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Abstract

This contribution is oriented to ways of computer vision algorithms for mobile robot localization in internal
and external agricultural environment. The main aim of this work was to design, create, verify and evaluate
speed and functionality of computer vision localization algorithm. An input colour camera data and depth
data were captured by MS® Kinect sensor that was mounted on 6-wheel-drive mobile robot chassis.
The design of the localization algorithm was focused to the most significant blobs and points (landmarks)
on the colour picture. Actual coordinates of autonomous mobile robot were calculated out from measured
distances (depth sensor) and calculated angles (RGB camera) with respect to landmark points. Time
measurement script was used to compare the speed of landmark finding algorithm for localization in case
of one and more landmarks on picture. The main source code was written in MS Visual studio C# programming
language with Microsoft.Kinect.1.7.dll on Windows based PC. Algorithms described in this article were

created for a future development of an autonomous agronomical mobile robot localization and control.

Keywords:

Computer vision, localization, MS® Kinect, algorithm, agronomical mobile robot.

Téth, L., Paulovié, S., Palkova Z. and Vacho, L. (2015) “Landmark Finding Algorithms for Indoor
Autonomous Mobile Robot Localization”, AGRIS on-line Papers in Economics and Informatics, Vol. 7, No. 4,

pp. 189 - 197, ISSN 1804-1930.

Introduction

In this era there are many available solutions
for indoor and outdoor navigation systems. Usually
these navigation systems are based on odometria
or global positioning system (GPS). Human
obtain the most of information by vision. Designs
of an autonomous mobile robots and inputs control
algorithms are built by using conventional integrated
sensors. Only a tiny sphere of research teams
are working on a camera sensing and processing
multidimensional scenes. Nowadays, satisfactory
results are not achieved in the field of navigation
yet; where the inputs for control algorithm are
obtained from complex camera systems.

Duchon (2012) says that localization represents
a set of tasks that are guide to determinate object’s
place or position in an environment. A localization
system is a technology that estimates current
location to run an autonomous navigation systems
safely and consistently (Abdel Hafez et al., 2008;
Son et al, 2015; Royer et al., 2007; Wang et al.,
2006). Object’s position can be assigned relatively,
with respects to another object’s position

in environment, or absolutely, with respects
to beforechand defined coordinate system.
The mobile robot is not able to make useful activity,
without knowing about, where in environment
it is. It seems, that the answer to the most
important question: “Where am 1?7 doesn’t exist,
and any universal solution doesn’t exist in robotics
either. Especially, the reason is the measurement’s
uncertainty of used sensors for the mobile robot
localization. Therefore, mixed robot localizing
methods are applied in the mobile robot applications,
where each one of method has some pro-and-con.
For this reason, application is very individual.
Conventionally, sensor based vision localization
systems have three inherent limitations: sensitivity
to illumination variations, viewpoint variations,
and high computational complexity (Son, J. et al.,
2015).

Practically proved methods like triangulation,
trilateration, modern methods like inertial
navigation methods, but also difficult mathematic
probability and statistical methods are used
in sphere of mobile robot localization. Many
authors (Son, J. et al., 2015; Kim, H. et al., 2015;




Hu, G. et al.,, 2012; Davison, A. J. et al., 2007;
Eade, E. et.al., 2006; Wolf, J. et.al., 2002; Ohya,
A. etal., 1998) see big potential in computer vision
as a very useful tool for autonomous robot
localization system (SLAM).

Materials and methods

Environment property extraction based localization
is a specific localization where an application needs
sufficient precise sensors, e.g. laser range finders.
Trilateration and trilateration localization methods
belong to this group. The triangulation methods are
applied for detected natural environment marks like
edge of door or edge caused by colour difference.
If these environment marks are detected exactly,
then this information may be used as the input
for triangulation method and it can help
to determine the absolute position of the mobile
robot. But the reactive movement is determined
between two positions of the mobile robot more
frequently (Duchon, 2012).

Vision-based localization system, frequently called
as vision odometry, is a relative localization method
based on obtained information from visual system.
The visual systems are usually mounted on mobile
robots in mobile robotics sphere and sense three
dimensional environments in one plain.

To determine the relative position of the mobile
robot, the third dimension of the reconstructed
image is needed. To reconstruct the third
dimension of a space is necessary to compare two
consecutive images from the sequence of images.
The motion vector of the mobile robot is indicated
by two compared corresponding frames (two
successive positions) that consequently localize
the mobile robot relatively in environment. It is
necessary to pair the significant characteristics

Source: http://www.math.ntnu.no/~anstahl/Images/Hand.jpg

of the environment in images, to determine
the motion vector. If these significant marks
(characteristics) match in pairing, vectors
are created between these significant marks.
After that vectors characterise the position change
of the mobile robot among two images (frames) that
were captured by the visual system (Duchon et al.,
2014). This methodology is also called as optical
flow localization (Figure 1).

If the robot is described by a translation vector T,
and by rotation vector R and vector L“ describes
the significant points of the first image and L/
describes the second image (Duchon et al., 2012),
then we can apply (1):

LM=R.L*+T +e, (1)
where e, is error in the position estimation.

Error e, should be the minimum for matching pairs
of significant points of the two images, which
responds to error minimizing with method of least
squares (2):

et = 13N - R, 13 + 1) @

The biggest source of visual odometry errors are
dynamic objects in the environment. It is necessary
to decide, whether the movement significant
environment marks was caused by the movement
of the mobile robot, or the movement of objects
in the environment. The solution to this problem is
to use visual odometry for prediction of an expected
movement. This will provide by certain value
characterizing the eventually maximum distance
between the pair and the corresponding significant
marks. The implementation and the application
of'this filter can help to remove cases when probably
there has been captured a motion of a dynamic
objects (Duchor et al., 2014).

Figure 1: Variational optical flow estimation.




Multiple methods and procedures can be selected
for a digital image processing and for purpose
of obtaining some information that will be
served to the mobile robot localization system.
The environment has the biggest impact wherever
the mobile robot will move. Under this condition,
the image processing algorithms should be chosen
carefully. In addition, a fast image processing
is required with correct output information.
The environment and objects in the environment are
containing characteristic features that are possible
to use as landmarks, e.g. edges, different colours
or surface topography and shadows.

The Canny edge detector is useful at first step
of the image processing. In principle, Canny edge
detector is composed by several elements that are
used at image analysis. These include, for example:
noise suppression, application of a convolution
operator with a mask, calculate the direction
and the intensity of edges and others. Multiple
steps combined can be considered as an advantage
of this detector, although more time is required
to perform operations. Minor drawback may be
the sensitivity; unwanted edges can be obtained
on the output image in addition to the necessary
edges. This could be eliminated by threshold
intensity. The Hough transformation is a standard
method for shape recognition in digital
images (Yuen, 1990). It was firstly applied
to the recognition of straight lines and later
extended to circles and ellipses (Duda, 1972).
The Hough transformation has more advantages:
robustness to noise, robustness to shape distortions
and to occlusions or missing parts of an object. Its
main disadvantage is the fact that computational
and storage requirements of the algorithm are
increased as the power of the dimensionality
of the curve (Ioannou, 1999).

The above description is the summary of methods
that can be changed and controlled by an appropriate
control algorithm. One of the ways is using fuzzy
control algorithm to decide, which method is
relatively better for localization in the concrete
situation. Hruby (2007) says that fuzzy control is
qualitative control based on qualitative description
of real systems. We do not need to know the exact
equation of control system. One of main benefits
of fuzzy control system is intuitiveness of design,
that allows control system designing too, where
isn’t available a mathematical model of the system
(environment) or it is hardly determinable (Hruby
et al., 2007).

Results and discussion

The both, the colour camera and the depth sensor
of the MS® Kinect capture images in resolution
640x480pixels at 30fps. The colour and the depth
sensor capture angle are not the same, the depth
camera has smaller capture angle. Different vertical
and horizontal capture angles of both sensors cause
difference between captured images of the scene, so
an image calibration process is needed. The colour
image sequence captured by the colour camera
was calibrated manually i.e. the original width
and height of the colour images were reduced
(deleted) in relation to image captured by the depth
sensor. The image calibration is described next;
a rectangle calibration object was moved in front
of the depth camera, from one side of depth
image to another side. When the calibration object
on the depth image touched the border of the depth
image, the colour image pixel lines are deleted
from that side up to the border of calibration object
appeared on the colour image. These steps are
repeated on each side of the colour image. Then
a new colour image was created with new width
and height, so the size of the final colour image will
be smaller.

After the calibration process, the algorithm
calculated the ratios between depth image
and new colour image width and height. Definition
of ratios is needed, because the new colour image
size was reduced and the depth image was not.
The colour and the depth image do not need to have
the same resolution, but they need to have the same
aspect ratio. The calculation of the ratio for each
dimension is shown next in formula (3) for width
and for height formula (4):

Xorg
Ry = 't
X Xcalib (3)
Yorg
R, = 2o
y Ycalib (4)
where:

R_— calibration ratio for width ( x line );
R - calibration ratio for height (y line );
— width and height of the depth image;

X, Vean — Width and height of the new calibrated
colour image from VGA camera.

xorg 2y org

These calibration ratios were used for determining
the distance at pixel on the depth image.

Landmark finding algorithm should be able
to find shining colour objects, edges, circles, lines
or rectangles by using of RGB camera. For example
tree stumps, wine grapes stems, poles, ground




and grass colour contrast and even static shadows
indoor and outdoor in agrarian sector. The main
landmark finding algorithm should memorize
constantly set vicinity of these objects on images.
The landmark finding algorithm should these object
notice on a new image anytime. Therefore, Khan
et.al. (2012) image processing algorithm, upper
mentioned Duchon’s (2014) optical flow algorithm
or colour comparing histogram based method could
be applied. However MS® Kinect colour camera
colour sensing and our algorithm are dependent
from ambient illuminance (light) level,
for monitoring this variable, our mobile robot
NUC (fig. 11a) was supplemented by an external
light-dependent resistor monitor. The value
of measured ambient illuminance level
compensatesthe RGB colour offset. The colour
histogram (that was calculated by found landmark)
can characterise the memorised landmarks.
Individual colours classifying can be reached
in accordance to the ambient light levels by fuzzy
control system. The advantage of fuzzy control
versus conventional methods is the ability
to synchronous control of multiple independent
physical variables (Cviklovi¢, 2011). Landmark
finding algorithm can find landmarks like flat objects
with depth sensor help too. Found landmarks are
presented by one pixel i.e. by centre of rectangular
frame drawn around colour blob of landmark.

Remembered landmarks searching algorithm speed
will be the dominant factor at algorithm choice
(fuzzy control). If the image processing speed
decreases or the response time increases, captured
image size (resolution) will be decreased on RGB
camera device.

Information about the key point’s (landmark’s)
distance is allocated at xfinal, yfinal co ordinates
of the depth image pixel. The x, . y, , co ordinates
are necessary to calculate (5) and (6) for correct

Source: own processing

pixel identification in the depth picture:

xﬁnal = Rx * xlandmark (5)
Vina = B, Vianimart (6)
where:

Xpnar Vinat ~ corrected x and y co-ordinate of the

landmark centre pixel on depth image;

R, R - calibration ratio for width and height (x, y
co-ordinate ratio);

X0 Via— X @and y co-ordinate of the recognized
landmark centre;

The result of the final pixel’s co-ordinate
calculation must be integer value, so these values
will be rounded and converted to data type
Int32. The space (distance) between the camera
and the landmark is directly characterized
in millimetres by pixel’s depth information.
Practically, the algorithm creates a three
dimensional array with structure [X coordinate,
Y coordinate, Depth] for each final colour pixel,
i.e. for each landmark centre pixel.

Only two landmarks (point A and B on Figure 2)
are enough to determine the relative position
of the mobile robot in the environment. But it is
necessary to find another one landmark for reserve,
just in case, if one landmark drops off from two.

At the beginning of mobile robot localization,
the algorithm found landmark points (method was
descripted upper). Each of this point was found
at different distance, but the colour camera
represents these points as points in one plain
(Figure 2). The next step was to calculate
the sizes of angles a, and a, by counting horizontal
pixels from the centre of the colour frame
to the landmark points. These angles helped
to determine perpendicular distances dV, (9)
and dV, (10).

Figure 2: Illustration of calculated angles and distances on 2D frame.




Next formulas (7) (8) helped to calculate
perpendicular distance dx, between the A point
and perpendicular distance dx, between the B point
and the axis of the colour camera (figure 2). There
was needed to measure not only angle, but also
the distances dM, and dM, by MS® Kinect depth
sensor.

dx,=dM, . sina, @)
dx, =dM, . sina, (®)
Parameters dV, (9) and dV, (10) represented
the perpendicular distances of each one landmark
point from the colour camera sight.

dVv,=dM,. cosa, 9
dV,=dM,. cosad (10)
Furthermore, if some application needs the
elevation of landmark points in the environment,

parameters dy, (11) and dy, (12) characterise these
values.

dy,=dV, . tgf, (11)
dy,=dV,.tgf, (12)

Sum of dx, and dx, did not give real distance
between A and B landmark, caused by plain
of 2D colour camera frame (Figure 3). For this
reason, the real distance of two landmarks A and B
are calculated by next formula (13):

AB = \/(dxA + dxg)z + (dVA = dVB)Z (13)

Source: own processing

Figure 3: Typified real situation of camera, depth
sensor and landmark points from above.

Also it was possible to enumerate the angle of shift
o of MS® Kinect sensor system plain and vertical
line to the AB abscissa (14). This angle represented
the real angle of shift of the mobile robot (camera)
to landmarks. The turn direction of the AB
abscissa from the camera plan is possible to sense
by the result of the formula 15. If the result is
negative number (the A landmark is far away),
the mobile robot is on the right side
of the perpendicular axis of the AB abscissa
and vice-versa.

B (1dVy — dVgl)
©= atg( (dx, + dxg) (14)
Dir(UR_) =dv, -dv, (15)

The main algorithm remembers all of calculated
parameters for each of found landmark (point),
and consequently the algorithm applicate
these parameters to localize the mobile robot.
If the mobile robot moves to another position,
algorithm determines distances and angles
to remembered landmarks (points) again.

Finally, the difference of remembered values
and last measured (actual) values gives the relative
position of the mobile robot in the environment
(Figure 4) with reference to landmark points. Vector
¢ represents the trajectory of the mobile robot (16):

g= fs,%+s)2, (16)

Source: own processing

Figure 4: Determination of the mobile robot’s relative position
between two points P, and P,




Landmark Finding Algorithms for Indoor Autonomous Mobile Robot Localization

Results of the landmark finding algorithm algorithm output (Figure 7), depth sensor output
for indoor localization are showed in stages: MS® (Figure 8), depth measurement correction - error
Kinect colour camera output (Figure 5), landmark filtration algorithm output (Figure 9) and landmark
finding algorithm output (Figure 6), calibration points-angles finding algorithm output (Figure 10).

Source: own processing Source: own processing

Figure 5: Output from MS® Kinect RGB camera (original Figure 6: Landmark finding algorithm (from RGB camera
frame). frame)

Source: own processing Source: own processing
Figure 7: Result of RGB camera and depth sensor calibration Figure 8: Output from MS® Kinect Depth sensor (original
algorithm and landmarks. frame).

Source: own processing Source: own processing
Figure 9: Depth measurement correction - error filtration Figure 10: Landmark point angles finding algorithm (join
algorithm (corrected frame). of RGB calibrated frame, found landmarks data, and corrected

depth frame information).
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Source: own processing

Figure 11: Created six wheel drive mobile robot prototype NUC v1.1 with MS®
Kinect, Laser rangefinder and light sensor.

The algorithms were tested on our six wheel drive
mobile robot prototype NUC vl.l1 with MS®
Kinect, light intensity sensor and Hokuyo URG
LX-04 2D laser rangefinder indoor (Figure 11).
All algorithms were run on Intel NUC mini PC
with integrated Intel i5 CPU and integrated Intel
GPU on motherboard with 8GB RAM.

Finally, a simple framerate measuring algorithm
was created for evaluation of achieved colour
image processing speed by the landmark finding
algorithm and the achieved framerate of the mobile
robot localization in the environment. After the
landmark finding algorithm function test the
framerate of image processing (landmark finding)
and localization was at more structured environment
2 fps (laboratory) and at less structured environment
4fps (hallway).

Conclusion

The paper describes the knowledge of the mobile
robot relative localization by using landmark
finding algorithms and some algorithms for input
information correction (error filtration) in an indoor
environment or in a dark external agriculture
environment. The main aim of this project was
to create and design the basic landmarks finding
algorithms, for mobile robot localization. This
algorithm is applicable only on moving object,
because, it is necessary to change the position
to localize the robot.

The total error of localization mainly depends
on resolution of the colour camera, because angles
are calculated from reckoned frame pixels. Error

can occur, in case when landmarks start moving.
Some error situation can occur, when sensors
cannot measure distances precisely due to shining
materials like mirror, glazed surface or glass.
Thereby, some additional distance measuring
sensors are needed to be supplemented in future that
are based on measuring another physical quantity.
For this purpose it is possible to use ultrasound
sensors with tight flaring angle or additional laser
rangefinder. Also an additional odometry based
algorithm may be used to localize the mobile
robot in the next movements. However we want
to increase the accuracy of localization, it is able
to use feedback from MS® Kinect’s three axis
accelerometers. In case of information feedback
from the localization process, it is possible to use
the advantages of inertial navigation, because
the information about the position could be
obtained through the acceleration and gyro data
from accelerometers and gyroscopes (Cviklovi¢
et al., 2011). If the concrete application needs
the  precise  mobile robot  information
about direction, an additional gyroscopic sensor
can be used with the Cviklovi¢’s (2013) method
of calibration to achieve tolerance of £0.5 degree.

The framerate of landmark finding algorithm
depended on environment structure, so 2 to 4fps
was reached that is enough to localize mobile
robot only up to speed 0,3 m.s. Vaz, M. (2015)
has described a faster localization algorithm
that using a particle filter fusing the odometry
with a novel observation model reflecting
the quality of the match between the ground edges
and the nearest obstacles for localization.




These algorithms are primarily created for actual
indoor  autonomous mobile robot NUC
and for future development of an autonomous
agronomical mobile robot control in the agrarian
sector. In regard of an external agricultural
environment, sunlight is the limiting factor
for depth camera sensor. The depth camera sensor
works on constantly defined wavelength laser
beams projected to the environment. The sunlight
interference with these beams and thereby depth
sensor cannot acquire the distances. The solution is
the usage of the MS® Kinect at night with its enabled
colour camera night vision function. Especially,
application of this landmark finding algorithm
for localization is suitable for small agricultural
devices that are moving in agrarian sector between
i.e. maize rows, vine yards or cornfield only
at night. These localization algorithms are ideal
for lawn movers too that are mowing the grass
in the home gardens at cloudy weather.

Corresponding author:
Ing. Ladislav Toth

One of the most suitable tasks for this landmark
finding algorithm is spraying with the airblast
sprayer between fruit trees or wine grapes. In this
case, the main benefit of this algorithm is
increasing the health and safety at workspace,
because workers do not need to drive the sprayer
tractor and meanwhile breathe the pesticides.
The whole sprayer system could work autonomously

with appropriate electro-mechanical actuating
devices installed on agricultural machine.
Advantages of landmark finding algorithm

for localization could be used in conjunction
with precise fertilization research works too,
where every single plant obtains only necessary
amount of soil conditioner in dependence on plant
nutrient index. Every coordinate of fertilized plants
or places in row could be remembered and used
to build a precise agrarian nutrient map.
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