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Modeling Uncertainty in Climate Change: 
A Multi-Model Comparison 

Abstract 

The economics of climate change involves a vast array of uncertainties, complicating both the 
analysis and development of climate policy. This study presents the results of the first 
comprehensive study of uncertainty in climate change using multiple integrated assessment 
models. The study looks at model and parametric uncertainties for population, total factor 
productivity, and climate sensitivity. It estimates the pdfs of key output variables, including 
CO2 concentrations, temperature, damages, and the social cost of carbon (SCC). One key 
finding is that parametric uncertainty is more important than uncertainty in model structure. Our 
resulting pdfs also provide insights on tail events. 
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I. Introduction 
 

A central issue in the economics of climate change is understanding and 

dealing with the vast array of uncertainties. These range from those regarding 

economic and population growth, emissions intensities and new technologies, to the 

carbon cycle, climate response, and damages, and cascade to the costs and benefits 

of different policy objectives.  

This paper presents the first comprehensive study of uncertainty of major 

outcomes for climate change using multiple integrated assessment models (IAMs). 

The six models used in the study are representative of the models used in the IPCC 

Fifth Assessment Report (IPCC 2014) and in the U.S. government Interagency 

Working Group Report on the Social Cost of Carbon or SCC (US Interagency Working 

Group 2013). We focus our efforts in this study on three key uncertain parameters: 

population growth, total factor productivity growth, and equilibrium climate 

sensitivity. For the estimated uncertainty in these three parameters, we develop 

estimates of the uncertainty to 2100 for major variables, such as emissions, 

concentrations, temperature, per capita consumption, output, damages, and the 

social cost of carbon. 

Our approach is a two-track methodology that permits reliable quantification 

of uncertainty for models of different size and complexity. The first track involves 

performing model runs over a set of grid points and fitting a surface response 

function to the model results; this approach provides a quick and accurate way to 

emulate running the models. The second track develops probability density 

functions for the chosen input parameters (i.e., the parameter pdfs) using the best 

available evidence. We then combine both tracks by performing Monte Carlo 

simulations using the parameter pdfs and the surface response functions. 

This methodology provides a transparent approach to addressing uncertainty 

across multiple parameters and models and can easily be applied to additional 

models and uncertain parameters. An important aspect of this methodology, unlike 

virtually all other model comparison exercises, is its replicability. The approach is 

easily validated because the data from the calibration exercises are relatively 

compact and are compiled in a compatible format, the surface responses can be 

estimated independently, and the Monte Carlo simulations can be easily run in 

multiple existing software packages.  

This paper is structured as follows. The next section discusses the statistical 

considerations underpinning our study of uncertainty in climate change. Section III 

presents our methodology for the two-track approach, while the next section 

discusses selection of calibration runs. Section V gives the derivation of the 
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probability distributions. Section VI gives the results of the model calculations and 

the surface response functions, and section VII presents the results of the Monte 

Carlo estimates of uncertainties. We conclude with a summary of the major findings 

in section VIII. The Appendices provide further background information. 
 

II. Statistical Considerations 
 

A. Background on Uncertainty in Climate Change 
 

Climate change science and policy have focused largely on projecting the 

central tendencies of major variables and impacts. While central tendencies are 

clearly important for a first-level understanding, attention is increasingly on the 

uncertainties in the projections. Uncertainties take on great significance because of 

the possibility of non-linearities in responses, particularly the potential for 

triggering thresholds in earth systems, in ecosystem, or in economic outcomes. To 

be sure, uncertainties have been explored in major reports, such as the IPCC 

Scientific Assessment Reports from the first to the fifth. However, these have mainly 

examined differences among models as a tool for assessing uncertainties about 

future projections. As we indicate below, our results suggest that parametric 

uncertainty is quantitatively more important than differences across models for 

most variables. 

In recent reviews of climate change, there is an increasing focus on improving 

our understanding of the uncertainties. For example, in 2010 the Inter-Academy 

Review of the IPCC, the primary recommendation for improving the usefulness of 

the report was about uncertainty: 

 

The evolving nature of climate science, the long time scales involved, 

and the difficulties of predicting human impacts on and responses to climate 

change mean that many of the results presented in IPCC assessment reports 

have inherently uncertain components. To inform policy decisions properly, it 

is important for uncertainties to be characterized and communicated clearly 

and coherently. (InterAcademy Council 2010) 

 

In a recent report, the U.S. Congressional Budget Office also voiced its 

concerns about uncertainty: 
 

In assessing the potential risks from climate change and the costs of 

averting it, however, researchers and policymakers encounter 

pervasive uncertainty. That uncertainty contributes to great 
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differences of opinion as to the appropriate policy response, with some 

experts seeing little or no threat and others finding cause for 

immediate, extensive action. Policymakers are thus confronted with a 

wide range of recommendations about how to address the risks posed 

by a changing climate—in particular, whether, how, and how much to 

limit emissions of greenhouse gases. (CBO 2005) 

 

The focus on uncertainty has taken on increased urgency because of the great 

attention given by scientists to tipping elements in the earth system. An influential 

study by Lenton et al. (2008) discussed important tipping elements such as the large 

ice sheets, large-scale ocean circulation, and tropical rain forests. Some 

climatologists have argued that global warming beyond 2 °C will lead to an 

irreversible melting of the Greenland ice sheet (Robinson et al. 2012). Once 

uncertainties are fully included, policies will need to account for the probability that 

paths may lead across tipping points, with particular concern for ones that have 

irreversible elements.  

A further set of questions involves the potential for fat tails in the distribution 

of parameters, of outcomes, and of the risk of catastrophic climate change. (A fat- or 

thick-tailed distribution is one where the probability of extreme events declines 

slowly, so the tail of the distribution is thick. An important example is the power-law 

or Pareto distribution, in which the variance of the process is unbounded for certain 

parameter values.)  

The issue arises because of the combination of outcomes that are potentially 

catastrophic in nature and probability distributions with fat tails. The combination 

of these two factors may lead to situations in which focusing on central tendencies is 

completely misleading for policy analysis. In a series of papers, Martin Weitzman 

(see especially Weitzman 2009) has proposed a dramatically different conclusion 

from standard analysis in what he has called the Dismal Theorem. In the extreme 

case, the combination of fat tails, unlimited exposure, and high risk aversion implies 

that the expected loss from certain risks such as climate change is unbounded and 

we therefore cannot perform standard optimization calculations or cost-benefit 

analyses. 

There are to date many studies of the implications of uncertainty for climate 

change and climate-change policy or of uncertainty in one or many parameters 

using a single model. Some notable examples include Reilly et al. (1987), Peck and 

Teisberg (1993), Nordhaus and Popp (1997), Pizer (1999), Webster (2002), Baker 

(2005), Hope (2006), Nordhaus (2008), Webster et al. (2012), Anthoff and Tol 

(2013), and Lemoine and McJeon (2013). 
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To date, however, the only published study that aims to quantify uncertainty 

in climate change for multiple models is the U.S. government Interagency Working 

Group report on the social cost of carbon, which is published in Greenstone et al. 

(2013) and more extensively described in IAWG (2010). This study used three 

models, two of which are included in this study, to estimate the social cost of carbon 

for U.S. government purposes. However, while it did examine uncertainty, the cross-

model comparison focused on a single uncertain parameter (equilibrium climate 

sensitivity) for its formal uncertainty analysis; all other uncertain parameters in the 

models were left uncertain with the modelers’ pdfs. Even with this single uncertain 

parameter, the estimated social cost of carbon varies greatly. The 2015 social cost of 

carbon in the updated IAWG (2013) is $38 per ton of CO2 using the median estimate 

versus $109 per ton of CO2 using the 95 percentile (both in 2007 dollars and using a 

3% discount rate), which would imply very different levels of policy stringency.  The 

IAWG analysis also used combinations of model inputs and outputs that were not 

always internally consistent. Comparison of the uncertainties in a consistent 

manner in different models is clearly an important missing area of study. 

 

B. Central approach of this study 
 

This project aims to quantify the uncertainties of key model outcomes 

induced by uncertainty in important parameters. We hope to learn the degree to 

which there is precision in the point estimates of major variables that are used in 

major integrated assessment models. Put differently, the research question we aim 

to answer from this study is: How do major parameter uncertainties affect the 

distribution of possible outcomes of major outcomes; and what is the level of 

uncertainty of major outcome variables? 

We call this question one of “classical statistical forecast uncertainty.” The 

study of forecasting uncertainty and error has a long history in statistics and 

econometrics. See for example Clements and Hendry (1998, 1999) and Ericsson 

(2001). The standard tools of forecasting uncertainty have virtually never been 

applied to models in the energy-climate-economy areas because of the complexity of 

the models and the non-probabilistic nature of both inputs and structural 

relationships. 

Key uncertainties that we will examine include both projections and policy 

outcomes. For example, what are the uncertainties of emissions, concentrations, 

temperature increases, and damages in a baseline projection? What is the 

uncertainty in the social cost of carbon? How do uncertainties across models 

compare with the uncertainties within models generated by parameter uncertainty? 
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One of the key contributions of this work is that it has the potential to highlight 

areas where reducing uncertainty will have a high payoff.  
 

C. Uncertainty in a broader context 
 

There are several uncertainties in climate change that face both natural and 

social scientists and decision makers. Among the important ones are: (1) parametric 

uncertainty, such as uncertainty about climate sensitivity or output growth; (2) 

model or specification uncertainty, such as the specification of the aggregate 

production function; (3) measurement error, such as the level and trend of global 

temperatures; (4) algorithmic errors, such as ones that find the incorrect solution to 

a model; (5) random error in structural equations, such as those due to weather 

shocks; (6) coding errors in writing the program for the model; and (7) scientific 

uncertainty or error, such as when a model contains an erroneous theory. 

 This study focuses primarily on the first of these, parametric uncertainty, and 

to a limited extent on the second, model uncertainty. We focus on the first because 

there are major uncertainties about several parameters, because this has been a key 

area for study in earlier approaches, and because it is a type of uncertainty that 

lends itself most readily to model comparisons. In addition, since we employ six 

models, the results provide some information about the role of model uncertainty, 

although we do not develop a formal approach to model uncertainty. We recognize 

that parameter and model uncertainties are but two of the important questions that 

arise, but a rigorous approach to measuring the contribution of these uncertainties 

will make a major contribution to understanding the overall uncertainty of climate 

change. 

 From a theoretical point of view, the measures of uncertainty can be viewed 

as applying the principles of judgmental or subjective probability, or “degree of 

belief,” to measuring future uncertainties. This approach, which has its roots in the 

works of Ramsey (1931), de Finetti (1937), and Savage (1954), recognizes that it is 

not possible to obtain frequentist or actuarial probability distributions for the major 

parameters in integrated assessment models or in the structures of the models. The 

theory of subjective probability views the probabilities as akin to the odds that 

informed scientists would take when wagering on the outcome of an uncertain 

event. For example, suppose the event was population growth from 2000 to 2050. 

The subjective probability might be that the interquartile range (25%, 75%) was 

between 0.5% and 2.0% per year. In making the assessment, the scientist would in 

effect say that it is a matter of indifference whether to bet that the outcome when 

known would be inside or outside that range. While it is not contemplated that a bet 



   7 

would actually occur (although that is not unprecedented), the wager approach 

helps frame the probability calculation. 
 

III. Methodology 
 

A. Overview of our two track approach 
 

In undertaking an uncertainty analysis, the project contemplated two 

potential approaches. In one approach, each model would do a Monte Carlo 

simulation in which it would do many runs where the chosen uncertain parameters 

are drawn from a joint pdf. While potentially feasible for some models, such an 

approach is excessively burdensome and likely infeasible at the scale necessary to 

have reliable estimates. 

We therefore developed a second approach which we call the “two-track 

Monte Carlo.” This approach separates the model calibration runs from generation 

of the parameter pdfs and the Monte Carlo estimates. At the core of the approach are 

two parallel tracks, which are then combined to produce the final results. The first 

track uses model runs from six participating economic climate change integrated 

assessment models to develop surface response functions; these runs provide the 

relationship between our uncertain input parameters and key output variables. The 

second track develops probability density functions characterizing the uncertainty 

for each analyzed uncertain input parameter. We combine the results of the two 

tracks using a Monte Carlo simulation to characterize statistical uncertainty in the 

output variables. 
 

B. The approach in equations 
 

It will be helpful to show the structure of the approach analytically. We can 

represent a model as a mapping from exogenous and policy variables and 

parameters to endogenous outcomes. The models can be written symbolically as 

follows: 

(1)  ( , , )m mY H z u  

In this schema, Ym is a vector of model outputs for model m; z is a vector of 

exogenous and policy variables; is a vector of model parameters; u is a vector of 

uncertain parameters to be investigated; and Hm represents the model structure. We 

emphasize that models have different structures, model parameters, and choice of 

input variables. However, we can represent the arguments of H without reference to 

models by assuming some are omitted. 
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 The first step in the project is to select the uncertain parameters for analysis. 

Once the parameters are selected, each model then does selected calibration runs. 

The calibration runs take as a central set of parameters the base or reference case 

for each of the models. It then makes several runs that add or subtract specified 

increments from each of the base values of the uncertain parameters. This produces 

a set of input and outputs for each model. 

More precisely, here is the procedure for the first track of the approach. Each 

model has a baseline run with base values for each of the uncertain parameters. 

Denote the base parameter values as ,1 ,2 ,3( , , ).b b b

m m mu u u  The next step determines a grid 

of deviation values of the uncertain parameters that each model adds or subtracts 

from the base values of the uncertain parameters. Denote these deviation values as 

1,1,1 1,1,2 5,5,5( , ,..., ).G      The G  vector represents 125 = 5 x 5 x 5 deviations from 

the modelers’ base parameter values. So, for example, the vector 1,1,1  would 

represent one of the 125 grid vectors that takes the first value for each uncertain 

parameter. Suppose that 1,1,1 ( 0.014, .02, 2).      Then that calibration run would 

calculate the outcomes for ,1 ,2 ,3( , , .014, .02, 2)m m b b b

m m mY H z u u u    , where again ,

b

m ku is 

the base value for uncertain parameter k for model m. Similarly, 3,3,3 (0,0,0).   For 

that deviation value, the calibration run would calculate the outcomes for 

,1 ,2 ,3( , , , , ),m m b b b

m m mY H z u u u  which is the model baseline run. 

 The third step is to estimate surface response functions (SRFs) for each model 

and variable outcome. Symbolically, these are the following functions: 

(2)  1 ,1 2 ,2 3 ,3 ,1 ,2 ,3( , , ) ( , , )m m b b b m

m m m m m mY R u u u u u u R u u u      

 

The SRFs are fit over the observations of the ,m ku  from the calibration exercises 

(125 each for the baseline and for the carbon-tax cases). The SRFs are linear-

quadratic-interaction equations as described below. 

 The second track of the project provides us with probability density functions 

for each of our uncertain parameters, ( )k

kf u . These are developed on the basis of 

external information as described below. 

 The final step is to estimate the cumulative distribution of the output 

variables, ( ).m mG Y  These are the distributions of the outcome variables mY  for 
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model m, where we note that the distributions will differ by model. The 

distributions are calculated by Monte Carlo methods, for a sample size of N:  

(3) ,1 ,2 ,3

1

( ) 1 if ( , , ) ,  otherwise = 0 /
N

m m m n n n m

m m m

n

G Y H u u u Y N


     

 The notation here is that ,

n

m ku  is the nth draw of random variable ku  in the 

Monte Carlo experiment. This unintuitive equation simply states that the cumulative 

distribution is equal to the fraction of outcomes in the Monte Carlo simulation 

where the SRF yields a value of the outcome variable that is less than .mY  The 

distribution of outcomes for each variable and model is conditional on the model 

structure and on the harmonized uncertainty of the uncertain parameters. For a 

classic study of Monte Carlo methods, see Hammersley and Handscomb (1964). 
 

C. Integrated Assessment Models  
 

The challenge of analysis and policies for global warming is particularly 

difficult because it spans many disciplines and parts of society. This many-faceted 

nature also poses a challenge to natural and social scientists, who must incorporate 

a wide variety of geophysical, economic, and political disciplines into their 

diagnoses and prescriptions. The task of integrated assessment models (IAMs) is to 

pull together the different aspects of a problem so that projections, analyses, and 

decisions can consider simultaneously all important endogenous variables. IAMs 

generally do not pretend to have the most detailed and complete representation of 

each included system. Rather, they aspire to have, at a first level of approximation, 

models that operate all the modules simultaneously and with reasonable accuracy. 

The study design was presented at a meeting where many of the established 

modelers who build and operate IAMs were present. All were invited to participate. 

After some preliminary investigations and trial runs, six models were able to 

incorporate the major uncertain parameters into their models and to provide most 

of the outputs that were necessary for model comparisons. The following is a brief 

description of each of the six models. Table A5 in the appendix provides further 

details on each model. 

The DICE (Dynamic Integrated model of Climate and the Economy) was first 

developed around 1990 and has gone through several extensions and revisions. The 

latest published version is Nordhaus (2014) with a detailed description in Nordhaus 

and Sztorc (2014). The DICE model is a globally aggregated model that views the 

economics of climate change from the perspective of neoclassical economic growth 

theory. In this approach, economies make investments in capital and in emissions 
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reductions, reducing consumption today, in order to lower climate damages and 

increase consumption in the future. The special feature of the model is the inclusion 

of all major elements in a highly aggregated fashion. The model contains about 25 

dynamic equations and identities, including those for global output, CO2 emissions 

and concentrations, global mean temperature, and damages. The version for this 

project runs for 60 five-year periods. It can be run in either an Excel version or in 

the preferred GAMS version. The version used for this study dates from December 

2013 and adds loops to calculate the outcomes for different uncertain parameters. 

The runs were implemented by William Nordhaus and Paul Sztorc. 

The FUND model (Climate Framework for Uncertainty, Negotiation, and 

Distribution) was developed primarily to assess the impacts of climate policies in an 

integrated framework. It is a recursive model that takes exogenous scenarios of 

major economic variables as inputs and then perturbs these with estimates of the 

cost of climate policy and the impacts of climate change. The model has 16 regions 

and contains explicit representation of five greenhouse gases. Climate change 

impacts are monetized and include agriculture, forestry, sea-level rise, health 

impacts, energy consumption, water resources, unmanaged ecosystems, and storm 

impacts. Each impact sector has a different functional form and is calculated 

separately for each of the 16 regions. The model runs from 1950 to 3000 in time 

steps of 1 year. The source code, data, and a technical description of the model are 

public (www.fund-model.org), and the model has been used by other modeling 

teams (e.g., Revesz et al. (2014)). FUND was originally created by Richard Tol (Tol, 

1997) and is now jointly developed by David Anthoff and Richard Tol. The runs 

were implemented by David Anthoff. 

The GCAM (Global Change Assessment Model) is a global integrated 

assessment model of energy, economy, land-use, and climate. GCAM is a long-term 

global model based on the Edmonds and Reilly model (Edmonds and Reilly 1983a, b, 

c). GCAM integrates representations of the global economy, energy systems, 

agriculture and land use, with representations of terrestrial and ocean carbon 

cycles, and a suite of coupled gas-cycle and climate models. The climate and physical 

atmosphere in GCAM is based on the Model for the Assessment of Greenhouse-Gas 

Induced Climate Change (MAGICC) (Meinshausen et al. 2011).  The global economy 

in GCAM is represented in 14 geopolitical regions, explicitly linked through 

international trade in energy commodities, agricultural and forest products, and 

other goods such as emissions permits. The scale of economic activity in each region 

is driven by population size, age, and gender as well as labor productivity. The 

model is dynamic-recursively solved for a set of market-clearing equilibrium prices 

in all energy and agricultural good markets every 5 years over 2005-2095. The full 
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documentation of the model is available at a GCAM wiki (Calvin and et al. 2011). 

GCAM is open-source, but is primarily developed and maintained by the Joint Global 

Change Research Institute. The model runs were performed by Haewon McJeon. 

The MERGE model (Model for Evaluating Regional and Global Effects of 

greenhouse gas reduction policies) is an integrated assessment model describing 

global energy-economy-climate interactions with regional detail. It was introduced 

by Manne et al. (1999) and has been continually developed since; a recently 

published description is in Blanford et al. (2014). MERGE is formulated as a multi-

region dynamic general equilibrium model with a process model of the energy 

system and a reduced-form representation of the climate. It is solved in GAMS via 

sequential joint non-linear optimization with Negishi weights to balance inter-

regional trade flows. The economy is represented as a top-down Ramsey model in 

which electric and non-electric energy inputs are traded off against capital and labor 

and production is allocated between consumption and investment. The energy 

system includes explicit technologies for electricity generation and non-electric 

energy supply, with a resource extraction model for fossil fuels and uranium. The 

climate model includes a five-box carbon cycle and tracks all major non-CO2 

greenhouse gases and non-CO2 forcing agents explicitly. Temperature evolves as a 

two-box lag process, where uncertainty about climate sensitivity is considered 

jointly with uncertainty about the response time and aerosol forcing. The version 

used for study includes 10 model regions and runs through 2100, with climate 

variables projected for an additional century. The runs were implemented by 

Geoffrey Blanford. 

The MIT IGSM (Integrated Global Systems Model) was developed in the early 

1990’s and has been continually updated. It includes a general circulation model of 

the atmosphere and its interactions with oceans, atmospheric chemistry, terrestrial 

vegetation, and the land surface. Its economic component represents the economy 

and anthropogenic emissions. The full IGSM is described in Sokolov et al. (2009) and 

Webster et al. (2012). The version of the economic component applied here is 

described in Chen et al. (2015). The earth system component is a simplified general 

circulation model resolved in 46 latitude bands and 11 vertical layers in the 

atmosphere with an 11 layer ocean model. The land system includes 17 vegetation 

types. The economic component is a multi-sector, multi-region applied general 

equilibrium model, an empirical implementation consistent with neo-classical 

economic theory. For the current project, the model operates in a recursive fashion 

in which the economy drives the earth system model but without feedbacks of 

climate impacts on the economic system. The economic component is solved for 5 

year time steps in GAMS-MPSGE and for this exercise was run through 2100. The 
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earth system component solves on 10 minute time steps (the vegetation model on 

monthly time steps). The simulations for this exercise were conducted by Y.-H. 

Henry Chen, Andrei Sokolov, and John Reilly.  

The WITCH (World Induced Technical Change Hybrid) model was developed 

in 2006 (Bosetti et al. 2006) and has been developed and extended since then. The 

latest version is fully described in Bosetti et al. (2014). The model divides the world 

into 13 major regions. The economy of each region is described by a Ramsey-type 

neoclassical optimal growth model, where forward-looking central planners 

maximize the present discounted value of utility of each region. These optimizations 

take account of other regions' intertemporal strategies. The optimal investment 

strategy includes a detailed appraisal of energy sector investments in power-

generation technologies and innovation, and the direct consumption of fuels, as well 

as abatement of other gases and land-use emissions. Greenhouse-gas emissions and 

concentrations are then used as inputs in a climate model of reduced complexity 

(Meinshausen et al. 2011). The version used for this project runs for 30 five-year 

periods and contains 35 state variables for each of the 13 regions, running on the 

GAMS platform. The runs were implemented by Valentina Bosetti and Giacomo 

Marangoni. 
 

IV.  Choice of uncertain parameters and grid design 
 

A. Choice of uncertain parameters 
 

One of the key decisions in this study was to select the uncertain parameters. 

The criteria for selection were (at least after the fact) clear. First, each parameter 

must be important for influencing uncertainty. Second, parameters should be ones 

that can be varied in each of the models without excessive burden and without 

violating the spirit of the model structure. Third, the parameters should be ones that 

can be represented by a probability distribution, either on the basis of prior 

research or feasible within the scope of this project.  

 At an initial meeting, an experiment was undertaken in which each of the 

models was given six uncertain parameters or shocks to test for feasibility. At the 

end of this initial test experiment, two of the modeling teams decided not to 

participate because the initial parameters could not be easily incorporated in the 

model design or because of time constraints. Three of the parameters fulfilled the 

above-mentioned criteria, and these were the ones that were incorporated in the 

final set of experiments. 

 The final list of uncertain parameters were the following: (1) The rate of 

growth of productivity, or per capita output; (2) the rate of growth of population; 
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and (3) the equilibrium climate sensitivity (equilibrium change in global mean 

surface temperature from a doubling of atmospheric CO2 concentrations). 

Additionally, it was decided to do two alternative policy scenarios. One was a 

“Base” run in which no climate policies were introduced; and the second, labelled 

“Carbon Tax” (and sometimes “Ampere”) introduced a rapidly rising global carbon 

tax.2 A run based on carbon prices was selected (instead of quantitative limits) 

because many models had undertaken similar runs in other model comparison 

projects, so they were relatively easy to implement. 

Several other parameters were carefully considered but rejected. A pulse of 

emissions was rejected because it had essentially no impact. A global recession was 

rejected for the same reason. It was hoped to add uncertainties for technology (such 

as those concerning the rate of decarbonization, the cost of backstop technologies, 

or the cost of advanced carbon-free technologies), but it proved impossible to find 

one that was both sufficiently comprehensive and could be incorporated in all the 

models. Uncertainty about climate damages was excluded because half the models 

did not contain damages. A final possibility was to analyze policy runs that had 

quantitative limits rather than carbon prices. For example, some models had 

participated in model comparisons in which radiative forcings were limited. This 

approach was rejected because the carbon tax proved easier to define and 

implement. Additionally, earlier experiments indicated that quantitative limits were 

often found infeasible, and this would cloud the interpretation of the results.3 

 

                                                           
2 The Carbon Tax run was selected from the AMPERE model comparisons to reduce the 
burden on many of the modelers and so that the results from this study can be compared to 
those from the AMPERE inter-model comparison study (Kriegler et al. 2015). The specific 
scenario chosen is known in the AMPERE study as "CarbonTax$12.50-increasing.” The full 
AMPERE scenario database can be found online at https://secure.iiasa.ac.at/web-
apps/ene/AMPEREDB. 
 
3 See particularly the results for Energy Modeling Forum 22 reported in a special issue in 
Energy Economics (e.g., see Clarke and Weyant (2009)). Many models found that tight 
constraints were infeasible for their base runs. A quantitative limit would almost surely 
have found that large numbers of the 125 scenarios were infeasible for any tight limit on 
temperature or radiative forcings. 

https://secure.iiasa.ac.at/web-apps/ene/AMPEREDB
https://secure.iiasa.ac.at/web-apps/ene/AMPEREDB
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B. Description of uncertain parameters 
 

We next describe the three uncertain parameters contained in the study. It 

turned out that harmonizing these across models was more complicated than was 

originally anticipated, as described below. 
 

(1) The rate of growth of population. Uncertainty about the rate of growth 

of population was straightforward. For global models, there was no ambiguity about 

the adjustment. The uncertainty was specified as plus or minus a uniform 

percentage growth rate each year over the period 2010-2100. For regional models, 

the adjustment was left to the modeler. Most models assumed a uniform change in 

the growth rate in each region. 
 

 (2) The rate of growth of productivity, or per capita output. The original 

design had been to include a variable that represented the uncertainty about overall 

technological change in the global economy (or averaged across regions). The 

results of the initial experiment indicated that the specifications of technological 

change differed greatly across models, and it was infeasible to specify a comparable 

technological variable that could apply for all models. For example, some models 

had a single production function, while others had multiple sectors. 

Rather than attempt to find a comparable parameter, it was decided to 

harmonize on the uncertainty of global output per capita growth from 2010 to 2100. 

Each modeler was asked to introduce a grid of changes in its model-specific 

technological parameter that would lead to a change in per capita output of plus or 

minus a given amount (to be described in the next section). The modelers were then 

instructed to adjust that change so that the range of growth rates in per capita GDP 

from 2010 to 2100 in the calibration exercise would be equal to the desired range. 
 

(3) The climate sensitivity. Modeling uncertainty about climate sensitivity 

proved to be one of the most difficult issues of harmonization across the different 

models. While all models have modules to trace through the temperature 

implications of changing concentrations of GHGs, they differ in detail and 

specification. The major problem was that adjusting the equilibrium climate 

sensitivity generally required adjusting other parameters in the model that 

determine the speed of adjustment to the equilibrium; the adjustment speed is 

sometimes represented by the transient climate sensitivity. This problem was 

identified late in the process, after the second-round runs had been completed, and 

modelers were asked to make the adjustments that they thought appropriate. Some 

models made adjustments in parameters to reflect differences in large climate 
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models. Others constrained the parameters so that the model would fit the historical 

temperature record. The differing approaches led to differing structural responses 

to the climate sensitivity uncertainty, as will be seen below. 
 

C. Grid design 
 

In the first track, the modeling teams provide a small number of calibration 

runs that include a full set of outputs for a three-dimensional grid of values of the 

uncertain parameters. For each of the uncertain parameters, we selected five values 

centered on the model’s baseline values. Therefore, for 3 uncertain parameters, 

there were 125 runs each for the Base and the Carbon Tax policy scenarios. 

On the basis of these calibration runs, the next step involved estimating 

surface-response functions (SRFs) in which the model outcomes are estimated as 

functions of the uncertain parameters. The hope was that if the SRFs could 

approximate the models accurately, then they could be used to simulate the 

probability distributions of the outcome variables accurately. An initial test 

suggested that the SRFs were well approximated by quadratic functions. We 

therefore set the range of the grid so that it would span most of the space that would 

be covered by the distribution of the uncertain parameters, yet not go so far as to 

push the models into parts of the parameter space where the results would be 

unreliable.  

As an example, take the grid for population growth. The central case is the 

model’s base case for population growth. Each model then uses four additional 

assumptions for the grid for population growth: the base case plus and minus 0.5% 

per year and plus and minus 1.0% per year. These would cover the period 2010 to 

2100. For example, assume that the model had a base case with a constant 

population growth rate of 0.7% per year from 2010 to 2100. Then the five grid 

points for population growth would be constant growth rates of -0.3%, 0.2%, 0.7%, 

1.2%, and 1.7% per year. Population after 2100 would have the same growth rate as 

in the modeler’s base case. These assumptions mean that population in 2100 would 

be (0.99)90, (0.995)90, 1, (1.005)90, and (1.01)90 times the base case population for 

2100.  

For productivity growth, the grid was similarly constructed, but adjusted so 

that the growth in per capita output for 2100 added -1%, -0.5%, 0%, 0.5%, and 1% 

to the growth rate in each year for the period 2010-2100. 

For the climate sensitivity, the modelers were to add to the baseline 

equilibrium climate sensitivity -3°C, -1.5°C, 0 °C, 1.5°C, and 3°C. It turned out that 

the lower end of this range caused difficulties for some models, and for these the 
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modelers reported results only for the four higher points in the grid or substituted 

another low value. 

In principle, then, for track I each model reported 5 x 5 x 5 model results for 

both the Base case and the Carbon Tax policy assumptions. 
 

V. Approach for developing probability density functions 
 

A. General considerations 
 

The three uncertain parameters have been the subject of uncertainty analysis 

in earlier studies. For each parameter, we reviewed earlier studies to determine 

whether there was an existing set of methods or distributions that could be drawn 

upon. The desirable features of the distributions is that they should reflect best 

practice, that they should be acceptable to the modeling groups, and that they be 

replicable. It turned out that the three parameters used three different approaches, 

as will be described below. 
 

B. Population  
 

Population growth has been the subject of projections for many years, and 

numerous groups have undertaken uncertainty analyses for both countries and at 

the global level. Our review found only one research group that had made long-term 

global projections of uncertainty for several years, which was the population group 

at the International Institute for Applied Systems Analysis (IIASA) in Austria. (For a 

discussion, see O'Neill et al. (2001)). The IIASA demography group is under the 

direction of demographer Wolfgang Lutz. 

The IIASA stochastic projections were developed over a period of more than a 

decade and are widely used by demographers. The methodology is summarized as 

follows: “IIASA’s projections…are based explicitly on the results of discussions of a 

group of experts on fertility, mortality, and migration that is convened for the 

purpose of producing scenarios for these vital rates” (See 

http://www.demographic-research.org/volumes/vol4/8/4-8.pdf) The latest 

projections from 2013 (Lutz et al. 2014) are an update to the previous projections 

from 2007 and 2001 (Lutz et al. 2008), 2001). The methodology is described as 

follows: 

The forecasts are carried out for 13 world regions. The forecasts presented here 

are not alternative scenarios or variants, but the distribution of the results of 

2,000 different cohort component projections. For these stochastic simulations 

the fertility, mortality and migration paths underlying the individual projection 

http://www.demographic-research.org/volumes/vol4/8/4-8.pdf
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runs were derived randomly from the described uncertainty distribution for 

fertility, mortality and migration in the different world regions. (Lutz, Sanderson, 

and Scherbov 2008) 

The background methods are described as follows on page 219 of O'Neill et al. 

(2001):  

The IIASA methodology is based on asking a group of interacting experts to 

give a likely range for future vital rates, where "likely" is defined to be a 

confidence interval of roughly 90% (Lutz 1996, Lutz et al. 1998). Combining 

subjective probability distributions from a number of experts guards against 

individual bias, and IIASA demographers argue that a strength of the method is 

that it may be possible to capture structural change and unexpected events that 

other approaches might miss. In addition, in areas where data on historical 

trends are sparse, there may be no better alternative to producing probabilistic 

projections. 

For this study, we are aiming for a parsimonious parameterization of population 

uncertainty. This is necessary because of the large differences in model structure. 

We therefore selected the uncertainty about global population growth for the period 

2010-2100 as the single parameter of interest. We fitted the growth-rate quantiles 

from the IIASA projections to several distributions, with normal, log-normal, and 

gamma being the most satisfactory. The normal distribution performed better than 

any of the others on five of the six quantitative tests of fit for distributions. Based on 

these results, we therefore decided to recommend the normal distribution for the 

pdf of population growth over the period. 

In addition, we did several alternative tests to determine whether the 

projections were consistent with other methodologies. One set of tests examines the 

projection errors that would have been generated using historical data. A second 

test looks at the standard deviation of 100-year growth rates of population for the 

last millennium. A third test examines projections from a report of the National 

Research Council that estimated the forecast errors for global population over a 50-

year horizon (see NRC (2000), Appendix F, p. 344). While these all gave slightly 

different uncertainty ranges, they were similar to the uncertainties estimated in the 

IIASA study. 

On the basis of this review, we decided to use a normal distribution for the 

growth rate of population based on the IIASA study that has a standard deviation of 

the average annual growth rate of 0.22 percentage points per year over the period 
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2010-2100. More details with a background memorandum on the results are 

available from the authors. 

C. Climate Sensitivity  

 

An important parameter in climate science is the equilibrium or long-run 

response in the global mean surface temperature to a doubling of atmospheric 

carbon dioxide. In the climate science community, this is called the equilibrium 

climate sensitivity. With reference to climate models, this is calculated as the 

increase in average surface temperature with a doubled CO2 concentration relative 

to a path with the pre-industrial CO2 concentration. This parameter also plays a key 

role in the geophysical components in the IAMs used in this study. In the remainder 

of this paper, we will follow the convention in the geosciences and call it the 

equilibrium climate sensitivity (ECS). 

Given the importance of the ECS in climate science, there is an extensive 

literature estimating probability density functions. These pdfs are generally based 

on climate models, the instrumental records over the last century or so, 

paleoclimatic data such as estimated temperature and radiative forcings over ice-

age intervals, and the results of volcanic eruptions. Much of the literature estimates 

a probability density function using a single line of evidence, but a few papers 

synthesize different studies or different kinds of evidence. 

We focus on the studies drawing upon multiple lines of evidence. The IPCC 

Fifth Assessment report (AR5) reviewed the literature quantifying uncertainty in 

the ECS and highlighted five recent papers using multiple lines of evidence (IPCC 

2014). Each paper used a Bayesian approach to update a prior distribution based on 

previous evidence (the prior evidence usually drawn from instrumental records or a 

climate model) to calculate the posterior probability density function. Since each 

distribution was developed using multiple lines of evidence, and in some cases the 

same evidence, it would be inconsistent to assume that they were independent and 

simply to combine them. Further, since we could not reliably estimate the degree of 

dependence of the different studies, we could not synthesize them by taking into 

account the dependence. We therefore chose the probability density function from a 

single study and performed robustness checks to using the results from alternative 

studies cited in the IPCC AR5. 

The chosen study for our primary estimates is Olsen et al. (2012). This study 

is representative of the literature in using a Bayesian approach, with a prior based 

on previous studies and a likelihood based on observational or modeled data, such 

as global average surface temperatures or global total heat content. The prior in 

Olsen et al. (2012) is primarily based on Knutti and Hegerl (2008). That prior is then 
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combined with output variables from the University of Victoria ESCM climate model 

(Weaver et al. 2001) to determine the final or posterior distribution.  

Olsen et al. (2012) was chosen for the following reasons. First, it was 

recommended to us in personal communications with several climate scientists. 

Second, it was representative of the other four studies we examined and falls into 

the middle range of the different estimates.4 Third, sensitivity analyses of the effect 

on aggregate uncertainty of changing the standard deviation of the Olsen et al. 

(2012) results found that the sensitivity was small (see the section below on 

sensitivity analyses). Appendix 1 provides more details on Olsen et al. (2012) and 

also presents a figure comparing this study to the other studies in the IPCC AR5.  

Note that the US government used a version of the Roe and Baker distribution 

calibrated to three constraints from the IPCC for its uncertainty estimates (IAWG 

2010). Specifically, the IAWG Report modified the original Roe and Baker 

distribution to assume that the median value is 3.0 °C, the probability of being 

between 2 and 4.5 °C is two-thirds, and there is no mass below zero or above 10 °C. 

The modified Roe and Baker distribution has a higher mean ECS than any of the 

models (3.5 °C) and a much higher dispersion (1.6 °C as compared to 0.84 °C from 

Olsen et al. 2012). 

The estimated pdf for Olsen et al. (2012) was derived as follows. We first 

obtained the pdf from the authors. This pdf was provided as a set of equilibrium 

temperature values and corresponding probabilities. We then explored families of 

distributions that best approximated the numerical pdf provided. We found that a 

log-normal pdf fits the posterior distributions extremely well. 

To find the parameters of the fitted log-normal pdf, we minimize the squared 

difference between the posterior density function from Olsen et al. and the log-

normal pdf over the support of the distribution (the L2 or Euclidian norm). In other 

words, we minimize the sum of the square of the vertical differences between the 

posterior pdf and a log-normal pdf over all grid points values in the Olsen et al. 

(2012) distribution.5 Figure 1 shows the Olsen et al. (2012) pdf, along with the fitted 

log-normal density function. The fit is extremely close, with the log-normal 

distribution always within 0.14% of the Olsen et al. (2012) pdf for any grid point 

value. 

                                                           
4 In tests, we found that the Olsen et al. (2012) distribution is similar to a simple mixture 
distribution of all five distributions. We calculate this mixture distribution by taking the 
average probability over all distributions at each temperature increase.  
 
5 More precisely we minimize over the range of the Olsen et al. distribution, [1.509, 7.4876] 
°C, with a grid point spacing of 0.1508 °C.  
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D. Total Factor Productivity 
 

 Uncertainty in the growth of productivity (or output per capita) is known to be a 

critical parameter in determining all elements of climate change, from emissions to 

temperature change to damages (Nordhaus 2008). Climate models generally draw 

their estimates of emissions trajectories from background models of economic 

growth such as scenarios prepared for the IPCC or studies of the Energy Modeling 

Forum. No major studies, however, rely on statistically-based estimates of emissions 

and economic growth. 

Forecasts of long-run productivity growth involve active debates on issues such 

as the role of new technologies and inventions (Brynjolfsson and McAfee 2012, 

Gordon 2012), potential increases in the research intensity and educational 

attainment in emerging economies (Fernald and Jones 2014, Freeman 2010), and 

institutional reform and political stability (Acemoglu et al. 2005). While the 

empirical literature on economic growth has provided evidence in support of 

various underlying models, no existing study contains sufficient information to 

derive a probability distribution for long-run growth rates.  

 

 
 

Figure 1. The Olsen et al. (2012) probability density function along with the fitted 

log-normal distribution used in our analysis.  
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The historical record provides a useful background for estimating future trends. 

However, it is clear from both theoretical and empirical perspectives that the 

processes driving productivity growth are non-stationary. For example, estimates of 

the growth of global output per capita for the 18th, 19th, and 20th century are 0.6, 1.9, 

and 3.7 percent per year (DeLong 2015 in 

http://holtz.org/Library/Social%20Science/Economics/Estimating%20World%20

GDP%20by%20DeLong/Estimating%20World%20GDP.htm). To the extent that 

experts on economic growth possess valid insights about the likelihood and possible 

determinants of long-run growth patterns, then information drawn from experts 

can add value to forecasts based purely on historical observations or drawn from a 

single model. Combining expert estimates has been shown to reduce error in short-

run forecasts of economic growth (Batchelor and Dua 1995). However, there are 

few expert studies on long-run growth (see Appendix 2 for discussion) and, to our 

knowledge, there has been no systematic and detailed published study of 

uncertainty in long-run future growth rates. 

To develop estimates of uncertainties, the project team, led by Peter Christensen, 

undertook a survey of experts on economic growth to determine both the central 

tendency and the uncertainty about long-run growth trends. Our survey utilized 

information drawn from a panel of experts to characterize uncertainty in estimates 

of global output for the periods 2010-2050 and 2010-2100. We defined growth as 

the average annual rate of real per capita GDP, measured in purchasing power 

parity (PPP) terms. We asked experts to provide estimates of the average annual 

growth rates at 10th, 25th, 50th, 75th, 90th percentiles.  

Beginning in the summer of 2014, we sent out surveys to a panel of 25 economic 

growth experts. As of June 2015, we collected 11 complete results with full 

uncertainty analysis for the period 2010-2100. A summary of the procedure is 

provided in Appendix 2, and a complete report will be prepared separately. 

There are many different approaches to combining expert forecasts (Armstrong 

2001) and aggregating probability distributions (Clemen and Winkler 1999). We 

assume that experts have information about the likely distribution of long-run 

growth rates. Their information sets are defined by estimates for 5 different 

percentiles. We begin by assuming that the estimates are independent across 

experts and then examined the distributions that best fit the percentiles for each 

expert and for the combined estimates (average of percentiles) across experts.    

We found it useful for this project to characterize the expert pdfs with commonly 

used distributions so that the Monte Carlo estimates could be easily implemented. In 

testing the distributions for each expert, we found that most experts’ estimates can 

http://holtz.org/Library/Social%20Science/Economics/Estimating%20World%20GDP%20by%20DeLong/Estimating%20World%20GDP.htm
http://holtz.org/Library/Social%20Science/Economics/Estimating%20World%20GDP%20by%20DeLong/Estimating%20World%20GDP.htm
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be closely fitted by a normal distribution; similarly, the combined distribution is 

well fitted by a normal distribution. Details are provided in Appendix 2. 

The resulting combined normal distribution has a mean growth rate of 2.29% 

per year and a standard deviation of the growth rate of 1.15% per year over the 

period 2010-2100. (The mean growth rate of per capita GDP in the base runs of the 

six models is slightly lower at 1.9% per year over this period.) We test different 

approaches for combining the expert responses and find little sensitivity to the 

choice of aggregation method. Figure 2 shows the fitted individual and combined 

normal pdfs (explained in Appendix 2). In the Monte Carlo estimates below, we 

chose a standard deviation of the growth rate of per capita output of 1.12% per year 

(based on the first 11 responses). This value is used in this draft, but will be updated 

with the addition of further responses. 

 

 

Figure 2. Individual and combined pdfs for annual growth rates of output per capita, 

2010 – 2100 (average annual percent per year) 

 

For the methods, see Appendix 2. 
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It is useful to compare the survey results with historical data. If we take the long-

term estimates from Maddison (2003), the 100-year variability of growth over the 

ten centuries from 1000 to 2000 was 1.5% per year, with a range of -0.1% to 3.7% 

per year. The variability in these century-step data is higher than the experts’ 

estimate of 1.15% per year. 

Global growth rates based on detailed national data are available since 1900. The 

standard deviation of annual growth rates over this period was 2.9% per year, while 

the standard deviation of 25-year growth rates was 1.2 or 1.4% per year depending 

upon the source. The variability of growth in recent years was lower than for the 

entire period since 1900. The standard deviation in the annual growth rate during 

the period 1975-2000 was 1.1% per year. We cannot easily translate historical 

variabilities into century-long variabilities without assuming a specific stochastic 

structure of growth rates.  
 

VI. Results of Modeling Studies 
 

A. Model results and lattice diagrams 
 

We begin by providing results on the calibration runs and the surface response 

functions. For each model, there is a voluminous set of inputs and output variables 

from 2010 to 2100. The full set (consisting of 46,150 x 22 elements) clearly cannot 

be fully presented. We restrict our focus here to some of the most important results, 

and consign further results to Appendix 3, with the full results available online at 

time of publication.  

To help visualize the results, we have developed lattice diagrams to show how 

the results vary across uncertain variables and models. Figure 3 is a lattice diagram 

for the increase in global mean surface temperature in 2100. Within each of the nine 

panels, the y-axis is the global mean surface temperature increase in 2100 relative 

to 1900. The x-axis is the value of the equilibrium temperature sensitivity. Going 

across panels on the horizontal axis, the first column uses the grid value of the first 

of the five population scenarios (which is the lowest growth rate); the middle 

column shows the results for the modeler’s baseline population; and the third 

column shows the results for the population associated with the highest population 

grid (or highest growth rate).  

Going down panels on the vertical axis, the first row uses the highest growth rate 

for TFP (or the fifth TFP grid point); the middle row shows TFP growth for the 

modelers’ baselines; and the bottom row shows the results for the slowest grid 

point for the growth rate of TFP. Note that in all cases, the modelers’ baseline values 
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generally differ, but the differences in parameter values across rows or columns are 

identical. 

To understand this lattice graph, begin in the center panel. This panel uses the 

modeler’s baseline population and TFP growth. It indicates how temperature in 

2100 across models varies with the ECS, with the differences being 1.5 °C between 

the ECS grid points. A first observation is that the models all assume that the ECS is 

close to 3 °C in the baseline. Next, is that the resulting baseline temperature 

increases for 2100 are closely bunched between 3.75 and 4.25 °C. All curves are 

upward sloping, indicating a greater 2100 temperature change is associated with a 

higher ECS. 

As the ECS varies from the baseline values, the model differences are distinct. 

These can be seen in the slopes of the different model curves in the middle panel of 

Figure 3. We will see below that the impact of a 1 °C change in ECS on 2100 

temperature varies by a factor of 2½ across models. For example, DICE, MERGE, and 

GCAM have relatively responsive climate modules, while IGSM and FUND climate 

modules are much less responsive to ECS differences. The difference across models 

becomes larger as we move from the bottom-left to the upper right-hand panel, 

corresponding to increasing population and TFP growth from bottom left to top 

right. This result highlights key differences in both the economic and climate 

components of the different models. 
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Another important relationship to examine is how different models react to 

the carbon prices. Figure 4 shows the percentage reduction in CO2 emissions in the 

Carbon Tax scenario v. the Base run. The horizontal axis shows the magnitude of the 

carbon tax. One key feature of all models is that attaining zero emissions would 

require extremely high carbon prices. 
 

  

 

 

 
 

 

Figure 3. Lattice diagram for 2100 temperature increase  

This lattice diagram shows the differences in model results for 2100 global mean 

surface temperature across population, total factor productivity and temperature 

sensitivity parameters. The central box uses the modelers’ baseline parameters and 

the Base policy. 
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There are many other results of the modeling exercise. Appendix 3 contains 

further lattice diagrams, including those for per capita consumption, emissions, and 

damages, as well as additional tables of results. However, the primary purpose of 

the present study is to determine the impact of uncertainties, so we leave the model 

comparisons of major outputs aside at this point. 
 

B. Results of the estimates of the surface response functions 
 

Recall that track I provides the model outcomes (such as output, emissions, 

and temperature) for each grid-point of a 5 x 5 x 5 x 2 grid of the values of the 

uncertain parameters and policies. The next step in the analysis is to fit surface 

response functions (SRFs) to each of the model outputs. These SRFs then will be 

used, when combined with the Track II probability distributions just discussed, to 

provide probability distributions of the outcome variables for each model. 
 

 

 
 

Figure 4. Carbon tax and emissions reductions by model 

Models show differing response to higher carbon prices. Note that the carbon prices 

are all associated with given dates and are common for all models. The points to the 

far left are for 2010, while the ones at the far right are for 2100. These estimates are 

for the modelers’ baseline parameters.  
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We undertook extensive analysis of different approaches to estimating the 

SRFs. The initial and eventually preferred approach was a linear-quadratic-

interactions (LQI) specification. This took the following form: 
3 3

0

1 1 1

j

i i ij i j

i j i

Y u u u  
  

      

In this specification,  and i ju u  are the uncertain parameters. The Y are the 

outcome variables for different models and different years (e.g., temperature for the 

FUND model for 2100 in the Base run for different values of the 3 uncertain 

parameters). The parameters 0 ,  , and i i j   are the estimates from the SRF 

regression equations. We suppress the subscript for the model, year, policy, and 

variable.  

Table 1 shows a comparison of the results for temperature and log of output 

for the linear (L) and LQI specifications for the six models. All specifications show 

marked improvement of the equation fit in the LQI relative to the L version. Looking 

at the log output specification (the last column in the bottom set of numbers), the 

residual variance in the LQI specification is essentially zero for all models. For the 

temperature SRF, more than 99.5% of the variance is explained by the LQI 

specification. The standard errors of equations for 2100 temperature range from 

0.05 to 0.18 °C for different models in the LQI version. 
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The equations are fit as deviations from the central case, so coefficients are 

linearized at the central point, which is the modelers’ baseline set of parameters. 

Looking at the LQI coefficients for temperature, note that the effect of the ECS on 

2100 temperature varies substantially among the models. At the high end, there is 

close to a unit coefficient, while at the low end the variation is about 0.4 °C per °C in 

 

 
 

 

Table 1. Linear parameters in of SRF for temperature and log output for linear (L) 

and liner-quadratic-interactions (LQI) specifications 

 

The linear parameters are the coefficients on the linear term in the SRF regressions. 

Because the data are decentered (remove the medians), the linear terms in the 

higher-order polynomials are the derivatives or linear terms at the median values of 

the uncertain parameters.  
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ECS change. For TFP, the impacts are relatively similar except for the WITCH model, 

which is much lower. This is likely due to implementation of the TFP changes as 

input-neutral technical change (rather than changes in labor productivity, as in 

several other models). For population, the LQI coefficients vary by a factor of three.  

For log of output, several models have no feedback from ECS to output and 

thus show a 0.000 value. The impact of TFP is almost uniform by design. Similarly, 

the impact of population on output is very similar. 

We tested seven different specifications for the SRF: Linear (L), Linear with 

interactions (LI), Linear quadratic (LQ), Linear, quadratic, linear interactions (LQI) 

as shown above, 3rd degree polynomial with linear interactions (P3I), 4th degree 

polynomials with second degree interactions (P4I2), and fourth degree polynomial 

with fourth degree interactions and polynomial three-way interactions (P4I4S3). 

For virtually all models and specifications, the accuracy increased sharply as far as 

the LQI specification. However, as is shown in Figure 5, very little further 

improvement was found for the more exotic polynomials. In addition to the 

polynomial interpolations, we investigated several alternative techniques, including 

Chebyshev polynomials and basis-splines. We found no improvement from these 

other approaches. 

 
 

 
 

Figure 5. Residual variance for all variables, models, and specifications indicates that 

for nearly all models, there is little to be gained adding further polynomial terms beyond 

LQI. 
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 In summary, we found that the linear-quadratic-interaction (LQI) 

specification of the surface response function performed extremely well in fitting 

the data in our tests. The reason is that the models, while highly non-linear overall, 

are generally close to quadratic in the three uncertain parameters. We are therefore 

confident that they are a reliable basis for the Monte Carlo simulations. 

 

C. Reliability of the MUP procedures with extrapolation 
 

One issue that arises in estimating the distributions of outcome variables is 

the extent to which the calibration runs in track I adequately cover the range of the 

pdfs from track II. For both population and the equilibrium temperature sensitivity, 

the calibration runs cover at least 99.9 % of the range of the pdfs. However, when 

setting the calibration range for TFP based on earlier informal estimates, we 

underestimated the variability of the final pdfs. As a result, the calibration runs only 

extend as far as the 83 percentile at the upper end, requiring us to extrapolate 

beyond the range of the calibration runs. 

Since it was not possible to repeat the calibration runs with an expanded grid, 

we tested the reliability of the extrapolation and the two track approach with two 

models. We first examined the reliability for TFP with the base case in the DICE 

model. This was done by making runs with increments of TFP growth up to 3 

estimated standard deviations (i.e., up to a global output growth rate of 6.1% per 

year to 2100). These runs cover 99.7% of the distribution. We then estimated a 

surface response function for 2100 temperature over the same interval as for the 

calibration exercises and extrapolated outside the range. The results showed high 

reliability of the estimated SRF for temperature increase up to about 2 standard 

deviations above the baseline TFP growth rate. Beyond that, the SRF tended to 

overestimate the 2100 temperature. (Similar results were found for CO2 

concentrations and the damage-output ratio in the DICE model.) The reason for the 

overestimate is that carbon fuels become exhausted at high growth rates, so raising 

the growth rate further above the already-high rate has a relatively small effects on 

emissions, concentrations, 2100 temperature, and the damage ratio. Note that this 

implies that the far upper tail of the temperature distribution using the corrected 

SRF will show a thinner tail than the one generated by the SRF estimated over the 

calibration runs. 

We also performed a more comprehensive comparison of the MUP 

procedures with a full Monte Carlo using the FUND model. For this, we took the pdfs 

for the three uncertain variables and ran a Monte Carlo for the full FUND model with 

1 million draws. We then compared the means and standard deviations of different 
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variables for the two approaches. We tested four different specifications of the SRFs 

to determine whether these would produce markedly different outcomes. The 

results indicated that the MUP procedure provided reliable estimates of the means 

and standard deviations of all variables that we tested except FUND damages. 

Excepting damages, for the preferred LQI estimate, the absolute average error of the 

mean for the MUP procedure relative to the FUND Monte Carlo was 0.3%, while the 

absolute average error for the standard deviation was 1.2%. For damages, the 

errors were 7% and 44%, respectively. Additionally, the percentile estimates for the 

MUP procedure (again except for damages) were accurate up to the 90th percentile. 

And, as will be noted below, the estimates for the parameters of the tails of the 

distributions were accurate for all variables except damages. A note providing 

further details on the comparisons is available from the authors. 
 

VII. Results of the Monte Carlo simulations 
 

A. Distributions for major variables 
 

 For the Monte Carlo simulations, we took the SRFs for each 

parameter/model/year/policy and made 1,000,000 draws from each pdf for the 

three uncertain parameters. We then examined the resulting distributions. This 

sample size was chosen because the results were reliable at that level. The bootstrap 

standard errors of the means and the standard deviations were generally less than 

0.1% of the mean or standard deviation. The exception was for damages, where the 

bootstrap standard error of the estimated standard deviations was about 0.2% of 

the value for the FUND model. We treat each pdf independently, but recognize that 

there may be some correlation between realizations of population and GDP. 

However, explorations into this revealed that it did not substantially influence our 

findings. 

Table 2 shows statistics of the distribution of the draws for each of the major 

outcome variables, with averages taken across all six models. We also show the 

estimates for the linear and LQI versions to illustrate the sensitivity of the results to 

the SRF specification. The last column shows the coefficient of variation for each 

variable. Note that these estimates are within-model (parametric uncertainty) 

results and do not include across-model variability. The results highlight that 

emissions, economic output, and damages have the highest coefficient of variation, 

underscoring that the uncertainty in these output variables is greater than for other 

variables, such as CO2 concentrations and temperature. This is the result of both the 

underlying pdfs used and the models themselves. 
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Table 3 shows the percentile distribution for all major variables for all models 

with results for the base case. The detailed results by models are provided in the 

appendix. A key result is the distribution of temperature increase for 2100. The 

median increase across all models is 3.79 °C above 1900 levels. The 95th percentile 

of the increase is 5.46 °C. Given the size of the interquartile range, these results 

definitely indicate that there are substantial uncertainties in all aspects of future 

climate change and its impacts in all the models investigated here. 
 

 

 

 

 
 

Table 2. Results of Monte Carlo simulations for averages of all models 

The table shows the values of all variables for 2100, except for the social cost of 

carbon, which is for 2020. Damages and SCC are for three models. 
 

 

 
 

Table 3. Distribution of all major variables, average of six models 

The date for all variables is 2100 except for the SCC, which is 2020. Damages and 

SCC are for three models. 
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Table 4 shows the distribution for global temperature increase in 2100 by 

model. The temperature distributions of the six models are on the whole reasonably 

close. The median ranges from 3.6 to 4.2°C, with IGSM being the lowest and MERGE 

being the highest. The interquartile range varies from 0.99 °C (FUND) to 1.39 °C 

(DICE). The 10-90% ranges from 1.91 °C (WITCH) to 2.65 °C (DICE). Since the 

variability in the random parameters is the same, the differences are due to model 

structures. 

 One interesting feature is the temperature distribution in the tails. The 99th 

percentile ranges from 5.6 (WITCH) to 7.1 °C (MERGE), while the far tail of the 

99.9th percentile ranges from 6.2 (WITCH) to 8.5 °C (MERGE). 
 

 

 Table 5 shows the distribution of the SCC for the three models that provide 

these estimates. These are the estimates of the present value of the flow of future 

marginal damages of emissions in 2020. Two of the models (WITCH and DICE) use 

similar quadratic damage functions and are roughly comparable in the middle of the 

distribution, but the range is much smaller in WITCH. 6 The FUND model has much 

lower damages (due to a different damage function), and the SCC distribution is an 

order of magnitude lower than the other two models. Note that the central estimate 

of the SCC here is $13.30 per ton of CO2. This is much lower than the preferred 

estimate of the US government for 2020, which is $46 per ton in 2011$ with a 3% 

annual discount rate. However, the base case discount rates in the MUP runs for the 

models that report average 4½% per year to 2050. The IAWG estimate at a 5% 

discount rate is $13 per ton and therefore consistent with the estimates presented 

here.  

  

                                                           
6 In WITCH multiple regions are modeled, hence the global SCC is the result of the 
aggregation of regional SCC.  

 

 
 

Table 4. Distribution of temperature change in the Base case, 2100, °C 
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 Figure 6 shows the results for the temperature distributions for the models 

on a percentile scale. The shapes of the distributions are similar, although they differ 

by as much as 1 °C in scale across most of the distribution.  

 

 

 An important question that this study can address is whether, based on the 

current model structures and the assumptions about uncertain parameters, the 

distributions of outcomes are thin or fat tailed. For these tests, we define a fat tailed 

distribution as one that has an infinite-variance Pareto or power-law distribution in 

the tails (based on the discussion in Schuster 1984). Variables with a Pareto 

distribution have infinite variance when the shape parameter is below 2, and they 

have an infinite mean with a parameter equal to or less than one. As an informal 

test, we can examine the ratio of the values of the output variables at the 99th and 

 

 
 

Table 5. Distribution of social cost of carbon, 2020 (2005$ per ton CO2) 

 

 
 

Figure 6. Percentiles of the change in temperature in 2100 across the six models. 
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99.9th percentile. For a normal distribution, the ratio of these is 1.33. For Pareto 

distributions with slope values of 2.0, 1.8, and 1.5, the ratios are 3.7, 3.9, and 5.2. If 

we examine the Monte Carlo estimates, the maximum ratio is 1.56, which occurs for 

damages in the DICE and FUND models. While this suggests a tail that is slightly 

fatter than the normal distribution, it falls far short of the slope associated with an 

infinite-variance Pareto process. 

Before presenting the results, we reiterate the concern that the calibration 

runs do not extend far into the tails for TFP. This implies that the results on tails 

reported here rely on extrapolations of the SRF outside the sample range. We 

comment below on our replication of the tail estimates with the FUND model, which 

are generally accurate. We also emphasize that the estimates of the tails are derived 

from the interaction of the models with the assumed pdfs. To the extent that the 

models omit discontinuities or sharp non-linearities, or that our assumed pdfs are 

too thin-tailed, then we may underestimate the thickness of the tails.  

We can also use a formal test of the Pareto shape parameter, although this is 

more complicated because it requires assumptions about the minimum of the 

Pareto region (statistical techniques are from Rytgaard 1990). Examining the top 

10% of the damage distribution for the DICE model (the most skewed of the 

variables), we find that the parameter of the Pareto distribution above the 1% right 

tail is estimated to be 4.7 ( + 0.047), which is well below the infinite-variance 

threshold of 2. The Pareto parameter estimate for the 0.1% tail is 7.03 ( + 0.22). 

These tests reject the hypothesis that the distributions are fat-tailed in the sense of 

belonging to an infinite-variance Pareto distribution. The results are due to both the 

structures of the models and the nature of the shocks. Nothing in the models 

prevents the generation of fat tails in this situation, but they may miss critical non-

linearities, so the tests are not by any means conclusive. 

We examined the validity of the results for the tails using the full Monte Carlo 

estimate of the FUND model discussed above. For these, we compared the informal 

tests (ratio of the variables at the 99.9%ile to the 99%ile). The MUP calculations 

were very accurate for all variables except damages, whereas for damages the MUP 

calculations underestimated the skewness (overestimated the Pareto tail). We also 

examined the Pareto parameter in the full FUND Monte Carlo and found that the 

estimate was significantly above the threshold of an infinite variance process. 

The results can also be seen in box plots. Figure 7 shows the box plot for 

temperature increase to 2100. Figure 8 shows the box plot for the CO2 

concentrations for 2100. Both of these underscore that while there are differences 

between the models in the way that they are run for this study, they are perhaps 
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smaller than one might have expected – and are much smaller than the within-

model variation. We show this formally in the next section. 
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Figure 7. Box plot for the increase in temperature across models in 2100.  

Note on boxplots: Dot is mean. Horizontal line is median. Shaded area around line is 

95% confidence interval of median (usually too small to see). Box contains 

interquartile range (IQR or 25 %ile to 75 %ile). The upper staple (horizontal bar) is 

set at the median plus 2 times the IQR, while lower staple is set at the median minus 

2 times the IQR. The upper stable is approximately the 95%ile for most variables. 

Because of skewness of the variables, the lower staple represents far outliers, and is 

generally around the 0.1%ile. 
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B. Model uncertainty v. parametric uncertainty 
 

 In examining the uncertainties of climate change and other issues, a common 

approach has been to look at the differences among forecasts, models, or 

approaches (“ensembles”) and to assume that these are a reasonable proxy for the 

uncertainties about the end result or endogenous variables. In the area of climate 

models, for example, researchers have often looked at the equilibrium climate 

sensitivities in different climate models and assumed that the dispersion would be 

an accurate measure of the actual uncertainty of the ECS. 

It is conceptually clear that the ensemble approach is an inappropriate 

measure of uncertainty of outcomes. The difference among models represents a 

measure of structural uncertainty. For example, alternative climate models might 

have different ways of including cloud feedbacks. Taking all the differences among 

the models would indicate how state-of-the-art models differ on the processes and 

variables that they include. Even here, however, existing models are likely to have 

an incomplete understanding and will therefore underestimate structural 

uncertainty. However, from a conceptual vantage point, they generally do not 
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Figure 8. Box plot for CO2 concentrations, 2100.  

For explanation of boxplots, see Figure 7. 
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explicitly model and consider parametric uncertainty. In IAMs, to come closer to 

home, differences in models reflect differences in assumptions about growth rates, 

production functions, energy systems, and the like. But few models explicitly include 

parametric uncertainty about these variables. Differences in population growth, for 

example, are very small relative to measures of uncertainty based on statistical 

techniques because many models use the same estimates of long-run population 

trends. 

We can use the results of the Monte Carlo simulations to estimate the relative 

importance of parametric uncertainty and model uncertainty. We can write the 

results of the Monte Carlo simulations schematically as follows. Assume that the 

model outcome for variable i and model m is 
m

iY and that the uncertain parameters 

are  and i ju u : 

3 3

,

1 1 1

j
m m m m

i i i i i j i j

i j i

Y u u u  
  

     

For a given distribution of each of the uncertain parameters, the variance of iY

including model variation is: 

3 3
2 2 2 2 2 2 2

,

1 1 1

( ) ( ) ( ) ( ) ( ) ( ) ( )
j

m m

i i i i i j i j

i j i

Y u u u       
  

     

The first term on the right hand side is the variance due to model differences (or 

structural uncertainty), while the second and third terms are the variance due to 

parameter uncertainty. For this purpose, we include the interaction of the model 

coefficients ,(  and )m m

i i j   and the parameter uncertainties 
2[ ( )]iu  as parametric 

uncertainty because they would not be included in ensemble uncertainty. The other 

terms vanish because we assume that the parametric uncertainties are independent. 

While dependence will add further terms on the right-hand side of the equation for 

the variance, it will not affect the fraction due to structural differences due to the 

first term. 

 We can easily estimate the total uncertainty and the structural uncertainty for 

different variables. The results are shown in Table 6. For most variables, virtually all 

the variance is explained by parametric uncertainty. For example, 94% of the 

variance of the 2100 temperature increase in all the models is explained by 

parametric uncertainty, and only 6% is explained by differences in model means. 

This fact is easily seen in the box charts in Figures 7 and 8. The only variable for 
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which model uncertainty is important is the social cost of carbon, for which four-

fifths of the total variance is due to model differences.  

 We can put these results in terms of the variabilities due to different factors. 

If we take the calculated temperature increase to 2100, the overall standard 

deviation is 0.84 °C including both model and parametric uncertainty. The standard 

deviation of the model means alone is 0.21 °C. So the variability measured in terms 

of standard deviations of the temperature increase is underestimated by a factor of 

four using the ensemble technique.  

 The net effect of these results is sobering. They indicate that the technique of 

relying upon ensembles as a technique for determining the uncertainty of future 

outcomes is (at least for the major climate change variables) highly deficient. 

Ensemble uncertainty tends to underestimate overall uncertainty by a significant 

amount. 

 

C. Sensitivity of the results to parameter variability  
 

 An important question is the extent to which the results are sensitive to the 

individual pdfs for the uncertain parameters. To test for sensitivity, we performed 

an experiment where we increased the standard deviation of each of the pdfs by a 

factor of 2, both one at a time and together. For a doubling of the standard deviation 

of all parameters, the increase in the standard deviation of 2100 temperature was a 

 

 
 

Table 6. Fraction of uncertainty (variance) explained by model differences. 
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factor of 1.83 for all models together. We believe that this is less than two because 

the short-run temperature impact is not proportional to the ECS. 

Table 7 shows the results changing the uncertainty by a factor of two one 

parameter at a time for the average of the 6 models for all variables which are 

produced by the six models. The number shows the ratio of the standard deviation 

of the 2100 value of the variable in the sensitivity case relative to the case with 

assumed pdfs. Doubling all uncertainties produces close to a doubling of the output 

uncertainty, with some deviations because of non-linearities.  

Doubling population uncertainty has a small effect on all variables except 

population. Doubling equilibrium temperature uncertainty raises the uncertainty of 

2100 temperature by 40% but has no significant effect on other uncertainties. The 

major sensitivity is TFP uncertainty. Doubling this uncertainty leads to close to 

doubling of the uncertainty of other major economic variables, and to an increase of 

62 percent in the uncertainty of 2100 temperature. This result is similar to a result 

in van Vuuren et al. (2008), which suggests that uncertainty in GDP growth 

dominates the uncertainty in emissions. 
 

 

 The summary on sensitivity of the results to the pdfs shows an important and 

surprising result. On the whole, the results are insensitive to changes in the 

population growth pdf; are moderately sensitive to the uncertainty about 

 

 
 

Table 7. Sensitivity of outcomes for changes in standard deviation of each uncertain 

parameter by factor of 2 

 

The figure gives the ratio of the standard deviation of the variable at the top of the 

column to the standard deviation in the base run. For example, doubling the 

standard deviation of population increased the standard deviation of 2100 

temperature by 6%. 
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equilibrium temperature sensitivity on temperature (as well as to damages and the 

social cost of carbon, not shown); and are extremely sensitive to the uncertainty 

about the rate of growth of productivity. While long-run productivity growth has the 

greatest impact on uncertainty, it is also the least carefully studied of any of the 

parameters we have examined. This result suggests that much greater attention 

should be given to developing reliable estimates of the trend and uncertainties 

about long-run productivity. 
 

VIII. Conclusions 
 

 This study is the first multi-model analysis of parametric uncertainty in 

economic climate-change modeling. The approach is based on estimating classic 

statistical forecast uncertainty. The central methodology consists of two tracks. 

Track I involves doing a set of model calibration runs for the six models and three 

uncertain parameters and estimating a surface response function for the results of 

those runs. Track II involves developing pdfs for key uncertain parameters. The two 

tracks are brought together through a set of Monte Carlo simulations to estimate the 

output distributions of multiple output variables that are important for climate 

change and climate-change policy. This approach is replicable and transparent, and 

overcomes several obstacles for examining uncertainty in climate change.  

Here are the key results. First, the central projections of the integrated 

assessment models (IAMs) are remarkably similar at the modeler’s baseline 

parameters. This result is probably due to the fact that models have been used in 

model comparisons and may have been revised to yield similar baseline results. 

However, the projections diverge sharply when alternative assumptions about the 

key uncertain parameters are used, especially at high levels of population growth, 

productivity growth, and equilibrium climate sensitivity.  

Second, despite these differences across models for alternative parameters, 

the distributions of the key output variables are remarkably similar across models 

with different structures and levels of complexity. To take year 2100 temperature as 

an example, the quantiles of the distributions of the models differ by less than ½ °C 

for the entire distribution up to the 95th percentile.  

Third, we find that the climate-related variables are characterized by low 

uncertainty relative to those relating to most economic variables. For this 

comparison, we look at the coefficient of variation (CV) of the Monte Carlo 

simulations. As shown in Table 2, CO2 concentrations, radiative forcings, and 

temperature (all for 2100) have relatively low CV. Output and damages have 

relatively high CV. As examples, the model-average coefficient of variation for 

carbon dioxide concentrations in 2100 is 0.28, while the coefficient of variation for 
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climate-change damages is 1.29. The social cost of carbon has an intermediate CV 

within models, but when model variation is included the CV is close to that of output 

and damages. These results highlight the importance of further research on 

economic variables and damage functions for reducing uncertainty and improving 

policymaking (e.g., see Pizer et al. 2014 and Drouet et al. 2015). 

Fourth, we find much greater parametric uncertainty than structural (across 

model) uncertainty for all output variables except the social cost of carbon. For 

example, in examining the uncertainty in 2100 temperature increase, the difference 

of model means (or the ensemble uncertainty) is approximately one-quarter of the 

total uncertainty, with the rest driven by parametric uncertainty. While looking 

across six models by no means spans the space of methods, the six models examined 

here are representative of the differences in size, structure, and complexity of IAMs. 

This result is important because of the widespread use of ensemble uncertainty as a 

proxy for overall uncertainty and highlights the need for a re-orientation of research 

towards examining parametric uncertainty across models. 

A fifth interesting finding of this analysis is the lack of evidence in support of 

fat tails in the distributions of emissions, global mean surface temperature, or 

damages. Population growth, total factor productivity growth, and climate 

sensitivity are very likely to be three of the key uncertain parameters in climate 

change. Yet, based on both informal and formal tests, the models as currently 

constructed find that the tails are relatively thin. The decline in probabilities 

associated with a change in any of the variables is much larger than would be 

associated with an infinite-variance Pareto process. As discussed above, we 

emphasize that these findings should be interpreted in the context of the current 

group of models and the assumed pdfs. The results do not rule out fat tails, but they 

do provide empirical evidence against fat tails in outcomes investigated in this study 

for the current set of models and the distributions of the three uncertain variables 

considered here. These results tend to support the use of expected benefit-cost 

analysis for climate change policy, in contrast to suggestions by some authors that 

neglect of fat tail events may vitiate standard analyses (Weitzman 2009). 

Sixth, we find that within a wide range of uncertainty, changes in dispersion 

of two of the uncertain parameters taken singly have a relatively small effect on the 

uncertainty of the output variables, these being population growth and equilibrium 

temperature sensitivity. However, uncertainty about productivity growth has a 

major impact on the uncertainty of all the major output variables. The reason for 

this is that the uncertainty of productivity growth from the expert survey 

compounds greatly over the 21st century and induces an extremely large uncertainty 
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about output, emissions, concentrations, temperature change, and damages by the 

end of the century. 

 As in any study, this analysis is intentionally sharply focused. By analyzing 

parametric uncertainty in three key parameters, we do not claim to be capturing all 

uncertainties in climate change. As we describe above, there are many uncertainties 

that cannot be captured using the statistical framework developed here. But by 

providing detailed estimates of uncertainty across a range of IAMs that are currently 

being used in the policy process, we believe that we have significantly improved the 

understanding of uncertainty in climate change. Moreover, our new two-track 

methodology is well-suited for expansion to additional parameters and models, and 

can be readily used to explore additional concerns, such as the interaction between 

carbon policies and uncertainty.  
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Appendix 1. Further Details on the Choice of ECS Distribution 

 

This appendix explains the procedure for developing the pdf for climate 

sensitivity. The study began by reviewing the five probability density functions for 

equilibrium climate sensitivity (ECS) used in the IPCC AR5 that draw upon multiple 

lines of evidence. These are Aldrin et al. (2012), Libardoni and Forest (2013), Olsen 

et al. (2012), Annan and Hargreaves (2006), and Hegerl et al. (2006). Figure A1 

illustrates the log-normal fits to each of these distributions (fits by the present 

authors). 

 

 

 

Our chosen study, Olsen et al. (2012), is representative of the studies in both 

its methodology and results. It uses a Bayesian approach. The prior distribution was 

constructed to fit the “most likely” values and “likely” ranges in Figure 3 in Knutti 

and Hegerl (2008) based on the summary statistics of the “current mean climate 

state” and “Last Glacial Maximum models.” Olsen et al. assume an inverse Gaussian 

(Wald) distribution and obtain this prior by assuming independence between the 

 

 
 

Figure A1. Log-normal distributions fit to the probability density functions cited in 

the IPCC AR5. The distribution shown here is from the updated Libardoni & Forest 

(2013) figures. 
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current mean climate state and the last glacial maximum models, and then 

computing the mixture distribution. 
 

The posterior distribution is then calculated by using a Markov Chain Monte 

Carlo simulation to update the prior with a likelihood function. The likelihood is 

based on several different tracers, such as global average atmospheric 

surface/ocean surface temperatures and global total heat content. These tracers 

come from the University of Victoria ESCM climate model, which consists of a three-

dimensional ocean general circulation model coupled with a 

thermodynamic/dynamic sea-ice model. The authors assume independence, so that 

the likelihood of both observations is equal to the product of the likelihoods. 
 

The parameters of the log-normal distribution fit to Olsen et al. are μ = 

1.10704 and σ = 0.264. The major summary statistics of the reference distribution in 

the study are the following: mean = 3.13, median = 3.03, standard deviation = 0.843, 

skewness = 0.824, and kurtosis = 4.23. In implementing the Monte Carlo for each 

model, we retained the mean ECS for that model. We then imposed a log-normal 

distribution that retained the arithmetic standard deviation of the ECS (i.e., a 

standard deviation of 0.843) based on the Olsen et al. (2012) distribution.  
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Appendix 2. Expert Survey on Total Factor Productivity  
 

 A key component of the project was determining the uncertainty in 

productivity (or, as operationally defined, output per capita). A review of existing 

studies indicated that there were no detailed studies of future output uncertainties 

out to 2100 that we could rely on. We therefore decided to undertake an expert 

elicitation. The detailed results of the survey will be shortly available separately as a 

working paper. This appendix sketches the methods and summarizes the 

preliminary results. Note that the current results include only 11 of the respondents, 

and the complete survey results will be used for the final publication. 
 

2.1 Survey Design 
 

In determining the probability distribution of future productivity growth, a 

major difficulty is the non-stationarity of this variable. It is clearly non-stationary if 

one examines historical data. From a theoretical point of view, we would expect 

non-stationarity because the major determinants of long-run growth – invention 

and technological change – involve new and different processes rather than 

replication of some underlying process. For this reason, it is important to overlay 

any empirical study with expert views. 

Expert opinion has been used systematically in a very limited number of 

studies of economic growth. For example, Webster et al. (2002) analyze uncertainty 

in the GDP growth rate out to 2100 (as a proxy for changes in labor productivity) 

using estimates collected from an elicitation of 5 experts from a single institution. 

This seemed too thin a base for the present study. 

In this study, we conducted a survey of expert predictions about uncertainty 

in global annual growth rates for the period 2010-2100. Experts provided responses 

using an online survey (see Figure A2 for the response format). The panel of experts 

was selected through a process of nomination by leading economists. 

We asked experts about growth rates in high-, medium-, and low-income 

countries, as well as about global aggregate rates. As part of the survey, we alerted 

experts to problems of overconfidence and include a warm-up section that was 

designed to increase awareness of their personal overconfidence. In addition, we 

asked experts about any ambiguities that they experienced in the survey and 
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provided them with historical data on growth rates for the period 1900-2000 from 

Barro-Ursua (2010) and Maddison (2003). 7 

 

 

The survey was comprised of 4 sets of questions about growth rates: (1) 

central estimates (50th percentile) for growth rates for 2010-2050 and 2010-2100, 

(2) estimates of uncertainty based on providing the 10th, 25th, 75th, and 90th 

percentiles of the growth rates, (3) the projected magnitude of effects of positive 

and negative shocks to the economy, and (4) near-term predictions (for the 

following year). We asked each expert to describe the rationale for their response as 

well as an explanation of major positive and negative shocks. The survey also asked 

experts to identify outside sources of information that were used to generate 

forecasts and to rank their own expertise overall and for particular regions. 

 

2.2 Combining Expert Distributions 

 

We use two methods to estimate the mean and standard deviation for the 

best-fitting combined normal distribution of growth rates for the period 2010-2100.  
 

The first method assumes that experts have estimates of quantiles of the 

distribution of long-run growth rates. The combined pdf is then the distribution that 

minimizes the sum of squared differences between the combined normal 

                                                           
7 Barro-Ursua Macroeconomic Data available at: rbarro.com/data-sets/. Maddison is from 
Angus Maddison (2003). Available at: http://www.theworldeconomy.org/statistics.htm. 

 

 
 

Figure A2. Response Format for Expert Survey 

 

http://www.theworldeconomy.org/statistics.htm
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distribution at each quantile and the average of the quantile estimates of the 

experts. The second method begins with estimates of the parameters of the best-

fitting normal distribution for each expert; and then takes the sample means of the 

parameters of the experts for the combined normal distribution.  

We find very little difference between the two methods. For the preliminary 

sample, the mean growth rates of per capita output for the two methods are 2.29 

and 2.30, respectively for methods 1 and 2. The combined standard deviations are 

1.15 and 1.17, respectively. 

The combined pdfs along with 11 preliminary responses are shown in Figure 

2 in the main text. The current procedure uses the sample mean of the standard 

deviation for the Monte Carlo estimates, but we are considering using a robust 

estimator for the final report. 
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Appendix 3. Additional Lattice Diagrams 

 

We include here further lattice diagrams. The structure is as described in the 

text. The only difference is the output variable, which is shown at the top of the 

graph. 
 

Note that the first group of diagrams is for the base runs, while the second 

group is for the runs with carbon taxes (Carbon Tax or Ampere runs). 
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Appendix 4. Additional Tables and Graphs 

 

Table A1. Overview of global integrated assessment models included in this study. 

 

 

Model Number 

of 

Economic 

Regions 

Time 

Horiz

on 

Variables 

Included 

Key Characteristics Selected 

Reference

s 

DICE 1 2010-

2300 

1,2,3,5,6 Optimal growth model, 

endogenous GDP and 

temperature, exogenous 

population, SWF is CES 

with respect to 

consumption. 

(Nordhaus 

and Sztorc 

2014) 

FUND 16 1950-

3000 

1,2,3,4,5,6,

7 

Multi-region, multi-gas, 

detailed damage functions, 

exogenous scenarios 

perturbed by model  

(Anthoff 

and Tol 

2010, 

2013) 

GCAM 14 2005-

2095 

1,2,3,4,5,7 Integrated energy-land-

climate model with 

technology detail; 

exogenous population and 

GDP; endogenous energy 

resources, agriculture, and 

temperature; economic 

costs are calculated for 

producer and consumer 

surplus change 

(Calvin and 

et al. 2011) 

IGSM 16 

 

2100 1,2,3,4,5,7 Full general circulation 

model linked to a multi 

sector-multi region 

general equilibrium model 

of the economy with 

explicit advanced 

technology options 

(Chen et al. 

2015, 

Sokolov et 

al. 2009, 

Webster et 

al. 2012) 

MERGE 10 2100 1,2,3,4,5,7 Ramsey model coupled (Blanford 
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with energy process 

model, multiple regions, 

endogenous GDP and 

temperature, exogenous 

population 

et al. 2014) 

WITCH  13  2150  1,2,3,4,5,6

,7 

Optimal growth model, 

endogenous GDP and 

temperature, exogenous 

population, SWF is CES 

with respect to 

consumption. 

(Bosetti et 

al. 2006) 
 

Notes: SWF = social welfare function, CES = constant elasticity of substitution. For 

variables included the key is: 

1 = GDP, population 

2 = CO2 emissions, CO2 concentrations 

3 = global temperature 

4 = multiple regions 

5 = mitigation 

6 = damages 

7 = non-CO2 GHGs 
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Results of Monte Carlo simulations for models and major variables 

[All variables are 2100 except SCC, which is 2020] 
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Figure for box plots for CO2 emissions, 2100. For discussion of box plots, see Figure 

7. 
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Figure for box plots for social cost of carbon, 2020. For discussion of box plots, see 

Figure 7. 
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Estimates from surface response functions by variable and model. 
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Goodness of fit of worst fitting LQI variable by model. 

Table shows the residual variance (1-R2) for the worst fitting of the 

equations. For example, in the LQI specification, the worst SRF for the DICE model is 

the equation for population, which has a residual variance of 0.00706. For the 

MERGE model, the worst equation is for CO2 emissions. Note as well that the only 

two models for which the worst equation has a significant reduction in residual 

variation from LQI to LQI++ are the IGSM and WITCH models. 
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