. In the standard version of this model, the
optimal use of land of a particular type (soil type 1) is to grow pasture for grazing by
sheep. The aim is to determine the circumstances in which cropping would be as good or
better than pasture. The Table shows break-even percentage changes in various parameters
- changes needed for the profitability of cropping on soil type 1 to equal that for pasture.
By judging whether parameter changes of at least this magnitude are ever likely to occur,
the modeller can judge whether cropping is ever likely to be recommended on this soil
type.

Table 3. Break-even changes in parameter values for cropping to be as profitable as
pasture production on soil type 1
Parameter Break-even parameter change

Wheat price +50%
Wheat yield on soil type 1 +40%
Wool price -80%
Pasture yield on soil type 1 -70%
Lupin price +130%

• Lupin yield on soil type 1 +120%
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5.6 Comparing constrained and unconstrained solutions

The approaches discussed so far are based on assessing the sensitivity of the model to

changes in parameters. A different approach is to add constraints to the model so that it is

forced to adopt other interesting strategies. It is often very valuable to know how other
strategies perform relative to the optimum. Figure 5 shows an example, where the MIDAS

model has been constrained to plant crops on various percentages of the farm area. Such a

graph is valuable if the decision maker wishes to consider other strategies which achieve

objectives other than that represented in the model. Figure 5 shows how much profit must

be sacrificed if the farmer wishes to deviate from the optimal cropping area of 60 percent.
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A useful way of indicating the flexibility available to the decision maker is to report the

set of strategies with objective function values within a certain distance of the optimum.

For example, any area of crop between 40 and 70 percent of the farm is within $5000 of

the maximum profit.

Sometimes it is useful to constrain the model to exclude an option in order to calculate the

total contribution of this option to the objective, and to identify the best strategy which

does not include it. Table 4 shows a summary of the MIDAS solutions which include and

exclude the option of growing lupins on the farm. It is apparent that the inclusion of lupins

increases profits by around 66 percent.
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Table 4. Profit and optimal rotations with and without lupins 

Lupins Lupins
included excluded

Whole-farm profit ($) 40,870 24,553

Rotation selected*
Soil type 1 PPPP PPPP
Soil type 2 CL PPPC
Soil type 3 CCL CCCC
Soil type 4 CCL CCCC
Soil type 5 CCF CCF
Soil type 6 PPPP PPPP
Soil type 7 CCF CCF 

* C = cereal crop; P = pasture; L = lupins; F = field peas

5.7 Using probabilities

A common characteristic of the methods of analysis presented above is that they do not
require the modeller to explicitly specify probabilities of different situations. Sensitivity
analysis can be extremely effective and useful even without taking this extra step to a more
formal and complex analysis of results. In excluding probabilities from the analysis, the
modeller is relying on the decision maker to give appropriate weight to each scenario. On
the other hand, an analysis using probabilities may be unnecessarily difficult and time
consuming to conduct, and is likely to be more difficult to explain to the decision maker.
The potential simplicity of sensitivity analysis is one of its attractions and an analysis which
is not understood is unlikely to be believed. Depending on the importance of the issue and
the attitudes and knowledge of the decision maker, the best approach to sensitivity analysis
might not involve formal and explicit use of probabilities. Even if a probabilistic sensitivity
analysis is to be conducted, a simpler preliminary analysis may be useful in planning the
final analysis.

6. Overall Strategies for Sensitivity Analysis

The techniques outlined above are a powerful set of tools for assisting a decision maker.
However the modeller needs to avoid conducting sensitivity analysis in an aimless or
mechanical fashion. The approach should be adjusted to suit the decision problem. As the
analysis proceeds, the results obtained may lead to further model runs to test ideas or
answer questions which arise. In a thorough ,sensitivity analysis, a number of the
approaches suggested in the previous section might be used.

Within these broad guidelines, there are very many overall strategies for sensitivity
analysis which might be adopted. Here are three systematic suggestions of overall strategies
which are likely to be effective in cases where the analysis is used to help make a decision
or recommendation about the optimal strategy.
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Strategy A

A comprehensive strategy is as follows.

1. Select the parameters to be varied. Identify a range for each parameter which
realistically reflects its possible range. For example, use maximum and minimum values,
or an 80 percent confidence interval, but not a uniform 10 or 20 percent either side of the
expected value. Also identify other possible discrete scenarios requiring changes to the
model structure or formulation (e.g. changes in the objective to be optimised, inclusion of
additional constraints).

2. Conduct sensitivity analyses for each parameter individually, using three or five equally
spaced parameter values. Conduct sensitivity analysis for each discrete scenario
individually.

3. Identify parameters and discrete scenarios to which the key decision variables are
relatively unresponsive, possibly using the sensitivity index presented in Subsection 5.4.

4. Exclude unresponsive parameters and scenarios from further analysis. For the remaining
parameters, consider whether they are likely to have high positive, high negative or low
correlation with each other. If you intend to use probability distributions for random
sampling of scenarios or for summarisation of results, estimate the distribution for each
parameter and, for cases of high correlation, estimate the joint probability distributions.
Possibly also estimate probabilities for the discrete scenarios selected in step 1.

5. Design and conduct a modelling experiment which allows appropriately for combinations
of parameter changes, paying particular attention to the cases of high correlation between
parameters. Possibly use Latin hypercube sampling (Clemson et al., 1995) or, if the
number of combinations is manageable, a complete factorial design. Repeat this for each of
the discrete scenarios individually, or if practical, for all combinations of the discrete
scenarios.

6. Summarise results. Report the responsiveness of the optimal practice (i.e. levels of key

activities) to parameter changes using spider diagrams or elasticities. Calculate break-even

parameter values for particular circumstances of interest. To avoid an overload of graphs
and tables, one can adopt the approach of demonstrating that certain parameters have little

impact on the important decision variables and then excluding these parameters from
subsequent graphs and tables. This allows the decision maker to focus on important
parameters and relationships.

7. On the basis of results so far, identify a tentative best-bet strategy and several others of.
interest. The other strategies might be chosen because they contribute to objectives other
than that represented in the model, or because they are of personal interest to the decision

maker. French (1992) suggested focusing on "adjacent potentially optimal" alternative
solutions, meaning strategies which are close to the base-case optimum, and which would
become optimal if parameters changed sufficiently. It is not necessary to limit the analysis

to such a narrow set of strategies, although one should be mindful of the number of
solutions required in the next step.

^
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8. Repeat the experiment (step 5) with the model constrained to each of the strategies (from
step 7). Summarise these results. Identify scenarios (if any) where each strategy is optimal.
Calculate the cost of each strategy relative to the best-bet. Possibly repeat this with another
strategy as the best bet. At this stage you may wish to use probability distributions to make
probabilistic statements about the results.

9. Attempt to draw conclusions. It can be helpful to focus your thinking by trying to couch
conclusions in terms similar to one of the following examples.

(a) The optimal strategy is X in almost any plausible scenario, so X is a safe best-bet
strategy.

(b) In some scenarios the optimal strategy is X while in these other scenarios, the optimal
strategy is Y. If you can predict or identify the scenario, it is important to do the right
strategy in the right scenario.

(c) In some scenarios the optimal strategy is X while in these other scenarios, the optimal
strategy is Y. However, the cost of doing the wrong strategy is very low, so it is not
very important to worry about doing the right strategy in the right scenario.

(d) In some scenarios the optimal strategy is X while in these other scenarios, the optimal
strategy is V. The cost of doing the wrong strategy when you should be doing Y is
low, but the cost of doing the wrong strategy when you should be doing X is high, so
if you cannot predict or identify the scenario, X is a safe best-bet strategy.

These conclusions correspond to the following recommendations: (a) do X, (b) do either X
or 17 depending on specific circumstances, (c) do either X or Y, whichever you like, (d) if
in doubt, do X. In addition there is a converse set of conclusions one can draw about
which strategies are never likely to be optimal: (e) never do Z, (f) in certain circumstances
do not do Z, (g) if in doubt, do not do Z. Try to try to identify which of the categories (a)
to (d) the problem falls into and whether it is possible to specify any strategies like Z in
categories (e) to (g).

Strategy B

A slightly less comprehensive strategy would include all of the steps of Strategy A except 7
and 8.

Strategy C

The simplest strategy which is still systematic and useful would include only steps 1, 2, 3,
6 and 9.
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7. Reporting Results of Sensitivity Analysis

It is common for written reports of sensitivity analyses in published papers to address only

a subset of the issues on which the SA can provide information. Of course one must be

selective in the reporting and discussion of results, but too often discussions of sensitivity
analyses drift away from the central issue being investigated onto interesting but relatively

unimportant detail. In other cases, sensitivity analysis results are presented without

sufficient discussion of their consequences and implications for the central issue. To avoid

these traps, the following report structure is recommended as a standard minimum.

(a). From the base-case model, or other information, what is the initial optimal

recommendation which is to form the standard for comparisons in the SA?

(b). Which parameters most affect the optimal recommendation? If appropriate, what are

the break-even levels of parameters for changes in the recommendation?

(c). How does the optimal recommendation change if the sensitive variables change?

(d). What are the consequences of not following the optimal recommendation? For

example, how much less profitable are other recommendations?

(e). Overall, what level of confidence can there be that the recommendation is in fact

optimal.

In addressing these issues, the space devoted to each need not necessarily be large, and

the relative importance of each will depend on the particular study. Point (a) is particularly

important as it ensures that the discussion of the SA will be well focussed and relevant. The

recommendation to state the "level of confidence" is not intended to provoke a formal

probabilistic or statistical statement, but at least some relatively informal and subjective

statement of confidence should be made.

Avoid the trap of overloading the report with the results of category (c). As noted above,

a helpful strategy in this regard is to demonstrate that certain parameters have little impact

on the important decision variables and then exclude further results for these parameters.

8. Concluding Comments

There is clearly much more to the use of a normative model than finding a single optimal

solution. That solution should be viewed as the starting point for a wide ranging set of

sensitivity analyses to improve the decision maker's knowledge and understanding of the

system's behaviour.

Even without undertaking the relatively complex procedures which explicitly involve

probabilities in the sampling of scenarios or interpretation of results, sensitivity analysis is

a powerful and illuminating methodology. The simple approach to sensitivity analysis is

easy to do, easy to understand, easy to communicate and .applicable with any model. As a

decision aid it is often adequate despite its imperfections. Given its ease and transparency,

the simple approach to SA may even be the absolute best method for the purpose of

practical decision making.
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