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ABSTRACT

A bioceconomic simulation model of weed management is

developed in this research. The model identifies nearly

; optimal tactics for weed control in corn and soybean, based
on weed population density estimates. By incorporating
multiple controls and weed species into a dynamic model, it

fills a gap between existing multiple species, multiple

control static models and single species, single control
dynamic ones. Its open design allows it to run with any
suitable set of input parameter data.

The model simulates weed germination, growth, repro-
duction, susceptibility to control treatments, and reduction
of crop yields. Three annual weeds are included: mixed
green and yellow foxtails, common lambsquarters, and redroot

pigweed. Weed control recommendations are made by identi-

fying the optimal control that maximizes expected net income
per acre for a one- or two-year planning horizon.

Dynamic stochastic simulation experiments are conducted
to test the recommendations module in the context of a syn-
thetic southwestern Minnesota corn and soybean farm. Exper-
iments examine annualized net farm income and herbicide load
per acre for a six-year simulation under twenty states of
nature. The experiments compare outcomes from various 1)

levels of weed population information, 2) economic decision
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rules, 3) farm sizes, 4) initial weed densities, and 5)
herbicide bans.
Simulation results impute substantial value to weed

population information, low initial weed seed levels, and

} availability of triazine herbicides. They also indicate
‘ that the quantity of herbicides used may be reduced if weed
management decisions are based upon weed population informa-

tion.
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I. INTRODUCTION

1.1 Why Weeds Matter

Weeds cause serious crop losses by competing for light,
water, space and nutrients. A study by the Weed Science
Society of America estimated the average annual value of
U.S. crop losses due to weeds to be $7.5 billion during
1975-79 (Chandler et al.). Corn (Zea mays L.) and soybeans

(Glycine max (L.) Merr.) account for over half of these

losses.

Herbicides are the preferred method of weed control in
the United States. They offer selective weed control that
costs less than tillage or hand weeding and controls a
broader spectrum of weed species than existing biological
controls. Moreover, pre-emergent herbicides offer implicit
insurance against the possibility that bad weather will
prevent a farmer from destroying weeds by timely tillage
once the crop emerges. Ninety-six percent of U.S. corn and
soybean cropland was treated with herbicides in 1988. This
accounted for 81% of all herbicides applied to U.S. crops
that year (Osteen and Szmedra).

A drawback of herbicide use is the potential health
hazard posed. Human exposure to herbicides through residues
consumed in food is slight, as is the concomitant risk of

cancer (Archibald and Winter). However, herbicides contri-
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bute significantly to groundwater contamination in rural
areas. An estimated 46 million Americans drink water from
groundwater supplies that may be contaminated by pesticides,
which include insecticides, nematicides and fungicides, as
well as herbicides (Nielsen and Lee). Two herbicides were
found to be the most widespread pesticide contaminants in a
1988 survey of 500 Minnesota wells. Atrazine was found in
31% of the wells, while alachlor was detected in 3% (Klaseus
et al.). Not coincidentally, these are the herbicides most
commonly used on corn in Minnesota. Alachlor is also the
number two choice for soybeans in Minnesota (National
Agricultural Pesticide Impact Assessment Program, NAPIAP).

Herbicides are more likely than other pesticides to
enter the groundwater because 1) they are more heavily
applied than other pesticides, 2) many are applied directly
to the soil in pre-plant incorporated or pre-emergent treat-
ments, and 3) even post-emergent treatments are usually
applied when crops and weeds are small and much soil is
exposed. Where spray rigs are dumped or washed out, herbi-
cides can create point source contamination in addition to
the non-point contamination associated with normal chemical
‘treatment of crops.

The groundwater contamination problem is typically cast
as the result of an economic externality: Farmers perceive
all the benefits ofbagricultural chemicals, while paying

only some of the costs. In particular, they avoid paying
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most of the environmental costs of water pollution. The
conclusion is that they "overuse" chemicals. The public
policy debate around reducing groundwater contamination
focusses on introducing incentives or regulations forcing
farmers to realize the full social costs of chemical use
(Segerson). Policy alternatives recently proposed include
bans, taxes, marketable use permits (see, e.g., Gianessi et
al.), and public purchase of chemical use rights (Taff and

Cox) .

1.2 The Role of Information in Weed Management

An alternative explanation for part of the chemical
"overuse" is that farmers lack full information for maximi-
zation of private net benefits. Profit maximization pre-
supposes that the decision maker has complete information
about prices and the production process. Yet at key deci-
sion making moments, most farmers possess very limited
information on weed populations in their fields and their
potential economic effects.

The information problem is due in part to the timing of
weed control decisions. Weeds may be controlled using her-
bicides at three stages during the growing season. Before
the crop is planted, herbicides may be incorporated into the
soil (pre-plant incorporated, PPI). After crop planting,
they may be sprayed onto the soil surface (pre-emergent,

PRE). Both of these techniques kill weed seedlings before
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emerge. After the weed seedlings emerge, they may be killed
by tillage or by herbicide (post-emergent, POST). Weed
seedlings are visible only prior to the POST treatment.
Earlier weed control decisions must be made on the basis of
forecasted weed infestations. Ad hoc decisions tend either
to follow rules of thumb or to be based upon weed pressure
the previous season. But many viable weed seeds in the soil
are holdovers from previous years. At best, these decisions
are based on weak forecasts of the potential weed problem.

Good information on the weed seed population and asso-
ciated germination rates is not enough. Crop yield loss due
to weeds is the key economic component of the weed problem.
Even if all prices and costs are known in advance, evalua-
ting the need for weed control requires three further kinds
of information. The first concerns crop yield loss due to
each weed species as weed density increases. Such a produc-
tion function allows estimation of the opportunity cost of
failing to control weeds. The second concerns the efficacy
of available weed control measures toward the weed species
present. Knowledge of likely control efficacy allows pre-
diction of yield loss in the presence of different weed
control treatments. The third type of information concerns
the rate of seed production and mortality by each weed that
reaches maturity. Combined with the first two kinds of
information, these weed population growth parameters permit

forecasts of possible crop yield loss in future years.
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Previous research has highlighted the differences in
optimal weed control strategy between dynamic weed-crop
models (which include weed population growth parameters) and
static ones (which do not). Five studies from the United
Kingdom and Australia found that the economic threshold for
weed control occurs at a lower weed density in a dynamic
model than a static one (Auld et al., Cousens et al. 1986,

Doyle et al., Murdoch, Pandey 1989). Doyle et al. and

Cousens et al. (1986) found that the dynamic threshold was
not reached every year, so optimum herbicide application was
lower than conventional practice. In a dynamic bioeconomic
model of Colorado continuous corn with two weed variables
(aggregate grasses and aggregate broadleaves), King et al.
also found optimal herbicide use to be lower than conven-
tional practice. These results suggest that better biolo-
gical information about weeds in crops could increase long
term farm net incomes while reducing chemical use.

No model reviewed has combined dynamic analysis with
multiple individual weed species. Nor has any combined
dynamic analysis with multiple weed control treatments.
Prior efforts have 1) modeled the weed management problem
dynamically with aggregated weeds and a single control (King
et al.), 2) modeled it dynamically with a single weed
species ‘and a single control (Auld et al., Cousens et al.
1986, Doyle et al., Murdoch, Pandey 1989, Taylor and Burt),

or 3) modeled it statically with many individual weed
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species and control treatments (Kells and Black, Kidder et

al., Lybecker et al. (1991b), Wilkerson et al. 1991).

Pannell (1989a, 1989c) has modeled static control of a
single species in a single crop with variable rates of a
single treatment. Cousens et al. (1987b) have stressed the
need both for multi-species weed models and for stochastic

modeling.

A dynamic, multiple species, multiple control bioeco-
nomic weed management model has the potential to identify
weed management strategies that are more profitable than
those currently in use. Based upon results from previous
dynamic weed-crop studies, it is also expected that such a
model will recommend less herbicide use over the long run
than conventional practices which entail regular spraying.’
In this respect, the model may facilitate the substitution
of management for agricultural chemicals that has been advo-
cated by proponents of low-input agriculture (Daberkow and
Reichelderfer). The value of weed population information is
the key to the model's usefulness.

The value of weed population information depends in
part upon the farmer's ability to act upon it. For farmers,

weather makes the time interval for effective action a

' It is important to recognize, however, that such
herbicide reductions occur only in the long run. 1In early
years, a dynamic weed control strategy is likely to call for
more weed control than a static one, in order to reduce the
weed seed population.
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random variable. Apland (1988) has defined field time as
the "time during which conditions are satisfactory for field
work" (p. 1). The prevalence of pre-emergent herbicide
applications on Minnesota corn and soybean farms can be
interpreted as a response to the risk that rainy weather
will impede field access for timely cultivation, rotary hoe
or post-emergent herbicide treatment.

For a weed model to be of practical value as a manage-
ment decision tool, it needs to perform well under a wide
range of environmental conditions. This calls for model
evaluation in a context which simulates both environmental
variability and farm resource constraints.

The analytical approach followed in this study is
computer simulation of the biological and economic envi-
ronment. As Jock Anderson has noted, simulation is useful
when "the degree of control and isolation imposed on a
formal experiment may prevent ready extrapolation to the
less-controlled real world" (p. 35). This is certainly true
of agronomic experiments in weed control. Simulation can
accommodate rapid experimentation with a stochastic system
which, under field conditions, is only observable once each
season. By generating sets of outcomes from applying
management strategies to random variables, it allows sta-
tistical evaluation of results. In addition, sensitivity

analysis of a simulation model can aid investigators in
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identifying those research areas likely to offer the

greatest returns.

1.3 Objectives

The problem to be examined in this research is how
information concerning weed population dynamics can be used
to improve farmer decisions on weed control. "Improve" in
this sense means increase the farmer's expected utility,
where expected utility refers to the farmer's preferences
over different probability distributions of projected net
returns.

The initial objective is to design and validate a
dynamic bioeconomic model for control of multiple weed
species in corn and soybean. The model should include a
variety of control alternatives. It should provide recom-
mendations on weed control both before and after weed
seedlings emerge.

The second objective is to apply the bioeconomic model
to evaluate weed control strategies by stochastic simula-
tion. Strategies to be evaluated will include static and
dynamic decision rules. The value of weed population infor-
mation will be estimated for these under a range of sce-
narios with different crops, crop rotations, producer risk
attitudes, and initial weed pressure.

The third objective is to apply the best decision rule

to predict farm-level impacts of bans on atrazine and the
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triazine herbicides. Impacts on both farm net income and

chemical use will be examined.

1.4 Hypotheses

This research will test a set of hypotheses using

results from multi-year stochastic simulations with the weed

management model. The following nine null hypotheses are

stated in falsifiable form:

Hl.

H2.

H3.

H4.

H5.

Strategies using weed population information yield
discounted net income streams equal to those that
do not.

Strategies using weed population information
result in applying amounts of chemicals equal to
those that do not.

For a given level of information, strategies using
dynamic economic decision rules yield discounted
net income streams equal to ones using static
rules.

For a given level of information, strategies using
dynamic economic decision rules result in applying
amounts of chemicals equal to ones using static
rules.

An increase in acreage farmed with the same labor
and machinery set does not affect the discounted

net income stream per acre.
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H6. Low and high initial weed seed populations will
result in equal discounted net income streams.

H7. Low and high initial weed seed populations will
generate equal amounts of chemical application per
acre.

H8. Herbicide bans will not affect the stream of
discounted net income.

H9. Herbicide bans will not affect chemical applica-

tion per acre.

The thesis is organized into six chapters. In Chapter
2, the economic theory of pest management is reviewed, with
special attention to weeds and to model evaluation under
uncertainty. Chapter 3 describes the simulation model in
detail. Chapter 4 presents the procedures used to develop
parameter estimates to run the model and to validate it.
Chapter 5 presents results from the deterministic and
stochastic simulation models. It discusses outcomes of
stochastic simulations used to a) estimate value of weed
population information, b) evaluate alternative decision
rules, c) compare results from different initial weed seed
densities, d) evaluate the importance of timely weed
control, and e) compare herbicide policy alternatives.
Chapter 6 summarizes the contribution of the model and

identifies opportunities for future research.




II. A CONCEPTUAL MODEL OF WEED MANAGEMENT ECONOMICS

The weed management decision aid developed in this
research builds upon a conceptual model of pest management
economics. The model is formulated as an economic control
problem subject to a set of biological processes. This
chapter presents the theoretical basis for the normative
decision aid developed subsequently. It further presents a

framework for ex ante testing of the decision aid.

2.1 Economics of Pest Management

Pest control inputs differ from other agricultural
inputs in that they do not directly increase output, but
instead reduce losses caused by a damage agent (e.g., a
" noxious insect, weed or plant disease). The general model
of pest management in crops is concisely summarized by
Feder. It presupposes the existence of a damage function
giving crop loss as a function of pest numbers. Pesticide
usage can reduce pest numbers via a "kill function" which
generates the proportion of the pest population controlled
for a given amount of pesticide applied. With respect to
application rate, the kill function is assumed to have a
positive first derivative and a negative second derivative

on the closed interval [0,1]. Treating other variable costs

11
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as fixed, a slightly modified version of Feder's profit

function can be written,

O=pPy° - D(wx[1-k(H)]1)} - cH - C° (2.1)

where II denotes profit, Y is crop yield, P is product price,
D is the yield loss or damage function, W is the number of
pests, k € [0,1] is the kill function, H is the amount of
pesticide used, c is pesticide unit cost, and c® denotes
variable costs unrelated to pest control. The superscript 0
denotes pest-free levels. It is assumed that damage in-
creases with weed density (D'(W) > 0) and efficacy increases
with treatment dosage (k'(H) > 0) but is independent of weed
density (k'(W) = 0).

As it stands, pests and pesticides each constitute a
single variable in equation (2.1), as though each represents
a homogeneous group. Single pest models are useful for
analytical purposes; however, they abstract considerably
from reality. Yet even in the insect control economics
literature, multispecies models are rare (Boggess et al.,
Regmi). Weeds are far from homogeneous. They vary not only
in the level of damage each species inflicts on the crop,
but also in the susceptibility of each to different control
treatments. Consequently, both individual weed species and
control treatments must be explicitly included in the model.
The model can be simplified by recognizing that most pesti-
cides are applied at recommended rates. However, the dif-

ferentiability of equation (2.1) is sacrificed. Instead, a
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discrete level of expected profit is associated with each
control alternative. Rewriting equation (2.1) as an optimi-
zation problem using small letters to denote vectors and
capitals to denote scalars,

max © = P{Y%; - D([vV;-k(wsp,h)1'w)} - (c'I,)h - C% f2.2)

h
where m is a j vector of net revenues corresponding to weed
control treatments h, w is an i vector of weed species den-
sities, wsp is an i vector of weed species identifiers, h is
a j vector of control treatments, k is an (ix]j) matrix of
weed mortality functions relating each weed species to each
control treatment, c is a j vector of unit costs associated
with treatments h, 1. is an i vector of ones, 1 is a j

1

vector of ones, and I, is a (jxj) identity matrix.

2.1.1 Economic management of a biological system

Biological dynamics add another layer of complexity.
Weed seeds deposited in one season will either die or germi-
nate over a period of years. A dynamic economic model
requires endogenous functions for the seed bank and resul-
tant weed density levels. For planning horizons extending
beyond one season, outcomes of management practices need to
be discounted.

Assuming that the farm manager's utility is defined on
discounted cumulative net income at the end of a planning

horizon, management strategies can be evaluated using the
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net present value of accumulated profits (NW) discounted at

rate r. The dynamic version of equation (2.2) thus becomes,

max NW, = :Zo 1:0° (2.3)
h
subject to the equations of motion,
w, = w(s,.,) (2.4)
S, = s(8,.,, Wy, wi) (2.5)
we = 1,V - k(wsp, h) 1w, (2.6)

where NW, is a jT vector of net wealth positions in period T
contingent upon the T-period path of j control treatments
followed. w(s,,) is an i vector germination function rela-
ting the current number of weeds to the seed bank for each
species, with w'(s,,) > 0 assumed. uﬂ is an i vector of
weeds surviving to compete with the crop and to reproduce.
s is an i1 vector function associating end of season weed
seed bank density (s,) with seed bank density in the pre-
vious season, (s,,), cumulative weed seedling germination
during the season (w,), and seed production by weeds sur-
viving td reproduce (wh) It is assumed that s'(s,,) > 0,
s'(w,) < 0, and s'(w}) > o.

The seed bank state variables link control activities
in one period to repercussions in subsequent ones. Under
the assumptions stated above, differentiation of equation

(2.3) with respect to the arguments of the seed bank equa-
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tion (2.6) reveals that net wealth is decreasing in weed
seed bank and weeds at harvest in any time period. The
decrease is greatest in the early periods of the planning
horizon because resulting increases in the weed seed bank
cause increased weed populations and yield losses of longer
duration. The derivative of net wealth with respect to
cumulative weed germination is indeterminate, since germi-
nation is associated with both decline of the seed bank and
increase in number of weeds at harvest. On the basis of
these signs alone, it is clear that the dynamic problem in
equations (2.3-2.6) is considerably more sensitive to con-
trol actions than the static problem in equation (2.2).

The dynamic maximization problem is framed here as one
in which the control treatment is the choice variable. This
requires a word of explanation. Since the existing weed
management literature' generally concerns a single control
treatment, it tends to focus upon treatment rate and weed
density as choice variables. Two management strategies are
typically examined: 1) take weed density as given and choose
the treatment rate that maximizes utility, or 2) take the
treatment rate as given and choose the weed density thresh-
old at which to apply it. Moffitt and Pannell (1990) have

both demonstrated that the optimal rate approach of the

' Cousens et _al. (1986), Doyle et al., Murdoch, Pandey,
and Taylor and Burt examine a single weed in a 51ng1e Ccrop;
King et al. and Lybecker et al. (1988, 1991a) look at two or
three weed species aggregates in a single crop.
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first strategy insures profits that will always be at least
as high as those for the weed density threshold approach.

In practice, herbicides are applied at or near the
recommended rates published on their labels. Typically, the
"kill function," giving weed mortality as a function of her-
bicide rate, is unknown outside the manufacturer's labora-
tories. For practical purposes, the optimizing farm manager
is obliged to take application rates (and expected efficacy)
as given. This study works from the premise that realistic
choice variable is which control treatment to apply (at the
recommended rate). "No control" is included in the treat-
ment set, so there is an implicit threshold weed density
determining whether or not to choose the "no control"

option.

2.1.2 Thresholds for weed control

To characterize the density threshold for weed control,
Auld et al. have defined a net gain function, G(°), as the
gain in net revenue, 7 ('), from controlling weeds. 1In

static form from equation (2.2), this is simply

max G(whr,P,c*) = n(wh,P,c*) - n(wh, p) (2.7)
h

where w' = [1,1,' - k(wsp,h")]'w" denotes the j vector of
post-control weed populations corresponding to the j vector
of treatments h" at the recommended rate, w'® denotes the

uncontrolled population of weeds at harvest, and
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c" = (c'I)h" is the cost of control at the recommended rate.
Note that G(') can take negative values if the cost of weed
control exceeds its benefits. The threshold of interest
here, variously termed the "economic-injury level" (Stern et
al.), the "action threshold" (Moffitt et al., Moffitt and
Farnsworth) or the "economic threshold" (Cousens 1987) is
the weed density w'"" satisfying G(w"®) = 0. This is the
pest population density "at which the cost of control
measures equals the increased return on yield which would
result" (Cousens 1987, p. 15).' This leads to the decision
rule that weeds should be controlled at any pre-treatment
density w" exceeding the threshold w""",

h™ if [D(who) -D(whr*)] » S
# = p (2.8)

0 otherwise

where h™ denotes the weed control that maximizes net reve-
nues at recommended application rates, w'™ denotes the
resulting i vector of post-control weed species populations,
and c™ denotes the combined chemical and mechanical costs
of weed treatment at the recommended rate.

However, the static economic threshold ignores the

fundamental recursion relationship inherent in this dynamic

'Note this differs from Headley's classic marginalist
definition of the economic threshold as "the population that
produces incremental damage equal to the cost of preventing
that damage" (p. 105). Headley assumes that pesticide rate
is a control variable as well as the pest population level
at which to apply the pesticide.
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problem: The value of the current state is a function both
of its value per se and of the value of future states that
can be reached from it. This is the essence of Cousens'
(1987) dynamic "economic optimum threshold." Failure to
control weeds in the current period not only reduces current
crop yields. If aggregate weed seed production is density-
independent, it also leads to greater weed reproduction,
which reduces returns in the next and subsequent periods.

The dynamic optimum weed control path is expressed

using the tools of dynamic programming. To simplify the

h

notation of equations (2.3-2.6), retain wy

and h,, letting x,
represent all other variables. If the problem is solved
backwards from the final stage, then by Bellman's principle
of optimality, the optimal path may be found by solving at
each prior stage for the control that maximizes the value of
the current stage plus that of the subsequent actions.
Adapting the structure used by Kennedy to the notation at
hand, the recursive solution equation to the dynamic pro-
gramming problem in equations (2.3-2.6), can be stated,
viwe) = max [n wl, x., bt + v, {swi, x., b} (2.9)
h
where V () is the current period value function, =, is
current period net returns, V. ,(') is the discounted value
function for the next period, S(°) (borrowed from the seed

bank equation) is the transition function linking period t

with period (t+1), t=T...1l. By assumption, the initial
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condition is given and a transversality condition fixes the
value of the terminal state.

Applying this notion to Auld et al.'s formulation of
equation (2.8), define DV“1u¢,xtJ%) as a value of future
yield damage function. Then, revising equation (2.8), the
dynamic economic threshold can be expressed as the weed
density in period t that solves the dynamic version of (2.7)
for w!® generating the decision rule,

hf* if [D(wf") _D(wé‘r“) _DVt*l{W?I‘, X;s hL)] 2 % (2.10)
h =

0 otherwise

Under the assumptions of equations (2.3-2.6), damage is an
increasing function of weeds at harvest, which in turn are
indirectly an increasing function of weeds at harvest -- and
hence of weed control -- in the previous period. As Figure
2.1 illustrates, this implies that 1) the dynamic net gain
function (G°(w)) lies above the static one (GS(w)), and 2)
the dynamic economic optimum threshold (w?) lies at a lower

weed density than the static economic threshold (w%).

2.2 Simulation versus Optimization

The weed management problem is one of finding an
optimal weed control strategy over the farm manager's
planning horizon. As such, an optimization algorithm such

as mathematical programming or dynamic programming would
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G(w)
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Ww
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Figure 2.1: Dynamic and static net gain functions

compared.

seem appropriate.

Unfortunately, both present serious

computational drawbacks related to the fact that at each

time period after initialization, state variables explicitly

depend upon the sequence of previous controls.

This creates

a formidable data storage problem analogous to that of

numerous state variables in a control problem (Moffitt and

Farnsworth). The dimensionality problem can be surmounted

only by accepting a "near optimal" solution incorporating

few controls and making simplifying assumptions to reduce

the number of state variables (Taylor and Burt, Zacharias

and Grube). For an integer mathematical programming model

the dependence of states on prior controls implies that the
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number of "activities" grows exponentially with each time
period added to the planning horizon. In particular, if
both pre- and post-weed emergence control treatments are
allowed, the length of the discounted cumulative profit
vector associated with the dynamic control problem in
equations (2.3-2.6) becomes unmanageable, especially on a
microcomputer. For 10 pre-emergent and 8 post-emergent
controls, 512,000 net wealth values must be evaluated over a
three-year planning horizon. Both optimization techniques
are thus impractical for more than a handful of control
treatments or very few periods.

Two added drawbacks of dynamic programming are, first,
it requires assigning discrete values to the state vari-
able(s). For the weed seed bank state variables, this can
distort the process of biological reproduction. Second,
modelin§ multiple weed species aggravates the already
daunting dimensionality problem.

Simulation is well suited to the representation of
large, complex systems (Orcutt) and their inherent stochas-
ticity (J. Anderson). Moreover, it is more flexible and
freer of dimensionality problems than the optimization
techniques considered. For these reasons, it has been used
in other recent economic analyses of biological pest
management (Boggess et al., King et al., Regmi, Reichel-
derfer and Bender). This study's objective of designing an

economic framework for a set of biological submodels makes
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paramount the need for flexibility and structural openness.
Consequently, simulation was chosen as the analytical
method.

Simulation requires accurate representation of the
systems being modeled. For weed management, those systems
are largely biological. Given the choice of simulation over
optimization methods, identifying decision rules for approx-
imately optimal management strategies becomes important.
Specific approaches to biological modeling and economic
decision rules are presented in Chapter 3. One of the rules
employed is, in fact, a dynamic programming optimal control

over a two-year time horizon.

2.3 Evaluation of Model Recommendations

The weed management model presented above abstracts
from reality in two important ways. First, it is deter-
ministic, relying upon expected values of yield loss and
weed population change in order to develop recommended
strategies. Second, it ignores constraints on farm labor,
management and machinery resources. In fact, uncertainty
touches farm production in a variety of ways. Weather
conditions affect crop growth, weed germination and growth,
and the availability of workable field days. Field time

constraints imposed by labor and machinery endowments
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combined with inclement weather limit the potential for
timely management.

If untimely management causes reduced yields, then a
management strategy that is optimal from a per-acre, deter-
ministic standpoint may not be so in a whole-farm, stochas-
tic framework. One operating hypothesis based upon this
difference is that farmers "overapply" pre-emergent herbi-
cide for fear they will lack the time to apply post-emergent
weed control.

In order to test the sensitivity of model recommenda-
tions to the uncertainties and time constraints inherent in
farming, prior evaluation is in order. Ex ante evaluation
of the recommendations model is carried out through stochas-
tic simulation of weed and crop management in a whole farm
framework. The whole farm framework introduces intrasea-
sonal timeliness considerations to the general model of
equations (2.3-2.6). Crop yield penalties are associated
with untimely completion of management tasks such as
planting and weed control. The weed-free yield of equation

(2.3) is reformulated as Y?,

Y, = Y°(1 - §,) (2.11)
where §_ € [0,1] is the proportion of potential crop yield
lost by time 7 during cropping season t. Actual crop yield
may be further reduced by weather-induced treatment efficacy
failures or the infeasibility of post-emergent treatments

beyond a given stage in the weed or crop life cycle.
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For a farm with more than one field, discounted cumu-

lative farm net income is defined as the summation over all

fields of discounted cumulative per-acre net income times

the acreage (A;) of each field (f). Let m, denote net

revenue per acre from field f in season t (as in the numer-

ator of equation (2.3)), except that Y? substitutes for Y°.

Then discounted cumulative farm net income (FNW) at the end

of the planning horizon is

T F
FNW, = ¥ Arftre (2.12)

iof1 1L+t

2.3.1 Choosing among distributions of discounted net income
streams

Stochastic simulation generates distributions of
discounted cumulative farm net incomes. Choosing among
these distributions requires assumptions about farm manager
attitudes toward risk.

Expected utility theory provides a framework within
which attitudes toward risk can be examined. Under the
assumptions that preferences are ordered, continuous, and
independent, there exists a utility function u such that 1)
for any risky prospect x or y, u(x) > u(y) if and only if x
is preferred to y, and 2) the expected utility of a risky
prospect equals the utility of the expectation of the risky

prospect (Arrow, Hernstein and Milnor).
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Within the context of expected utility theory, two
general approaches can be taken to choosing among empirical
distributions of revenue gains. The method of stochastic
dominance identifies general classes of preferences over
which outcome distributions can be classified as risk effi-
cient or not. Alternatively, single valued utility func-
tions associate specific levels of utility with a given
attribute. Certainty equivalent money metrics of utility
can be developed from some single-valued utility functions.
These allow interpersonal utility comparisons. This re-
search assumes specific single valued utility function forms
in order to make more discriminating comparisons than are
possible using stochastic dominance.

According to the definition of Keeney and Raiffa, "a
decision maker is risk averse if he prefers the expected
consequence of any nondegenerate lottery to that lottery"
(p. 149). One measure of risk aversion that is invariant to
linear transformations of the utility function is the Pratt-
Arrow coefficient of absolute risk aversion, A. This is
defined as A = -u"(7)/u'(nv), where u is the individual's
utility function for attribute n. The Pratt-Arrow coeffi-
cient can be interpreted as the rate of change in marginal
utility of 7 (Raskin and Cochran).

Comparing the utility of decision makers with different
levels of risk aversion is complicated, and especially dif-

ficult without a common measuring unit. One money metric of
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utility is the certainty equivalent, "the amount x such that
the decision maker is indifferent between (lottery) L and
the amount x for certain," where L is a lottery yielding
various possible levels of outcome variable x; with asso-
ciated probabilities (Keeney and Raiffa, p. 143). A family
of functional forms that lends itself to money metric
comparisons of expected utility is that corresponding to
constant absolute risk attitudes, given by

aimy = {5 EER2S (2.13)

e for A <O

where e is the natural exponent (Keeney and Raiffa, p. 167).
Constant risk attitude utility functions allow evaluation of
weed management strategies over a range of specified levels
of risk aversion or preference. The money metric of utility
provided by the easily-calculated certainty equivalent is
the means of doing this. For these functions, the certainty

equivalent of u(w), w for a distribution of outcomes on

ce’

T, is

-in El-u(m)] for A > 0
A
Tee = E[n] for A =0 (2.14)
-0 Eluiz ] for A <O
A

where E is the expectations operator (Robison and Barry, p.

38).
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2.3.2 Value of weed population information

The value of information to a decision maker with a
specified utility function can be inferred from the differ-
ence in certainty equivalents between information states
(Byerlee and Anderson, Regmi). Byerlee and Anderson use the
notion of compensating variation to make an important
distinction between the value of a prediction and that of a
predictor. The former is the amount of money which would
leave a decision maker indifferent between the posterior
expected utility of maximizing expected utility with prior
information and that of having done so with the prediction.
The value of a predictor must be judged over the range of
stochastic states which it purports to predict. The predic-
tor's value is the amount of money which would leave the
decision maker indifferent between the posterior expected
utility of maximizing expected utility with prior informa-
tion and the integral over all states of nature of having
done so with the prediction. This definition of the value
of a predictor will be applied to estimate the value of weed
population information from stochastic simulation results.

With broad brush strokes, this chapter has laid out a
conceptual model of weed management along with methods for
evaluating its performance. The next chapter presents a

computer model that implements the ideas introduced here.




III. THE SIMULATION MODEL

The simulation model described in this chapter makes
operational the theoretical model presented in Chapter 2.
It is composed of two parts: a recommendations module
(WEEDSIM) and a whole farm model (WFARM). The former gene-
rates ex ante weed control recommendations using information
about weed seed or seedling populations combined with
expected rates of weed germination and crop yield loss due
to weeds. The latter simulates the labor and machinery
resource constraints and probabilistic field time con-
straints that characterize actual farms. The simulation
model is written in Microsoft QuickBasic (version 4.5); a
listing of the computer program may be found in Appendix
A.2. This chapter describes the structure and program flow
of the simulation model.

Both the recommendations module and the whole farm
model are designed to be flexible and open to evolution.
Flexibility is incorporated in two ways. First, the program
is written in modular fashion. Virtually all program
operations are executed by procedures called from the main
program. These can be modified or replaced without harming
the operation of the larger model, so long as the required

values are passed back from the subroutine to the main

28
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program. Second, all numerical parameters required to run
the model are read in as text files. Hence, without
changing any program code, input parameters can be changed
as desired. The model's flexibility is intended to facili-
tate its evolution as biological modeling advances. It is
anticipated that some of the simple subroutines currently
based on statistically estimated relationships will even-

tually be supplanted by biological process models.

3.1 Structure of the Recommendations Module

The purpose of the recommendations module is to iden-
tify the most attractive treatment strategy. Three types of
decision rules are available. All three require crop yield
predictions for the current season. One also incorporates
yield predictions for the next season. These predictions
rely upon a system of biological equations that predict
yield loss, weed control, weed germination, and evolution of
the weed seed bank. This section will begin with a dis-
cussion of the decision rule alternatives and proceed to
examine their biological data requirements.

The recommendations module runs on a set of parameter
data files. Appropriate files may be prepared by any
researcher capable of supplying suitable coefficients for

the weed germination, weed seed production and mortality,
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and crop yield equations that run the model.' Additional
input files include data on the cost, rates and efficacy of
weed control treatments. 1Initial values supplied by the
user include crop name, rotation, expected price and expec-
ted weed-free yield, the discount rate, variable costs per
acre, and weed seed or seedling density per square meter (by
species). The weed density values are critical -- they
provide the necessary initial values for simulation of
expected weed populations and resulting crop yield loss.

The program flow of the WEEDSIM recommendations module
is illustrated in Figure 3.1. Based upon initial weed seed
counts provided by the user, WEEDSIM calculates expected
pre- and post-planting weed germination. Every possible PPI
and PRE weed control treatment included in the model is
evaluated jointly with every possible POST treatment. For
each PPI/PRE and POST pair, the expected yield is calculated
from the expected density of weeds at harvest. The asso-
ciated present value (PV) of net returns is calculated from
user-supplied cost and crop price information. If the user
has specified a dynamic (e.g., two-year) decision rule, the
model calculates the expected change in the weed seed bank
for each species, and then evaluates all PPI/PRE and POST
weed control combinations for the following year, starting

from each combination in the initial year. WEEDSIM recom-

! Procedures used for statistical estimation of the
parameters used in this thesis are outlined in Chapter 4.
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Figure 3.1: Flow chart of the WEEDSIM recommendations
module.

mends the PPI/PRE and POST pair for the initial year that
generates the highest net present value (NPV) for the speci-

fied decision rule. The post-emergence recommendations
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imodule, PostWEEDSIM, is identical, except that it begins

~ with the "POST action" stage using weed seedling counts
‘:provided by the user. The economic decision rules and the

- biological submodels are discussed below.

3.1.1 Economic decision rules

The three economic decision rules included in the
recommendations module are: 1) a "myopic" rule that makes
recommendations maximizing current season expected net
revenue, 2) a "cautious myopic" rule that applies a lower
threshold for weed control to the same one-year planning
horizon, and 3) a "foresighted", two-year rule that chooses
the current year weed control strategy based upon expected
returns over the current year and the next.

The "myopic" rule recommends the weed control action
(including "no control") that maximizes the difference
between the value of yield saved in the current year and the
cost of treatment. Recalling the algebraic statement of the

problem in equation (2.7), this rule can be stated:

max G(whr,pP,c*) = n(whr,P,c*) - = (wh,Pp)
h

Based upon initial weed seed counts provided by the user,
the model forecasts weed density and its impact on current
year crop yields. Expected yields are calculated for all
combinations of pre- and post-emergent weed control. From

the resultant expected net revenue values (calculated in
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subroutine WSPostRev), the model selects the highest (using
the sorting subroutine WSTopRevMyopic) and makes its recom-
mendation accordingly. This is the kind of decision rule
employed in the multiple weed species bioeconomic models
currently available or in development for field use

(Lybecker et al., 1991a, Wilkerson et al., 1991).

The "cautious myopic" decision rule (also implemented
by WSTopRevMyopic) is designed to recognize that a dynamic
optimal weed control strategy maintains a lower equilibrium
weed population than a static one. The "cautious myopic"
decision rule recommends weed control when it is nearly
profitable--but not quite, given a single year planning
horizon. This results in performance over time that may be
superior to the strictly myopic rule. Mathematically, the

"cautious myopic" rule is a variant of the myopic one:

mgx G(whr,p,c*) = n(whr,P,c%) - (1-8)n(wh°,P) (3.1)

where 6 € [0,1] represents the proportion by which the no
control base case is decreased. The rule implies greater
willingness to treat weeds than in the myopic profit-maximi-
zing case. It seeks to mimic the optimal dynamic weed con-
trol threshold at wg* in Figure 2.1, while still using the
more easily computed myopic net gain function G%(w). It
does so by lowering the net gain threshold for implementing
weed control from 0 to -8w(w’), as shown in Figure 3.2.

Computationally, it is equivalent to the myopic rule, except
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- that it uses (1 - 0)n(w0) as the base case in selecting the
-1optimum treatment rather than ﬂ(wo). The "cautious myopic"
: rule is related to the benefit-cost ratio (B/C) criterion
used by Regmi. However, with more than two treatments,
present value of net revenue is a better measure, since a
suboptimal strategy may appear attractive under the B/C

criterion if its cost is low.

Net Gain (G(w))

G°(w)
a%(w)
0 ~—
-OT(W) ///
W:V’f' Weed density (w)

Figure 3.2: "Cautious myopic" decision threshold emulates
the dynamic threshold with a static one.

The two-year decision rule forecasts expected yields
one year into the future. 1In order to do this, it predicts
seed production by those weeds that reach maturity under

each weed control scenario in the current year, using sub-
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‘routine WSSeedBank. This creates as many predicted initial
iseed bank conditions for year 2 as there are paired PPI/PRE
“and POST control treatments. For each predicted initial

- weed seed bank in year 2, the model repeats the procedure of

‘pmedicting expected yield for each weed control treatment,

 using subroutine WSNextYear. Finally, the model selects the

combination of treatments in years 1 and 2 that yield the
| highest expected present value of net wealth over the two
year period (using subroutine WSTopRev). The PPI/PRE treat-
ment for year 1 from this combination is the one the model
recommends. In the final year of a given planning horizon,
it substitutes a myopic decision rule for the two-year rule.
The two-year rule uses the dynamic decision rule (equa-
tion (2.10)) to obtain an optimal control over a two-year
time horizon. Among the three decision rules, only this one

explicitly incorporates weed seed reproduction and death.

3.1.2 Biological submodel

All three decision rules rely upon predictions of weed
infestations and estimates of their impact upon crop yield.
The biological submodel generates these through a set of
subroutines simulating each step in the process of weed
growth and competition with the crop.

Two analytical approaches are possible for predicting
biological phenomena: process simulation and statistical

estimation. Where process simulation is feasible, it is the
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- more desirable of the two, because it explicitly includes

é environmental factors which tend to enter statistical esti-
E mation as dummy variables or unexplained disturbance.

The only process model now available that is suited to
this weed management model is the Forcella (1991) weed ger-
mination predictor, which is still under development. While
advances in process modeling of weed-crop competition have
recently taken place (e.g., Maxwell and Ghersa, Wilkerson,
et al. 1990, Williams et al.), they have not yet reached the
point of modeling multiple weeds. As biological process
simulation moves forward, subroutines or object files could
easily be made compatible with this model.

For the time being, statistical estimation provides the
best means available of predicting biological processes.
This section offers an overview of the relevant biological

literature and functions included in the model.

3.1.2.1 Weed population dynamics

Careful modeling of the germination, reproduction and
mortality of weed plants and seeds is crucial to a dynamic
weed management model. Virtually all prior attempts to
simulate weed populations have focused upon a single grass
weed species in a single crop. In similar weed control

models, Cousens et al. (1986) incorporated innate dormancy

based on seed age in a wild oat population model, and Doyle

et al. built in induced dormancy based on seedbank depth in
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- a blackgrass population. Taylor and Burt, followed by

- Pandey and Pandey and Medd, modeled the wild oat seed bank
- as a function of the seed bank in the previous period and

i wild oat seed panicles at harvest. King et al. modeled the
; seed banks of both aggregate grass and aggregate broadleaf
weeds as linear functions of the seed bank in the previous
period and the number of weeds at harvest. The Taylor and
Burt, Pandey, Pandey and Medd, and King et al. models all
ignored the dormancy issue.

Experimental evidence suggests that weed seed germi-
nation occurs as a proportion of the seeds in the seed bank
(Cavers and Benoit, Forcella 1990, 1991). For simplicity,
this model treats weed seedling germination as a Markovian
process, ignoring dormancy. In the absence of weed control,
weed seed germination in stage 7 of the growing season can

be specified as

Weie = 0piSipg (3.2)

where w . is seedling germination by weed species i in stage

t
T, S;,., is the seed bank of weed species i in the previous
season, and ¢ ; is a parameter representing the proportion

of weed seeds of species i germinating during stage 7. Note
that o ; may be estimated as a coefficient, or treated as a
function itself. In the Forcella germination model,
cumulative seasonal weed germination is simulated as «; =

a;(AGDD) , where AGDD is cumulative April growing degree

days.
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For management purposes, weed seedling germination in
row crop fields takes place in three stages: prior to crop
planting, after planting, and after post-emergent weed
control. Germination prior to crop planting, wy,, follows
equation (3.2). Only weed species tolerant of cool weather
germinate in significant numbers at this stage. These weeds
are killed by the crop planting operation, but their numbers
require tracking since they represent a loss from the soil
seed bank. Weed seedlings germinating with the crop seeds,
W, represent a competitive threat to the crop. Due to the
use of pre-emergent herbicides, germination and emergence
are not necessarily equivalent. Weeds that emerge can be
expressed as those that germinated and survived any control

treatment,

wije = Wy, [1 - k(wsp;, h1;,)] (3.3)
where hljt is a dummy variable for pre-emergent weed control
treatment j in period t. Some of these surviving weeds may
be killed by post-emergent weed control treatments, hzu.
Weeds that get established with the crop and compete for
more than four to six weeks cause the greatest reduction in
crop yields (Stoller et al.). Some weed seedlings emerge
after post-emergent treatment, Woiite These compete weakly
with the crop. However, some reach reproductive maturity

and set seed. Weeds at harvest can be expressed as,

W.il;'t = W_i;t[l = k(wl’ tht)] + Wz.ijt (3.4)
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where h2jt is post-emergence weed control treatment j, and
Wit is weed emergence following post-emergent weed control.

WEEDSIM, the recommendations module, simulates these
steps through four procedures. WSWeedGerm accepts para-
meters for the number of weed species being modeled, initial
weed seed counts for each, and germination rates for each
species before and after planting. It returns expected weed
density (wy;¢) and an updated seed bank for each weed
species. WSPreTrt accepts input parameters for the number
of weed species, number of PPI and PRE weed treatments, PPI
and PRE efficacy ratings, operating costs for field culti-
vator and sprayer, herbicide rates and unit costs, field
size, and variable cost/acre. It calls a weed survival
function (Surv), passing weed species and treatment type, to
obtain the proportion of weeds of each species surviving
each type of treatment. WSPreTrt allows either a PPI or a
PRE weed control, but not both. It returns the expected
density of weeds surviving PPI/PRE treatment, along with the
associated cost and treatment identity. WSPostTrt executes
similar functions on the weed densities output from WSPreTrt
to predict the number of weeds surviving each combination of
PPI/PRE and POST treatment.

The soil seed bank is the link between seasonal weed
populations. It contains a stock of viable seeds which
grows with the deposition of new seeds and shrinks through

seed death and germination. By reducing the number of weeds
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surviving to reproduce, weed control practices affect seed
bank growth.

Reproducing weeds add seeds to the soil seed bank.
Abstracting from the age and size of individual weeds, their
mean contribution is a simple multiple of the number of
weeds at harvest, w%t. These seeds join the survivors from

the previous season, determining the current seed bank, s,

2
Sn:=(1‘g%“u‘ﬁi)$na'+YiWﬂ (3.5)
where Za ; represents the number of seeds of species i lost
through germination during the S=3 stages of period t, B,
represents those lost through seed death in the soil, and ¥,
represents mean seed production per mature weed.

The recommendations module implements the seed produc-
tion equation via procedure WSSeedBank. This returns up-
dated seed bank densities based upon parameters for number
of weed species, end-of-season weed densities, mean seed
production per weed, seed mortality rates, and previous year

seed densities updated to subtract cumulative germination

during the season.

3.1.2.2 Weed control efficacy
Weed control "efficacy" refers to the toxicity of a
control treatment toward the target weed. As implied by the

function k(wsp,h), it is determined by the choice and
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quantity of the control input, h, and the susceptibility of
the weed species, wsp.

Herbicide efficacy ratings for treatment at recommended
rates are available by weed species (e.g., Durgan et al.).
These are expressed as a set of discrete levels, such as
"poor," "fair," "good," or "excellent," which correspond to
quantiles. Because recommended rates are fixed, the weed
control function for a given treatment jumps discontinuously
from a stated efficacy level to zero if some condition for
efficacy fails. For herbicides sprayed upon the soil before
weed seedlings emerge (pre-emergent herbicides), a common
condition is that sufficient rain fall to move the chemical
into the soil layer where weed seeds are germinating. For
herbicides sprayed on weeds that have already emerged (post-
emergent herbicides), common conditions are 1) that no rain
wash the chemical from the weed leaves within four hours of
spraying, and 2) that weeds be at a susceptible life cycle
stage.

The kill function employed here takes the form,

k;; 1f conditions suitable (3 g
r L ]
0 otherwise

‘where hg is treatment j applied at the recommended rate and
k;; is the proportion of weeds of species i killed as a
result. As noted above, the recommendations module imple-

ments this using the Surv function, which transforms effi-

cacy ratings from Durgan et al. into survival rates based




42
upon weed species and treatment type. The input data file
includes additional information on efficacy of mechanical
weed control methods.

The fact that some POST treatments are not efficacious
for weeds or crops greater than a specified size makes it
desirable to model plant growth. Since only the 4-6 weeks
after crop planting are of interest, a rudimentary growth
equation will suffice. For this short period, the average
height of a plant species, ph,, can adequately be modeled as
a simple quadratic function of the number of days after
planting, ph, = Gi(DAP)Z. This form appears to work accep-
tably for both crops and weeds. Efficacy thresholds stated
in terms of number of leaves are readily converted to height
format due to the high correlation between height and leaf
number. When plants exceed the height threshold for POST
efficacy of a given treatment, its efficacy is assumed to be

nil, as in equation (3.6).

3.1.2.3 Yield loss due to weeds

The appropriate form for modeling yield as a function
of weed density is much debated. Most researchers agree
that the yield function is nonlinear, although some hold
that a linear form is suitable approximation within the
range of weed populations found in farmer's fields (Marra

and Carlson).
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There is general agreement that crop yields decline to
some minimum level at high weed densities, since weed-weed
competition becomes more important than weed-crop competi-
tion. The debate centers around what occurs at low densi-
ties. The issue is clouded by the high variability of crop
yields at low weed densities. Zimdahl (1980) argues that
the yield function takes a sigmoidal form. Yield loss is
negligible at low weed populations, since there is no signi-
ficant competition for resources between crop and weed.
There has been little verification of this theory, as only
King et al. have fit a sigmoidal functional form to data.

Cousens (1985a) counters that crop yield loss per weed
is greatest at low weed densities. When weeds are few, they
grow larger and compete more vigorously with the crop. To

capture this, he proposes the hyperbolic yield function:

Iw
100(1+IW/A)

Y=v91 - (3.7)

where Y’, I and A are parameters to be estimated from data.

I represents percentage loss in crop yield per unit of weed
density as density approaches zero, and A represents the
maximum percentage crop yield loss asymptote as weed density
approaches infinity. The hyperbolic form, illustrated in
Figure 3.3, is approximately linear at low weed densities.
At high densities it becomes asymptotic to the minimum yield

level (Y . ) given by Y%*(1-A/100). Cousens found this func-

min

tional form to outperform 18 others from previously
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published studies, based on residual sums of squares and F-
;;st comparisons when fit to 22 sets of weed density-crop
yield data.’

-

Crop yield (Y)

&

Ymin

Weed density (W)

Figure 3.3: Crop yield as a hyperbolic function of weed
density.

One multivariate formulation of equation (3.7) is
presented in equation (3.8), where the subscript i denotes

the weed species.

' None of these studies used a sigmoidal form.
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2:.ng
b )

100(1+}: Iiwi/A)

Y=Yl - (3.8)

' The competitive effect of an additional weed of species n is
- given by the derivative in equation (3.9).
oy -Y,A?

=1 3.9
oW, "l 100(A+Y I,W,)? S
1

This implies that as the combined density of all weed spe-

- cies in a field increases, crop yield declines monotoni-
cally, but at a diminishing rate. The individual I, coeffi-
cients implicitly serve as competitive indices for each weed
species. Note that interspecific weed competition is impli-
cit in (3.8), since the competitive effect of an additional
weed of one species depends in part on the density of the
other species.

The hyperbolic form is the most appealing for several
reasons. The hyperbolic and logistic forms are preferable
to the linear one because they bring prior knowledge about
plant ecology to an otherwise unconstrained statistical
estimation problem. Moreover, the linear form can generate
negative yields at high weed densities. The ready interpre-
tation of its coefficients makes the hyperbolic form more
attractive than the logistic a priori. When the linear,

logistic, and hyperbolic forms were compared for this study,
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f}he hyperbolic form provided the best statistical fit, based
;;pon log likelihood function and the standard error of esti-
*éate (SEE). 1In fact, the hyperbolic form is rapidly gaining
i?cceptance (Stoller et al.), although its nonlinearity makes
;éStimation somewhat more cumbersome than for the linear or
glinearized logistic forms.

To implement the yield function, the recommendations
‘;module procedure WSPostTrt calls function Yield2. Yield2
f;returns a predicted yield based upon input parameters for

i number of weed species, crop identity, weed-free crop yield,
1 iate-season weed density, and weed-crop competition

~ parameters.

The structure of the WEEDSIM recommendations module is
illustrated in Figure 3.4. The initial biological subrou-
tines predict the expected weed infestation and expected
response to controls. The recommended treatments are deter-

mined by the economic decision rule chosen.

3.2 Structure of the Whole Farm Model

The WEEDSIM module generates weed management recommen-
dations for a typical acre of corn or soybean field. The
whole farm shell for the recommendations module, WFARM, both
captures the effects of limited time and machinery, and
allows modeling of stochastic phenomena (weather in partic-

ular). This permits evaluation of the recommendations
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WEEDSIM Subprograms

WSWeedGerm
WSPreTrt
WSPostTrt
WSPostRev

i

Decision
Horizon

= 27

Yesl

WSSeedBank

WSNextYear
WSWeedGerm
WSPreTrt
WSPostTrt
WSPostRev

WSTopRev

——— WSTopRevMyopic

Figure 3.4: Structure chart of the WEEDSIM module.

module through stochastic simulation, before testing it on

real fields.

The flow of the WFARM model is illustrated in Figure

3.5. WFARM begins a simulation season by choosing a year at

random from a historical data file. The year record

includes data on maximum weed-free yield, precipitation,




48

Initialize stochastic
year, coefficients,

disturbances Random errors,
y

coefficlents

| weed germination

Disk field

Plant crop

Plant crop '

Weed survival, germ.,
weed & crop growth

2
Random
efficacy

Random errors,

coefficients No
POST
‘ Random errors
Weed survival
& late germination 2
Weed rop
- seegbank ﬁ yield
Random errors,
coefficients
Random errors PV net return
L 4

Cumulative NPV

WFARM Flow Chart

Figure 3.5: Flow chart of the WFARM whole farm model.

workable field days, and simulated total weed germination.
WFARM also draws pseudo-random coefficients and disturbance

terms from data files associated with each of the equations
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;that runs the WFARM model. Then the model runs the WEEDSIM
fmodule for each field, to obtain a PPI/PRE weed management
:recommendation. Next weed pre-plant germination is simu-
ilated, with associated losses from the weed seed bank.
jAccording to whether WEEDSIM recommended a PPI or a PRE
1treatment, the field is treated with a PPI herbicide and the
;crop planted, or else it is disked first, planted and

~ treated with a PRE herbicide. Post-plant weed germination
].as well as weed and crop growth are simulated week by week.
jiThe PostWEEDSIM module is run for each field. If the recom-
- mendation is feasible given the simulated size of the crop
and weed, it is implemented. Late-germinating weeds plus
those that survived prior weed control influence crop yield
and set seed, contributing to the weed seed bank. The cycle
repeats for the duration of the simulation period, with dis-

counted net returns accumulated annually.

3.2.1 The role of timely operations and rainfall

The WFARM model steps through the season week by week,
simulating crop and weed biology as well as implementation
of the weed control recommendations, in light of available
precipitation and field working days. By tracking indivi-
dual activities in each field, late planting can be pena-
lized and untimely weed treatments ruled out.

Planting is the first operation to trigger timeliness

penalties if delayed too long. The penalty reflects losses
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incurred when crops in a northerly climate fail to attain
the optimal number of growing degree days. Yield penalties
for planting after the optimal period (implemented by sub-
‘routine Ypen) are stepwise in time for both corn and soybean
(Gunsolus 1990a). As farm size increases, these penalties
icome into play.

g3 Timeliness for post-emergent weed control is related to
;weed and crop size. Efficacy ratings for many post-emergent
chemical and mechanical weed control measures are contingent
Lupmmthe size of the weeds or crop. The model simulates
bplant growth during the first few weeks after emergence
 using simple quadratic functions of days after planting (in
isubroutines CropGrowth and WeedGrowth). Recommended treat-
f“ments may become infeasible or ineffective when the weed or
f crop grows too large for a given treatment. The model

% allows re-evaluation of the recommended weed control plan at
this point, taking as given the pre-emergent treatment
already implemented. Of course, revised plans incur higher
costs or provide poorer efficacy.

Apart from timeliness matters, herbicide efficacy is
another important factor subject to environmental vagaries.
Pre-emergent chemical weed control requires at least a half
inch of rain within one week of application to attain rated
efficacy levels. Failing this, efficacy is nil. The only
recourse is post-emergence weed treatment. On the other

hand, pre-plant incorporated and post-emergence control
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treatments are assumed to have deterministic efficacy. 1In

‘the first case, soil moisture is presumed sufficient to
‘bring the chemical into contact with germinating weed seeds.
" In the latter case, it is supposed that if rain threatens, a

farmer will not spray or rotary hoe.

' 3.2.2 Sequence of whole-farm model operations
‘ The specific subprograms that implement the operations
;illustrated in the WFARM flow chart (Figure 3.5) are shown
;in Figure 3.6. The resource base for the model farm in-
cludes farm acreage, machinery type and size, and labor.
‘Parameters for these are input by the user at the start of a
;model run. Other parameters read from sequential data files
- upon initialization of the model include weed treatment
,irates and costs (read by GetHerbData); treatment efficacy
~ ratings (read by GetKillData); machinery costs and rates of
:;operation (read by subroutine GetMachData); weed growth,
~ expected germination and population dynamics equation coef-
'1ficients (including coefficients for auxiliary variance
equations; read by subroutine GetWeedParm3); crop growth,
{ expected yield and maximum yield loss percent coefficients
(read by GetCropData); and weed-crop competition coeffi-
cients (read by GetCompData).

At the outset of a season, the whole farm model runs
the WEEDSIM recommendations module for each field on the

farm. Recommendations are developed based upon expected
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:weed seed germination and maximum yield levels. The whole
farm model then implements the recommended weed management
plan, subject to random weed germination, weed seed produc-
;tion, weed-free crop yield, weed-induced crop yield loss,
"time available for field work, and herbicide efficacy.

Crop and weed growth as well as farmer management are
- simulated field by field. The model starts each simulation

season by reading the number of weekly available field

. working days, weekly precipitation, maximum yields, and

predicted weed species germination rates (Forcella 1991)

from a data file (using subroutine GetYear). It proceeds by
reading from a file of random coefficients and additive
error terms associated with the estimated equations (via
subroutines GetStateBetas and GetStateErrors). Actual num-
bers of germinated weeds at each stage (pre-plant, post-
plant and post-cultivation) are generated by subroutine
CalibrateGerm, which adjusts the expected yearly germination
levels for dependence upon seed density and heteroscedastic
errors. The germination calibration equations utilize
randomized coefficients as well as additive random error
terms (from GetStateBetas and GetStateErrors). These take

the form,

Wege = (@30 + €404) Syp g + Uy, (3.10)

where ¢, is estimated germination of weed species i at

stage 7, €,, is additive random coefficient error, and u;, is

additive random equation disturbance.
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Get initial parameters
Scenario loop

State of nature loop
AutoWeedSeeds

Year loop
GetYear
GetStateBetas
GetStateErrors
CalibrateGerm
Fields loop #1

WEEDSIM
PrintRecoms

Weeks loop

Fields loop #2
FieldWeedGerm
PPITrt or DiskField
PlantCrop
PRETrt
PRESurv

Fields loop #3
CropGrowth
WeedGrowth
PostWEEDSIM

POST recom.
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Yos

POSTTrt
Fields loop #4
Weekly accounting
Year loop accounting
State loop accounting
Scenario loop accounting

Figure 3.6: Subprograms in the WFARM whole farm model.

Simulated field management begins the first week that
corn can be planted, around the week of April 19-25 in
southwestern Minnesota. Weed seedling emergence prior to
crop planting is simulated first (with subroutine FieldWeed-
Germ). Field cultivation (with subroutine FieldCult) and
incorporation of any recommended PPI herbicide (with subrou-

tine PPITrt) follows, up to the available number of field
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working days that week.' Crop planting is next (with sub-
routine PlantCrop), if the crop can be planted that early.
For a crop requiring warmer soil, such as soybean, which-
cannot be planted before May, the feasibility of planting is
re-evaluated the following week. After planting, the model
simulates weed seedling emergence in the presence of any
recommended pre-emergent weed control (with subroutines
PRETrt and PRESurv). Each week, the model simulates the
growth of the crop (using CropGrowth), as well as those
weeds that survive PPI and PRE control (using WeedGrowth).
Growth occurs at randomized rates plus additive random
errors (from GetStateBetas and GetStateErrors). Within a
field, they remain constant for the season. Based on
empirical results, errors for the two crops are hetero-
scedastic, while those for the weeds are homoscedastic.

Since weed germination is stochastic, the model revises
POST weed control recommendations based upon the number of
weeds surviving any pre-emergent treatment (implementing
subroutine PostWEEDSIM). This is essentially a call to
WEEDSIM, taking as given post-plant weed emergence and any
already implemented soil-applied weed control. Post-emer-
gent weed control by rotary hoe begins the week following

planting. For chemical treatments, it begins 2-3 weeks

' only conventional tillage is included in the whole
farm model. Some reduced tillage practices require no pre-
plant field cultivation unless pre-plant incorporated
herbicides are used.
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~ after planting. Ensuing weed survival is simulated in

~ subroutine WSPostTrt. The final weed densities used to

~ calculate crop yield and additions to the weed seed bank are
- simulated in the main program.

At any stage in this sequence, the tasks may be inter-
- rupted by the end of available field time in the week. At
4 this time, the week's activities are tallied. For each
field, costs are accrued and the density of remaining seeds
~ in the soil updated. Planting dates are recorded, since
weed-free yield is reduced from the maximum level according
to the delay between the optimum planting time and the one
achieved in a given field.

At the end of a simulated year, stochastic yields and
weed seed densities are calculated for each field. As
estimated equations for these were homoscedastic, random
errors from GetStateErrors are simply added to expected
values calculated from other arguments developed in the
model. Since the expected values are either composites from
several data sets (yield coefficients) or values imposed
from review of the literature (seed reproduction coeffi-
cients), these coefficients are not randomized. Costs, net
revenue, and the weed seed bank state variables are updated.
Simulation proceeds to the next year (following implementa-
tion of subroutine InitializeYear), if another is called for

in the planning horizon.
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The whole farm model is nested in a "state of nature"

nloop used for stochastic simulation. States of nature are

?Qrmwlat random from input data files. The states include
"U the year parameters obtained with GetYear, 2) the random
fcmefficient deviations from the mean in GetStateBetas, and
'fn the random disturbance terms associated with individual
ifkﬂds obtained with GetStateErrors. In a given simulation
béyear, equation coefficients and error terms vary from field

;‘to field, but the year parameters (maximum crop yield, ex-

f'pected weed germination, rainfall, field days) are constant
:_for all fields.

When multiple scenarios are run, an outer set of loops
';is added to control the experimental factors varied under

- the different scenarios. The simulation runs summarized in
? Chapter 5 had two outer scenario loops, one for decision

rules, and one for initial weed seed density settings.

3.2.3 Controllability of the biological system

The biological components of the simulation model
essentially provide an accounting of seed and weed numbers.
Whether the model is capable of maintaining an equilibrium
weed seed population depends upon the parameters supplied

and the stochastic errors generated.

The biological system is controllable in a given year
if there exists a PPI/PRE and POST treatment pair such that

the seed bank for each weed species can be reduced by the
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%ﬁutset of the next season. While this should not be a
?formidable requirement, two quite different conditions can
%impede controllability. First, random disturbances in a
;gdven season may make short-term controllability impossible.
?ﬁhen random errors are large, as may be the case for hetero-
fscedastic equations, stochastic model results may far
';ﬂiverge from expected values. Second, mixing parameters
lﬁestimated from data sets using different measurement metho-
V:dologies can lead to explosive simulated weed populations.
gSeed counts, in particular, may differ by orders of magni-
tgtude according to the method used (compare, e.g., seed
;icounts in King et al. and Forcella and Lindstrom 1988b).
;;Eince germination rate estimates are based on the previous
?season seed count, the same density of observed seedlings
E@may lead to vastly different germination coefficients. When
; estimating parameters from data, it is advisable to estimate
; the group of weed population dynamics equations from the

1 same set of data.

This note of caution sets the stage for the next
chapter. Chapter 4 presents the methods employed to develop
and validate the set of parameter estimates used to test the %

simulation model.




IV. DATA AND ESTIMATION

fﬁ The simulation model described in Chapter 3 requires
‘%mrameters provided through input files. This chapter des-
garibes the development of the input parameter sets used to
;mnlthe WEEDSIM and WFARM models. It reports methods used
;fm generate correlated pseudo-random variables to simulate
éerror terms for the stochastic simulation experiments
iéiscussed in chapters 5 and 6. Where out-of-sample data
 were available, it also reports results of equation-by-
‘;equation validation tests.

1;# Input parameters for the model are developed for the
féweed species that are economically important to corn and
;jsoybean farmers in southwestern Minnesota. Since tillage
i?tends to keep biennial and perennial weeds from getting
established in row crops, these are all annuals. They
include: green and yellow foxtails (Setaria viridis (L.)

Beauv. and S. glauca (L.) Beauv.), redroot pigweed (Amaran-

thus retroflexus L.), and common lambsquarters (Chenopodium

species are presented in instances where they were present
in significant numbers.

Parameters are developed using a variety of techniques,
according to the quality and availability of suitable data.

Germination rates are predicted using the Forcella (1991)

58

album L.). In addition, yield loss estimates for other weed
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;smwing degree days model combined with 1985-86 agronomic
field trial data from the U.S. Department of Agriculture
fwrth Central Soil Conservation Research Laboratory in
Morris, Minnesota. Seed production is estimated from that
‘same data set. VYield loss parameters are estimated using
‘eleven sets of agronomic trial data for Upper Midwest corn
“and soybean. Weed control efficacy ratings are drawn from

;gxtension literature (Durgan et al.). Finally, days avail-

fable for field work, precipitation, and growing degree days
}are obtained from historical records at the Southwest Exper-
fiment Station of the University of Minnesota, Lamberton,
,jMinnesota (Ford, Fuchs). All statistical estimation was
{carried out using SHAZAM version 6.2 (White et al.).

The 1985-86 Morris data set is the only one available

_ for Minnesota that includes observations on weed seed den-
sity, emerged weed seedling density, and crop yield over
more than one year. Consequently, its strengths and weak-
nesses have important ramifications for the quality of the
parameters estimated. The data were generated through an
agronomic experiment examining the impact of different
tillage methods upon weed seed movement and emergence in
corn, soybean and wheat crops' (Forcella and Lindstrom

1988a, 1988b). Weed seed densities were estimated from soil

samples of the experimental plots. Six soil cores were

'Data used for this thesis include only the corn and
soybean plots.
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fupled from each conventional tillage plot, representing
1}5218 of the top 10 centimeters of soil. Emerged weed
seedling densities were estimated from counts of sample
iﬁadrates placed in the field plots. The weed seedling
f}mpling quadrate covered 1:369 of the plot surface. Seed
émd seedling samples did not necessarily come from the same
;acations within a plot. Samples were counted before crop
f&anting, after crop emergence, and after mid-season lay-by
‘ﬁmltivation. The research plots were split, with two thirds
?&f each plot treated with PPI and PRE herbicides and one
}ﬂﬁrd left untreated in each year of the experiment. The
?late-season weed count was performed only on the treated
jsub-plots. The post-emergence weed count was conducted on
fthe treated plots only in 1985.

.- The weed count procedure allows pre-plant weed seed
 germination to be estimated from all plots. Post-planting
:~weed germination can be estimated from the untreated sub-

; plots, while post-cultivation germination can be estimated
from the treated sub-plots. Late-season weed counts in-
cluded only seedlings that emerged after cultivation.

Hence, total weed density in the crop row may be inferred as
the sum of post-emergence density and post-cultivation den-
sity, where post-cultivation density on untreated sub-plots

is assumed to be the same as on the treated ones.' Total

'Forcella (1991), personal communication.
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weed density is the basis for estimation of weed-crop

competition and weed seed production coefficients.

Substantial sampling error contributes to the variance
of estimated equations. Since seed density estimates are
extrapolations from a rather small sample, their variability
;is quite high. Weed seedling density estimates come from
{larger areas that are not necessarily coincident with the

- seed samples. Hence, considerable sampling error enters
iinto germination proportion estimates and weed seed produc-
- tion estimates, as has been observed elsewhere (Ball and

- Miller, Wilson et al.). To a lesser extent, this is also

- true of weed-crop competition estimates, since yields were

: measured from the entire plot area, not just the areas
lisampled for weed density. Total late-season weed density is
inferred from earlier weed density estimates, rather than

direct sample counts.

4.1 Weed population dynamics functions

4.1.1 Germination functions

Weed seedling germination parameters are required by
the WEEDSIM and WFARM models for weed germination 1) before
crop planting (WSWeedGerm and FieldWeedGerm), 2) after crop
planting (WSPreTrt and PRETrt), and 3) after lay-by cultiva-
tion (WSPostTrt and POSTTrt). Two methods are available to

develop weed seedling germination parameters. The first is
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;to estimate them statistically from the 1985-86 Morris data.

fThe second is to simulate them using the Forcella (1991)

}seedling emergence model. ‘

The potential of statistical estimation for attaining

{reliable coefficient estimates is limited by the reliability

Jof the data. First, the weed seed density and seedling

;emergence data are themselves estimates extrapolated from
- relatively small samples. The associated sampling variance
considerably augments the expected variance of a regression
::equation. This is especially true of the post-emergence and
;'post-cultivation weed counts, for which only half the 144
- observations were usable. Second, examination of the data
v“reveals that germination rates were dramatically higher in
:T1985 than in 1986. This could be modeled statistically
using dummy variables, but that still would not explain the
difference in a manner easily applied to a simulation model.
Third, the presence of many plots in which no seedlings of a
given weed species emerged suggests that tobit regression
would generate the best coefficient estimates. However,
tobit residuals have poorly defined properties, particularly
regarding correlation with residuals from related equations.
While tobit regression forecasts the probability that the
mean of the dependent variable will be zero, it cannot pre-
dict specific cases of zeroes. Residuals calculated by sub-

tracting predicted values from actual values may have a




63
highly skewed distribution. Yet regression residuals are
required for stochastic simulation.

The Forcella (1991) emergence model offers a non-
statistical alternative. It forecasts weed seedling emer-
gence in the absence of herbicides. The model predicts the
rate of weed seedling emergence as a function of cumulative
growing degree days (GDD) for the month of April. A GDD is
defined as the average of the high and low daily tempera-
tures in degrees Celsius minus ten. The Forcella emergence
equations for all three weed species in the model are non-
linear functions with a single maximum. In effect, if April
is too cool or too hot, fewer weeds than the maximum will
emerge. Denoting Y as emergence rate and X as cumulative
April GDD, Forcella's emergence equations are as follows:

foxtail, Y = 0.0205%0.9587Xxx2-4938

lambsquarters, Y -8.1326 + 1.3876%X - 0.0127*X?

pigweed, Y = 16766.9%(7.68E-29) VXxx 1-4679

All three functions have biologically reasonable forms,
although the lambsquarters quadratic predicts negative
emergence if April GDD are fewer than 6.2 or more than
103.0. Predicted emergence rates as a function of GDD are
illustrated in Figure 4.1.

The Forcella germination model offers a clear expla-
nation for the disparity between the two sample years.
However, it lacks the statistical richness of a 144 case

data set. 1Indeed, Forcella's simulation equations were
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fggrigure 4.1: Total emergence of three weed species as

- related to growing degree days in April (from Forcella,

- 1991)

fdeveloped from a very small time series data set. Compared
'?with the tobit residuals problem, however, there is no
adifficulty in calculating artificial "pseudo-residuals" as

1the difference between actual seedling emergence numbers and

Tthose predicted by applying the Forcella predicted rates to

oy
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'f: observed seed bank.' Given these strengths and the
1 eral objective of developing reasonable parameter values
or incorporation into the simulation model, Forcella's

model was chosen.

o
o

The Forcella predicted emergence rates corresponding to

1le Morris 1985-86 data set are presented in Table 4.1.

ple 4.1: Predicted cumulative weed emergence rates
Forcella model) for 1985 and 1986 in Morris, Minnesota.

Predicted emergence rate
d species 1985 1986

Foxtail .447 .061
Common lambsquarters .297 .067

Redroot pigweed .142 .020

‘Because the Forcella emergence rates do not distinguish
iﬁetween stages of the cropping season, the 1985-86 Morris
iyeed density data were partitioned in order to identify the
;%groportion of total weed emergence that occurs at each
;fstage. Mean emergence proportions by stage of the season

1fare presented in Table 4.2. They are consistent with the

_ results published by Chepil.

'The term "pseudo-residuals" is adopted in order to
reserve the word "residuals" for those obtained from a
statistically estimated predictor.




66

Table 4.2: Weed seedling emergence proportions for three
itages of the cropping season (Morris, MN, 1985-86).

il

3 Weed species
Stage of the season Foxtail ILambsquarters Pigweed
Pre-planting .18 .40 0
Post-crop emergence 72 .54 .92
t-cultivation .10 .06 .08

éﬁ;.l.l Calibration of the Forcella germination predictor
.i Predicted weed density is calculated as the product of
;fmulative emergence rate, emergence proportions per stage
E?'d estimated weed seed density. Pseudo-residuals were
itnerated by subtracting the predictions from actual values.
&f; pseudo-residuals were regressed on weed seed density to
?iét for systematic bias. 1In anticipation of spatially

e +

’;erelated seed data (due to the presence of weedy strips in

;the untreated sub-plots), seemingly unrelated regression
§ZSUR) was applied to the emergence pseudo-residual equations
5£;r all three species. Results suggested that bias was
%;resent in most cases, with predicted germination rates
té;viating from actual ones in a linear or quadratic relation

B

5&5 seed density. This was corrected by calibrating the
_Céseudo-residuals against weed seed numbers.

h The calibration regressions for pre-plant weed emer-
ffgence are presented in Table 4.3. The Breusch-Pagan

i Lagrange multiplier test for contemporaneous correlation

l(Judge et al., p.456) generated an insignificant %2(3) value

f of 0.72, so ordinary least squares (OLS) regression was

g applied. Pseudo-residuals representing the difference
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‘;tween actual pre-planting weed densities and the Forcella
viedicted values were regressed on seed density and squared
Th”d density. As no pigweed seedlings emerged at this
i?;ge, pigweed was omitted. The significance of the regres-
ions (F(2,141) = 30.63 for foxtail and F(2,141) = 360.73
’EZr lambsquarters) suggested a need for calibration. Loga-
éﬂthmically transformed absolute residuals from the first
ig;t of regressions were regressed on the same independent
i.f-,,:riables to test for heteroscedasticity. Significant evi-
}ﬁence of nonconstant variance was present for lambsquarters,
:;&2,141) = 8.26. Weighted least squares (WLS) regression of
the pseudo-residuals was performed, using the standard error
 ££ estimate as the weighting factor.

The unweighted foxtail and weighted lambsquarters
fgmlibration regressions imply that for both weeds, the
;Ebrcella predictor under-estimates pre-plant weed densities
- when seeds are few, and over-estimates them when seeds are

" many. As both equations are quadratic, at extremely high
fgeed densities, the sign of the mis-calibration reverses
;dtself. For weed seed densities in the 0-3000 seeds/m?
1yxange, however, the Forcella predictor over-estimates at
’:high densities. Over-estimation is particularly severe for
;glambsquarters. The presence of significant intercept terms
i in both regressions is at first perplexing, since if no

~ seeds are present, we expect no seedling emergence. The

intercept term is, in fact, a compensation for seed sampling
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Table 4.3: Calibration regressions of the pre-planting weed
ensity pseudo-residuals.

' Coefficient

Weed species d.f. Constant Seeds  Seeds‘ SEE R?
Pseudo-residuals (OLS)

1betail 141 12.92 -0.031 0.22E-5 26.7 « 30

(4.37) (-5.09) (2.36)
Lambsquarters 141 3.41 -0.11 0.26E-3 4.3 .84
i (7.01) (-16.3) (23.63)

' Log absolute residuals (OLS)
Foxtail 142 2.11 1.3E-4 0.9 .02
i (24.71) (1.52)

Lambsquarters 142 0.63 0.0017 0.9 .05
| (6.98) (2.87)

 Weighted pseudo-residuals (WLS)

- Lambsquarters 141 2.76 -0.090 2.1E-3 1.9 .46
‘ (6.36) (-10.57) (10.54)

Note: t-statistics presented in parentheses.

d.f. denotes degrees of freedom.

SEE denotes standard error of estimate.

; error evident in cases where the density of emerged weeds
;:observed in experimental plots exceeded the estimated seed
density.

Similar calibration regressions were applied to weed
1 dénsities observed after crop emergence. In this case, the
Breusch-Pagan %%(3) statistic was 5.90 for the unweighted
and 10.96 for the weighted systems. These statistics are
significant at the 20% and 5% levels, respectively, so
seemingly unrelated regression (SUR) was applied to the
pseudo-residuals. The heteroscedasticity tests were fol-
lowed as above, using a logarithmic transformation of the

absolute residuals. Results, presented in Table 4.4, again
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density pseudo-residuals.

69

3$uggest that the Forcella model under-estimates weed emer-

‘gence at low seed populations and over-estimates it a high

ETable 4.4: Calibration regressions of the post-planting weed

4 Coefficient
Weed species d.f. Constant Seeds Seeds® SEE R?
- Pseudo-residuals (SUR)
ﬁFoxtail 70 14.70 -0.068 117.4 .24
o (0.95) (-4.79)
. Lambsquarters 70 4.09 -0.044 12.1 .16
 : (2.45) (-4.06)
. Redroot Pigweed 69  -3.63  0.028 ~-1.7E-5 13.0 .08
 ; (-1.58) (2.14) (-2.25)
;sLog absolute residuals (OLS)
- Foxtail 69 1.93 0.0026 -0.31E-6 1.3 .40
| (9.26) (6.20) (-4.61)
. Lambsquarters 70 1.33 0.0021 1.2 .05
: (7.83) (1.93)
. Redroot pigweed 70 1.51 6.3E-4 1.1 .03
= (9.61) (1.45)
~ Partially weighted pseudo-residuals (SUR)
- Foxtail (wtd.) 70 11.12 -0.084 2.3 .13
(2.92) (-3.49)
Lambsquarters 70 3.91 -0.042 12.1 .16
(2.33) (-3.83)
Redroot pigweed 69 =3.37 0.0026 -1.7E-5 13.1 .07
(-1.48) (1.95) (=2.14)

Note: t-statistics presented in parentheses.

The calibration regressions for weed emergence
following lay-by cultivation also used SUR, since the

Breusch-Pagan %x°(3) statistics were significant at the 5%
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level (10.05 for the unweighted and 31.34 for the partially

weighted systems). Because the partially-weighted SUR

matrix was not positive definite as originally formulated,

constant terms were dropped. The results are presented in

Table 4.5. The table suggests that calibration of the

- Table 4.5: Calibration regressions of the post-cultivation

emergence weed density pseudo-residuals.

Coefficient
Weed species d.f. Constant Seeds Seeds?® SEE R?
- Pseudo-residuals (SUR)
~ Foxtail 70 1.11 -0.0072 12.3 23
(0.69) (-5.16)
- Lambsquarters 70 0.59 -0.0063 2:1 sl 3
(2.02) (-3.34)
~ Redroot Pigweed 70 0.16 -0.0011 1.3 .02
(0.82) (-2.08)
: Log absolute residuals (OLS)
Foxtail 69 0.40 0.0015 -1.6E-7 1.4 .18
(1.83) (3.38) (-2.35)
Lambsquarters 70 -0.45 9.4E-4 1.0 .02
(-3.37) (1.07)
Redroot pigweed 70 -0.54 -1.4E-4 1.0 .00

(-3.98) (-0.36)

Partially weighted pseudo-residuals (SUR)

Foxtail (wtd.) 71 -0.0059 2.6
(-2.60)

Lambsquarters 71 -0.0041 2158
(-2.50)

Redroot pigweed 71 -8.6E-4 1.4
(—=2.:11)

Note: t-statistics presented in parentheses.
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1pseudo—residuals is most important for foxtail and lambs-
quarters predictions, which are slightly over-estimated at
imoderate to high seed densities. Since the weeds that
iemerge after mid-season cultivation tend not to be con-
:trolled, their reproduction makes an important contribution
to the weed seed bank (Forcella and Lindstrom 1988b).

- Hence, calibration of these is important.

Final parameter estimates retained from the calibration
fregressions are 1) the unweighted foxtail and weighted
Tlambsquarters least squares estimates for pre-planting weed
: emergence, 2) the partially weighted SUR estimates for post-
- planting weed emergence, and 3) the weighted foxtail and

- unweighted lambsquarters SUR estimates for post-cultivation

- weed emergence.

 4.1.1.2 Validation of the calibrated germination predictor

The calibrated germination functions were validated
against out-of-sample data from 1990 field trials at the
USDA North Central Soil Conservation Laboratory in Morris,
Minnesota. The data came from two sites. The 16 observa-
tions from the Central Farm contain very high weed seed den-
sities for all three species modeled. The 24 observations
from the North Farm generally have low weed seed densities.
Jointly, they represent a wide range of weed pressures.

The procedure followed was to input observed seed

counts as initial values into the Forcella emergence model,
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‘as calibrated by the equations presented above. Predicted

1gaedling densities before crop planting, after crop planting
fﬁnd after lay-by cultivation were generated. The predicted
fﬁhnsities were then subtracted from actual 1990 densities to
‘generate a set of residuals. These residuals were adjusted
fébr heteroscedasticity using the 1985-86 auxiliary regres-
?;ion results. The distributions of adjusted 1990 residuals
:‘ﬁare compared with the distributions of the 1985-86 estima-
3§ion residuals using a x° goodness-of-fit test.

1h; The %% statistic is used to test the null hypothesis
t;hat the predicted values (1990 residuals) are indepen-
fﬂently, identically distributed random variables from the
éﬁame cumulative distribution function (CDF) as the observed
1(1985-86) ones. Since all parameters of the observed 1990

}empirical distributions are implicitly known, the test

gstatistic is calculated as follows:

NP) 2

J
E (4.1)

=1 J

- where J is the number of adjacent categories into which
;'abservations are grouped, N is the number of observations in
jeach group, the superscript a represents estimation resi-
Tjduals from the Morris 1985-86 trials, and the superscript p
- represents residuals from the predicted weed density values
{’in 1990 (Law and Kelton, pp. 194-198). In each case, pre-
1’dicted 1990 observations were sorted in ascending order and

grouped into six categories containing roughly equal numbers
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Eﬁm residuals. Frequency counts for the same categories were
Ehmken from the actual residuals of the 1985-86 weighted
}&egressions. Results for the weed seedling emergence resi-
duals are presented in Table 4.6.

}ble 4.6: Chi-square goodness-of-fit test for residuals

rom 1990 predictions of weed seedling emergence relative to
the 1985-86 estimation residuals.

L Lambs- Redroot
- Iiming of emergence Foxtail quarters Pigweed
re-plant 127.86 14.37 29.57
QGPost-plant 13.46 22.00 47.11
- Post-cultivation 67.78 59.06 156.27

Note: x%(5) critical values at the 90% and 95% confidence levels are
~ 9.24 and 11.07, respectively.

3 .

The discrepancy between the distributions of forecasted

. residuals and estimated ones is large. The problem comes
from two sources: 1) the narrow range of weed seed densities
in the original 1985-86 data set, and 2) the choice of

intra-seasonal germination proportions based on the 1985

case alone. Lambsquarters 1990 residuals were sharply
negatively skewed, indicating serious underprediction of
emergence at all three stages. This is due in part to the
large negative quadratic term in the pre-plant emergence
equation. The 1985-86 Morris data set includes no seed
densities higher than 750 seeds per square meter. The
quadratic term proved much too negative when applied to the
1990 data set, which included plots with over 4500 seeds/m?.

Indeed, negative lambsquarters densities were forecast in
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iﬁbme cases. Foxtail 1990 emergence residuals indicated
;averprediction of emergence at the pre-plant stage, but
é'underprediction at the later stages. Pigweed 1990 emergence

?;itesiduals were generally more kurtic than the 1985-86 ones;

»valso, post-cultivation emergence was underpredicted.

‘(._
‘Table 4.7: Descriptive statistics on weed seed density in
the Morris 1985, 1986 and 1990 data sets.

Weed species and Year All 3
Statistic 1985 1986 1990 years
~ Number of observations 72 72 40 184

ean 251 700 1808 765
tandard deviation 536 1187 2608 1573
inimum 0 19 0 0
~ Maximum 3177 7095 12071 12071

~ Mean 42 118 746 225
- Standard deviation 89 152 1105 595
- Minimum 0 0 0 0
~ Maximum 522 780 4268 4268

~ Redroot pigweed

;, Mean 73 320 1161 406
- Standard deviation 58 386 998 668
~ Minimum 0 38 0 0
- Maximum 189 1963 3599 3599

. tions were re-estimated including the 40 additional observa-
i: tions from the 1990 Morris data. The chief reason for doing

this was that the 1990 data include a much wider range of
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~ weed seed densities than the 1985-86 data. The differences
. are summarized by the descriptive statistics in Table 4.7.

The revised estimates are presented in tables 4.3R,
4.4R and 4.5R. The null hypothesis of no contemporaneous
correlation was rejected for all three sets of equations.
Significant evidence of heteroscedasticity was also present
 in the logarithmically transformed absolute residuals of
7 every equation. Variances all took quadratic forms which
increase at moderate to high weed seed densities and then
decline at extremely high seed densities.

The revised weighted regressions all exhibit less sen-
- sitivity to high weed seed densities. In particular, the
coefficient on the pre-plant lambsquarters pseudo-residuals
' weighted equation drops by a factor of forty, from -2.1E-4
to -5.2E-6. Coefficient signs in the pre-plant equations
are otherwise similar. However, contrary to the original
calibration equations, the revised post-plant equations
imply that the Forcella model underpredicts as seed density
increases, linearly for foxtails and pigweed, quadratically
for lambsquarters. The same is true of post-cultivation
germination, where the revised weighted pseudo-residuals
equations increase linearly with weed seed density. Plots
of the uncalibrated and recalibrated weed germination

functions are presented in appendix figures Al.1 - Al.3.
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' Table 4.3R: Revised calibration regressions of the pre-plant
weed density residuals including the 1990 Morris data.

1 Coefficient

‘Weed species d.f. Constant Seeds  Seeds?® SEE R?
Pseudo-residuals (SUR)

 Foxtail 181 7.21 -0.012 1.0E-6 27.2 .08

(2.96) (-3.89) (2.84)

 Lambsquarters 181 -1.08 0.024 -4.7E-6 117 .29
(-1.11) (5.94) (=-3.57)

Log absolute residuals (OLS)
' Foxtail 181 1.77  6.9E-4 -6.1E-8 0.9 .23
‘ (21.63) (6.86) (-5.15)

. Lambsquarters 181 0.66 0.0027 -6.0E-7 1.1 .28
(7.24) (7.04) (-4.95)

:fleighted pseudo-residuals (WSUR)
"Foxtail 181 6.93 -0.011 9.7E-7 2.:7 « 05
(3.97) (-2.24) (2.35)

} Lambsquarters 181 0.74 -0.014 5.2E-6 1.9 «22
(2.01) (-2.64) (4.09)
- Note: t-statistics in parentheses.
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Table 4.4R: Revised calibration regressions of the Morris
post-planting weed density residuals including 1990.

Coefficient
ed species d.f. Constant Seeds Seeds*® SEE R?

Pseudo-residuals (SUR)

Foxtail 109 -14.07 0.156 -7.7E-6 224.0 .41
: (-0.54) (5.73) (-2.50)

Lambsquarters 109 -1.55 0.075 -8.8E-6 25.8 70
‘ (-0.56) (8.46) (-3.19)

kedroot Pigweed 109 -6.43 0.086 -1.7E-5 38.7 «Dd
: (-1.29) (6.43) (-3.48)

Log absolute residuals (OLS)

;:?oxtail 109 2+91 0.0010 -7.8E-8 1.3 . 34

(19.76) (6.56) (-4.41)

lambsquarters 109 1.17 0.0025 =-5.1E-7 1.3 .30
, (8.51) (5.24) (-3.44)

- Redroot pigweed 109 1.91 0.0021 =-6.1E-7 0.9 .33
. (16.54) (6.57) (-5.19)

Weighted pseudo-residuals (WSUR)

Foxtail 110 1.01 0.078 2.4 .36
' (0.18) (9.02)

lambsquarters 110 2.24 6.9E-6 2,7 13
] (2.32) (4.76)
' Redroot pigweed 109 1.32 0.026 3.2 .53
; (0.78) (11.87)

_ Note: t-statistics presented in parentheses.
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- Table 4.5R: Revised calibration regressions of the Morris
- post-cultivation emergence weed density residuals including
- 1990 data.

Coefficient
 Weed species d.f. cConstant Seeds _ Seeds? SEE R?
- Pseudo-residuals (SUR)
~ Foxtail 110 1.98 0.023 51.4 .42

(0.37) (9.01)

' lambsquarters 110 0.28 0.0060 3.5 .65
| (0.79) (13.78)

~ Redroot Pigweed 109  -1.60 0.022 -3.8E-6 8.2 .63
(-1.50) (7.34) (-3.54)

- Log absolute residuals (OLS)
- Foxtail 109 1.41 0.0011 -8.2E-8 1.3 .36
(9.54) (6.82) (-4.65)

. Lambsquarters 109 -0.52 0.0019 =-3.8E-7 1.0 .34
(-4.97) (5.42) (-3.34)

~ Redroot pigweed 109 0.22 0.0024 -6.1E-7 1.0 .38
(1.69) (6.48) (-4.52)

Weighted pseudo-residuals (WSUR)
Foxtail 110 =282 0.024 2.0 .68
(-2.67) (17.71)

Lambsquarters 110 0.26 0.0040 2.9 .07
(1.33) (3.43)

Redroot pigweed 110 0.67 0.0052 1.7 .09
{2:.16) (5.93)
Note: t-statistics presented in parentheses.

4.1.2 Seed production

After weeds go to seed, the soil seed bank contains all
those seeds from the previous season that have not been lost
through germination or seed death as well as the new seeds
that were deposited by the weeds that survived to reproduce.
The seed bank is updated at the end of each season by the

WSSeedBank procedure in WEEDSIM and in the year-end
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 accounting loop in WFARM. Rewriting equation (3.5) in

~ stochastic form,
h
S;e = (1 - Zais = Bi)Sieq * Y iWije + €4 (4.2)
s

fwhere @, is the proportion of seeds of species i germinated

~ during growth stage s (s=0,1,2), B. € [0,1] is the propor-

i
- tion of seeds of species i that die in the soil, y; € [0,®]
is the average number of seeds deposited by each weed of
 species i at maturity, and e,, is a disturbance term.
equation (4.2) can be

Defining éﬁtq = {1 - zau)§n4'

~ estimated as follows,

Sit = 183500 * 5.1 + fawzpjt ¥ By (4.3)
 where £, = 1, £, = -f, and £, = ¥,.
As with the seedling emergence calibration regressions,
there is reason to suspect that the error term in equation
(4.3) will be spatially correlated. The Breusch-Pagan test

generates the %?(3) test statistic 5.41, which exceeds the

conservative critical value yx%(3,.20)=4.64. Because some

evidence of spatial correlation is present, the three
equations were estimated as a system.

A further methodological issue is proper specification.
The presence of two predetermined right-hand side variables
calls into question whether the error term might be corre-
lated with the independent variables. The system of equa-
tions was estimated using both SUR and three-stage least

squares (3SLS), where 3SLS used early and late-season weed
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?}ﬁamass as instrumental variables. The Hausman specifica-

‘ ion test was applied to the seeds per weed coefficient
gstimates to test the hypothesis that the SUR estimates are
géonsistent (given that they are more efficient than 3SLS).
ZResults for the foxtail, lambsquarters and pigweed esti-
;Qates, respectively, were 1.44, 1.72, and 0.77. As none of
;ﬁhese exceeds the %%(3,.05) critical value of 3.84, the SUR
?éstimates were retained.

A The seed bank data include numerous outliers. A
2preliminary attempt to screen the data for influential
‘gnbservations identified eight of the 36 observations which
'laxhibited high potential leverage (h;) éccompanied by high
;2studentized residuals or DFBETAS statistics (Belsley et
EEQLJ. Rather than drop 22% of the sample, it was decided to
;{proceed with all observations.

| Seemingly unrelated regressions were performed on the
;'system of three weed seed equations with the restriction

. that the coefficient on S3i..qsf;; = 1. Results are presented

1i
_ in Table 4.6. As the equations lack an intercept, their
. significance must be judged from t-ratios. The hypothesis

of homoscedasticity could not be rejected upon regressing

absolute residuals from the SUR equations on the same

independent variables.

]
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‘Table 4.8: SUR estimates of weed seed mortality and
‘reproduction coefficients with all observations (n=72).

el v

3 _ Coefficient estimates

Weed Seeds3 (1985 Seeds (1985 Seeds/weed (1986

1 i 4 £, £

Foxtail 1 -0.78 12.3

; (-2.66) (2.95)

("]

Lambsquarters 1 -0.50 6.5

Ee (-2.41) (2.21)

'R. pigweed 1 1.19 8.8
(2:.27) (1.04)

cHote. t-ratios in parentheses.

25

Two aspects of the results in Table 4.8 are discon-

1eerting. First, the average seed production estimates (f;;)
}are extremely low. Forcella and Lindstrom (1988b) obtained
ﬁlhﬁlar results for 1985 from harvesting samples of weed

- seed heads from conventional tillage treatments in the same
lfields. This can partly be explained by the fact that these
;veeds were mostly small, late-emerging ones (Forcella,
fp@rsonal communication, 1991). Buhler' (1991a) has found
fthat weeds surviving herbicide treatment produce far fewer
?leeds than survivors of exclusively mechanical treatments.
fﬂonetheless, seed production by the two broadleaved species
iwas expected to exceed substantially that by the foxtails.

Second, the seed death coefficient estimate on the previous

’ Unpublished single year research results from the
Rosemount experiment station in 1990 found giant foxtails to
- produce a mean of 1180 seeds/plant under rotary hoe and

:;cultivation, versus only 120 seeds/plant under PRE and POST
- herbicide treatment. Seeds/plant for Pennsylvania smartweed
- were 510 and 0 for the same treatments.
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seed bank term (s,;,,), f,;, which is expected to lie in the

nterval [-(1-Za,,),0], falls outside that interval in two
cases. In the foxtail equation, it drops below -(1-Zay,)
= -0.55, although the coefficient estimate remains within a

95% confidence interval of that threshold. 1In the pigweed
y

‘:;quation, however, f,, is greater than zero, so much so that
v-‘ghe hypothesis B; € [-(1-Ze;),0] can be rejected with 95%
gonfidence. These results confirm the converse of Ball and
"lliller's observation that, "low correlations between seed

counts and weed counts indicate that seed count estimates
b
alone were poor predictors of weed flora" (p. 372).

+
L.

, Proceeding by imposing restrictions from theory in
‘.ijite of the pigweed seed death coefficient estimate, the
:_;[‘aigweed coefficient, f,,, was set at -0.10 and the foxtail
igne, f,,, at -0.45. These imply seed carryover of 76% for

23"

pigweed and 10% for foxtail, respectively. The seed produc-
¥

' tion regression results from the added restrictions imply
'ieed carryover of 20% for lambsquarters. Presented in Table
;.9, the resulting seed production estimates are still
;xtremely low.

y

A
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fﬁable 4.9: Restricted SUR estimates of weed seed mortality
- and reproduction coefficients with all observations (n=72).

&

Coefficient estimates

;ﬂggd Seeds3(1985) Seeds(1985) Seeds/weed (1986)
3 . £4; £ £

- Foxtail -0.45 8.8

A (2.55)
iIambsquarters 1 -0.53 6.0

(-2.66) (2.12)

" R. pigweed 1 -0.10 13.1

E (1.62)

Seed production estimates in the literature are higher
;by several orders of magnitude. Under cultivated condi-
f'ﬁions, seed production has been reported at 100,000 to
EICO,OOO seeds/m? for green foxtail (Cavers and Benoit),
;k4,400 to 41,900 seeds/plant for common lambsquarters (Crook
}f;nd Renner), and 117,000 for redroot pigweed (W. Anderson).
i;iwo points about these high numbers should be kept in mind.
L;%irst, many of the seeds are not viable. Chepil found the
j}percent of fresh germinable seed to be 11-76% for green
;ifoxtail, 42-55% for common lambsquarters, and 71-83% for
?ikedroot pigweed. Second, high seed production figures
i‘hostly come from plants that grew the entire season and were
i undamaged by herbicide.

As a compromise, two estimates of viable seed produc-
tion were developed for each species. Seed production by
3ip1ants emerging after lay-by cultivation is assumed to be

that presented in Table 4.9. Based upon Buhler's (1991a)

% preliminary results concerning seed production by herbicide-
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- damaged weeds, seed production by weeds emerging prior to
'flay—by cultivation and surviving to reproduce is assumed to
: be 90, 120 and 130 seeds/plant for foxtails, lambsquarters
“and pigweed. This multiplies the estimated coefficients by
- ten for foxtail and pigweed, and by twenty for lambsquarters
%(to bring it in line with pigweed). It is assumed that all
;inelds are treated with herbicide at least once in the
 season, so no herbicide-free seed production estimates were
; developed.

“ Rather than specify seed mortality explicitly, leaving
 surviving seed bank carryover as residual, both are calcu-
.flated as fixed proportions of the seeds that do not emerge,
;ibased on the 1985 values. While the proportions are those
. that obtained in 1985, at least this approach does not
1;impose exact mortality percentages on each succeeding year,
- based on 1985. Denoting the carryover proportion, o, = 1 -
:;Eak - B;, since v, + B; = 1 - Ze;, given simulated «;, the

~ known ratio 0,/ (0, + B;) = &,/(1 - Z&,;), where =&, is
simulated total emergence, 6i is the new v,, and the new g; =
1-3&, - @;. The mortality proportions of non-germinated
‘seed numbers so calculated were foxtails, 0.714;
i;lambsquarters, 0.818; and pigweed, 0.116. These estimates
g;imply that pigweed seeds have significantly greater longe-

»‘vity than those of the other two species. The literature on

;‘weed seed mortality in the soil is very scanty. In two

- five-year experiments, Chepil found seed losses after five
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;years, unaccounted for by germination, to be 23-64% for
ifoxtails, 36-49% for common lambsquarters, and 54-63% for

- redroot pigweed. He concluded that since no foxtail had
germinated in the last two to three years, all 23-64% of

~ foxtail seed were dead. Lambsquarters and pigweed, however,
;continued to germinate in small numbers. Given that seed

- viability declines at an exponential rate (Roberts and

- Feast), it is reasonable to suppose that no more than five

- percent of the original seeds survived. This puts mortality
2at 31-44% for lambsquarters and 49-58% for pigweed. By

4 comparison, results from applying the mortality proportion

- coefficients to expected Forcella germination rates based

: upon 1974-90 Lamberton data are 52%, 68% and 11% for fox-
'vtails, lambsquarters and pigweed, respectively.

One positive aspect of the low seed production
estimates is that they counterbalance the relatively high
seed germination rates from the Forcella model.' This is
especially true of late season weed emergence, which is
largely uncontrollable. High seed production rates could
violate the controllability condition on the simulation
model, namely, that the population of viable weed seeds

diminish under the most potent control strategy.

' The high germination rates are an artifact of using a
germination test to count viable seeds.




86
%4.2 Yield function
1 The crop yield function in the simulation model is
?ﬁxecuted by function Yield2. Data used to estimate coeffi-
icients for it were obtained from several sources. Weed
idensity and yield data come from rainfed trials at five
?agricultural experiment stations in Minnesota and Wisconsin.
}In all, there are six sets of corn yield data and five of
;soybean yield data for the year 1989 plus the 1985-86 Morris
;data set, which covers both crops.
. Data from a variety of locations in the upper Midwest
‘ioffer an opportunity to evaluate the stability of the yield
iEloss coefficients estimated. That they are mostly from a
‘fsingle year is a serious drawback, since temperature and
%§rainfall are important determinants of crop yield, weed ger-
?;mination and losses caused by weeds. Climate across several
:;locations in the same region is undoubtedly correlated,
. meaning that different years are needed in order to repre-
; sent a range of environmental conditions.

The yield function is assumed to follow the hyperbolic
form given by equation (3.8) with an additive error term, u,
which is independently and identically distributed (i.i.d.)
normal N(0,0%). Under these conditions, it can be estimated
by maximizing the logarithmic normal likelihood function

L = -(n/2)1n(27m) - (n/2)1ln(o%) - (1/20%)u'u
where o? denotes the variance and e = Y - f£(w) is the resul-

ting residual (Judge et al., p. 523).
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The yield function was fit to corn and soybean yield
;data and densities of foxtails (green, yellow and giant),
- common lambsquarters, redroot pigweed and velvetleaf
- (Abutilon theophrasti Medic.). Parameter estimates for the
corn yield function are presented in Table 4.10. Those for
the soybean yield function are presented in Table 4.11.
. General background on the data is provided in appendix table
- Al.1. Since coefficient estimates are asymptotically nor-
mally distributed (Judge et al., p. 506), asymptotic t-
~ values are reported in parentheses for hypothesis tests.

In general, weed-free yield (YWF) estimates for both
crops are close to expected values of 150-160 bushels/acre
for corn and 40-50 bushels/acre for soybean. Except for
~ several insignificant negative estimates, the competition
coefficients (IFOX, ILAM, IPIG, and IVEL) fall within a
reasonable range. However, none of the estimates of pigweed
competition in corn or lambsquarters competition in soybean
is significantly different from zero at the 5% confidence

level.
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‘Table 4.10: Corn yield as an unrestricted hyperbolic
function of weed density in seven Minnesota and Wisconsin
‘research trials.

‘Equa- Coefficient estimatel
‘tion Site? d.f. S.E.E. YWF A IFOX ILAM IPIG
el L 16 7.8 155.2 93,1 0.46
(28.4)%* (0.30) (0.78)
C2 L 44  13.4 164.3 37.7 4.20 -1.13
(60.6)** (2.79)%* (1.70)* (-0.20)
g3 M 43 17.2 149.8 6.8E7 0.83 1.00 1.98
(40.9)**x (0.01) (2.43)%%  (0.26) (1.05)
64 W 89 24.3 168.1 1:33..2 0.90 7.06 -12.69
(30.9)** (3.61)** (4.12)%*  (1.42) (-0.44)
€5 A 57 22.8 132.9 85.4 -0.31 10.90 18.34
(11.5)%* (4.18)%* (-0.39) (1.82)* (1.38)
86 A 60 19.2 143.6 126.9 5.39
(25.8)%*% (3.52)%% (3.46)%%
g7 M 64 14.5 106.3 34.3 0.89 3.75 -2.06
(23.3)%* (5.01)** (1.65) (1.50) (-1.27)

Note: In the tables that follow, asymptotic t-values are presented in
parentheses. One and two asterisks denote significance at the 10% and
5% probability levels of Type II error. Large numbers are presented in
scientific notation, where "x En" denotes x * 107,

! The following equations contained other broadleaved weeds with I
coefficient estimates as follows:

Cl: Mixed broadleaves: 1.98 (0.70)

C4: Velvetleaf: 71.13 (1.57), Common ragweed: -8.48 (-1.84)*
C5: Velvetleaf: 3.61 (2.25)**, Other broadleaves: 2.44 ( 0.79)
C6: Velvetleaf: 2.85 (4.12)%*

C7: Other weeds: 2.21 (1.17).

Equations
practices

Cl and C7 included dummy variables for low input management
and dummy variables, respectively.

2 In this and subsequent yield tables, "site" refers to the year
1989 unless otherwise indicated. Sites are:

A - Arlington, WI R - Rosemount, MN

L - Lamberton, MN W - Waseca, MN

M - Morris, MN.

3 Years 1985-86 in pooled sample. YWF represents 1985 yield;
coefficient estimate for 1986 dummy is 50.6 (7.61)%*,
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- Table 4.11: Soybean yield as an unrestricted hyperbolic
~ function of weed density in six Minnesota and Wisconsin
- research trials.

~ Equa- Coefficient estimate?
~ tion Site d.f. S.E.E. YWF A IFOX IIAM IPIG

1 L 16 4.5 41.9 5.8 6.06
(7.77)**x  (0.47) (0.79)

§2 W 24 6.9 49.1 90.7 0.17 6.61 -1.48
(5.95)*% (7.63)** (1.57) (1.60) (-0.29)

$3 w138 6L 38.0 126.7 0.682 -2.65 3.86
(17.5)*%% (15.1)%* (5.24)%% (-0.98) (5.05)**

S4 L 33 11.3 42.8 2.4E11 0.35
(17.7)** (0.00) (3.70)%**

S5 R 58 4.5 29.4 126.5 1.54 1.80 -0.45
(28.9)*% (2.26)*%* (2.96)** (0.63) (-1.24)

s6 M3 28 3.6 38.7 28.1 0.72 0.14 -0.10
(30.0)** (1.79)* (1.02) (0.23) (-0.14)

! The following equations contained other broadleaved weeds with I
coefficient estimates as follows:

S1: Mixed broadleaves: -69.2 (-0.84)
S2: Velvetleaf: 0.21 ( 0.26)
S3: Velvetleaf: 6.03 ( 3.45)%x%
S§5: Nightshade: 1.14 ( 1.26)
S6: Other weeds: 2.50 ( 1.22).

Equations S1 and S6 included dummy variables for low input management
practices and waterlogged plots, respectively.

2 Foxtails were measured in dry weight units (g/m?), which are not
directly comparable with density units. A regression of foxtail density
on dry weight using 1989 Lamberton data found considerable unexplained
variability (R%=0.12).

3 Years 1985-86 in pooled sample. YWF represents 1985 yield;
coefficient estimate for 1986 dummy is 9.1 (3.63)%**.
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Estimates of maximum yield loss (A) are less satis-
factory. Five of the 13 exceed 100, implausibly suggesting
tyield loss over 100%. The A parameter estimates do not
- offer an obvious candidate for a "typical" yield loss level
 to impose. The median A for corn is 93.1. For soybean it
iis 108.6. As weed density approaches infinity, yield loss
;can be expected to become quite high. A reasonable hypo-
::thesis is A = 90%. 1In Table 4.12, results of that hypothe-

- sis test are presented.

f Table 4.12: Results of hypothesis test that maximum yield
loss coefficient A=90 for corn and soybean yield equations.

Coefficient Standard Test
v estimate error Asymptotic statistic

Equation d.f. A SE(A) t(Hp) (. 05)
cl 16 93.1 314.7 0.01 2.12

C2 44 37.7 13:. 5 -3.87 2.02

c3 43 6.8E6 1.1E11 0.00 2.02
Cé4 89 1332 36.9 1,17 1.99
C5 o7 85.4 20.4 -0.23 2.00

C6 60 126.9 36.1 1.30 2.00
c7 64 34.3 6.8 -8.19 2.00
sl 16 5.8 12.4 -6.79 2.12

§2 24 90.7 1259 0.06 2.06

S3 138 126.7 8.4 4.37 1.97
S4 33 2.4E11 1.1E17 0.00 2.03

S5 58 126.5 56.1 0.65 2.00

S6 28 28.1 15.7 -3.94 2.05

Note: t(Hy) = (A - 90)/SE(A)

In eight of the 13 equations, the hypothesis cannot be
rejected with 95% confidence. The eight include all cases

where the A estimate exceeds 100%. In tables 4.13 and 4.14,
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i all 13 equations are re-estimated with A set parametrically

at 90.

Table 4.13: Corn yield as a hyperbolic function of weed
density setting A = 90.

Equa- Coefficient estimate!
tion Site? d.f. S.E.E. YWF IFOX ILAM IPIG
g L 17 7.8 155.3 0.05
(35.1)*% (2.34)%%
€2 L 45 13.6 163.0 0.16 0.10
(65.5)** (2.80)** (0.26)
C3 M 44 17.5 150.3 0.11 -0.06 0.22
(30.7)** (1.89)*% (-0.11) (0.82)
C4 W 90 24.6 171.2 0.11 0.96 -1.20
(29.2)*%* (5.43)%*% (1.52) (-0.31)
c5 A 58 22.8 131.9 -0.28 9.91 16.96
(13.2)**x (-0.40) (3.20)** (1.66)
c6 A 61 19.5 146.7 7.86
(25.7)** (5.38)%*
c7 M 65 15.1 99.8 0.18 0.83 0.06

(34.4)%%  (2.38)*% (2.11) (0.15)

! The following equations contained other broadleaved weeds with I
coefficient estimates as follows:

Cl: Mixed broadleaves: 1.99 (0.68)

C4: Velvetleaf: 0.78 (1.38), Common ragweed: -0.97 (-1.85)%

C5: Velvetleaf: 3.42 (3.25)*%, Other broadleaves: 2.28 ( 0.97)

C6: Velvetleaf: 3.50 (4.12)%*

C7: Other weeds: 0.24 (0.63).
Equations Cl and C7 included dummy variables for low input management
practices and waterlogged plots, respectively.

2 Refers to year 1989 unless otherwise indicated. Sites are:
A - Arlington, WI R - Rosemount, MN
L - Lamberton, MN W - Waseca, MN
M - Morris, MN.

3 Years 1985-86 in pooled sample. YWF represents 1985 yield;
coefficient estimate for 1986 dummy is 42.9 (7.44)%%,
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f'I'able 4.14: Soybean yield as a hyperbolic function of weed
~density setting A = 90.

~ Equa- Coefficient estimate?!
tion Site d.f. S.E.E. YWF TFOX ILAM IPIG
Sl L 17 4.7 43.1 -0.00

(15.5)*x (-0.09)

s2 W 25 6.9 49.2 0.17 6.78 -1.61
(6.00)** (1.59) (2.32)*% (-0.30)

B3 W 139 [ 38:3 1.672 -14.02 7.18
(14.2)*%  (4.04)*%* (-1.55) (3.17)%**

& L 34 11.5 42.8 0.49
(14.7)%%  (2.24)%*

59 R 59 4.5 29.8 1.91 3.69 -0.61
(30.3)%%  (3.94)*% (1.21) (-1.68)%*

s6 M° 29 31:16 37.8 0.23 0.10 -0.00
(36.4)*xx (1.35) (0.38) (-0.01)

! The following equations contained other broadleaved weeds with I
coefficient estimates as follows:

S1: Mixed broadleaves: 30.65 (1.39)
S2: Velvetleaf: 0.22 (0.28)
S3: Velvetleaf: 15.37 (1.98)%x*
S5: Nightshade: 1.46 (1.15)
S6: Other weeds: 1.32 (1.64).

Equations S1 and S6 included dummy variables for low input management
practices and waterlogged plots, respectively.

2 Foxtails were measured in dry weight units (g/m?), which are not
directly comparable with density units. A regression of foxtail density

on dry weight using 1989 Lamberton data found considerable unexplained
variability (R%=0.12).

% Years 1985-86 in pooled sample. YWF represents 1985 yield;
coefficient estimate for 1986 dummy is 8.6 (3.64)%%,
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: Setting maximum yield loss parametrically at 90% has
¥Iitt1e effect on standard errors of estimate (SEE). Only
ffor equation S3 does the SEE increase by more than 5%.

.‘ Parameterizing A has little effect on the number of
;significant competition coefficients in corn. Two new
;foxtail coefficients become significant (Cl1l and C7), and one
{;lambsquarters coefficient does as well (C7). In soybean,
};the results are similar. One significant lambsquarters
x;coefficient is gained (S2) and so is one pigweed coefficient
,;(SS). However the last of these is negative, which implau-
i sibly implies that soybean yield increases with pigweed

i density. Parameterizing A can have a large effect on the

i magnitude of competition coefficients. In equations C2, C4,
C7 and S1, some I estimates change by a factor of ten or
more. Except for C4, these are equations for which the
hypothesis A=90 was rejected.

Equations C7 and S6 use the Morris 1985-86 data, so
they are of particular interest. That the hypothesis A=90
was rejected for these equations is unfortunate, since it
appears justified for most of the other yield functions.
Since the A parameter influences the other coefficient

estimates, the restriction was imposed anyway, to keep the

C7 and S6 equations consistent. Judging from the SEE's,

variability in the predicted yield is little different with
A parameterized at 90. Equation S6 shows insignificant weed

competition coefficients before and after the parameter-
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iization of A. Equation C7, which had no significant I coef-
ificients before parameterization of A, gains significance on
ithe foxtail and lambsquarters ones (although their absolute
ivalues diminish considerably).

Heteroscedasticity has been found in some yield-weed
{density functions in the form of decreasing variance (Roush
‘and Radosevich). If present, it should be compensated for

_ in order to obtain efficient parameter estimates. More

~ important, in generating random yield variables, it needs to

:Ibe modeled explicitly. In order to test the hypothesis that
the yield models are homoscedastic in their competition

- coefficients, the hyperbolic yield function was linearized

- and OLS regressions run on the absolute residuals. The test
was applied to equations C7 and S6. Equation (3.8) was made

linear as follows:

Y. Iw;
L
100(1 +y Iiwi/A)
P

(3.8)

Y = Y1 -

Defining Q as percent yield loss due to weeds, (3.8) can be

rewritten,

Multiplying through by the right-hand side denominator,
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Q(1+-E%) DIFA?
1

ENow, subtract QII,w.,/A from both sides,
0=Y I,w;(1-0/2)
1

fDividing through by (1 - Q/A) and rearranging produces the

- expression,

A

7iBy setting A and YWF parametrically at 90 and the nonlinear
- YWF estimate, respectively, the dependent variable in equa-
- tion (4.4) can be calculated, yielding a regression that is
f‘linear in weed density.
To test for heteroscedasticity, residuals from esti-
mation of (4.4) were saved, and their absolute values re-
gressed on the weed density independent variables. Neither
the corn nor the soybean regressions gave significant evi-
dence of heteroscedasticity. The corn residuals regression
had an adjusted R’ = 0.01 and F(3,65) = 1.29. The soybean
residuals regression summary statistics were adjusted R®? =
0.06 and F(3,29) = 1.69. The 95% confidence level test
statistic for F(3,65) is 2.75. Since the null hypothesis
that the equations are homoscedastic cannot be rejected,
there is no need for weighted estimation.

Summarizing the yield function results, the median

competition coefficient estimates for corn with A=90 are:
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- foxtail, 0.11, common lambsquarters, 0.89, and redroot

- pigweed, 0.14. For soybeans, they are: foxtail, 0.36,

flambsquarters, 1.88, and pigweed, -0.30. Expert opinion

- suggests that pigweed should be on par with lambsquarters,

and that foxtails should be only half as competitive
(Lybecker et al. 1991b). Generally speaking, corn is

?expected to compete more strongly against weeds than

- soybean.

Final competition coefficient estimates were chosen to

- reflect the information obtained from all estimated equa-

 tions in light of expert opinion. The Morris 1985-86 fox-

~ tail and lambsquarters corn yield coefficient estimates fall

in the middle of the pack. The pigweed value is set equal

to the lambsquarters one. It remains within a 95% confi-

dence interval of the Morris 1985-86 estimate. For soybean,

competition parameters equal to the lambsquarters median

were selected for both lambsquarters and pigweed. Final

parameter choices are presented in Table 4.15.

. Table 4.15: Final yield parameters chosen for the weed

management simulation model.

Lambs- Redroot
Equation Foxtail quarters Pigweed
Yield loss (I;)
Ccorn 0.2 0.8 0.8
Soybean 0.2 1.9 1.9
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- 4.2.1 Validation of corn yield equation

Validation data from the 1990 Morris data set were
({available for corn, but not soybean. Because 40 observa-

- tions with herbicide and 40 without were available in 1990,
two observations per farm were dropped to make it conform to
é the 72 residuals from estimation of the 1985-86 equations.

f Two types of residuals were generated from the 1990 data:

1) residuals by subtracting predicted 1990 yields based on
1990 weeds from actual 1990 yields, and 2) residuals by
subtracting predicted 1990 yields based on predicted 1990
weeds from actual 1990 yields. The three sets of residuals
permitted three hypothesis tests: 1) Residuals from regres-
sion of predicted 1990 yields from actual weeds are distri-
buted as those from 1985-86, 2) Residuals from regression of
predicted 1990 yields from predicted weeds are distributed
as those from 1985-86, and 3) Residuals from regression of

- predicted 1990 yields from predicted weeds are distributed
.as those from predicted 1990 yields from actual weeds. The
x°(5) test statistics were 16.33, 18.68 and 8.49, respec-
tively. Since the %2(5,.05) critical value is 11.07, the
first two hypotheses can be rejected with 95% confidence.
We cannot, however, reject the hypothesis that the distri-
butions of residuals from 1990 predicted yields based on
actual and projected weed densities are the same. As shown
in Table 4.7, the 1990 weed densities deviated drastically

from the 1985-86 data. This fact, plus the fact that the
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- yield coefficients were developed from a number of data sets
robtained from different years and locations were interpreted
;as sufficient reason not to reject the validity of the

estimated yield equation.

4.3 Weed control efficacy

The model incorporates the principal corn and soybean
~ weed control treatments currently practiced in Minnesota.
;lThese are executed via calls to function Surv from proce-
- dures WSPreTrt and WSPostTrt in WEEDSIM and PRESurv and

| POSTTrt in WFARM. The predominant chemical treatments
 encountered in a 1988 survey of Minnesota farms (Gianessi
- and Puffer) have been updated to delete those no longer
legal (chloramben) and add new arrivals of importance (e.g.,
sethoxydim, nicosulfuron). Mechanical control in the form
of rotary hoeing has also been added.

"Kill" functions for these treatments take the form of
weed control step functions based upon the efficacy ratings
from available herbicide data (Durgan et al., Kidder et al.)
along with new data from recent experiments with mechanical

control (Gunsolus 1990b and 1991a). Herbicide treatments are
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' Table 4.16: Efficacy percentage and application time of weed
control treatments included in the model, by crop.

Percentage Killed! Materials cost

b« Application Fox- Lambs - Pig- per acre?
- Treatment time? tail  quarter weed PRE _ POST
i‘ ..... F o ow om m w w - -8 - - -
- Corn
~ No control 0,1,2 0 0 0 0 0
. Alachlor 4E 0,1 90 30 90 16.25 --
~ Atrazine 4F 0,1,2 90 90 90 6.78 4.07
- Bromoxynil 2E 2 0 90 70 -- 6.89
- Cyanazine 4F 0,1,2 90 90 50 14.71 8.80
- Dicamba 4S 1,2 10 90 90 6.05 6.05
- Eradicane (EPTC) 6.7E 0 90 70 50 15.48 --
~ Nicosulfuron 2 90 30 90 -- 17.98
~ Rotary hoe 2 30 50 50 -- --4
~ 2,4-D Amine 4S 2 0 90 90 -- 1.49
~ Soybean
- No control 0,1,2 0 0 0 0 0
~ Acifluorfen 2S 2 10 10 90 -- 15.03
- Alachlor 4 MT 0,1 90 30 90 16.99 --
Bentazon 4S 2 0 10 90 -- 11.22
Imazathapyr 2L 2 90 10 90 -- 18.11
Metribuzin DF 0,1 50 90 90 16.62 --
Rotary hoe 2 30 50 50 -- b
Sethoxydim 1.5EC 2 90 0 0 -- 16.72
Trifluralin 4E 0 90 70 90 5.25 --

! Efficacy percentages are a linear transformation of the quali-
tative ratings published in Durgan et al. where "good" efficacy is
interpreted as 90% efficacious and "poor" as 10% efficacious.

2 Applied at the average of the recommended rates in Durgan et al.
Application costs per acre (Fuller et al., 1991), omitting labor, are:

PPI (sprayer & cultivator) $4.82
PRE (sprayer) $1.40
POST (sprayer) $1.40
Rotary hoe $2.04.

3 Codes are as follows: O=pre-plant incorporated, l=pre-weed
emergence, 2=post-weed emergence.

“ Rotary hoe causes 3-5% stand loss (Gunsolus, personal
communication), leading to an average loss of 1.5% of yield.
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Qasumed to be applied at the manufacturer's recommended
éﬁte, so variable application rates are not considered.
%hemical and mechanical treatments included in the model are

‘listed in Table 4.16.

;tsd Weed and crop growth rates

Certain weed control treatments are not feasible

fheyond a given stage of weed or crop growth. For example,
:rotary hoeing does not effectively control weeds once their
Eroots are well established. Atrazine efficacy drops sharply
E from its 90% rating on foxtails once the weedy grass exceeds
: 1.5 inches height. This temporal efficacy threshold
férequires information on plant growth rates, which are simu-
; lated using procedures CropGrowth and WeedGrowth in WFARM.
é'The period of interest covers the first several weeks of the
growing season, before the post-emergence weed control
decision is taken.
Growth rates for corn, soybean, mixed green and yellow
foxtails, common lambsquarters, and redroot pigweed were

estimated from reported University of Minnesota weed control

experimental data at the Lamberton, Morris, Rosemount and

Waseca reserch stations (Eberlein et al. 1987, 1988; Buhler

et al. 1989). Regression of plant height on squared days

after planting (DAP?) provided higher coefficients of deter-

mination than regression on linear DAP. Because plant size
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"must remain non-negative, no intercept was included.

‘Results from the quadratic regressions are presented in

fTable 4.17. Coefficient estimates for weed growth range
Efrom 0.0033 to 0.0051. For crops, estimates are higher,
© 0.0100 for corn and 0.0069 for soybean. Corn field data
j were analyzed separately from soybean field data. All

_ equations based on the latter were heteroscedastic. 1In

Table 4.17: Estimated crop and weed seedling growth rates:
OLS, heteroscedasticity test, and weighted least squares.

Coefficient estimates

OLS Abs. residuals WLS

Plant n DAP? Constant DAP?  adj.R? DAP?
Corn 23 0.0100 1.556 0.0011 .025

(14.84)1 (1.80) (1.25)
Soybean 40  0.0069 0.133 0.0024 .317 0.0069

(14.37) (0.28) (4.37) (13.47)
Foxtail 21  0.0044 0.457 0.0009 .036
(in corn) ( 9.85) (0.79) (1.32)
Foxtail 50 0.0048 0.031 0.0020 .294  0.0050
(in soybean) (13.04) (0.08) (4.63) (13.39)
Lambsquarters 20  0.0033 0.740 0.0002 -.044
(in corn) (13.26) (1.69) (0.45)
Lambsquarters 39 0.0047 -0.716 0.0033 .545 0.0034
(in soybean) (10.02) (-1.82) (6.82) (44 .43)
R. pigweed 16 0.0035 0.276 0.0006 .106
(in corn) (12.78) (0.64) (1.66)
R. pigweed 27 0.0051 -0.347 0.0031 462 0.0040
(in soybean) (9.84) (-0.77) (5.72) (10.96)
Velvetleaf 23 0.0033 0.345 0.0005 -.073
(in corn) ( 7.49) (0.63) (0.67)
Velvetleaf 40 0.0031 -0.037 0.0011 .212 0.0034
(in soybean) (11.39) (-0.12) (2.83) (11.73)

! t-ratios in parentheses.
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fg@neral, estimates differ little between corn and bean
 datasets. For modeling weed growth, results from the two
fdata sets were combined, weighted by the number of

- observations (n).

{4.5 Input data files for stochastic simulation

The input data files for stochastic simulation contain
- three types of variables. The first are correlated, pseudo-
fﬁrandom, additive error terms. These are called in procedure
GetStateErrors and used to adjust predicted values in proce-
I dures CalibrateGerm, CropGrowth, and WeedGrowth, as well as
the yield and weed seed production equations of WFARM. They
are generated from the empirical probability distributions
of residuals from the estimated equations. The second set
of random variates are pseudo-random, multivariate normal
deviates from estimated coefficient values. These are
called in procedure GetStateBetas and used to adjust equa-

tion coefficient values in CalibrateGerm, CropGrowth and

WeedGrowth. The third set of input variables are actual
historical data on random natural processes such as preci-
pitation, days when soil conditions were suitable for field
work, growing degree days, and weed-free yields. These are
called in procedure GetYear and used in CalibrateGerm

(Forcella predicted germination) and PRETrt (weekly rain-
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“;all), as well as the weekly loops (field days) and year-end

faccounting loop (weed-free yield) of the main WFARM program.

3l.5.1 Generation of pseudo-random disturbances

For the thirteen equations estimated from the 1985-86
~and 1990 Morris, MN, data sets, correlated, pseudo-random,
::additive error terms were generated using the generalized
- multivariate process generator developed by King. The
A'procedure creates multivariate normal variables using a

method proposed by Naylor et al., and then transforms them

to correlated random variables based on empirical marginal
distributions. The five crop growth functions, which were
estimated from data assembled from experiment station trials
around Minnesota in 1987-89, were assumed to be uncorrelated
with one another and with the other 13 equations.

In order to generate the correlated random variates, a
correlation matrix was estimated from residuals of the re-
tained equations, including the revised germination calibra-
tion equations. Those 13 equations include the following:
two weighted SUR pre-plant emergence calibrations (WWOFOX
and WWOLAM), three weighted SUR post-planting germination
calibrations (WW1FOX, WW1LAM and WW1PIG), three weighted SUR
late season germination calibrations (WW2FOX, WW2LAM and
WW2PIG), two yield (SOYYLD, CORNYLD nonlinear maximum
likelihood) and three unweighted SUR seed bank equations

(FOXSEED, LAMSEED and PIGSEED). Correlation coefficients
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re estimated from the largest number of observations
ailable that included both members of each pair of

jariables. Sample size ranged from 184 for the correlation

tween pre-plant emergence equations to only 24 for the
F@crrelation between soybean yields and the weed seed bank
iiquations. Since the normal statistic generated to test for
ignificance of the correlation coefficients is a function
‘nf sample size (Freund), coefficients of the same magnitude
j‘do not necessarily have the same significance level.

Table 4.18: Correlation of residuals from crop yield and
~ weed population dynamics equations.'’

~ WWOFOX 1.00

- WWOLAM .14 1.00

~ WWIFOX -.12 .16% 1.00

 WW1LAM L 28*** (32 % .15 1.00

 WW1PIG .01 .09 45k L21%% 1.00

 WW2FOX .01 .10 02 0 0 1.00

 WW2LAM 33 15 0 0 0 L24%%% 1. 00

 WW2PIG -.09 .07 0 0 0 L 53%*w .15 1.00
CORNYLD - 24%* -.06 L20%* .10 .18 .13 -.09 .10
- SOYYLD -.04 .27 -.35% -.06 .06 -.21 -.07 - .36%*
FOXSEED .05 .01 -.00 .01 -.13 .15 .13 -.14

LAMSEED -.05 .16 .05 -.12 -.11 -.03 L 51%k% .07

PIGSEED .07 .12 -.02 .08 -.21 -.17 .21 -.08

CORNYLD 1.00

SOYYLD 0 1.00

FOXSEED =5 41N nw .38% 1.00

LAMSEED =.23 .30 .10 1.00

PIGSEED =17 -.05 .15 .33%%*x 1,00

! Asterisks denote statistical significance at the 0.10 (*), 0.05
(**), and 0.01 (***) levels for rejection of the hypothesis that p=0
(Freund, p. 381).

2 Single zeroes identify coefficients assumed to be zero because the
data could not support their estimation.

b

The correlation matrix is presented in Table 4.18.
most correlations are low in absolute value but have the

expected signs. In particular, correlations are 1) positive
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_fcross the weed seed bank equations, 2) negative between
corn yields and weed seed production, 3) generally positive
across weed emergence, and always across emergence at the

' same seasonal stage. The only striking incongruities are the
fsignificantly positive correlations between soybean yield
;and both foxtail seed production and pre-plant lambsquarters
;imergence.

' A total of 1080 pseudo-random observations were gene-
1rated for each of the thirteen correlated and five uncorre-
‘1ated error terms above. These were needed to accommodate
fane for each of up to nine fields in twenty six-year simu-

- lations. Visual comparison of graphed cumulative distribu-
1 tion functions generated by the pseudo-random variates
téompared with the data used to generate them identified no

1 obvious differences. Descriptive statistics on the vari-
ables, presented in Table 4.19, reveal that, with the

. exception of the seed production equations, all means are
zero + 0.3. Mean seed production errors are large, however,
due to the estimation restriction of regression through the
origin. Means for these are 407, 95 and 198 seeds/m2 for
foxtails, lambsquarters and pigweed, suggesting that the
seed bank increases unaccountably from year to year. These
large expected values were incorporated into the data used
by the WeedGerm subroutine to forecast germination in the

WEEDSIM recommendations module.




106

;* Variability in the pseudo-random disturbance terms is
;wite high. While the standard deviations and extrema for
%ie seed equations are the most striking, standard devia-
}tions for the germination equations are also high, given
flat these are weighted regression results.

iTable 4.19: Descriptive statistics on 1080 pseudo-random

~disturbance terms.
1

Standard
Equation Mean deviation Minimum Maximum
- Germination
- WWOFOX -0.17 2.62 -9.81 17.21
- WWOLAM -0.12 2.18 -6.41 15.91
- WW1FOX 0.04 3.20 -16.40 11.70
- WW1LAM -0.15 2.81 -12.54 11:37
- WW1PIG 0.00 1.89 -4.60 9.58
~ WW2FOX -0.01 2.69 -10.64 22.16
- WW2LAM 0.13 3.17 -10.45 19.97
- WW2PIG 0.10 1.85 -3.42 6.92
~ Yield
- CORNYLD -0.24 15.96 -46.20 32.49
- SOYYLD 0.09 3.70 -11.39 6.90
- Seed production
~ FOXSEED 407.33 1183.28 -1520.16 6944.16
~ LAMSEED 95.12 157.77 -237.34 767.44
~ PIGSEED 197.77 368.95 -162.23 1911.52
~ Plant growth
~ CORNGROW -0.12 3.33 -11.77 8.94
- SOYGROW -0.04 1.19 -3.78 4.51
~ FOXGROW -0.03 1.33 -3.97 4.36
- LAMGROW 0.02 1.22 -4.49 3.41
- PIGGROW -0.03 1.09 -3.12 3.95

! A1l eight germination equations are weighted regressions.

4.5.2 Generation of pseudo-random coefficients
Recognizing that coefficients estimated from data are

random variables, pseudo-random coefficients were generated
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ffor the eight germination calibration equations as well as
fthe five crop and weed growth equations. Since coefficients
- for the two yield equations and the three weed seed produc-
tion equations were chosen from aggregates of prior studies

or literature citations, these were treated as if they were

- known values.

The pseudo-random coefficient variates for the germi-
;‘nation equations were generated as multivariate normal
‘?deviates from the coefficient estimates. As the coeffi-

~ cients had been estimated by SUR, they were assumed to be
i:distributed multivariate normal. Where heteroscedasticity

? was present in the original regressions, the weighted

t regressions were the basis for the pseudo-random coefficient
deviate generation. Like the pseudo-random disturbance
terms, the 1080 random deviates for each coefficient esti-
mate in the eight germination calibration equations were

generated using the multivariate normal process generator

proposed by Naylor et al. and developed by King. Coeffi-
cient deviates for the five plant growth equations were
generated as independent normal random variates.

The lower-triangular covariance matrices used to
generate the coefficient deviates are presented in Table
4.20. Coefficients in the three different systems of
estimated equations are assumed to be unrelated. The
standard deviations of the quadratic days-after-planting

(DAP) term coefficients in the independent growth equations
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_ for corn and soybean are 0.0007 and 0.0005.

The pooled

istandard deviations of the quadratic DAP coefficients for

ﬁfoxtail, lambsquarters and pigweed are, respectively,

i0.00040, 0.000

40,

and 0.00046.

Except for the constant

}terms, coefficient estimate variability is quite modest.

?iTable 4.20: Covariance of coefficients in weighted weed
- germination calibration equations.

i Pre-plant germination (WO)

- Constant (Fox) 3.
~ Seeds (Fox) -4,
. Seeds? (Fox) 3.
. Constant (Lam) 6.
- Seeds (Lam) -1.
. Seeds? (Lam) 2.

05

81E-03 2.45E-05
80E-07 -2.01E-09
15E-02 -2.74E-05
64E-04 1.46E-06
88E-08 -3.04E-10

! Post-plant germination (W1)

 Constant(Fox) 31.

Seeds (Fox) -1.
Constant (Lam) O.
Seeds? (Lam) -3.
Constant (Pig) 3.
Seeds (Pig) -1.

Post-cultivation
Constant (Fox) 1.
Seeds (Fox) -3.
Constant (Lam) 4.
Seeds (Lam) -1.
Constant (Pig) 1.
Seeds (Pig) -1.

40

32 7.46E-05
66 8.46E-05
97E-08 1.31E-10
46 -3.21E-04

06E-03 3.61E-06

germination (W2)
26

89E-04 2.23E-06
60E-02 1.16E-08
58E-05 1.02E-07
50 -3.30E-05
36E-05 3.46E-07

-6.

.69E-13
.65E-09
.13E-10
.36E-14

.93036

51E-08

.28
-1.

49E-05

.96E-02
.84E-05
.75E-03
.85E-06

1.36
-9.61E-04
2.20E-07

2.07E-12
-1.22E-08
4.71E-11

1.28E-06
-1.37E-06
1.68E-08

2.71E-05

-6.36E-09 1.59E-12

2.87
-1.21E-03 4.64E-06

9.50E-02
-9.07E-05 7.83E-07

Note: Fox =

4.5.3 Inter-year variability

foxtails, Lam

lambsquarters, and Pig = redroot pigweed.

Most biological relationships in the simulation model

were estimated from one- or two-year data sets.

Yet the
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- inter-year variability faced by farmers typically dwarfs
that within a year. Of particular interest are 1) the
reliance of pre-emergent herbicides upon rainfall during the
first week after application in order to be effective, 2)
the availability of days suited to field work (soil dry
enough to withstand tractoring), 3) weed-free crop yields,
and 4) weed germination rate. 1In order to capture variabi-
lity across years, data from the Southwest Experiment
Station at Lamberton, Minnesota, were incorporated into
random access data files. The data include weekly total
precipitation (Table 4.21), average weed-free corn and
soybean yields (Table 4.22), weekly days suited to field
work (Table 4.23), and expected weed germination rates
(Table 4.24). The last of these are predicted from data on
cumulative growing degree days (10° C. base) in the month of

April, based on the Forcella (1991) simulation model.
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' Table 4.21: Weekly precipitation at Lamberton, MN, for the

period April 19 - July 4, 1974-1990.

Precipitation in inches for the weed beginning

Year 4719 4/26 5/03 S5/10 5/17 5/24 5/31

 Max.

6/07 6/14 6/21 6/28

1974 0 0.12 0.71 0.73 2.37 ©0.84¢ 2.31 1.31 0 0.10 0.08
1975 2.11 0.48 0.15 0.50 0.43 0 0.63 0.62 1.93 0.56 0
- 1976 0.48 0.08 0 0.09 0 0.27 0 0.15 0.14 0.76 0
977 1.01 0 1.08 0.19 1.02 0.34 0.05 0.27 4.52 0.20 0.45
1978 0.62 0.03 0.74 0.31 0.12 1.42 0.69 0.04 0.84 0.07 0.72

- 1979 0.59 0.59 0.89 2.12 0.13 0.80 0.03 1.37 1.79 0.01 1.72
- 1980 0 0 0 0.16 0.58 4.41 1.82 0.74 0 0.91 0.34
- 1981 0.42 0.16 0.16 0.07 0.06 0.05 0.37 0.70 1.54 0.29 0.39
1982 0.34 0.02 0.37 2.04 1.46 0.42 2.22 0.56 0.77 0.02 0
1983 0 1.54 2.61 0.09 0.15 0.21 0.49 0.19 3.21 0.50 2.18
- 1984 0 2.49 1.68 0.37 0.09 0.50 0.17 3.61 2.70 1.42 0.05
- 1985 3.99 0.55 0.12 1.91 0.14 1.56 0.27 0.38 0.28 3.46 0
1986 0.61 4.09 0.45 0.44 0 1.60 0.32 0,57 0.12 1.30 1.32
1987 0.04 0.03 0.05 0.37 0.42 1.47 0 0.74 0.93 0.28 0.07
1988 0.84 0.70 0.43 0 0.91 0.16 0 0.03 0.36 0.20 0.18
1989 0.51 1.44 0.30 0 0.19 0.06 0.01 0.06 0.26 1.79 0

- 1990 0.05 1.29 0.28 1.52 2.14 0.59 0.30 0.25 2.58 0 0.25
- Mean 0.68 0.80 0.59 0.64 0.60 0.86 0.57 0.68 1.29 0.70 0.46
- Min. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00
3.99 4.09 2.61 2.12 2.37 4.41 2.31 3.61 4.52 3.46 2.18

Pr(>.5) .47 47 .35 .35 .35 223 .29 203 .59 .47 23

Source: Seeley.
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Table 4.22: Weed-free corn and soybean yields at the
Southwest Experiment Station, Lamberton, MN, 1974-90.

Yield in bushels/acre

Year Corn Soybean
1974 101 31
1975 54 34
1976 22 14
1977 146 42
1978 110 43
1979 89 50
1980 108 41
1981 84 44
1982 151 42
1983 102 39
1984 90 41
1985 109 42
1986 165 51
1987 163 48
1988 56 26
1989 155 41
1990 129 39
Mean 107.9 39.3
Standard deviation 40.8 9.0
Minimum 22 14
Maximum 165 51

Source: Ford.

Note: Regression of the two yield series on a trend variable
gave insignificant F(1,15) statistics, 3.81 for corn and
1.48 for soybean. This suggests no trend in yields, and
hence no need to detrend the data to obtain a stationary
yield distribution.
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~ Table 4.23: Weekly days suitable for field work, Southwest
- Experiment Station, Lamberton, MN, April 19 - July 4, 1974-
3 90.

8 Days suitable for field work during the week beginning
~ Year 4/19 4/26 5/03 5/10 5/17 5/24 5/31 6/07 6/14 6/21 6/28
1974

1]
=D
1977
1978
1979
1980
1981
- 1982
- 1983
1984
- 1985
1986
1987
1988

«25

«29

w

1990
~ Mean
- Min.
- Max.

(8]

NOWNUWNWWWoOoOrWVo o WUV OoON
NOWWHANHONHOAWNONN wnowm
NHESNOANNUNEFWWSINDU WSOV
~ c>f~P>\J\J?\N>u>#~o\o U\u>#~u10\9\u>o
I~ C>F~riy1U1U1\JUIO\P‘H‘U1P‘\JG\h‘\lO\O
NOFNNLWLWAILUNULWWULN v ;o
NOoOFFaANNOWLW ~ c>y1h>a\\lp»o
~ o:b'u NNV W [V, - WV . N
N O WD NN N NN CorwWUNWKHOFO
\Jh*y1?\u1\na\u1\1h*¢~\J\JU1o\c\#~h~#~w
~ c>y1\1\lax\1u>h>\1c>\1y1:-p-u1u1o\\nw

- Source: Seeley.




Table 4.24: Predicted weed emergence rates in absence of
herbicide treatment, Lamberton, MN,

113

1974-90 (Forcella

model) .
April Predicted germination rate
Year cum. GDD' Foxtail Lambsquarters R. Pigweed
1974 41.39 0.388 0.275 0.149
1975 g WA T 0.000 0.000 0.000
1976 53.06 0.441 0.297 0.145
1977 101.94 0.286 0.013 0.100
1978 11.11 0.052 0.057 0.014
1979 16.67 0.114 0.115 0.055
19%Q 55,909 Q.44% Q.20%% Q.14
1981 56.94 0.447 0.297 0.143
1982 26.94 0.245 0.200 0.121
1983 9.72 0.040 0.042 0.008
1984 1111 0.052 0.057 0.014
1985 90.56 0.344 0.134 0.110
1986 30.28 0.284 0.222 0.132
1987 94.17 0.326 0.099 0.107
1988 29.44 0.275 0.217 0.130
1989 47.50 0.423 0.291 0.148
1990 76.94 0.407 0.234 0:.123
Mean 44.35 0.269 0.168 0.097
Min. 1.11 0.000 0.000 0.000
Max. 101.94 0.447 0.298 0.149

! cumulative growing degree days (GDD) defined as
[(max T - min T)/2] - 10, where T is temperature in °c.

Source: Fuchs.

4.5.4 Coefficient input files

Best parameter estimates from estimation of the crop
yield, weed germination, weed seed production, and seedling
growth functions were incorporated into input data files to
run the weed management decision support model.

values passed to the simulation model are summarized in

Table 4.25.

Parameter

Other input files were obtained from published

sources. Herbicide rates, average costs, and efficacy
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ratings come from Durgan et al. Machinery costs and

operating speed data are from Fuller et al. The late

planting yield loss step function data come from Hicks and

Peterson and Gunsolus (1990a).

Table 4.25: Summary of biological parameter values passed to
the weed management simulation model.

Lambs- Redroot

Equation Foxtail quarters Pigweed
Yield loss (I;)

Corn 0«2 0.8 0.8

Soybean 0.2 1.9 1.9
Seeds/plant (y;)

Weeds surviving cultiv. 90 120 130

Weeds emerging post-cult. 9 6 13
Proportion of total emergence by stage

Pre-plant (ag;) 0.18 0.40 0.00

Post-planting (c,;) D.72 0.54 0.92

Post-cultivation (a,;) 0.10 0.06 0.08
Proportion of non-emerged

seeds that die in soil 0.714 0.818 0.116
Seedling growth' 0.0048 0.0033 0.0038

! coefficients are for the squared days-after-planting
(DAP?) term. Crop coefficients are: Corn 0.0100, Soybean
0.0069.

4.6 Model Verification and Vvalidation
4.6.1 Model verification

Model verification answers the question, "Does it do
what it's supposed to do?" Verification is an inherent part

of model development. It can only be treated as an indepen-
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dent activity if a) the model is very simple or b) the
modeler is rash enough not to test components along the way.

Law and Kelton identify five techniques for model ver-
ification: 1) write and debug the model in discrete modules,
2) have other programmers check the code, 3) trace the evo-
lution of variable values as the simulation runs, 4) test
the model under simplified assumptions, and 5) display model
results at a graphics terminal as it runs. All but the last
of these techniques has been applied in development of the
weed management model. Most of the program modules were
identified in Chapter 3. The code was reviewed by King
(personal communication) and by Alessi. The QuickBasic 4.5
program editor includes a powerful debugging trace called
"watchpoint" which was used routinely in program verifi-
cation. In addition, the time-honored technique of running
a simplified program with strategically placed PRINT state-
ments was used repeatedly. With all that said, there
remains a significant probability of erroneous code in a
program as large as this. However, every effort has been
made to reduce this likelihood.

The sequence of program development also provids some
assurance of minimal programming error. Verification of the
model proceeded in tandem with programming individual mod-
ules and procedures. The general process can be viewed as a
set of concentric circles. First a core program was deve-

loped and tested. Subsequent layers were added to it, each




116
one contributing complexity and requiring re-verification of

itself and of the whole.

4.6.2 Model validation

The original version of the simulation model was vali-
dated against out-of-sample data from 1990 field trials at
the North Central Soil Conservation Research Laboratory in
Morris, Minnesota. Only partial validation of the model was
feasible, given available data. Validation was conducted
for the emergence and corn yield functions. Results were
presented in sections 4.1.1.2 and 4.3.1. Statistical vali-
dation was not possible for the seed bank, plant growth and
soybean yield functions.

The 1990 Morris data come from two sites. The 16
observations from the Central Farm contain very high weed
seed densities for all three species modeled. The 24 obser-
vations from the North Farm generally have low weed seed
densities. Descriptive statistics on the pooled sample are
presented in Table 4.7. Jointly, observations from the two
farms represent a wide range of weed pressures. As dis-
cussed above, the validation tests led to recalibration of
the germination calibration equations and acceptance of the
corn yield equation in its original form.

Statistical validation is the first step in a process
which extends to sensitivity analysis and field experimenta-

tion if the model's useful life continues (France and Thorn-
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“ley). Since one intended purpose of this weed management
!model is to help identify research priorities for weed
 scientists, sensitivity analysis is an appropriate future
1tapplication. Validation of the model by agronomic field
~ experiments in Rosemount and Morris, Minnesota, is currently
underway (Buhler 1991c).

With the model on the road to validation, it was
applied to the set of model evaluation and hypothesis tests
outlined in Chapter 1. The results of a set of stochastic

simulation experiments are presented in the next chapter.




V. SIMULATION EXPERIMENTS

The stochastic simulation framework developed in the
final section of Chapter 4 provides a tool for evaluating
the recommendations module in a whole-farm context. This
can be done computationally in a manner analogous to con-
trolled scientific experimentation (see, e.g., Dent and
Blackie, Law and Kelton). Experiments designed to test the
hypotheses presented in Chapter 1 can be conducted in a
simulation environment that mimics the unexplained varia-
bility associated with model parameters estimated from data.
Stochastic simulation will be used 1) to estimate the value
of weed population information, 2) to appraise different
weed control decision rules, 3) to examine the effects of
farm size and initial weed seed density, and 4) to predict
optimal farmer response to a set of possible policy restric-

tions on herbicide use.

5.1 The Deterministic Model: Base Case for Simulation
Before proceeding with description of the simulation
experiments, it is fitting to present deterministic model
results. These take two forms. First, the recommendations
module (WEEDSIM) generates weed control recommendations
based upon expected weed infestations. Second, recommenda-

tions also depend upon the crop rotation, the kind of weed

118
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population information available, and expected crop prices.
Due to carryover problems inherent to certain herbicides in
certain climates (e.g., atrazine on soybeans after corn in
the northern U.S.), the crop rotation determines which
treatments will be included in the feasible set. As for
information, when seed counts are available, soil-applied
weed treatment recommendations can be made. When weed
seedling counts are available, post-emergence control
recommendations are feasible. Somewhat less reliable ones
may be made from predictions based on seed counts and
expected emergence rates.

As discussed in the theoretical chapter, model recom-
mendations are developed based upon the value of yield saved
by weed control relative to the cost of weed control. The
model parameters developed in Chapter 4 predict yield loss,
but the model user must define expected weed-free yield,
crop prices, variable costs and the rate of discount.
Assumptions used for the model runs presented here are
listed in Table 5.1. For the deterministic case, weed-free
yields are set at their 1974-90 means from the Southwest
Experiment Station of the University of Minnesota at Lamber-
ton, MN (see Table 4.22). Prices and variable costs are
drawn from Fuller et al (1991). The 4% rate of discount,
which is used for the two-year decision rule, is a standard
value for the inflation-free time value of money in the

United States. Costs of weed control are the product of
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;Javerage 1990 herbicide unit costs and average recommended
~ application rates (Durgan et al.). Net returns from the

- model are calculated as gross revenues minus weed control

. costs minus allocated variable costs. Net returns are

returns to land, labor, management and fixed capital.

Table 5.1: Parameter settings for deterministic runs of the
weed control recommendations model.

Level
Parameter Unit Corn Soybean
Weed-free yield bu/acre 108 39
Crop prices $/bushel 2.15 5.65
Variable costs $/acre 126%15 62.70
Discount rate percent 4%

Table 5.2 presents recommendations for a set of three
conventionally tilled fields such as those used in the sto-
chastic simulation. The fields grow continuous corn, corn
in a corn-soybean rotation, and soybean in rotation. Three
weed species are included, 1) mixed green and yellow fox-
tails, 2) common lambsquarters, and 3) redroot pigweed.
While these are the most common annual weeds in southwestern
Minnesota, they constitute but a small subset of possible
weeds, and model results are likely to be sensitive to the
weed species chosen. Two initial weed seed densities are

assumed, one for "low" weed pressure, the other for "high"

weed pressure, based upon the 1985-86 Morris data. The

"low" weed pressure case has foxtails, lambsquarters, and
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1Vpigweed seeds present at 175, 25 and 50 seeds/m?. For the
"high" weed pressure case, they are present at ten times
these levels. Two decision rules are considered. The
"myopic" rule bases recommendations upon the expected net
gain from weed control in the current year. The "fore-
sighted" rule bases them upon the present value of expected

net wealth at the end of two years.

Table 5.2: Weed control recommendations for corn and soybean
under two rotations, two initial weed seed populations and
two decision rules.

Weed control recommendation
Crop Rotation' PPI/PRE Time POST

"Myopic'" decision rule
Low initial weed seeds

Corn cc No control Atrazine & oil

Corn CSs Cyanazine PPI 2,4-D

Soybean sScC Trifluralin PPI Rotary hoe
High initial weed seeds

Corn 3 8 No control Atrazine & oil

Corn cs Cyanazine PPI 2,4-D

Soybean sC Trifluralin PPI Rotary hoe

"Foresighted" decision rule
Low initial weed seeds

Ccorn ce No control Atrazine & oil

Corn Ccs Cyanazine PPI 2,4-D

Soybean scC Trifluralin PPI Rotary hoe
High initial weed seeds

Corn cc Cyanazine PPI Atrazine & oil

Corn Cs Alachlor PPI Cyanazine

Soybean 8C Trifluralin PPI Rotary hoe

' cC denotes continuous corn; CS denotes corn-soybean.
2 pPI denotes pre-plant incorporated; PRE denotes pre-
emergence.

The two rules generate identical weed control

recommendations when weed pressure is low. When it is high,




122

fhowever, the two-year rule calls for more thorough weed
ﬁcontrol in corn, to reduce the seed population. As post-
:emergence weed controls in soybean are quite costly relative
jto their efficacy (see Table 4.16), only rotary hoeing is

- recommended. For the same reason, POST herbicides tend to

; be eschewed by soybean farmers in all but special cases
(Simmonds and Brosten). Over a period of years, the result
is that the two-year rule establishes a managed steady state
weed seed population at a lower level than the myopic rule.
Figure 5.1 illustrates this for foxtails where weed control
is not constrained by available farm resources. Weed seed
germination and seed production rates are held constant at
1974-90 mean values.

In a whole-farm context, of course, resources are con-
straining. This implies that the timeliness of operations
is not always optimal. Late planting incurs yield penal-
ties. Some weed control measures become infeasible when
weeds outgrow their stage of susceptibility to post-emer-
gence treatment. Other measures become infeasible when the
crop reaches a susceptible stage. The timing of weed con-
trol operations on a farm is largely determined by the size
of the cropped area, the amount and kind of machinery, the
number of skilled operators available, and the suitability
of weather for field work. 1In any given season, all of

these except workable field days tend to be predetermined.
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Figure 5.1: Foxtails seed bank evolution from low initial

level in corn-soybean rotation: Myopic and two-year deci-
sion rules compared.

The resource endowment of the base case farm used in
simulations is presented in Table 5.3. It is a 480-acre
cash grain farm located in southwestern Minnesota. The farm
is divided into six 80-acre fields. Two fields each are
devoted to continuous corn, rotational corn and rotational
soybean. During the planting and weed control season (April
- June) the farm has two full time tractor operators avail-
able for field operations seven days per week, ten hours per
day. The farm has two tractors capable of doing field work
(160 and 120 horsepower). The machinery complement used in
the simulation includes a 28-foot field cultivator, a 30-

foot sprayer, an 8-row planter, an 8-row cultivator, and a
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i;ls-foot rotary hoe (Talley). Other machinery used for
éfplowing and harvest operations is omitted, as it is not used
in operations associated with weed control. Rates of field
] coverage and associated costs per acre for use of this

equipment were obtained from Fuller et al. (1990).

Table 5.3: Characteristics of the base case farm used in
simulation.

Characteristic Unit Amount

Labor

Workers 2
Max. days per week 7
Max. hours/day 10

Land

Field size acres 80
Continuous corn proportion 1/3
Rotation corn proportion 1/3
Rotation soybean proportion 1/3

Machinery

2 tractors horsepower 120,160
Field cultivator feet 28
Planter (8-row) rows 8
Sprayer feet 30
Cultivator (8-row) feet 30
Rotary hoe feet 16

Table 5.4 illustrates the effect of reduced workable
field days. Weed management results with the number of
workable field days in 1982 are contrasted with those for
1987 using the recommendations in Table 5.2. In 1982, only
18 workable days were available at Lamberton between April
19 and June 20, whereas in 1987, 55 workable days were

available during that period. Crop yields, germination

.
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ixtes and precipitation were held constant at their 1974-90
;ngans for the simulation.

£

yTable 5.4: Impact of restricted workable field days: Simu-

lated weed management on base farm in 1982 versus 1987 using
- the two-year decision rule with high initial weed seeds.

- Performance Measurement Workable field days 4/19 - 6/20

criterion unit 18 (1982) 55 (1987)

- Farm net revenue dollars = G582 1,675

. Herbicide load

. Cont. corn lbs ai/acre! 2.7 4.2
Rotn. corn lbs ai/acre 4.3 4.3

- Rotn. soybean lbs ai/acre 0.8 0.8

.~ Percent max. yield
Cont. corn percent 71.6 76.6
Rotn. corn percent 70.6 75:9

1 Rotn. soybean percent 66.4 64.7

~ Weed density
Foxtails plants/m? 94 107
Lambsquarters plants/m? 10 6
Pigweed plants/m? 9 10

' Pounds of chemical active ingredient per acre.

Weed-free yields in 1982 and 1987 were both high, 151
and 163 bushels per acre for corn and 42 and 48 bu/acre for
soybean, so other things being equal, net revenue is ex-
pected to be high. Since initial weed pressure for both
years is identical in the simulation, differences in percent
of maximum (weed-free) yield obtained are entirely due to
timeliness and infeasible weed control treatment penalties.
Late planting penalties take the form of yield loss. Under
1982 conditions, late planting leads to a 7% yield loss on
the corn fields. Infeasible weed control penalties increase

yield loss and/or treatment cost. The lower herbicide load




126

:on continuous corn in 1982 is due to post-emergence atrazine
?application becoming infeasible because the foxtails had
igrown too large. The higher weed densities in 1987 are due
;to infeasibility of the recommended rotary hoeing of weeds

- in soybeans. In both cases, the next best alternative was

- not to control weeds. The interplay between yield loss and
treatment cost is discussed more thoroughly in the context

of herbicide bans in Swinton and King.

5.2 Design of the Simulation Experiments
5.2.1 Experimental factors

The simulation experiments are designed to examine the
hypotheses presented in Chapter 1. The experimental factors
examined are 1) the decision rule, 2) initial weed seed pop-
ulation level, 3) farm size, 4) weed seed population infor-
mation available to the farm manager, and 5) herbicide
restriction policy. These factors are summarized in Table
85 .

The decision rules reviewed are the myopic, the cau-
tious myopic, and the foresighted (or two-year) rule. The
myopic decision rule chooses the weed control plan that max-
imizes current year expected net revenue. The "cautious
myopic" rule described in Chapter 3 is computationally equi-
valent to the myopic one, except that it employs a lower

(ergo, more cautious) threshold for weed control. In the




simulation experiments here,

it reduces by five percent the

expected net revenue from no control against which control

} treatments are evaluated (ie., in equation (3.1), 6 = 0.05).

The two-year rule applies an optimal control with a two-year

time horizon to the multiple weed species management

problen.

Table 5.5: Levels of experimental factors employed in
stochastic simulation.

Experimental factor Unit Low Medium High
Farm size acres 480 720
Initial weed seeds
Foxtails seeds/m? 175 1750
Lambsquarters seeds/m? 25 250
Pigweed seeds/m? 50 500
Decision rule Myopic Cautious 2-year
myopic!
Information on weed sample None? seedlings® seeds &
population counts seedlings
Herbicide bans policy No ban Atrazine Triazines

ban ban*

" Treat if expected net revenue exceeds 95% of expected
return with no control (i.e, theta = 0.05).

2 Strategies are, for corn, EPTC (plus safener) PPI and

dicamba POST; for soybean,

POST.

trifluralin PPI and bentazon

3 posT strategy from model; PPI/PRE same as above.

* Including atrazine, cyanazine and metribuzin.

Weed species and density are the crucial variables in

the weed management model.

Observed densities in the field
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- vary immensely. The initial weed seed densities used in the
simulations represent the bottom and top quartiles of the
1985-86 Morris data set. Relative proportions also repre-
sent those observed in that data set. For combined green
and yellow foxtails, common lambsquarters and redroot pig-
weed, the "low" initial weed seed populations are 175, 25,
and 50 seeds per square meter (m?®). The "high" initial
populations are ten times that high.

In order to test the hypothesis that farmers apply
liberal doses of soil-applied herbicides as insurance
against untimely post-emergent control, two farm sizes are
included. Farm acreage includes both owned and rented land.
The 480-acre farm represents a medium-large southwest Minne-
sota cash grain farm (Talley). The machinery complement is
fairly typical of the wide variety of equipment present on
such farms. The 720-acre farm represents a large cash grain
farm. The machinery complement is the same, as a means of
testing the hypothesis that, with other factors constant,
yield penalties due to untimely weed control operations
increase with farm acreage.

Three levels of weed population information are
examined. The "high information" case includes estimates of
both weed seeds (prior to time of application of soil-
applied herbicides) and weed seedlings (prior to application
of post-emergence control measures). The model makes all

weed control recommendations. The "POST information" case
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includes only post-emergence weed seedling density esti-
mates. Soil applied weed control follows extension recom-
mendations. The recommendations used in the simulation are
EPTC plus safener, pre-plant incorporated (PPI) on corn, and
trifluralin, PPI on soybean (Gunsolus 1991b). Finally, the
"no information" case follows extension recommendations
independent of weed population information for all control.
The recommendations used in the simulation experiments are
the PPI measures stated above, followed by dicamba POST on
corn and bentazon POST on soybean (Gunsolus 1991b). The
information levels applied here correspond to the flexible,
mixed, and fixed weed control strategies evaluated by King
et al. and Lybecker et al. (1991a).

Weed seed and seeding population information are
assumed known with certainty. While on the surface this
seems an unrealistic assumption, it was made in order not to
exaggerate the already substantial random variability in the
stochastic model. The pseudo-random errors generated for
the stochastic simulation model implicitly reflect the
sampling error associated with weed seed and seedling den-
sity data used to estimate model parameters. To introduce
sampling error again would be to double count.

The last experiment examines the effect of three alter-
native policy restrictions on herbicide use. These are

1) no change from current policy, 2) ban on atrazine, and
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3) ban on all triazine herbicides. Three triazines are
included among the treatments used for the simulation model.
Besides atrazine, they are cyanazine and metribuzin. The
relatively abundant presence of atrazine in groundwater has

led to growing public concern about its use.

5.2.2 Experimental methods

The unit of observation for the simulation experiments
is the farm "state of nature," a six-year period of simu-
lated weed management. Six years encompasses three complete
corn-soybean rotations. While this may not be sufficient
time to reach a managed steady state, it is long enough to
differentiate among the dynamic tendencies of different
management strategies.

Each experiment is replicated under twenty states of
nature. A state of nature governs each six-year weed man-
agement period beginning from a given initial weed seed bank
level. Each simulation year draws upon historical data from
the Southwest Experiment Station at Lamberton, MN, covering
weed-free yields, precipitation levels, available field time
and April growing degree days (from which expected weed seed
germination rates are calculated). The years are chosen at
random from a uniform distribution of the 17 years 1974-90.

Within a year, pseudo-random error terms are added to
predictions from field-level biological equations. For the

germination calibration equations, these disturbances are
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heteroscedastic, varying with weed seed density. Multi-
variate normal pseudo-random deviates are also added to the
statistically estimated coefficients in the weed germination
and plant growth equations. The same sequence of years and
random disturbances and random coefficients is applied to
each simulation experiment.

Several performance criteria are used to evaluate the
outcomes of the simulation experiments. The present value
of accumulated net returns at the end of the period is
presented in the form of the annual annuity payment which
would generate that sum (Weston and Copeland, p.80). This
is termed "the annualized net present value of accumulated
income," or simply "annualized net income." The standard
deviation of this value provides a measure of variability.
The.money—equivalent values of expected utility from con-
stant absolute risk attitude (CARA) exponential utility
functions are presented for decision makers with coeffi-
cients of absolute risk aversion of -.0001 (mildly risk-
loving), O (risk-neutral), .0001 (mildly risk-averse), and
.001 (strongly risk-averse). These values are typical of
those reported for annual farm income in studies which
elicited risk attitudes in the United States (Raskin and
Cochran) .

Biological performance measures include the mean
percentage of yearly maximum yield attained, mean weed

density (plants per square meter), and end-period weed seed

]
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density (seeds per square meter). In the absence of time
series data on true maximum potential yields, maximum yield
is defined as the weed-free yield observed at the Lamberton
station.

Herbicide load provides a measure of the environmental
impact of chemicals used. Strictly a quantitative index, it
fails to capture such important qualitative aspects as toxi-
city to humans and to weeds of individual chemicals. Since
the new post-emergence herbicides are applied at rates as
low as one-half ounce per acre (e.g., nicosulfuron), versus
several pounds for the older compounds, this is increasingly
important. However, the new, low-dose compounds tend to be
recommended rarely by the model, due to their relatively
high cost. Since the older ones vary less in dose level,
the herbicide load index is less misleading than might be
feared. 1In the absence of more sophisticated indices, raw
herbicide load gives a rough measure of chemicals entering

the biosphere.

5.3 Results of the Simulation Experiments

Results of the stochastic simulation experiments
provide the means to test the nine hypotheses set forth in
Chapter 1. Other salient points are discussed less for-
mally. The principal statistic used for hypothesis tests is

the paired difference t statistic. By taking into account




133

the fact that the variables being compared come from the
same experimental block, the paired difference t-test is
more discerning than tests designed to compare independent
variables. It assumes that the two variables share the same
distribution and that their difference follows a normal
distribution with mean zero. The statistic is similar to an
ordinary t statistic, except that the sample standard devia-
tion in the denominator is divided by the square root of the

number of degrees of freedom (Mendenhall et al., p. 517):

_ d- B4
sq/Vn

where d is the sample mean difference, KLy is the population
mean difference, s, is the sample standard deviation, and n
is the number of observations.

The baseline simulation results, which are presented
in tables 5.6 and 5.7, are discussed in the following sub-
sections. They cover three information levels (none, POST
only, and high), two initial weed seed densities (low and
high), and three decision rules (myopic, cautious myopic,

and two-year).
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- Table 5.6: Stochastic simulation results for 480-acre farm with low
~ initial weed seed density: 6 year simulation under 20 states of nature.

Information level & decision rule

No infor-
mation

~ Mean annualized net income ($)

(Standard deviation)

Farm 2,718
7,065
Cont. corn -2,963
(3,867)
Rotn. corn -2,178
(2,873)
Rotn. soy 7,859
(3,294)
Mean herbicide load
Cont. corn 4.88
Rotn. corn 4 .88
Rotn. soy 1.30

Mean percent of max. yield (%)

Cont. corn 76
Rotn. corn 77
Rotn. soy 71

Mean weed density (plants/m?%)

Continuous corn

Foxtails 76
Lambsqtrs 3
Pigweed 20
Corn-soybean rotn.
Foxtails 99
Lambsqtrs 5
Pigweed 20

Mean terminal weed seed density (seeds/m?)

Continuous corn
Foxtails 2,273
Lambsqtrs 176
Pigweed 2,542

Corn-soybean rotn.
Foxtails 3,929
Lambsqtrs 205
Pigweed 2,637

Seedling counts Seed & seedling counts
Myopic Cautious 2-year Myopic Cautious 2-year
9,699 8,340 9,011 10,386 9,047 10,104
(7,488) (8,432) (8,861) (7,270) (8,448) (8,827)

-444 -915 -871 -278 -804 -325
(4,393) (4,674) (4,410) (3,927) (4,577) (4,492)
-462 -903 -512 4 -337 -28
(3,006) (3,474) (3,664) (3,022) (3,386) (3,693)
10,604 10,158 10,394 10,660 10,188 10,458
(2,990) (3,628) (3,128) (2,943) (3,596) (3,060)
(1b ai/ac)
5.27 5.25 5.39 2.81 2.83 2.94
5.01 5.02 5.06 2.99 2.92 3.05
0.77 Q.77 0.79 0.76 0.77 0.79
80 79 80 79 77 80
80 78 81 80 79 82
73 72 74 74 72 74
42 54 48 61 75 55
3 3 3 3 3 3
12 12 13 10 10 10
74 70 56 74 72 56
5 4 5 5 5 5
12 15 13 11 13 12
1,240 1,448 1,396 1,412 1,792 1,432
150 163 1S5 157 175 160
1,535 1,471 1,526 1,271 1,245 1,256
2,650 2,161 1,936 2,616 2,231 1,915
179 203 204 188 209 215
1,657 1,813 1,683 1,528 1,606 1,542
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Table 5.7: Stochastic simulation results for 480-acre farm with high
initial weed seed density: 6 year simulation under 20 states of nature.

Information level & decision rule

No infor-

mation

Myopic

(Standard deviation)

Farm -19,315 -6,489
(8,917) (6,543)
Cont. corn -10,090 -5,127
(4,700) (3,410)
Rotn. corn -9,322 -5,898
(3,351) (2,400)
Rotn. soy 97 4,535
(2,996) (3,105)
Mean herbicide load (1lb ai/ac)
Cont. corn 4,88 5.47
Rotn. corn 4,88 5.05
Rotn. soy 1.50 0.76
Mean percent of max. yield (%)
Cont. corn 57 69
Rotn. corn 59 67
Rotn. soy 50 58

Mean weed density (plants/m?)

Continuous corn

Foxtails 290
Lambsqtrs 6
Pigweed 49
Corn-soybean rotn.
Foxtails 295
Lambsqtrs 7
Pigweed 46

Mean terminal weed

Continuous corn
Foxtails 5,725
Lambsqtrs 189
Pigweed 4,630

Corn-soybean rotn.
Foxtails 7,441
Lambsqtrs 220
Pigweed 4,807

112
4
23

181
7
23

-7,336
(7,642)
-5,570
(3;,771)
-6,139
(3,114)
4,372
(3,494)

122
4
23

177
7
26

Seedling counts
Cautious

Mean annualized net income (§)

2-vyear

-5,656
(7,499)
-5;0223
(3,632)
=5 1227
(2,814)
4,79
(3,197

105
23
119

22

seed density (seeds/m?)

1,562
149
2,278

3,925
186
2,427

1,903
163
2,259

3,540
212
2,610

1,673
152
2,240

2,325
211
2,360

-4,751
(6,316)
-4,255
(3,478)
-5,328
(2,289)
4,832
(2,938)

363
33
0.76

w

71
68
59

113
16
167

20

1,595
161
1,638

3,565
200
2,152

Seed & seedling counts
Myopic

Cautious 2-year
-5,610 -3,751
(7,737) (7,587)
-4,788) -4,251
(3,898) (3,771)
-5,460 -4,626
(3,162) (2,928)
4,639 55,127
(3,624) (3,125)
3L57 3.58
3,31 3.50
0.77 0.78

69 72

67 12

59 62

124 100

4 4

17 16

167 113

7 8

23 20

1,982 1,614
176 166

1,663 1,640
3,185 2,239

230 230
2,250 2,057




136
5.3.1 Experiment 1: Value of weed population information

The ranking of information from greatest (seed and
seedling counts) to least (no weed information) correlates
perfectly with annualized net income. This is true for both
low and high initial weed seed pressures under all decision
rules. This result is consistent with the proof of Chavas
and Pope that costless information cannot reduce net
returns.

The hypothesis that strategies using and ignoring weed
population information yield equal annualized net income
(Hypothesis H1l), is subjected to two sets of paired diffe-
rence t-tests in Table 5.8. 1In the first set of tests,
POST-only seedling count information is compared with no
information. Under all three decision rules and both ini-
tial weed pressures, the hypothesis can be rejected with 99%
confidence (the one-tailed t(19;.01) test value is 3.17).

In the second set of tests, the annualized net income with
high information is compared to that with POST-only infor-
mation. Again, the hypothesis of equal returns can be re-
jected with 99% confidence in all cases. As expected, the
value of the two-year decision rule is greatest when seed
count information is also included. The value of informa-
tion is especially significant when initial weed pressure is
high. The significant value of information encountered here
is consistent with the findings of Bosch and Eidman, Byerlee

and Anderson, King et al., and Regmi.
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Table 5.8: Paired difference t-tests of annualized income
over 20 states of nature: Gains in annualized net farm
income due to high and POST information.

HIGH over POST information POST over NO information

Initial weeds, Mean Standard t Mean Standard t
decision rule diffe- devia- sta- diffe- devia- sta-
rence tion tistic rence tion tistic
Low initial weeds
Myopic 687 913 3.37 6,981 3,525 8.86
Cautious 707 996 3.18 5,622 4,046 6.21
Two-year 1,093 598 8.18 6,293 5,839 4,82
High initial weeds
Myopic 1,738 792 9.81 12,826 6,814 8.42
Cautious 1,727 778 9.93 11,978 7,400 7.24
Two-year 1,906 876 9.73 13,658 6,702 9.11

Hypothesis H2, that the same level of herbicide is
applied regardless of information level, is soundly rejected
in the paired difference t-tests presented in Table 5.9.
However, the results differ by information level. Compared
to no information, high information leads to significantly
lower herbicide load for virtually all crops, rotations and
initial weed pressures. Compared to POST information, high
information leads to significantly lower herbicide loads in
both corn rotations. On the other hand, compared with no
information, POST weed seedling counts lead to herbicide
loads that are higher in corn (both rotations) and lower in
soybean. The increased load in corn is due to WEEDSIM's
propensity to recommend POST 2,4-D or atrazine over the "no
information" default of dicamba. These dramatic results
should be interpreted with some caution, however, since the

base "no information" case uses a PPI treatment with a

o
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particularly high herbicide load (EPTC at 4.5 pounds of

active ingredient per acre).

Table 5.9:

Paired difference t-tests of herbicide load over

20 states of nature: Change in load due to high and POST

weed population information.

Change in herbicide load from HIGH information
Over NO information

Over POST information

Change from POST info.
Over NO information

Initial weeds, Mean Standard t Mean Standard ¢t Mean Standard t
decision rule diffe- devia- sta- diffe- devia- sta- diffe- devia- sta-
rence tion tistic rence tion tistic rence tion tistic
Low initial weeds - 1b ai/A - - 1b ai/acre - - 1b ai/acre -
Cont. corn
Myopic -2.46 0.40 -27.22 =2. 09 0.47 -19.47 0.40 0.19 9.53
Cautious -2.42 0.37 -29.08 =203 0.47 -19.35 0.37 0.18 9.20
Two-year -2.45 0.30 -36.30 -1.03 0.37- -23.11 0.52 0.17 13.87
Rotn. corn
Myopic -2.02 0,20 =-45.73 -1.88 0.20 -41.32 0.14 0.07 9.14
Cautious -2.10 D.28 -32.359 -1.95 0.28 =-31.08 0.15 0.07 10.00
Two-year -2.00 0.22 -41.06 -1.80 0.22 -36.63 0.18 0.07 10.98
Rotn. soybean
Myopic -0.01 0.01 -1.83 -0.74 0.03 -104.20 =0.73 0.04 -88.68
Cautious 0.00 0.00 0.00 -0.73 0.04 -86.04 ~0.73 0.04 -86.04
Two-year -0.00 0.02 -0.80 -0.26 0.71 =1.66 =0, 71 0.04 -74.91
High initial weeds
Cont. corn
Myopic -1.84 0.17 -48.55 -1.25 0.24 -23.46 0.59 0.18 15.05
Cautious -1.87 0.22 -38.85 -1.30 0.30 -19.64 0.57 0.17 15.14
Two-year =1.864 * 0,21 ' ~39.02 -1.30 0.27 -21.14 0.55 0.19 12.89
Rotn. corn
Myopic -1.72 0.17 ~-44.89 -1.54 0.15 -45.09 0.18 0.06 13.22
Cautious =1.75 0.16 <=48.59 <1.56 0.15" »~48.75 0.19 0.07 12.33
Two-year =1.55 0.24 =28.52 =1.37 0.22- ,-28,07 0.17 0.10 7.69
Rotn. soybean
Myopic -0.00 0.00 -0.00 -0.74 0.03 -118.37 -0.74 0.03 -120.65
Cautious -0.00 0.01 =1.17 -0.73 0.02 -142.98 =0,72 0.02 =137,55
Two-year =0.01 0.01 =2.17 -0.72 0.02 -144.47 =0.71 0.03 -110.85
The value of information is intimately linked to the
decision maker's attitude toward risk (Byerlee and Ander-

son) .

information is highest when weed pressure is high.

Table 5.10 suggests that the value of weed population

This

runs counter to what would be expected if the key decision

was whether or not to control.

In that case the most valu-

able information would be that which implies that control is

unneeded.

It appears, however, that the key decision is how
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to control, rather than whether to control.

When weed pres-

sure is high, sub-optimal rules of thumb have more serious

repercussions than when it is low.

Table 5.10: Value of weed population information under four

expected utility functions.

Experimental Coefficient of absolute risk aversion
factor -.0001 0 .0001 .001
------ $ equivalent - - - - - -
Low initial weeds
Seed & seedling information
Myopic 7,670 7,668 7,321 4,666
Two-year 8,590 7,387 6,054 3,756
Seedling information only
Myopic 7,197 6,981 6,592 4,794
Two-year 7,550 6,293 4,958 2,616
High initial weeds
Seed & seedling information
Myopic 12,476 14,564 16,396 18,734
Two-year 14,303 15,564 16,697 20,643
Seedling information only
Myopic 10,932 12,826 14,576 17,224
Two-year 12,420 13,658 14,930 19,262
Difference between seed & seedling
and seedling information only
Low initial weeds
Myopic 473 687 729 - 128
Two-year 1,040 1,093 1,096 1,140
High initial weeds
Myopic 1,544 1,738 1,821 1,510
Two-year 1,883 1,906 1,767 1,381

The value of weed population information increases

monotonically with risk aversion when initial weed pressure

is high and decreases with risk aversion when it is low.

The estimated value of post-emergence weed seedling counts

) )
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exceeds that of seed counts alone. Values for seedling
counts under the two-year decision rule range from $2,616
($5.45 per acre) for the strong risk averter facing low
initial weed pressure to $19,262 ($40.13 per acre) for the
strong risk averter confronting high initial weed pressure.

The difference between the value of high information
and that of the POST information alone provides a rough
estimate of the supplementary value of seed information on
top of seedling counts. To decision makers with the speci-
fied utility functions using the two-year rule, it would be
worth an additional $1,040 ($2.17 per acre) to $1,906 ($3.97
per acre) to obtain seed bank estimates. This suggests that
obtaining weed population information is a viable commercial
proposition. This possibility is discussed further in

section 5.4.

5.3.2 Experiment 2: Evaluation of decision rules

The hypothesis that strategies using dynamic decision
rules yield the same annualized net income as static ones
(H3) cannot be rejected. The paired difference t-tests in
Table 5.11 indicate that the two-year and cautious myopic
decision rules do not yield higher annualized net incomes

than the myopic rule.
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Table 5.11: Paired difference t-tests of annualized net
~ income under high information: Gains by two-year and
cautious myopic decision rules over myopic decision rule.

: Mean Standard t
~ Initial weeds, diffe- devia- sta-
- decision rule rence tion tistic
sy T
Two-year over Myopic
Low initial weeds - 282 4,226 -0.30
High initial weeds 1,000 4,701 0595
Cautious over Myopic
Low initial weeds -1,339 4,643 -1.29
High initial weeds - 859 4,289 -0.90

The ranking of decision rules by certainty equivalence
puts the two-year rule first when initial weed pressure is
high. When initial weed seed density is low, the myopié
rule ranks first for risk neutral and risk averse decision
makers, while the two-year rule ranks first with the mild
risk lover. The cautious myopic rule is lowest of all for
the four utility functions specified under all simulation
scenarios. It is also dominated under the mean-variance
efficiency criterion (Anderson et al.) when initial weed

pressure is high.
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?able 5.12: Certainty-equivalent of annualized farm net
income under four exponential expected utility functions.

Experimental

Coefficient of absolute risk aversion
dtfactor -.0001 0 .0001 .001
------ $ equivalent - - - - - -
Low initial weeds
Seed & seedling information
Myopic 12,564 10,386 7,378 - 3,110
Cautious myopic 11,981 9,047 4,744 -10,258
Two-year 13,485 10,104 6,111 - 4,021
Seedling information
Myopic 12,091 9,699 6,649 - 2,982
Cautious myopic 11,259 8,340 4,210 - 9,548
Two-year 12,445 9,0%1 5,015 .~ 5,161
No information 4,895 2.4718 52 .o~ 1,176
High initial weeds
Seed & seedling information
Myopic - 3,086 - 4,751 - 7,056 -16,641
Cautious myopic - 3,231 - 5,610 - 9,673 -25,877
Two-year - 1,259 - 3,751 - 6,756 -14,733
Seedling information
Myopic - 4,630 - 6,489 - 8,877 -18,151
Cautious myopic - 4,930 - 7,336 -11,067 -26,211
Two-year - 3,142 - 5,656 - 8,523 -16,113
No information -15,562 -19,315 -23,453 -35,375

The hypothesis that herbicide load does not differ

between dynamic and static decision rules (H4) can be re-

jected in specific cases when weed pressure is high. Herbi-

cide loads appear virtually identical across decision rules

within information levels, as indicated in tables 5.6 and

5.7. Nonetheless, the paired difference t-tests presented

in Table 5.13 reveal that differences do exist.

When ini-

tial weed pressure is high, the two-year decision rule leads
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to higher herbicide loads in rotational corn and soybean
than the myopic rule. For soybean, the two-year rule calls
for more herbicide than the myopic rule even when weed
pressure is low (t(19;.05) = 2.43). Contrary to expecta-
tion, the cautious myopic rule does not lead to a signifi-

cantly different herbicide load than the myopic one.

Table 5.13: Paired difference t-tests of herbicide load
under high information: Gains by two-year and cautious
myopic decision rules over myopic decision rule.

Two-year over Myopic Cautious over Myopic
Mean Standard t Mean Standard t
Cropping system, diffe- devia- sta- diffe- devia- sta-
initial weeds rence tion tistic rence tion tistiec
- - lbs ai/acre - - - - 1lbs ai/acre - -
Continuous corn
Low initial weeds 0.13 0.49 1.23 0.02 0.55 0.14
High initial weeds -0.05 0.24 -0.85 -0.05 0.38 -0.65
Rotational corn
Low initial weeds 0.06 0.26 1.00 -0.07 0,25 -1.21
High initial weeds 0.17 0.19 3.97 -0.02 0.19 -0.47
Rotational soybean
Low initial weeds 0.02 0.04 2.43 0.01 0.05 1.25
High initial weeds 0.02 0.03 2.63 0.01 0.04 1.29

The myopic rule, preferred by risk averse decision
makers when weed pressure is low, generally leads to lower
herbicide loads, although the difference is significant only
for the cases cited above. This apparent contradiction sup-

ports Pannell's (1990) finding that when the yield function
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is strictly convex, the expected utility of risk averse
decision makers is maximized by reducing weed control.

Related to the lack of distinction between decision
rules regarding herbicide load, end-period weed seed den-
sities are also not uniformly lower with the dynamic two-
year rule. Aggregating all weed species and weighting by
the number of fields in each rotation, mean terminal seed

densities are lowest under the two-year decision rule.

5.3.3 Experiment 3: Effect of farm size

An increase in farm size from 480 to 720 acres results
in a sharp decline in mean annualized net farm income per
unit of land. However hypothesis H5 cannot be rejected,
since the decline is not generally statistically significant
under the paired difference t-tests presented in Table 5.14.
The exception is the myopic decision rule when weed pressure
is low, in which case annualized net income is reduced at
the 10% significance level (one-tailed t(19;.10) = 2.09).
Nonetheless, Table 5.15 indicates that when weed pressure is
low, mean farm net income is only marginally higher despite
using 50% more land. When weed pressure is high (Table
5.16), mean annualized net income is actually lower under
all decision rules on the larger farm. Untimely crop man-
agement results in yield penalties, lower herbicide load and

higher weed pressure than in the 480-acre farm case. Mean
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percent of maximum corn yield is lower across the board due
to late planting penalties and cases where weed controls
become infeasible. Herbicide load is lower because treat-
ments become infeasible. The result is higher mean weed
density and higher terminal weed seed population in vir-
tually every case.

In spite of the reduced terminal wealth per acre on
the larger farm, evidence does not support the profitability
of commonly practiced blind PPI/PRE control. In no instance
did the mixed strategy of POST information generate higher

mean annualized net farm income than high information with

the same decision rule.

Table 5.14: Paired difference t-tests of annualized farm net

income per acre: Change due to increasing farm size from 480
to 720 acres.

Low initial weeds High initial weeds
Mean Standard t Mean Standard t
Information level diffe- devia- sta- diffe- devia- sta-
decision rule rence tion tistic rence tion tistic
- = §fac ~ - - - §/ac - -
Seed & seedling info.
Myopic -5.39 10.67 -2.26 -4.11 12.47 -1.47
Cautious myopic -2.73 13.06 -0.93 -2.46 12.92 -0.85
Two-year -3.38 11.65 -1.30 -2.60 10:21 -1.11
Seedling info. only
Myopic -6.05 11.23 -2.41 -3.50 12.28 -1.28
Cautious myopic -3.35 13.23 -1.13 -1.86 13.01 -0.64
Two-year -3.71 11.49 -1.45 -2.41 10.74 -0.98

No information -9.46 15.88 -2.66 -3.99 15.40 -1.16
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Table 5.15: Stochastic simulation results for 720-acre farm
with low initial weed seed density: 6 year simulation under
20 states of nature.

Information level & Decision rule
No infor- Seedling counts Seed & seedling counts
mation Myopic Cautious 2-year  Myopic Cautious 2-year
Mean annualized net income (§)
(Standard deviation)
Farm -2,735 10,189 10,095 10,843 11,702 11,605 12,720
(14,914) (14,230) (14,224) (14,260) (14,125) (14,137) (14,248)
Cont. corn -6,713 -2,584 -2,590 -2,486 -1, 849 -1,858 -1,575
(6,557) (6,825) (6,811) (6,783) (6,486) (6,472) (6,661)
Rotn. corn -6,568 -2,756 -2,808 -2,360 -1,961 -2,013 -1,504
(6,368) (5,669) (5,672) (5,688) (5,790) (5,812) (5,762)
Rotn. soy 10,545 15,529 15,494 15,689 15,512 15,476 15,799
(6,018) (5,622) (5,607) (5,653) (5,553) (5,542) (5,673)

Mean herbicide load (1b ai/ac)

Cont. corn 4.88 5.25 5.24 5.34 2.76 2.5 2.85
Rotn. corn  4.88 5.01 5.00 5.06 Z.91L 2.90 3.08
Rotn. soy 1.50 0.78 0.78 0.79 0.78 0.78 0.79
Mean percent of max. yield (%)
Cont. corn 71 76 76 77 76 76 77
Rotn. corn 71 75 75 77 76 76 77
Rotn. soy 68 73 73 74 73 73 74
Mean weed density (plants/m?)
Continuous corn
Foxtail 130 72 72 63 84 85 71
Lambsqtrs 4 2 2 3 3 3 3
Pigweed 27 12 12 12 10 10 10
Corn-soybean rotn.
Foxtail 126 75 78 62 78 82 62
Lambsqtrs 5 5 5 5 5 5 5
Pigweed 32 14 14 13 12 13 12

Mean terminal weed seed density (seeds/m?)

Continuous corn
Foxtail 4,454 1,893 1590 1,722 1,951 1,968 1,825
Lambsqtrs 205 152 152 154 164 164 163
Pigweed 3,268 1,548 1,583 1,549 1,313 1,330 1,316

Corn-soybean rotn.
Foxtail 4,379 2,395 2,474 2,032 2,435 2,534 2,042
Lambsqtrs 308 222 228 223 232 233 232
Pigweed 3,819 1,749 1,755 1,693 1,575 1,588 1,523
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Table 5.16: Stochastic simulation results for 720-acre farm
with high initial weed seed density: 6 year simulation under
20 states of nature.

Information level & Decision rule
No infor- Seedling counts Seed & seedling counts

mation Myopic Cautious 2-year Myopic Cautious 2-year
Mean annualized net income ($)

(Standard deviation)

Farm -31,847 -12,257 -12,343 -10,205 -10,084 -10,184 - 7,553
(13,291) (12,043) (12,012) (12,499) (12,058) (12,078) (12,487)

Cont. corn-15,839 - 8,743 - 8,764 - 8,489 - 7,709 - 7,728 - 7,184
(5,291) (5,647) (5,651) (5,628) (5,678) (5,663) (5,839)

Rotn. corn-16,334 -10,549 -10,582 - 9,224 - 9,772 - 9,811 - 8,322
(5,105) (4,570) (4,571) (4,846) (4,642) (4,679) (4,891)

Rotn. soy 326 7,035 7,004 7,508 7,397 7,355 7,954
(5,733) (5,369) (5,391):(5:548) .«(5,307).: (5,295) - (5,490)

Mean herbicide load (1b ai/ac)

Cont. corn  4.88 5.44 5.44 5.45 3.58 3.56 3.62
Rotn. corn  4.88 5.07 5.06 5.07 3:31 3.27 3152
Rotn. soy 1.50 0.77 0.77 0.79 0.78 0.78 0.79
Mean percent of max. yield (%)

Cont. corn 56 67 67 68 68 68 70
Rotn. corn 55 63 63 66 64 64 68
Rotn. soy 50 59 59 62 59 59 62

Mean weed density (plants/m?)
Continuous corn

Foxtails 273 125 127 105 128 129 106

Lambsqtrs 5 3 3 4 4 4 4

Pigweed 57 22 22 22 17 17 17
Corn-soybean rotn.

Foxtails 335 177 177 126 166 167 117

Lambsqtrs 8 7 7 1 7 7 8

Pigweed 59 25 25 22 22 22 19

Mean terminal weed seed density (seeds/m?)

Continuous corn
Foxtails 6,733 2,182 2,205 1,864 2,258 2,307 1,975
Lambsqtrs 205 152 153 155 165 166 167
Pigweed 5,881 2,269 2,281 2,263 1,707 1,750 1,700

Corn-soybean rotn.
Foxtails 8,473 3,526 3,550 2,494 3,248 3,290 2,385
Lambsqtrs 315 230 233 230 240 245 244
Pigweed 6,170 2,509 2,534 2,312 2,178 2,210 2,010
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5.3.4 Experiment 4: Value of initial seed bank

The value of a low initial weed seed bank is manifest
in both the medium and large farm cases. Paired difference
t-tests show that mean annualized net income is signifi-
cantly greater when initial weed seed banks are low than
when they are high (one-tailed t(19;.01) = 3.17). Hypo-
thesis H6 is rejected under every decision rule and infor-
mation level, as displayed in Table 5.17. The clear value
of a low initial weed seed bank provides empirical support
for the principle of a dynamic decision rule.

The second point of interest concerning initial seed
banks is that the standard deviation of annualized net
income is lower when the seed bank starts high (tables 5.6
and 5.7). This echoes the finding of Roush and Radosevich
that the variance of yield functions declines as weed compe-
titive pressure increases. As weed pressure increases, it
displaces the effect of other environmental factors on the
variability of yield (and, by extension, annualized net
income).

As expected, low initial weed seed density also results
in reduced chemical load. For corn under both rotations,
paired difference t-tests in Table 5.18 reveal that with
high information, a low initial weed seed bank leads to sig-

nificantly lower herbicide load than a high one.
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Table 5.17: Paired difference t-tests of annualized farm net
income: Gains from low initial seed bank over high one.

Mean Standard t
Information level diffe- devia- sta-
decision rule rence tion tistic
- =i S m o= - -
Seeds & seedling info.
Myopic 15,137 3,867 17.51
Cautious myopic 14,657 3,323 19.73
Two-year 134#8556 8,723 16.64
Seedling info. only
Myopic 16,188 4,597 15.75
cautious myopic 15,676 3,724 18.83
Two-year 14,667 4,189 15.66
No information 22,032 8,044 12.25

Table 5.18: Paired difference t-tests of herbicide load
under high information: Gains from low initial seed bank
over high one by cropping system.

Mean Standard t
Cropping systenm, diffe- devia- sta-
decision rule rence tion tistic

- lbs ai/acre -
Continuous corn

Myopic -0.82 0.38 -10.55

Cautious myopic -0.74 0.28 -11.99

Two-year -0.64 0.28 -10.09
Rotational corn

Myopic -0.34 0.18 -8.18

Cautious myopic -0.39 0.27 -6.38

Two-year -0.45 0.17 -11.50
Rotational soybean

Myopic -0.00 0.01 -1.62

Cautious myopic -0.00 0.03 -0.08

Two-year 0.00 0.03 0.47

In general, the low initial seed bank results in

higher yields, lower weed densities and lower terminal weed
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. seed populations. It appears that the weed seed bank levels
- converge to a managed equilibrium. Mean terminal weed seed
i densities for both initial levels were very close, despite
having started an order of magnitude apart (tables 5.6 and
5.7). Under the two-year decision rule with high informa-
tion, the model allows foxtail seed populations to grow from
175 to 1,432 seeds/m?, while those starting at 1,750 drop to
1,614 seeds/m?’. Lambsquarters seed densities change from 25
and 250 seeds/m’ to 160 and 166. Pigweed seeds multiply
more dramatically (partly because of longer seed survival in
the soil). From 50 and 500 seeds/m?, they increase to 1,256

and 1,640 seeds/m?, respectively.

5.3.5 Experiment 5: Impact of herbicide bans

Herbicide bans reduce mean annualized farm income in
every case. The reduction is statistically significant
(one-tailed t(19;.05) = 2.43) for a triazines ban under all
scenarios reviewed. It is statistically significant for an
atrazine ban when initial weed pressure is high. Under the
two-year decision rule it is also significant when initial
weed pressure is low. Hence, the hypothesis that a herbi-
cide ban does not affect annualized net income (H8) can be
rejected in every instance for a triazines ban and can be
rejected when initial weed pressure is high for an atrazine

ban.
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The income impact of restricting weed control options
is greatest when weed pressure is high. The high informa-
tion case with the two-year decision rule, shown in Table
5.19, is a case in point. When weed pressure is low, the
atrazine ban reduces mean annualized net farm income by $296
for a 480-acre farm. Since atrazine is an option only on
the 160 acres of continuous corn, the loss on those fields
is $1.85 per acre. When initial weed pressure is high,
however, the atrazine ban costs $720, or $4.50 per acre of
continuous corn. The ban on triazines affects the corn-
soybean rotation fields as well, both via cyanazine use on

corn and metribuzin on soybean. The reductions in

Table 5.19: Paired difference t-tests of changes in
annualized farm net income due to bans on atrazine and all
triazines.

Atrazine ban Triazines ban
Gain over No Ban base case Gain over No Ban base case
Initial weeds, Mean Standard t Mean Standard t
decision rule diffe- devia- sta- diffe- devia- sta-
rence tion tistic rence tion tistic
____$____ ----$----
Low initial weeds
Myopic -196 975 -0.90 -613 997 -2.75
Cautious myopic -280 606 -2.07 -741 828 -4.00
Two-year -296 535 -2.48 -867 609 -6.37
High initial weeds
Myopic -1,056 619 -7.62 -1,863 1,189 -7.01
Cautious myopic -1,235 641 -8.62 -2,213 1,186 -8.34

Two-year -720 483 -6.67 -1,905 1,040 -8.19
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annualized net farm income are $867 and $1,905 for low and
high initial weed seed populations, respectively. This
amounts to $1.81 and $3.97 per acre, farm-wide.

The modest farm level impact of an atrazine ban is
consistent with the results of Cox, and Cox and Easter.
Focusing upon average weed populations in continuous corn
with expected yield of 152 bu/ac and corn at $2.43/bu, Cox
estimates an atrazine ban in southeastern Minnesota to cost
$7.93 per acre. Due in part to lower expected yields in
southwestern Minnesota and lower assumed corn price, the
comparable figures from this study are $1.85 and $4.50, at
low and high initial weed pressures, respectively.

The cost per acre of a triazines ban estimated in this
stack is considerably lower than the $29.76 per acre drop in
returns to management and fixed resources calculated by
Cashman et al. The difference is likely accounted for by
the yield function in their deterministic linear programming
model of an Indiana corn-soybean cash grain farm. Their
model appears to be particularly sensitive to a ban on
metribuzin, due perhaps to the different weed species incor-
porated in their model.

Results from these three studies, however, apply to
partial equilibrium analysis only. The general equilibrium
regional analysis of Osteen and Kuchler (1987) suggests that

bans on atrazine and the entire triazine family would cause
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increases in corn and soybean prices that would more than
offset income losses due to increased costs and/or reduced
yields. The computable general equilibrium results of
Hrubovcak et al. also highlight the link between input
demand and output price.

In general, annualized income can be ranked such that
no ban > atrazine ban > triazines ban. The same ranking
holds for the certainty equivalents of all four utility

functions specified, as shown in Table 5.20. Interestingly,

Table 5.20: Certainty equivalent expected utility under bans
on atrazine and all triazines with high information and
two-year decision rule.

Standard
Initial weeds, deviation Coefficient of absolute risk aversion
type of ban ann. income -.0001 0 .0001 .001

-------- $ equivalent - - - - - - - - -
Low initial weeds

No ban 8,827 13,485 10,104 6,111 -4,021

Atrazine ban 8,775 13,117 9,808 5,826 -4,337

Triazines ban 8,871 12,642 9,237 5,221 -4,534
High initial weeds

No ban 7,587 -1,259 -3,751 -6,756 -14,733

Atrazine ban 7,489 -2,050 -4,471 -7,421 -15,323

Triazines ban 7,635 -3,138 -5,656 -8,726 -16,656

the standard deviation of annualized farm income decreases
under an atrazine ban. This is likely due to the fact that
when field days are scarce, post-emergence atrazine becomes

an infeasible treatment, so income variability is more
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closely tied to field days variability when atrazine is an
option.

The bans also have significant impacts on herbicide
loads. However, since the impact depends upon the weed
control treatment that substitutes for the banned herbicide,
the direction of the impacts is indeterminate. Where no
control, mechanical control or low-dose herbicides are sub-
stituted, chemical load decreases. Where higher dose herbi-
cides are substituted, on the other hand, chemical load
increases.

Herbicide bans have especially marked impacts on che-
mical load in continuous corn. Table 5.21 shows that the
hypothesis of unchanged chemical load (H9) in continuous
corn can be rejected in all cases under both bans (two-
tailed t(19;.01) = 2.86). When initial weed seed popula-
tions are low, herbicide load increases. When they are
high, herbicide load dedclines. Banning atrazine results in
substitution of more costly, higher dose herbicide alterna-

tives such as alachlor and cyanazine or lower-dose 2,4-D on

continuous corn. The net financial outcome is that costs

are slightly higher, while the biological result, shown in

Table 5.22, is that weed populations in continuous corn rise

slightly, but other performance indicators are virtually

unaffected. At high initial weed seed levels, Table 5.22

indicates that the effect of substituting slightly less
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efficacious treatments is to allow foxtail populations to

rise and to reduce the mean percent of maximum crop yield

attained.

Table 5.21: Paired difference t-tests of changes in
herbicide load due to bans on atrazine and all triazines.

Atrazine ban Triazines ban
Cropping system, Gain over No Ban base case Gain over No Ban base case
initial weeds, Mean Standard t Mean Standard £
decision rule diffe- devia- sta- diffe- devia- sta-
rence tion tistic rence tion tistic
- - 1b ai/acre - - - - 1b ai/acre - -

Continuous corn

Low weeds - myopic 0.11 0.16 2.91 0.59 0.29 9.00

Low weeds - two-year 0.17 0.26 2.99 0.75 0.36 9.22

High weeds - myopic -0.27 0.15 -8.19 -0.39 0.21 -8.37

High weeds - two-year-0.13 0.18 -3.13 -0.16 0.21 -3.33
Rotational corn

Low weeds - myopic 0 0 -- 0.71 0.27 11.65

Low weeds - two-year 0 0 -- 0.54 0.23 10.34

High weeds - myopic 0 0 -- 0.00 0.21 0.03

High weeds - two-year 0 0 -- -0.16 0.13 -5.63
Rotational soybean

Low weeds - myopic 0 0 -- -0.00 0.00 -1.45

Low weeds - two-year 0 0 -- -0.00 0.01 -0.98

High weeds - myopic 0 0 -- -0.00 0.01 -1.65

High weeds - two-year 0 0 -- 0.00 0.02 0.31

In the corn-soybean rotation fields, the effect of a
ban on chemical load is apparent only on corn. When initial
weed pressure is low, chemical load increases. When it is
high, chemical load declines (Table 5.21), at least under
the two-year decision rule. As in the continuous corn case,
a triazines ban leads to reduced mean yields and increased

populations of foxtails and lambsquarters (Table 5.22). The
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substitute weed control treatments also appear to reduce

pigweed populations.

Table 5.22: Impact of herbicide bans on biological perfor-
mance indicators under high information using the two-year

decision rule.

Experi- Low initial weeds High initial weeds
mental Type of ban Type of ban
factor None Atrazine Triazines None Atrazine Triazines

Mean herbicide load (lb ai/ac)

Cont. corn 2.94 3.11
Rotn. corn 3.05 3.05
Rotn. soy 0.79 0.79
Mean percent of max. yield (%)
Cont. corn 80 80
Rotn. corn 82 82
Rotn. soy 74 74

Mean weed density (plants/m?)
Continuous corn

Foxtails 55 54
Lambsqtrs 3 3
Pigweed 10 10
Corn-soybean rotation
Foxtails 56 56
Lambsqtrs 5 5
Pigweed 12 12

.69
.59
.78

O WwWw

79
81
74

60
5
11

3.58 3.44 3.40
3.50 3.50 3:35
0.78 0.78 0.78
72 71 69
72 72 71
62 62 61
100 105 125
4 D 7

16 18 16
113 113 133
8 8 8

20 20 18

Mean terminal weed seed density (seeds/m?)

Continuous corn

Foxtails. 1,432 1,654
Lambsqtrs 160 163
Pigweed 1,256 1,273

Corn-soybean rotation
Foxtails 1,915 1,915
Lambsqtrs 215 215
Pigweed 1,542 1,542

1,836
174
1,202

1,985
230
1,513

1,614 1,935 2,162
166 174 190
1,640 1,730 1,622

2,239 2,239 2,498
230 230 237
2,057 2,057 1,973
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These results provide some guidance in designing policy
to restrict groundwater contamination from triazine herbi-
cides. First, bans on atrazine or the triazine family
reduce crop yields of corn and soybean. In partial equi-
librium (holding prices fixed), this translates to a reduc-
tion in farm income. Policy impacts need to be evaluated in
general equilibrium to determine whether price changes will
offset the reduced yields.

The income effect of the bans is greatest when weed
pressure is high. The micro-level impact of a ban on farm
income turns on the density and species composition of the
weed infestation. A well-designed policy should recognize
this. Rather than impose a ban across the board, more
flexible policy alternatives are preferable (Segerson).

From least to most flexible, these include 1) regional bans
where groundwater threats are greatest (e.g., Cox), 2) a ban
with specified exceptions, 3) government purchase of herbi-
cide use rights (e.g., Taff and Cox), 4) marketable herbi-

cide use permits, 5) a tax (Gianessi et al., Hrubovcak et

al.), and 6) a subsidy on weed management information.
General equilibrium models further suggest that chemical use
can be reduced by cutting crop price supports or increasing
set-asides (Hrubovcak et al.). These alternatives all

deserve further study.
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The chemical load effect of the bans is not necessarily
to reduce the quantity of chemicals applied to the land. Of
course, the objective of a ban is to prevent a specific che-
mical from being released into the environment. It should
be recognized, however, that banning one chemical may result
in greater ambient quantities of some alternative chemical
or chemicals. Certain chemicals which are not now perceived
as groundwater threats could become threats if used more

extensively.

5.4 Discussion of the Value of Weed Information

The significant gross value of information deserves
closer examination to evaluate the practical feasibility of
a weed management model such as WEEDSIM. When acquiring
information incurs costs, those costs determine the feasi-
bility of using information-intensive management practices
(Fohner et al.). The costs of information are divided
between those involved in obtaining weed population esti-
mates and those of using the predictor embodied in this
model. If the model is provided free of cost by the public
sector, then the value of the model to a decision maker with
a specified utility function is equal to the difference
between the calculated value of information and the private

cost of obtaining weed population data. As the model's
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value is estimated as a residual, private costs must first
be examined.

The cost of obtaining weed population information
depends upon sampling intensity and measurement methods.
Given a normal probability distribution, the sampling inten-
sity depends on 1) the maximum tolerable error, 2) the de-
sired likelihood that a parameter estimate falls within the
associated confidence interval, and 3) o, a prior estimate
of the population standard deviation, o (Snedecor and
Cochran, p. 59). If 1) and 2) are held constant across weed
species, multiple species sampling intensity is determined
by the species with the largest o.

Wilson et al. decomposed the variance of weed seed

density estimates by field, field division, and soil cores
within a division. Most variability occurred within soil
cores within a division. For yellow foxtail, common lambs-
quarters and redroot pigweed, the variance component of soil
cores within a division was 98, 54, and 63 percent. Of
secondary importance was variability between fields, respon-
sible for 2, 35, and 37 percent of variance, respectively.

Wilson et _al. calculate the number of soil cores needed to

obtain seed estimates within 50% of the mean 20% of the time
as four for lambsquarters. Extending their analysis, fig-
ures for yellow foxtail and redroot pigweed are 36 and 3 (by

the formula in Snedecor and Cochran). The numbers of core
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samples required using this calculation for the 1985-86 and
1990 pooled Morris data (Table 4.7) for foxtails, lambs-
quarters and pigweed are 28, 46 and 18.' The Wilson et al.
variance decomposition suggests that additional sampling
would be necessary to capture the between-field variance of
lambsquarters and pigweed. Adequate sampling intensity to
meet the stated level of accuracy might cover one subdi-
vision of each field with a large number of cores sampled
from that area.

The principal cost of estimating seed populations is
that of counting seeds. So long as soil cores are compo-
sited, this is the cost per composite sample. Buhler
(1991b) estimates seed sampling and extraction costs at $14
per composite sample (net of equipment, building and travel
costs). Of this, field sampling (relevant for weed seedling
counts as well as seed counts) amounts to $2.50. This might
rise by a factor of two to four given the numbers of soil
cores calculated above. Suppose field sampling costs $10
per composite sample and travel costs $20 per farm. Then
the variable cost of obtaining composite samples from six

fields is approximately $150 (21.50 x 6 + 20).

' The number of cores actually sampled per plot was six
for conventional tillage plots and twelve for reduced til-
lage plots (Forcella and Lindstrom 1988b).

]
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The fixed costs of analyzing the samples are the cost
of building and equipment depreciation. Cost per sample for
these is difficult to estimate.' However, even if total
cost were triple the estimated $150 variable cost, the pur-
chase would be worthwhile to a decision maker with any of
the utility functions specified except an extreme risk aver-
ter following the myopic rule with low initial weed seeds.

Given the low sampling costs and high estimated value
of post-emergent weed seedling counts, the potential welfare
gains due to the model are substantial. It appears that
seed counts are likely to be feasible for most decision
makers. POST seedling counts should be feasible for all
decision makers in the range of risk attitudes considered.
This suggests that the ex ante value of the model as a deci-
sion aid -- net of private information acquisition costs --
is significantly positive. However, these estimates are
indicative only. Much more research needs to be done on
weed population sampling methods and associated costs before
reliable conclusions can be drawn. For seed density, in
particular, timely estimates are important. This militates

in favor of seed extraction rather than germination methods

'The centrifuge seed extraction process requires a
centrifuge, dryer, blower and freezer at an estimated cost
of $20,000. The germination method, followed by Forcella
and Lindstrom, requires a germinator ($12,000) plus a
freezer and greenhouse of unspecified cost (Buhler, 1991b).
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(Ball and Miller), despite of the accuracy advantages as-

cribed to germination (Forcella 1991). Forcella's (1991)

finding that sampling in spring provides more accurate seed

bank estimates than sampling in autumn makes timely analysis I

doubly important.




VI. SUMMARY AND CONCLUSION

Weed control is at once a major contributor to and a
potentially major detractor from social welfare in the
United States. The high crop yields afforded by chemical
weed control help farmers prosper and keep consumer food
costs low. Yet herbicides and their metabolites also leach
into the groundwatér, posing a poorly understood threat to
human health.

This thesis began by positing incomplete information as
a partial explanation for heavy herbicide use. Information
deficiency offers an alternative to the more common economic
externality rationale for pesticide "overuse." While the
externaiity case builds upon the assumption that decision
makers successfully optimize private utility, the incomplete
information case assumes that they fail to do so. From a
policy design standpoint, the incomplete information argu-
ment is more appealing because it implies a technical rather
than a distributional solution.

Weed growth, reproduction and competition with crops
are biological processes intimately linked with stochastic
environmental and ecological processes. Since farmers make
weed management decisions under uncertainty abdut outcomes,
it is insufficient to test the incomplete information hypo-
thesis by demonstrating that a certain prediction or recom-

mendation could have left a farmer better off. Most of us
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find instances in which we could have been better off had we
acted on a particular piece of advice. But that knowledge
will change our behavior the next time only if we believe
the predictor is reliable. The predictor must be reliable
enough on average to leave us more satisfied with the out-
come having followed the advice at whatever cost, than
having proceeaed with our best prior choice (Byerlee and
Anderson). For the case at hand, demonstrating that weed
control decisions are systematically inadequate due to
insufficient information requires constructing a predictor
that outperforms ordinary weed control decisions. The
improvement in performance must be great enough to overcome

the associated costs. This appears to be true for the

WEEDSIM model.

6.1 Summary

The WEEDSIM weed management bioeconomic model developed
here identifies nearly optimal tactics for weed control in
corn and soybean, based on weed population density esti-
mates. By incorporating multiple controls and weed species
into a dynamic model, it fills a gap between existing mul-
tiple species, multiple control static models and single

species, single control dynamic ones. Its open design

allows it to run with any suitable set of input parameter

data.
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Within a limited economic optimization framework,
WEEDSIM links several simple submodels of weed germination,
reproduction, susceptibility to controls, and competition
with crops. Simulation of weed biology and crop yield
response allows the model to predict crop yield loss under
different weed control tactics. Balancing the value of
yield loss against the cost of a given weed control, the
model generates recommended control tactics. Two mechanisms
for striking that balance are evaluated. A two-year optimal
control rule chooses the current year tactics consistent
with maximizing discounted expected net returns over a two
year planning horizon. A one-year "myopic" rule limits its
perspective to maximization of expected net returns in the
current year.

The thesis devotes considerable attention to statis-
tical estimation and validation of biological functions,
since they constitute a key part of the predictor whose
informational value is being evaluated. The short available
time series of weed population dynamics data is a deficiency
that required re-estimation of weed germination equations
after unsatisfactory validation results. As in other bio-
economic modeling studies (Briggs, Regmi, Zacharias and
Grube), the existing base of biological data was found to be
less than desired. Developing the input parameter set
required stretching the use of biological data beyond the

purposes for which it was originally gathered. Remaining
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gaps were bridged with assumptions. Even this much informa-
tion was available only for three species of weeds', whose
choice may have an important effect on the simulation
results.

In addition to addressing the question: "Is the current
weed control information typically used by farm managers
complete?", the model seeks to identify how much information
is desirable. It does so by comparing two levels of supple-
mental information to the base practice of following general
extension recommendations abstracted from information on the
specifics of the weed problem. Sample counts of emerged
weed seedlings constitute one form of information; sample
counts of weed seeds in the soil the other.

A whole-farm stochastic simulation model is developed
and employed to evaluate WEEDSIM. Called WFARM, it provides
a means to capture the labor, equipment and field time con-
straints faced by corn and soybean farmers when choosing and
implementing weed control treatments. Like WEEDSIM, WFARM
is a dynamic model that allows strategies to be evaluated on
the basis of multi-year simulations. The stochastic factors
are 1) randomly selected historical environmental parameters
(e.g., rain, field time, weed-free crop yields) and 2) ran-
dom disturbances in the estimated biological functions.

Repeated model runs under identical sets of stochastic

'Mixed green and yellow foxtails, common lambsquarters,
and redroot pigweed.
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exogenous production factors permit comparison of differing
management strategies under uncertainty. Strategies are
compared on the basis of several performance criteria over
the simulation period: mean and standard deviation of annu-
alized net farm income, three additional utility functions
over annualized net income, mean herbicide load, mean per-
cent of maximum crop yield, mean weed density, and mean
terminal weed seed density.

3 ’ Hypothesis tests of results from the six-year simula-
tion experiments yield several clear conclusions: First,
strategies using weed population information increase annu-
alized net farm income. Mean annualized net farm income can
be ranked from highest to lowest by information level such
that mean income with weed seed and seedling counts (high
information) exceeds mean income with weed seedling counts
alone (POST information) which, in turn, exceeds mean income
with no weed population information. The same ranking ob-

tains for expected utility under all four specified utility

functions. Second, strategies using "high" weed population
information tend to use less chemical over the long term
than those that do not. Third, compared with a high initial
weed seed bank, a low one raises mean annualized net_income
and expected utility. Fourth, compared with a high initial
weed seed bank, a low one reduces herbicide load in corn.

Fifth, bans on atrazine and on all triazine herbicides

reduce mean annualized net farm income. Sixth, bans on
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atrazine and triazines change herbicide load levels, but the
changes may result in either an increase or a decrease.

Equally instructive were the hypothesis tests that did
not yield statistically clear results: 1) The two-year and
myopic decision rules do not generate significantly diffe-
rent mean terminal wealth levels. Moreover, the cautious
myopic rule fails to outperform the myopic rule by any per-
formance criterion. 2) Apart from heavier herbicide use on
soybean under the two-year rule, herbicide load does not
differ by decision rule. Although terminal weed seed den-
sities are generally lower under the two-year decision rule
than under the two myopic rules, they are not lower across
the board. 3) While increasing farm size reduces mean annu-
alized net farm income, the reduction is only statistically
significant when initial weed pressure is low and even then
only under the myopic and "no information" scenarios.
4) Despite income-reducing field time constraints on the
720-acre farm, rule-based pre-emptory PPI/PRE weed control
followed by an information-based POST control fails to
generate higher mean annualized net farm income than using
weed population information for both controls.

Rejection of the hypothesis that net farm income is‘the
same with and without weed population information confirms
the thesis that weed management decisions made without weed

population information tend to be sub-optimal. However, it

begs the question, "Is the value of that information worth




169
the cost?" Based on certainty equivalent money metrics of
utility for four utility functions, the calculated value of
weed population information far exceeds the likely cost of
acquiring it. This is true of both emerged weed seedling
counts and weed seed counts from soil samples. The excess
value of the former is dramatic.

The importance of dynamic modeling is highlighted by
rejection of the null hypothesis that initial seed density
levels do not influence mean terminal wealth. In parti-
cular, this suggests that foresighted decision rules are
likely to perform better than myopic ones, even though that
could not be demonstrated with statistical significance.

The financial and expected utility advantage of uti-
lizing weed population information in weed control decisions
is sufficient reason to adopt such a practice. Weed popula-
tion information provides a valuable supplementary input
which increases the technical efficiency of weed management.
Research results presented here suggest that it may also
reduce herbicide load.

The herbicide ban impact analysis brings out three
points. First, the farm-level impact of a ban depends upon
the severity and composition of the weed problem on that
farm. Second, the private, firm-level cost of a ban on |
atrazine alone is not very high, due to the availability of
substitutes which are only slightly more expensive or less

efficacious at controlling weeds. Banning all triazines
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would be two to five times more costly due to reduced sub-
stitution options and effects on rotational corn and
soybean. Third, total chemical load will not necessarily
decrease just because a single herbicide or family of herbi-
cides is banned. Alternative policies offering greater
flexibility in weed management and/or aimed at reducing
total herbicide load may be preferable to across-the-board
bans. Alternatives that deserve further study include mar-
ketable use permits, taxes, purchase of usage rights, and
subsidies on weed management information (e.g., computerized

decision aids, weed seed soil analyses).

6.2 Potential uses for model

The WEEDSIM recommendations module gave very promising
results in the stochastic simulation evaluation. Its high
value, net of imputed costs of information acquisition,
suggests that it can provide farmers and crop consultants
with a beneficial decision. Clearly, before it can go into
service in such a capacity, the model will require further
validation. Validation field trials for 1991 have been
established at Rosemount and Morris, Minnesota (Buhler
1991c).

Because it synthesizes information on weed population
dynamics, control treatment efficacy and weed-crop competi-

tion, the whole-farm stochastic model offers a comprehensive
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framework for identifying research needs in weed management.
Sensitivity analysis of key parameters influencing recommen-
dations could help to chart a course for future applied
research based on explicit estimates of expected returns to
research.

Finally, the potential of the whole-farm stochastic
model for policy analysis can be extended much further than
the indicative analysis presented in this thesis. The
strengths of this model for firm-level herbicide policy
analysis are three: 1) its modeling of weed biology allows
it to capture biological dynamic effects, 2) its expandable
range of herbicide treatments captures substitution effects
missed by such models as that of Knutson et al., and 3) its
expandable set of weed species allows it to quantify policy

impacts by severity and type of weed infestation.

6.3 Directions for future research

The potential uses of the model point to desirable
directions for future research, particularly for setting
research priorities and analyzing potential public policies.

Returns to weed management research can be examined in
two ways. The distribution of annualized net farm incomes
can be examined for potential gains in certainty equivalents
of expected utility from reducing overall income variance.

Sensitivity analysis of specific parameters and groups of
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related parameters can suggest gains from specific research
projects (e.g., Bosch and Shabman). The seed production
parameters would be a good group to start with, as unex-
plained variation in their statistical estimation for this
thesis was especially high.

As noted in Chapter 3, biological process simulation
offers a promising alternative to the statistical methods
used to model plant growth and population dynamics in this
thesis. Differences between observed and simulated behavior
tend to be much lower in process models than statistical
ones, since the former make endogenous many of the environ-
mental factors that remain exogenous to statistical models.
The Forcella (1991) model used here provides a first step in
that direction for weed germination. The recent work of
Williams et al. points to possibilities for process modeling
of weed-crop competition, although the challenge of accommo-
dating of multiple weeds remains to be tackled.

Simply substituting more realistic functional forms
would improve the WEEDSIM and WFARM models. The step func-
tions used for weed control efficacy and yield penalties are
strong candidates for replacement. Eradat Oskoui and Voor-
hees are developing a quadratic yield penalty function for
late planting in corn and soybean that would be one option.

Better statistical estimates of model parameters can be

developed from field experiments designed with that purpose

in mind. Sounder weed seed population parameters are parti-
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cularly needed. The time series experiments required for
their estimation are rare and difficult to conduct. Uniform
measurement standards are also needed in order to make model
operation consistent across input data sets. Competing
methods of counting seeds (e.g., Forcella, 1991, Ball and
Miller), counting emerged weeds (in the crop row versus both
in the row and in between), and determining sampling inten-
sity all demand further study. New investigations should
include cost and timeliness, along with accuracy, as perfor-
mance criteria.

In spite of its weak showing in stochastic simulation,
the cautious myopic decision rule deserves further exami-
nation. From theory, the principle of reducing the static
economic threshold for weed control is sound. A range of
levels for the percent reduction in the no control threshold
should be attempted to determine whether and under what
conditions values exist that make that rule preferable to
the myopic one.

Further policy analysis should examine a wider range of
policy scenarios than the two bans reviewed here. In parti-
cular, herbicide taxes should be examined in a search for
ban-equivalent tax levels under specified levels of weed
pressure. - Such alternatives as marketable herbicide use
permits, government purchase of herbicide use rights, and

weed population information subsidies also deserve formal

review.
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A.1 Miscellaneous Figures and Tables

f | Table Al.1l: Data sets used for estimation of yield and weed
3 population dynamics equations.

3 Equa- Data set Principal
3 tion name Description Investigator
3 Cl,S1 VICMS Variable Input Crop J. Gunsolus?!
4 § Management Study
3 ; c2 LAMCULT Cultivation/rotary hoe study J. Gunsolus
= C3 MORCULT Cultivation/rotary hoe study J. Gunsolus
1 C4 WASCULT Cultivation/rotary hoe study J. Gunsolus
C5 NTCULT Cultivation effects on no-till D. Buhler?
corn
C6 CHICULT Cultivation effects on chisel- D. Buhler

g 1 plowed corn

C7,S6 FORC8586 Tillage/rotary hoe study F. Forcella?
52 ROHOYD  Rotary hoe study J. Gunsolus
S3 RRWASDW Reduced herbicide rate study J. Gunsolus
S4 DRYWTRR Reduced herbicide rate study J. Gunsolus
S5 PDMECH Planting date effect on D. Buhler

mechanical weed control

IDepartment of Agronomy and Plant Genetics, University of Minnesota, St.
Paul, MN.

2pgricultural Research Service, U.S. Department of Agriculture,
University of Minnesota, St. Paul, MN.

*Agricultural Research Service, U.S. Department of Agriculture, North
Central Soil Conservation Research Laboratory, Morris, MN.
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Figure Al.1l: Pre—plant weed densities for 1985: Forcella predictions
(F) versus recalibrated predictions (C).
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Figure Al.2: Post—crop emer§ence weed density in 1985: Forcella
predictions (F) versus recalibrated predictions (C).
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Figure Al.3: Post—cultivation weed emergence for 1985: Forcella
predictions (F) versus recalibrated predictions (C).




A.2 Listing of the WFARM and WEEDSIM program code

¢ Last update: 06/10/91

’

' WFARM6 version stochastic w/ random coefs. & 2-year decision rule.
T

"% WFARM:

"% A Bioeconomic Weed Management Simulation Program
%

'k by Scott M. Swinton

%

'* WFARM implements WEEDSIM recommendations for weed control in corn
'* and soybean. Recommendations are based upon the present value of
'* expected yield loss in each of the years of the simulation. Years
'* are linked by the weed seedbank, whose growth is affected by weed
'* control measures reducing the number of weeds setting seed.

%

'* Nine data files must be provided by the user for stochastic simula-
'* tion. These are listed in AutoDataFiles.

%

'* For further details, see comments with the GetWeedParm and

'* GetKillData subprograms.

"%

'* The WEEDSIM module (subprograms beginning with WS) generates a set
'* of preplant-incorporated (PPI), pre-emergent (PRE) and post-emergent*

¥ % ¥ % X X X F X X % X X X X F X *

'* (POST) weed control recommendations prior to planting in each *
'* simulation year. Those may be updated and revised by the PostWEEDSIM
'* module according to conditions prior to the POST application. *

F e dkeak ok o ok ok Sk ok ok e v sk ok v sk ok Sk sk dke s sk ok sk sk e sk s st ak s sk ok s e sk sk sk ok sk sk e st s ke o s e ke sl e e e b e e e e e b e e e ek ek

!
U R R R R R R R R R R R R R R e e

' % Functions and Subprograms *
1 sedkekdkk ke sk ke kb ok sk b ek ek ek
TYPE cropfile

cropld AS INTEGER

cname AS STRING * 8

maxyld AS SINGLE

expMaxY AS SINGLE

growrate AS SINGLE

sigcint AS SINGLE

sigcdap2 AS SINGLE

a AS SINGLE

seedRate AS SINGLE

seedPric AS SINGLE

price AS SINGLE

vc AS SINGLE
END TYPE
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TYPE hfile
cropIld AS INTEGER
aptimeId AS INTEGER
herbId AS INTEGER
hname AS STRING * 16
unitCost AS SINGLE
minrate AS SINGLE
maxrate AS SINGLE
avrate AS SINGLE
droptrt AS INTEGER
END TYPE
TYPE kfile
aptimeId AS INTEGER
herbId AS INTEGER
weedId AS INTEGER
effic AS INTEGER
maxWdHt AS SINGLE
maxCrnHt AS INTEGER
maxSoyHt AS INTEGER
END TYPE
TYPE wfile
weedId AS INTEGER
wname AS STRING * 8
, avgerm AS SINGLE
v ’ sOpropn AS SINGLE
e : slpropn AS SINGLE
3 - s2propn AS SINGLE
s3mortpn AS SINGLE
wlpropag AS SINGLE
w2propag AS SINGLE
growrate AS SINGLE
wOint AS SINGLE
wOs AS SINGLE
w0Os2 AS SINGLE
wlint AS SINGLE
wls AS SINGLE
wls2 AS SINGLE
w2int AS SINGLE
w2s AS SINGLE
sig0int AS SINGLE
sigl0s AS SINGLE
sig0s2 AS SINGLE
siglint AS SINGLE
sigls AS SINGLE
sigls2 AS SINGLE
sig2int AS SINGLE
sig2s AS SINGLE
sig2s2 AS SINGLE
sigwint AS SINGLE
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sigwdap2 AS SINGLE

END TYPE

TYPE cfile
cropId AS INTEGER
weedId AS INTEGER
i AS SINGLE

END TYPE

TYPE mfile
machcode AS INTEGER
machname AS STRING * 15
AcHr AS SINGLE
CostAc AS SINGLE

END TYPE

TYPE ftype
fnum AS INTEGER
cropIld AS INTEGER
prevCrop AS INTEGER
fsize AS INTEGER
hflag AS INTEGER
preApTim AS INTEGER
precode AS INTEGER
postcode AS INTEGER
prename AS STRING * 16
postname AS STRING * 16
precost AS SINGLE
postcost AS SINGLE
ywf AS SINGLE
rotation AS INTEGER
cost AS SINGLE
plweek AS INTEGER
ppiweek AS INTEGER
preweek AS INTEGER
postweek AS INTEGER
cropHt AS SINGLE
preload AS SINGLE
postload AS SINGLE

END TYPE '

TYPE efile
epsw0Ol AS SINGLE
epsw02 AS SINGLE
epswll AS SINGLE
epswl2 AS SINGLE
epswl3 AS SINGLE
epsw2l AS SINGLE
epsw22 AS SINGLE
epsw23 AS SINGLE
epsyldc AS SINGLE
epsylds AS SINGLE
epsseedl AS SINGLE




epsseed2
epsseed3
epsgrowc
epsgrows
epsgrowl
epsgrow?2
epsgrow3
END TYPE
TYPE bfile
betaw010
betaw01l1
betaw012
betaw020
betaw021
betaw022
betawllO
betawlll
betawl20
betawl22
betawl30
betawl3l
betaw210
betaw2ll
betaw220
betaw221
betaw230
betaw231
betagroc
betagros
betagrol
betagro?
betagro3
END TYPE
TYPE yfile

AS
AS
AS
AS
AS
AS
AS

AS
AS
AS
AS
AS
AS
AS
AS
AS
AS
AS
AS
AS
AS
AS
AS
AS
AS
AS
AS
AS
AS
AS

SINGLE
SINGLE
SINGLE
SINGLE
SINGLE
SINGLE
SINGLE

SINGLE
SINGLE
SINGLE
SINGLE
SINGLE
SINGLE
SINGLE
SINGLE
SINGLE
SINGLE
SINGLE
SINGLE
SINGLE
SINGLE
SINGLE
SINGLE
SINGLE
SINGLE
SINGLE
SINGLE
SINGLE
SINGLE
SINGLE

year AS INTEGER
fdl AS SINGLE
fd2 AS SINGLE
fd3 AS SINGLE
fd4 AS SINGLE
fd5 AS SINGLE
fdé AS SINGLE
fd7 AS SINGLE
fd8 AS SINGLE
£d9 AS SINGLE
fd10 AS SINGLE
fdll AS SINGLE
rainl AS SINGLE
rain2 AS SINGLE
rain3 AS SINGLE

182
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rain4 AS SINGLE
rain5 AS SINGLE
rain6 AS SINGLE
rain7 AS SINGLE
rain8 AS SINGLE
rain9 AS SINGLE
rainl0 AS SINGLE
rainll AS SINGLE
cymax AS INTEGER
symax AS INTEGER
foxgerm AS SINGLE
lamgerm AS SINGLE
piggerm AS SINGLE

END TYPE

TYPE stype
nr AS SINGLE
sdnr AS SINGLE
load AS SINGLE
ypct AS SINGLE

END TYPE

'

' Make all arrays dynamic - Use with QB/AH option (see pp. 347-348)

'SDYNAMIC

' (Command disabled if " 'x$DYNAMIC " written.)

5

DECLARE FUNCTION ypen! (cropld%, ywf, plwk$)

DECLARE FUNCTION yield2! (wnum%, ywf!, cropnum%, compmax%, comp() AS
cfile, crop() AS cropfile, d!())

DECLARE FUNCTION surv! (x%)

'DECLARE SUB ScreenHeader2 ()

DECLARE SUB PrinterHeader ()

'DECLARE SUB UserParameters ()

DECLARE SUB AutoDataFiles (cropparm$, parmfile$, compfile$, herbfile$§,
killfile$, fdayfile$, machfile$, seedfile$, epsfile$, yearfile$,
betafile$)

DECLARE SUB AutoParameters (fld() AS ftype, cropmax%, crop() AS
cropfile, nyearss%, r, hrsday, tractors%, nfields%, theta, maxCwk$%,
minSwk%, decrule%, nweeks$%, nstates$%)

DECLARE SUB GetCropParm (cropparm$, cropdata AS cropfile, crop() AS
cropfile)

DECLARE SUB GetWeedParm3 (wnum%, parmfile$, wf AS wfile, weedparm() AS
wfile)

DECLARE SUB GetKillData2 (killfile$, eff AS kfile, efftemp() AS kfile,
killparm() AS kfile, kmaxg)

DECLARE SUB GetHerbData (cropnum$%, aptime%, herbfile$, herb AS hfile,
herbtemp() AS hfile)

'DECLARE SUB UserDropTrts2 (aptime%, trtmax%, herb() AS hfile, cropnums$,
crop() AS cropfile)
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DECLARE SUB MakeKillArray (kmax%, aptime%, h%, wnum%, eff() AS kfile,
herb() AS hfile, k%())

DECLARE SUB MakeHerbArray (cropnum%, aptime%, herbfile$, herb AS hfile,
kmax%, wnum%, eff() AS kfile, crop() AS cropfile, cppi() AS hfile,
cpre() AS hfile, cpost() AS hfile, sppi() AS hfile, spre() AS hfile,
spost() AS hfile, klc%(), k2c%(), k3c%(), kls%(), k2s%(), k3s%())

DECLARE SUB GetWeedCompData (compfile$, comptemp() AS cfile)

DECLARE SUB GetMachData (machfile$, machtemp() AS mfile)

'DECLARE SUB ChooseMachinery (machnum%, machtemp() AS mfile, mt%, mp$%,
ms%, mc%, mrs, mfg)

DECLARE SUB AutoChooseMach (mt%, mp%, ms%, mc%, mrs, mf$)

DECLARE SUB AutoWeedSeeds (nfields%, wnum%, lamseeds%, sOwf())

'DECLARE SUB UserWeedSeeds (nfields%, wnum%, weedtemp() AS wfile)

'DECLARE SUB GetSeedData (nfields%, wnum%, seedfile$, sOwf!())

DECLARE SUB ScreenNotice ()

DECLARE SUB PrintInitWeedSeeds (nfields%, wnum%, state%, yr%, weedparm()
AS wfile, sOwf())

DECLARE SUB InitializeScenario (wnum%, sumst() AS stype, farmstnr!,
farmstsd!, cswst!(), ccwst!(), cssst!(), ccsst!(), urp0001l#, ura0001#,
ura001#)

DECLARE SUB InitializeState (wnum%, farmnr, sum() AS stype, csweed(),
ccweed(), csseed(), ccseed())

DECLARE SUB GetYear (yearfile$, year AS yfile, flddays!(), rain!(),
crop() AS cropfile, germtot!(), randnum(), newscen$)

DECLARE SUB GetStateErrors (nfields%, wnum%, newscen%, epsfile$, epsilon
AS efile, epswO!(), epswl!(), epsw2!(), epsseed!(), epsyld!(),
epscgrow(), epswgrow())

DECLARE SUB GetStateBetaErrors (nfields%, wnum$%, newscen$%, betafile$§,
betaeps AS bfile, betacgro! (), betawgro!(), betaw0O(), betawl(),
betaw2())

DECLARE SUB InitializeYear (nfields%, wnum%, fld() AS ftype, crop() AS
cropfile, sw!(), sOwf!(), diskflag%(), infeas%(), endflag%(), wk%, t$%,
yrs, grmlflag%(), load(), OTsum, maxCwk%, dropostc%(), droposts%(),
h3c%, h3s%)

DECLARE SUB CalibrateGerm (nfields%, wnum%, wf() AS wfile, sOwf!(),
wOgerm! (), wlgerm! (), w2germ!(), epswO(), epswl(), epsw2(), germtot(),
betawO(), betawl(), betaw2())

DECLARE SUB ChooseCrop (f%, fld() AS ftype, maxCwk%, wk$)

DECLARE SUB WSWeedGerm (wnum%, weed() AS wfile, sOw(), slw(), s2w(),
dlw(), wO0(), wl())

DECLARE SUB WSPreTrt (wnum%, hl%, h2%, mf%, ms%, kls(), k2%(), dlw(),
ywf, ppiherb() AS hfile, preherb() AS hfile, mach() AS mfile,
fldSize%, plcost, hl2%, d2w(), precost(), precode%(), preAvRat())

DECLARE SUB WSPostTrt (cropnum$%, wnum%, hl2%, h3%, ywf!, rots, k3%(),
d2w! (), sOw!(), s2w!(), weedparm() AS wfile, crop() AS cropfile,
precode% (), preAvRat!(), postherb() AS hfile, compmax%, compparm() AS
cfile, mach() AS mfile, ms%, mr%, fldSize%, d3w(), d3wij(), s3w(),
yldpost(), postcost(), w2())
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DECLARE SUB WSSeedBank (wnum$%, hl2%, h3%, d3w!(), s3w!(), weed() AS
wfile, sOwl(), w2())

DECLARE SUB WSPostRev (hl2%, h3%, p!, yldpost!(), postcost!(),
precost! (), t%, r!, fldSize%, vc, netpost())

DECLARE SUB WSTopRevMyopic (hl2%, h3%, netpost(), theta, kimax%, kjmax$,
topnet)

DECLARE SUB WSNextYear (f%, wnum%, cropnum%, compmax%, hl%, h2%, hl2sg,
h3%, t%, r, mf%, ms%, mr%, mp%, kl%(), k2%(), k3%(), fld() AS ftype,
weed() AS wfile, mach() AS mfile, comp() AS cfile, crop() AS cropfile,
ppiherb() AS hfile, preherb() AS hfile, postherb() AS hfile, sOw(),
sOwl(), slw(), s2w(), s3w(), dlw(), d2w(), d3w(), yldpost(),
precost(), netpost0(), netpostl(), plcost, theta, netpost(),
postcost(), precode%(), preAvRat(), hl2o%, h3o%)

DECLARE SUB WSTopRev (hl20%, h3o%, hl2%, h3%, theta, netpostl(), kimax%,
kjmax%, topnet)

DECLARE SUB WEEDSIM (f%, wnum%, hl%, h2%, h3%, mf%, ms%, mr%, mp%, t%,
r, sOw(), fld() AS ftype, cropnum%, crop() AS cropfile, weed() AS
wfile, k1%(), k2%(), k3%(), ppiherb() AS hfile, preherb() AS hfile,
postherb() AS hfile, mach() AS mfile, compmax%, comp() AS cfile,
theta, nyears%, netpost(), hln%, h2n%, h3n%, kln%(), k2n%(), k3n%(),
ppinext() AS hfile, prenext() AS hfile, postnext() AS hfile, decrule%)

DECLARE SUB PrintRecoms (f%, cropname$, fld() AS ftype, topnet!)

DECLARE SUB PPITrt (f%, nfields%, wks, fld() AS ftype, newcost!(),
newload(), hrs!, maxhrs, machine() AS mfile, ms%, mf%, preflags)

DECLARE SUB FieldWeedGerm (f%, nfields%, wnum%, swlost(), grmlflags(),
wOgerm(), wlgerm())

DECLARE SUB DiskField (f%, mf%, diskflag%(), fld() AS ftype, mach() AS
mfile, newcost(), hrs!)

DECLARE SUB PlantCrop (f%, wk%, fld() AS ftype, maxCwk%, minSwk%,
newcost(), hrs, maxhrs, machine() AS mfile, mp%, crop() AS cropfile,
sw(), weed() AS wfile, wnum%)

DECLARE SUB PreTrt (f%, nfields%, wk%, fld() AS ftype, newcost!(),
newload(), hrs!, maxhrs!, machine() AS mfile, ms%, preflags$)

DECLARE SUB PRESurv (f%, nfields%, wnum%, fld() AS ftype, kmax%, eff()
AS kfile, wlgerm! (), d2wf!(), rain!())

DECLARE SUB CropGrowth (f%, wk%, crop() AS cropfile, fld() AS ftype,
epscgrow(), betacgro())

DECLARE SUB WeedGrowth (f%, wk%, wnum%, weed() AS wfile, fld() AS ftype,
weedHt! (), epswgrow(), betawgro())

'DECLARE SUB RotaryHoe (f%, wnum%, wk%, fld() AS ftype, kmax%, eff() AS
kfile, weedHt!(), newcost!(), newload!(), hrs!, maxhrs!, mach() AS
mfile, mr%, infeas%(), weed() AS wfile, rotflagl%())

DECLARE SUB PostTrt (f%, nfields%, wnum%, wks, fld() AS ftype, kmaxs,
eff() AS kfile, weedHt(), newcost(), newload(), hrs, maxhrs, machine()
AS mfile, ms%, mr%, infeas%(), endflag%(), d2wf(), d3wf(), sw(),
swlost(), w2germ())

'DECLARE SUB ModifyHerbArray (h3%, f%, fl1d() AS ftype, post() AS hfile,
kmax%, wnum%, eff() AS kfile, crop() AS cropfile, k3%(), dropcode%)
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DECLARE SUB PostWEEDSIM (f%, wnum%, h3%, mf%, ms%, mr%, mp%, t%, r,
sOwf(), sw(), d2wf(), fld() AS ftype, cropnum%, crop() AS cropfile,
weed() AS wfile, k3%(), postherb() AS hfile, mach() AS mfile,
compmax$¥, comp() AS cfile, costnow, theta, nyears%, netpost(), hlng,
h2n%, h3n%, kln%(), k2n%(), k3n%(), ppinext() AS hfile, prenext() AS
hfile, postnext() AS hfile, decrule%, dropcode%, dropost%())

DECLARE SUB WSPostReviseTrt (cropnum%, wnum%, hlg, h3%, ywf, rots,
k3%(), d2w(), sOw(), s2w(), weedparm() AS wfile, crop() AS cropfile,
precode%(), preAvRat(), postherb() AS hfile, compmax%, compparm() AS
cfile, sprayCst, fldSizes%, d3w(), d3wij(), s3w(), yldpost(),
postcost(), w2(), dropcode%, dropost%())

'DECLARE SUB PrintResults (yr%, nfields%, wnum%, weed() AS wfile, sw!(),
netrev! (), load(), yldpct(), OTsum)

DECLARE SUB SummaryAnnual (wnum%, nfields%, fld() AS ftype, crop() AS
cropfile, netrev(), load(), yldpct(), d3wf(), sOwf(), csweed(),
ccweed(), csseed(), ccseed(), farmnr, sum() AS stype)

DECLARE SUB SummaryState (wnum$%, nyears%, r, sum() AS stype, farmnr,
csweed(), ccweed(), csseed(), ccseed(), sumst() AS stype, farmstnr,
farmstsd, cswst(), ccwst(), cssst(), ccsst(), urp0001#, ura0001#,
ura001#, stateout$)

DECLARE SUB SummaryScenario (scenout$, decrule%, theta!, lamseeds%,
wnum$, nstates$%, sumst() AS stype, farmstnr!, farmstsd!, cswst!(),
cewst! (), cssst!(), ccsst!(), urp0001#, ura0001l#, uraOO0l#)

CONST falset% = 0, trues = NOT false%

'ON ERROR GOTO Chkerror

'

R R R R R T R T e R

'* Array Parameters & Definitions *

1 Sk o s o ok ok sk ok ke sk sk o sk o e ok s sk o ok ok sk ek sk sk ok

R S L L LR e

! % Constants *

T ek ke kb
wmax$ = 3: ‘Maximum number of weed species in model
hlmax$ = 7: 'Maximum number of PPI weed treatments in model
h2max% = 7: 'Maximum number of PRE weed treatments in model
h3max% = 8: ’'Maximum number of POST weed treatments in model
hl2max% = hlmax% + h2max% - 1
hmax$ = hl2max% + h3maxy * 2
killmax% = hmax% * wmax$
weeksmax$ = 11: 'Number of weeks starting 4/19
statemax% = 20: 'Maximum number of states of nature
fldsmaxg = 9
machmax% = 12
cropmax$ = 2

compmax$ = cropmax$% * wmax$
’
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foRkkdkkkk ok kkkdkk ke ke kkkk

' * Array Definitions *

1 dedkkkkkk kb ko

DIM cropdata AS cropfile

DIM crop(cropmax%) AS cropfile
DIM herbarray(hmax$) AS hfile
DIM cppi(hlmaxs) AS hfile

DIM cpre(h2max%) AS hfile

DIM cpost(h3max%) AS hfile

DIM sppi(hlmax%) AS hfile

DIM spre(h2max%) AS hfile

DIM spost(h3max%) AS hfile

DIM herb AS hfile

DIM weedfile AS wfile

DIM weedparm(wmax%) AS wfile
DIM compparm(compmax$¥) AS cfile
DIM killparm(killmax%) AS kfile
DIM efftemp(killmax%) AS kfile
DIM eff AS kfile

DIM machine(machmax%) AS mfile
DIM fld(fldsmax$%) AS ftype

DIM epsilon AS efile

DIM year AS yfile

DIM sum(3) AS stype

DIM sumst(3) AS stype

DIM betaeps AS bfile

' Arrays for GetErrorTerms
REDIM epswO(fldsmax%, wmax%), epswl(fldsmax%, wmax%), epsw2(fldsmax%,
wmax$)
REDIM epsseed(flsmax$%, wmax$%), epsyld(fldsmax$%, cropmax$)

' Arrays for WEEDSIM
REDIM netpost(hl2max%, h3max$)

' Arrays for MakeHerbArray
REDIM klc%(wmax%, hlmax%), k2c%(wmax%, h2max%), k3c%(wmax%, h3max$)
REDIM kls%(wmax%, hlmax$%), k2s%(wmax%, h2max%), k3s%(wmax%, h3maxs)

Fdkddddkkddddddhkk

'* Global values *
1k sk ek ek

ek koo
' % Screen setting *
Tokkkkkkk kR kk

SCREEN 0

COLOR 14, 1, 8

CLS
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'CALL ScreenHeader?

Fokkk ke kokkk

* Constants *

Frkkrkkkk ke

CALL AutoDataFiles(cropparm$, parmfile$, compfile$, herbfile$,
killfile$, fdayfile$, machfile$, seedfile$, epsfile$, yearfile$,
betafile$)

CALL GetCropParm(cropparm$, cropdata, crop())

CALL UserParameters

CALL AutoParameters(fld(), cropmax%, crop(), nyears%, r, hrsday,
tractors%, nfields%, theta, maxCwk%, minSwk%, decrule%, nweeks%,
nstates$)

ranyears% = nstates% * nyears$

dropcode% = -1

CALL GetWeedParm3(wnum%, parmfile$, weedfile, weedparm())

CALL GetWeedCompData(compfile$, compparm())

CALL GetKillData2(killfile$, eff, efftemp(), killparm(), kmaxs)

FOR cropnum$ = 1 TO cnum%
FOR aptime% = 1 TO 3

CALL MakeHerbArray(cropnum$, aptime%, herbfile$, herb, kmaxs,
wnum$, killparm(), crop(), cppi(), cpre(), cpost(), sppi(),
spre(), spost(), klc%(), k2c%(), k3c%(), kls%(), k2s%(), k3s%())

NEXT aptime$

NEXT cropnum$

CALL GetMachData(machfile$, machine())

CALL ChooseMachinery(machnum%, machine(),mt%, mp%, ms%, mc%, mr%, mf%)

CALL AutoChooseMach(mt%, mp%, ms%, mc%, mr%, mf%)

IF quit% = true% THEN END

Allocate dynamic arrays:

Arrays for GetStateErrors

REDIM epswO(nfields%, wnum%), epswl(nfields%, wnum%), epsw2(nfieldss,
wnums$ )

REDIM epsseed(nfields%, wnum$%), epsyld(nfields%, wnum%),
epscgrow(cnum$)

REDIM epswgrow(wnum$)

Arrays for GetBetaStateErrors
REDIM betacgro(cnum$), betawgro(wnum%), betawO(nfields%, wnum%, 3)
REDIM betawl(nfields%, wnum%, 3), betaw2(nfields%, wnum%, 2)

Arrays for GetYear
REDIM flddays(weeksmax%), rain(weeksmax$%), germtot(wmax$),
randnum(ranyears$)
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' Arrays for CalibrateGerm
REDIM wOgerm(nfields%, wnum%), wlgerm(nfields%, wnum%),
w2germ(nfields%, wnum$%)

! Arrays for FieldWeedGerm
REDIM sOwf(fldsmax%, wnum$%), swlost(nfields$%, wnum%)
REDIM grmlflag%(nfields%)

' Arrays for DiskField .
REDIM diskflag¥(nfields%)

' Arrays for WeedGrowth
REDIM weedHt(nfields%, wnum$)

fWArrays for PRETrt
REDIM d2wf(nfields%, wnum$)

' Arrays for POSTTrt
REDIM infeas%(nfields%), d3wf(nfields%, wnum$%)

' Arrays for PostWEEDSIM
REDIM dropostc%(h3c%), droposts%(h3s%)

' Arrays for Main program
REDIM cost(nfields%), newcost(nfields%), maxhrs(weeksmax$),
sw(nfields%, wnum$)
REDIM load(nfields%), newload(nfields%), yldpct(nfields%),
endflag%(nfieldss)
REDIM postrec%(nfields%), cyield(nfields%), netrev(nfields%)
'Arrays for Summaries
REDIM csweed(wnum%), ccweed(wnum$%), csseed(wnum%), ccseed(wnum$)

REDIM cswst(wnum%), ccwst(wnum%), cssst(wnum%), ccsst(wnum$)
'

R e e

'* Execution Section *
1 sk sk sk ek ko ke ko
'time0 = TIMER
INPUT "Name of state data output file: ", stateout$
INPUT "Name of summary statistics output file: ", scenout$
FOR ry$ = 1 TO ranyears$
randnum(ry%) = RND
NEXT ry%
"CALL UserWeedSeeds(nfields%, wnum$%,weedfile())
'CALL GetSeedData(nfields%, wnum$%, seedfile$, sOwf())
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PRk ek ok

'* Scenarios loop *
 kkkkkkkok ke ok
- FOR lamseeds% = 25 TO 250 STEP 225
- FOR decrules = 1 TO 2
- FOR gam$ = 0 TO 1
~ IF decrule% = 2 THEN
gamy = 1
theta = 0
ELSE
theta = -.05 * gam$%
END IF
CALL InitializeScenario(wnum%, sumst(), farmstnr, farmstsd, cswst(),
ccwst(), cssst(), ccsst(), urp0001l#, ura000l#, uraOO0l#)
sk ok ok s ok sk sk s s s ek s ke ok
'* State of nature loop *
1 3kdedak ok S sk s sk sk sk sk sk sk sk ok ok
newscen¥ = true$
FOR state% = 1 TO nstates%
CALL AutoWeedSeeds(nfields%, wnum$%, lamseeds%, sOwf())
CALL InitializeState(wnum%, farmnr, sum(), csweed(), ccweed(),
csseed(), ccseed())
1 ko ks sk e ek ok

' * Yearly activities loop *
1 dededededesk sk kb sk sk sk sk ke ko
FOR yr% = 1 TO nyearss$

CALL GetYear(yearfile$, year, flddays(), rain(), crop(), germtot(),
randnum(), newsceng)

CALL GetStateErrors(nfields%, wnum%, newscen%, epsfile$, epsilon,
epswO(), epswl(), epsw2(), epsseed(), epsyld(), epscgrow(),
epswgrow())

CALL GetStateBetaErrors(nfields%, wnum%, newscen$%, betafile$§,
betaeps, betacgro(), betawgro(), betawO(), betawl(), betaw2())

CALL InitializeYear(nfields%, wnum%, fld(), crop(), sw(), sOwf(),
diskflag%(), infeas%(), endflag%(), wks%, t%, yrs, grmlflag(),
load(), OTsum, maxCwk$, dropostc%(), droposts%(), h3c%, h3s%)

'CALL PrintInitWeedSeeds(nfields%, wnum%, state%, yr%, weedparm(),
sOwf())

CALL CalibrateGerm(nfields%, wnum%, weedparm(), sOwf(), wOgerm(),
wlgerm(), w2germ(), epswO(), epswl(), epsw2(), germtot(),
betaw0O(), betawl(), betaw2())

'PRINT

'"PRINT "Pre-season recommendations are:"

'PRINT

'"PRINT "Field Crop Rotation PRE/PPI Trt. Time POST Trt.
E(NR)"

' PRINT
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FOR f% = 1 TO nfields%
cropnum$ = f1ld(f%).cropld
SELECT CASE cropnum$
CASE 1
IF f1d(fs%).rotation = 1 THEN
CALL WEEDSIM(f%, wnum%, hlc%, h2c%, h3c%, mf%, ms%, mr%,
mp%, t%, r, sOwf(), fld(), cropnum%, crop(), weedparm(),
kle#(), k2c$(), k3c%(), cppi(), cpre(), cpost(),
machine(), compmax%, compparm(), theta, nyears%,
netpost(), hls%, h2s%, h3s%, kls%(), k2s%(), k3s%(),
sppi(), spre(), spost(), decrule%)
ELSE
CALL WEEDSIM(f%, wnum%, hlc%, h2c%, h3c%, mf%, ms%, mr%,
mp%, t%, r, sOwf(), fld(), cropnum%, crop(), weedparm(),
kles() ), k2e%()sik3c%()s cppi(), cpre(), cpost(),
machine(), compmax%, compparm(), theta, nyears%,
netpost(), hlc%, h2c%, h3c%, klc%(), k2c%(), k3c%(),
cppi(), cpre(), cpost(), decrule%)
END IF
CASE 2
CALL WEEDSIM(f%, wnum%, hls%, h2s%, h3s%, mf%, ms%, mr%, mp%,
ts, r, sOwf(), fld(), cropnum%, crop(), weedparm(), klss(),
k2s%(), k3s%(), sppi(), spre(), spost(), machine(),
compmax%, compparm(), theta, nyears%, netpost(), hlc%, h2c%,
h3c%, klc%(), k2c%(), k3c%(), cppi(), cpre(), cpost(),
decruleg)
END SELECT
'CALL PrintRecoms(f%, cropname$, fld(), topnet)
postrec%(f%) = f1d(f%).postcode
NEXT £f%
' PRINT

'"PRINT "Press any key to continue."
'resume$ = INPUTS(1)
fels
' Fakkssk ek ks sk ek sk sk sk ok
4 * Weekly activities loop *
' Sk ok ko sk ke ek
FOR wk% = 1 TO nweeks$
hrs = overtime
overtime = 0
maxhrs(wk%) = hrsday * tractors$% * flddays(wk$%)
FOR f$ = 1 TO nfields%
newcost(fg) = 0
newload(fg) = 0
FOR w$ = 1 TO wnum$
swlost(f%, wg) =0
NEXT w$
NEXT f%




192

FOR f% = 1 TO nfields%

IF hrs >= maxhrs(wk$) THEN
overtime = hrs - maxhrs(wk%)
EXIT FOR

END IF

preflags = false$%

IF (grmlflag%(f%) = false%) THEN CALL FieldWeedGerm(f$%,
nfields%, wnum%, swlost(), grmlflag%(), wOgerm(), wlgerm())

IF (f1d(f%).preApTim = 1 AND fld(f%).ppiweek = 0) AND hrs <
maxhrs(wks) THEN CALL PPITrt(f%, nfields%, wk%, fld(),
newcost(), newload(), hrs, maxhrs(wk$), machine(), ms%, mf%,
preflags)

IF (f1d(f%).preApTim <> 1 AND diskflag%(f%) = false%) AND hrs <
maxhrs(wk%) THEN CALL DiskField(f%, mf%, diskflag%(), fld(),
machine(), newcost(), hrs)

IF (fld(f%).plweek = 0 AND hrs < maxhrs(wk%)) AND
(diskflag¥(f%) = trues OR fld(fs).ppiweek > 0) THEN CALL
PlantCrop(£f%, wk%, fld(), maxCwk$, minSwk$%, newcost(), hrs,
maxhrs(wk$), machine(), mp%, crop(), sw(), weedparm(),
wnums )

IF (f1d(f%).preApTim = 2 AND fld(f%).preweek = 0) AND hrs <
maxhrs(wk$) THEN CALL PreTrt(f%, nfields%, wk%, fld(),
newcost(), newload(), hrs, maxhrs(wk$), machine(), ms%,
preflags)

IF (preflag% = true%) THEN CALL PRESurv(f%, nfields%, wnum%,

f1d(), kmax%, killparm(), wlgerm(), d2wf(), rain())
NEXT f$%

FOR f$ = 1 TO nfields$
IF hrs >= maxhrs(wk%) THEN
overtime = hrs - maxhrs(wk$)
EXIT FOR
END IF
IF f1d(f%).postweek = O THEN
CALL CropGrowth(f%, wk%, crop(), fld(), epscgrow(),
betacgro())
CALL WeedGrowth(f%, wk%, wnum%, weedparm(), fld(), weedHt(),
epswgrow(), betawgro())
cropnum$ = f1d(f%).cropld

costnow = fld(f%).cost + newcost(f%)
RevisedPost:

SELECT CASE cropnum$
CASE 1
'CALL ModifyHerbArray(h3c%, f%, fld(), cpost(), kmaxs,
wnum%, killparm(), crop(), k3c%(), dropcode%)
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IF fl1d(f%).rotation = 1 THEN

CALL PostWEEDSIM(f%, wnum%, h3c%, mf%, ms%, mr%, mp%, t%,
r, sOwf(), sw(), d2wf(), fld(), cropnum%, crop(),
weedparm(), k3c%(), cpost(), machine(), compmaxs,
compparm(), costnow, theta, nyears%, netpost(), hlsg,
h2s%, h3ss%, kls%(), k2s%(), k3s%(), sppi(), spre(),
spost(), decrule%, dropcode%, dropostc%())

ELSE

CALL PostWEEDSIM(f%, wnum%, h3c%, mf%, ms%, mr%, mp%, t%,
r, sOwf(), sw(), d2wf(), fld(), cropnum%, crop(),
weedparm(), k3c%(), cpost(), machine(), compmax$,
compparm(), costnow, theta, nyears%, netpost(), hlc%,
h2c%, h3c%, klc%(), k2c%(), k3c%(), cppi(), cpre(),
cpost(), decrule%, dropcode%, dropostc%())

END IF
CASE 2

'CALL ModifyHerbArray(h3s%, f%, fld(), spost(), kmaxs,
wnum$, killparm(), crop(), k3s%(), dropcode%)

CALL PostWEEDSIM(f%, wnum%, h3s%, mf%, ms%, mr%, mp%, t%,
r, sOwf(), sw(), d2wf(), fld(), cropnum%, crop(),
weedparm(), k3s%(), spost(), machine(), compmax,
compparm(), costnow, theta, nyears%, netpost(), hlcg,
h2c%, h3cs%, klc%(), k2c%(), k3c%(), cppi(), cpre(),
cpost(), decrule%, dropcode%, droposts%())

END SELECT

infeas%(f%) = false%

IF (f1d(f%).postweek = 0) AND hrs < maxhrs(wk$%) THEN CALL
PostTrt(f%, nfields%, wnum%, wk%, fld(), kmaxs,
killparm(), weedHt(), newcost(), newload(), hrs,
maxhrs(wk%), machine(), ms%, mr%, infeas%(), endflag%(),
d2wf (), d3wf(), sw(), swlost(), w2germ())

IF infeas%(f%) = trues THEN

dropcode% = fld(f%).postcode
GOTO RevisedPost:
END IF
END IF
NEXT fs%

ek ok o ok b e b o s Sk ok b e b e s s s s b s s s ke b s e ke ke e ket

* Weekly accumulation & update of states *
B R N R R R LR L E
endyear% = true$
FOR f% = 1 TO nfields%
IF endflag%(f%) = falset% THEN endyear% = false$%
f1d(f%) .cost = f1d(f%).cost + newcost(f%)
load(f%) = load(f%) + newload(fs)
FOR w$ = 1 TO wnum$%
sw(fy, ws) = sw(f%, ws) - swlost(fs, ws)
NEXT w$
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NEXT £f%
'OTsum = OTsum + overtime

IF endyear% = true$ THEN EXIT FOR
NEXT wk$

T ekl sk ok s sk ok sk ek ok sk ks sk sk sk ok sk ek ok
* Yearly accumulation and update of states *
R R S T 2 3
FOR f%$ = 1 TO nfields$
FOR w = 1 TO wnum$
sw(fs, ws) = sw(f%, ws) - weedparm(ws).s3mortpn * (1 -
germtot(wsg)) * sOwf(f%, wg)
IF sw(f%, wg) < O THEN sw(f%, wg) = 0
sOwf (f%, ws) = sw(f%, w¥) + weedparm(ws).wlpropag * .2 *
(d3wf(fy, ws) - w2germ(f%, w%)) + weedparm(ws) .w2propag *
w2germ(f%, w%) + epsseed(f%, w%)
IF sOwf(f%, ws) < O THEN sOwf(f%, ws) =0
d3wff(ws) = d3wf(£fs, ws)
NEXT w%
maxyld = crop(fld(f%).cropld).maxyld
fld(f%).ywf = maxyld * (1 - ypen(fld(f%).cropld, maxyld,
fld(f%) .plweek))
cyield(fs) = yield2(wnum%, fld(fs).ywf, fl1d(f%).cropld, compmax,
compparm(), crop(), d3wff()) + epsyld(fs, fld(£f%).cropld)
IF f1d(f%).postcode = 10 AND fld(f%).cropld = 1 THEN cyield(f%) =
cyield(f%) * .985
IF cyield(f%) < O THEN cyield(fs) = 0
yldpct(f%) = 100 * (cyield(fs) / maxyld)
netrev(fs%) = ((crop(fld(£f%).cropld).price * cyield(f%) -
crop(fld(f%).cropld).ve) * fld(fs).fsize - fld(f%).cost) / (1 +

A

r) t%
fld(£f%) .prevCrop = f1d(f%).cropld

NEXT £f%

"CALL PrintResults(yr%, nfields%, wnum%, weedparm(), sOwf(),
netrev(), load(), yldpct(), OTsum)

CALL SummaryAnnual (wnum%, nfields%, fld(), crop(), netrev(), load(),

yldpct(), d3wf(), sOwf(), csweed(), ccweed(), csseed(), ccseed(),
farmnr, sum())

NEXT yr$%

CALL SummaryState(wnum$%, nyears%, r, sum(), farmnr, csweed(),
ccweed(), csseed(), ccseed(), sumst(), farmstnr, farmstsd, cswst(),
ccwst(), cssst(), cecsst(), urp0001l#, ura000l#, ura00l#, stateout$)

NEXT state%

CALL SummaryScenario(scenout$, decrule$%, theta, lamseeds%, wnum$,
nstates%, sumst(), farmstnr, farmstsd, cswst(), ccwst(), cssst(),
ccesst(), urp0001#, ura0001#, ura00l#)
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NEXT gam$

NEXT decrule%

NEXT lamseeds$

'

'timel = TIMER

'minutes% = INT((timel - timeO) / 60)
PRINT

PRINT

'PRINT "Execution time: ";
'PRINT minutes$;

'PRINT " minutes."

endjob$ = TIMES

PRINT "Simulation complete at "
PRINT endjob$

SCREEN 0

COLOR 7, 0, O

% |

Chkerror:
ON ERROR GOTO O

REM $STATIC
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SUB AutoChooseMach (mt%, mp%, ms%, mc%, mr¥, mfs)

J 'Last update: 04-27-91
1 ke e e sk e e sk ok sk ok stk sk ok sk sk o sk sk e sk sk sk ek sk ok e sk sk ok sk ok sk ok sk sk sk ke sk sk e sk sk ke ek sk ke ok sk sk ke sk ok ke ek ok

¥ AutoChooseMach *
% Pre-sets machinery selections. *
%3 *
'* Parameters passed to (and returned from) AutoChooseMach are: *
% mt$ Tractor machinery code selected *
"% 1=100 hp *
"% 2=120 hp *
"k 3=160 hp *
ok mp% Planter machinery code selected *
¥ 4=6 row, 30" planter *
e 5=8 row, 30" planter *
i ms% Sprayer machinery code selected *
"k 6=30 foot *
¥ mc$ Cultivator machinery code selected *
ke 7=6 row, 30" cultivator *
o 8=8 row, 30" cultivator *
% mr$ Rotary hoe machinery code selected *
"% 9=16 foot rotary hoe *
¥ mf$ Field cultivator machinery code selecte*
e 10=18 foot field cultivator *
¥ 11=28 foot field cultivator *
'k 12=30 foot springtooth harrow *

R R R R s S S S S S S T S S e e e
'

mt$ =
mp% =
msg =
mc% =
mr§ =
mfy =
END SUB

= O 0oL
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SUB AutoDataFiles (cropparm$, parmfile$, compfile$, herbfile$,
killfile$, fdayfile$, machfile$, seedfile$, epsfile$, yearfile$§,
betafile$)

g Last update: 06-10-91
1 ek sk ok sk sk sk sk ek ok sk sk ek ok sk sk ok ok sk sk ok ke sk sk sk ok kb sk sk sk e ok ok Rk ek kb ek ok

e AutoDataFiles *
% Subprogram AutoDataFiles supplies the names of text files *
'* containing data used by the main module. *
"% *
'* Arguments returned by AutoDataFiles are: *
P cropparm$ String variable with name of crop parameter *
"k file *
"k parmfile$ String variable with name of weed parameter *
"* file *
% compfile$ String variable with name of weed-crop com- *
o petition parameter file *
"* herbfile$ String variable with name of weed treatment *
"k file *
"k killfile$ String variable with name of weed treatment *
s efficacy file *
'k fdayfile$ String variable with name of field days *
'k datafile (omitted for stochastic sim.) *
"k machfile$ String variable with name of machinery *
¥ parameter file *
"% epsfile$ String variable with name of additive errors *
"k file *
'k yearfile$ String variable with name of year data file *
% betafile$ String variable with name of coefficient *
"* errors file *

R s S e e S b R T s

cropparm$ = "crop2.dat"

parmfile$ = "weed5.dat"

compfile$ = "comp2.dat"

'herbfile$ = "herb.dat"

INPUT "Please type name of treatment file: ", herbfile$
killfile$ = "kill.dat"

'fdayfile$ = "fdayl1990.dat"

machfile$ = "machine2.dat"

'seedfile$ = "seedl990.dat"

INPUT "Name of state-of-nature additive errors input file: ", epsfile$

INPUT "Name of state-of-nature random coefficients input file: ",
betafile$

INPUT "Name of yearly data input file: ", yearfile$

'betafile$ = "d:betarv.rnd"
'epsfile$ = "d:statl080.rnd"
'yearfile$ = "d:inpt7490.rnd"
END SUB
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SUB AutoParameters (fld() AS ftype, cropmax%, crop() AS cropfile,
nyears%, r, hrsday, tractors%, nfields%, theta, maxCwk%, minSwk$,
decrule%, nweeks%, nstates$)

! Last update: 05/02/91
1 skt ok ok sk ke ok sk ke ok ok ok skt ok stk ke ok sk ok sk ok sk ok sk ok ok ok sk ok skt ok skt sk ok ok ek ok ek ok ok kok ok ek ok kok

¥ AutoParameters *
'* Subprogram UserParameters automatically specifies typical agronomic *
'* and economic parameters. It also prints a summary to the screen. *
'* It is used primarily for testing the model and making repeated runs.*
"% *
'* Parameters passed to AutoParameters are: *
¥ £1d4() Record array of field characteristics *
% crop() Record array of crop parameters *
¥ cropmax$ Total number of crops in model *
'* Default parameter values returned are: *
'k cropld Crop identification code: l=corn, 2=soy*
¥ nweeks$ Number of weeks in weed control season *
"% nyearss$ Number of years to model *
% nstates$ Number of random states of nature *
% crop(c%) .price Expected price of crop c% *
¥ crop(c%) .maxyld Maximum expected crop yield with no *
¥ weeds and optimal planting date *
% crop(c%).ve Variable cost/acre apart from weed trt.*
% E Discount rate on future income *
% hrsday Hours per day worked per tractor *
% tractors$ Number of tractors *
£ nfields% Number of fields in farm *
"k theta Proportion by which weed treatment *
% threshold net revenue to exceed no *
X control net revenue level. *
"k fld(fs) .fsize Field size of field f% *
% f1d(f%) .prevCrop Previous crop in field f% *
% f1d(£f%) .rotation Preferred crop rotation *
x 1 = Corn-soy, 2 = Continuous corn ¥
3 maxCwk$ Last week for planting corn *
23 minSwk$ Earliest week for planting soybean *
¥ decrules Decision rule for weed control infor- *
"% mation *
'k 1 = Current year info. only *
X 2 = Current year & expectations of *
' next *
T
nyears$ = 6 '

nweeksgs = 11

nstatesy = 20

r =

hrsday = 10
tractorsg = 2
fsizes = 80
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PRINT "Total farm acreage (divisible by ";

PRINT USING "##"; fsize%;

INPUT "-acre fields): ", acreage$%

nfields% = acreage% \ fsize$

"INPUT "How many years would you like to model? ", nyears$%

'PRINT

'PRINT "The WFARM base case includes two rotations: continuous corn and
a corn-soy"

'PRINT "rotation. To include both in the analysis, choose a multiple of
3 fields."

'PRINT

'"INPUT "Number of 40-acre fields: ", nfields%

'PRINT

'PRINT "The weed control decision rule used depends upon the time
horizon chosen:"

FPRINT - 'l' for a l-year (myopic) horizon, or"
"PRINT " '2' for a 2-year horizon"

"INPUT "Please type your choice: ", decrule%

'CLS

"INPUT "Proportion (theta) by which N.R. should exceed no treatment
N.RE =R Rtheta

REDIM fld(nfields%) AS ftype

maxCwks = 6

minSwk% = 3

FOR c% = 1 TO cropmax$
SELECT CASE c%

CASE 1
crop(cs).price = 2.15
crop(c%).expMaxY = 108
crop(cs).ve = 126.15

CASE 2
crop(c%).price = 5.65
crop(c%) .expMaxY = 39
crop(cg).ve = 62.7

END SELECT

NEXT c$%

FOR f% = 1 TO nfields%
fld(f%) .fsize = fsizes
rotaty = f% MOD 3
SELECT CASE rotat$

CASE 1, 2 )
f1d(f%) .rotation = 1
CASE 0
fld(f%) .rotation = 2
END SELECT
roty = fld(f%).rotation
SELECT CASE rot%
CASE 1
f1d(f%) .prevCrop = 1 + (rotat% MOD 2)
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CASE 2.
fld(f%) .prevCrop = 1

END SELECT
NEXT £%
'PRINT
'PRINT
'PRINT "This model examines the economics of weed control in two

rotations:"

SPRINT " 1. Corn-soybean rotation."
"PRINT " 2. Continuous corn"
"PRINT

'FOR c% = 1 TO cropmax$

! PRINT "Expected price of ";

0 PRINT RTRIMS$(crop(c%).cname);

3 PRINTO%si g 4" w¥TAB (51):;

! PRINT USING "$S###.##"; crop(c%).price;
h PRINT " /bushel."

'NEXT c%

'FOR c% = 1 TO cropmax$

y PRINT "Expected maximum weed-free yield of ";
f PRINT RTRIMS$(crop(c%).cname);

" PRINT i%uls: «"adTABESG):

4 PRINT USING "###"; crop(c%).maxyld;

: PRINT " bu/acre."

'"NEXT c$%

'FOR c% = 1 TO cropmax$

' PRINT "Average variable crop costs for ";
' PRINT RTRIMS(crop(c%).cname);

* PRINT " amount to:"; TAB(51);

' PRINT USING "$S$###.##"; crop(cs).vc;

8 PRINT A" ~/dctels"

'NEXT c$%

'PRINT "Discount rate is assumed to be: "; TAB(56);
'PRINT USING "###"; 100 * r;

EPRINT S 1"

'PRINT

'PRINT "The decision rule is based upon a ";
'SELECT CASE decrule%

' CASE 1

¢ PRINT "1";

' CASE 2

] PRINT "2";

"END SELECT

'PRINT "-year time horizon."

' PRINT

'PRINT "Press any key to continue."
'resume$ = INPUT$(1)

'CLS

END SUB




201

- SUB AutoWeedSeeds (nfields%, wnum$%, lamseeds%, sOwf())

'’ Last update: 04-25-91
B S e e

1k AutoWeedSeeds *
e x Subprogram AutoWeedSeeds generates an initial weed seed density *
'* per square meter for each weed sp[ecies in each field. Relative *
'* proportions from Forcella 1985-86 study at Morris, MN. *
"% *
'* Parameters passed to AutoWeedSeeds are: *
e nfields% Number of fields on farm *
'k wnum$ Number of weeds in model *
g lamseeds$% Number of lambsquarters seeds chosen *
X% *
'* Arguments returned by AutoWeedSeeds are: *
¥ sOwf (f%,ws) Array of weed seed densities in each field

1 ek ok e e e e e sk skeakeakak sk sk sk ok ot ok st sk s sk sk sk sk sk sk sk ok sk e e e e e ke e e e e ek e e e e e e s e e e e b ok ok sk sk sk sk sk ok ok
'
"PRINT
'"PRINT "Base case numbers of weed seeds in the soil are proportional to
the number"
'"PRINT "of common lambsquarters seeds."
"INPUT "Please type the initial seed density/m2 of common lambsquarters:
" lam
"PRINT
fox = 7 * lamseeds%
pig = 2 * lamseeds$
FOR f$ = 1 TO nfields%
multg = 1
% + INT((£%:0-21) £/ 2)
FOR w$ = 1 TO wnum$
IF w$ = 1 THEN
sOwf(£f%, w%) = mults * fox
ELSEIF w% = 2 THEN
sOwf(f%, w%) = mult% * lamseeds$
ELSEIF w% = 3 THEN
sOwf (f%, w%) = mults * pig
ELSE
PRINT "Too many weed species for AutoWeedSeeds subprogram."
END IF
NEXT w%
NEXT £f$%
END SUB




202

- SUB CalibrateGerm (nfields%, wnum%, wf() AS wfile, sOwf(), wOgerm(),

wlgerm(), w2germ(), epswO(), epswl(), epsw2(), germtot(), betaw0(),
betawl(), betaw2())

Last update: 06-07-91

1 ke ke e e e e s ek ek kb sk sk sk sk s s sk sk s kb bk ks koo
CalibrateGerm *

This sub-program calculates germination levels from total germi-
nation rates, seed counts, proportions of germination by stage of the
season, and calibration equation coefficients relating germination to
seed numbers. First expected germination densities are calculated *
from predicted germination rates, initial seed counts and calibration
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equations. Then (possibly) heteroscedastic errors are added to
create stochastic weed densities.

The sub-program accepts the following parameters:

nfieldss
wnums$
wf(w)

sOwf (£,w)
epswX(f,w)

germtot()
betawX(f,w,b)

The sub-program calculates
EwOgerm(f,w)
Ewlgerm(f,w)
Ew2germ(f,w)
sigwO(f,w)

sigwl(f,w)
sigw2(f,w)

For Forcella eqn., sigwl(f,1l) is logarithmic eqn, so exponential

transform is made.

The sub-program returns the following values:

wOgerm(f,w)
wlgerm(f,w)
w2germ(f,w)

Number of fields

Number of weed species

Array of weed parameters

Array of weed seed densities by field
Array of weed germination error terms
for germination stage X (0,1,2)

Total germination for year (from GetYear
Array of weed germination coef. errors *
for germination stage X

* % X %k X X X X * F

the following values:

Array of expected pre-plant weed
densities

Array of expected post-plant weed
densities

Array of expected post-cult. weed
densities

Array of pre-plant weed std. errors
Array of post-plant weed std. errors
Array of post-cult weed std. errors

Array of pre-plant weed densities
Array of post-plant weed densities
Array of post-cult. weed densities

$ % ok % % % % % H F % X X Ok X X X * X
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REDIM EwOgerm(nfields%, wnum%), Ewlgerm(nfields%, wnum$),
Ew2germ(nfields%, wnum$)

REDIM sigwO(nfields%, wnum%), sigwl(nfields%, wnum$%), sigw2(nfieldss,
wnum )

FOR f% = 1 TO nfields%
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FOR w$ = 1 TO wnum%
EwOgerm(f%, w%) = (germtot(ws) * wf(ws).sOpropn * sOwf(fs, ws)) +
((wf(ws) .wOint + betawO(f%, ws, 1)) + (wf(ws).wOs + betawO(f%, w%,
2)) * sOwf(fs, ws) + (wf(ws).wOs2 + betawO(f%, ws, 3)) * sOwf(fs,
W) ot 12)
Ewlgerm(f%, w%) = (germtot(ws) * wf(ws).slpropn * sOwf(f%, ws)) +
((wf(ws) .wlint + betawl(f%, ws, 1)) + (wf(w%).wls + betawl(fs, w%,
2)) * sOwf(fs, ws) + (wf(ws).wls2 + betawl(fy, ws, 3)) * sOwf(fs,
wg) " 2)
Ew2germ(f%, w%) = (germtot(ws) * wf(ws).s2propn * sOwf(f%, ws)) +
((wf(ws) .w2int + betaw2(f%, w%, 1)) + (wf(w%).w2s + betaw2(fs, ws,
2)) * sOwf(fs, ws))
sigwO(f%, w¥) = EXP(wf(w%).siglint + wf(w%).sigls * sOwf(fs, ws) +
wf(ws).sigls2 * sOwf(fy, ws) " 2)
sigwl(f%, w%) = EXP(wf(w%).siglint + wf(w%).sigls * sOwf(f%, ws) +
wf(ws).sigls2 * sOwf(fs, ws) " 2)
sigw2(f%, w%) = EXP(wf(w%).sig2int + wf(w%).sig2s * sOwf(f%, ws) +
wf(ws).sig2s2 * sOwf(fs, ws) * 2)
wOgerm(f%, ws) = EwOgerm(f%, ws) + epswO(f%, ws) * sigwO(f%, wg)
wlgerm(f%, ws) = Ewlgerm(f%, w%) + epswl(f%, ws) * sigwl(fs, ws)
w2germ(f%, ws) = Ew2germ(f%, w%) + epsw2(f%, ws) * sigw2(fs, ws)
IF wOgerm(f%, w%) < O THEN wOgerm(fs, ws) = O
IF wlgerm(f%, w%) < O THEN wlgerm(f%, ws) = 0
IF w2germ(£f%, w%) < O THEN w2germ(f%, w%) = 0
NEXT w$
PRINT ;
NEXT f%
END SUB
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SUB ChooseCrop (f%, fld() AS ftype, maxCwk$, wk$)

'

Last update: 12-05-90
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ChooseCrop
Subprogram ChooseCrop chooses the crop to plant in a given field
based upon the preferred rotation (continuous corn or corn-soy),
the previous crop, and current date. For a corn-soy rotation, the
rotation crop is chosen unless that would be corn and the last
planting date for corn is past. For continuous corn, corn is plante

unless the last planting date for corn is past, in which case soy
is planted.
Parameters passed to ChooseCrop are:
£f1d4() Array of field info (including previous
crop)
maxCwk$ Last feasible week for planting corn
wk$ Current week
fs Current field number

Value returned by the subprogram is:

f1d(f%) .cropld Crop to plant in field f%
Sk sk s s s ks sk ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk s s s stk ke ks akak sk sk sk sk sk sk ok

% % % % ok ok ok % % %k Ok kA X %X % %X %

evCrops$ = fld(f%).prevCrop
t¥ = fld(£f%).rotation
LECT CASE rot%
CASE 1: 'Corn-soy rotation
SELECT CASE prevCrop%
CASE 1
£f1d(£f%) .cropld = 2
CASE 2
IF wk%$ <= maxCwk$% THEN
f1d(f%).cropld = 1
ELSE
£f1d(£f%) .cropIld = 2
END IF
CASE ELSE
PRINT "Error in fld().prevCrop array from ChooseCrop sub."
END SELECT
CASE 2: 'Continuous corn
IF wk$ <= maxCwk% THEN
f1d(£f%) .cropld = 1
ELSE
f1d(£f%) .cropld = 2
END IF
D SELECT
D SUB
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SUB CropGrowth (f%, wk%, crop() AS cropfile, fld() AS ftype, epscgrow(),
betacgro())

: Last update 06-06-91

L e

o CropGrowth *

'* This subprogram "grows" the crop in each field as a function of the*

'* number of days since planting (dap%). *
’ g *
'* Parameters passed to CropGrowth are: *
% fs Current field number *
¥k wk$ Current week number *
e crop() Record file of crop parameters ( " ) *
P £f1d4() Record file of field parameters *
¥ epscgrow(c) Array of crop growth errors *
L betacgro(c) Array of growth coefficient errors *
"% *
'* Arguments returned by CropGrowth are: *
"% f1d(£%) .cropHt Height (inches) of crop growing in field
"% g *

e
dap% = (wk$ - f1ld(f%).plweek) * 7
IF dapg% > O THEN
sigmagro = crop(fld(f%).cropld).sigcint + sigcdap2 * daps " 2
f1d(£f%) .cropHt = (crop(fld(f%).cropld).growrate +
betacgro(fld(f%).cropld)) * dap% " 2 + sigmagro *
epscgrow(fld(f%).cropld)
END IF
END SUB

SUB DiskField (f%, mf%, diskflags%(), fld() AS ftype, mach() AS mfile,
newcost(), hrs)

g Last update: 01-06-91
1 ek ek ok sk ek sk ok ok sk ot ok sk sk stk sk kb ok ok ok s ok ok sk ok ok sk ook ok stk sk sk ok ok ok ok ook ok ok ok ok ok ook ok

g DiskField *
% Subprogram DiskField disks conventional tillage fields that have *
'* not been disked during PPI herbicide application. *
'k f3 Current field *
% mf$% Field cultivator code *
"% £f1d4() Record array of field data *
% mach () Record array of machinery data *
'* Arguments returned by DiskField are: *
"% diskflag%(f%) Flag for completion of disk operation *
' hrs Current number of hours worked in week *
% newcost() Array of new costs *

T R R R N S S R T e
newcost(f%) = newcost(f%) + mach(mf$).CostAc

hrs = hrs + fld(f%).fsize / mach(mf%).AcHr

diskflag%(f%) = trues%

END SUB
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SUB FieldWeedGerm (f%, nfields%, wnum%, swlost(), grmlflags(), wOgerm(),
wlgerm())

3 Last update: 04/18/91

1 sk s sk sk ok ok sk o ok sk sk e sk ok s sk sk s sk ok s s e sk sk sk s sk ok sk ek sk sk sk sk ks sk sk sk sk sk e e e ek ok ok

bk FieldWeedGerm

‘* This subprogram calculates weed seedling germination as a function *
'* of seeds from previous season. *
e *
'* Parameters passed to subprogram WeedGerm are: *
o fs Current field *
% nfields% Number of fields *
ik wnums Number of weed species

g sOwf (£%,w%) Array of initial seedbank densities for¥
i species w% (seeds/m2) in field f% *
& wOgerm(£f%,ws) Array of pre-plant weed densities *
i wlgerm(f%,w%) Array of post-plant weed densities *
"% *
'* Variables returned by subprogram WeedGerm are: *
'% * dlwf(fg,ws) Array of germinating weed densities *
e after crop planting (but before POST *
¥ trt.) in field f% *
"% swlost(f%,ws) Array of seed numbers lost to germina- *
% tion prior to PRE treatment in field f%*
s grmlflag% (£%) Array of flags signaling completion of *
% pre-plant weed germination *

1 Sk ok e sk ok e ok e sk s s ok e sk sk s ok sk sk s sk sk sk e s s s sk ok s s sk sk sk sk sk ke s sk sk sk e sk ek sk ke sk sk ek ok e ek
FOR w = 1 TO wnum$%
' dlwf(f%, ws) = weed(w%).slgerm * (1 - weed(ws).sOgerm) * sOwf(f%, ws%)
' dOwf(f%, w%) = weed(w%).sOgerm * sOwf(f%, w$)
swlost(f%, w%) = wOgerm(£f%, ws) + wlgerm(fs, w%)
NEXT w$
grmlflags(f%) = trues
END SUB
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SUB GetCropParm (cropparm$, cropdata AS cropfile, crop() AS cropfile)

i Last update: 04/28/91
T e e
"% GetCropParm *
'* Subprogram GetCropParm reads the names of crops to be included in the

'* model, along with related parameters. *
"% *
'* Parameter passed to GetWeedParm is: *
e cropparm$ Name of the crop parameter file *
¥ cropdata Record form for crop parameter file *
¥ crop() Record array for crop parameter file *
"% *
'* The crop() records returned by GetWeedParm include *
¥ cropld(c%) Crop identification code *
'k cname$ (c%) Crop common names *
% growrate(c%) Quadratic growth rate (function of days*
% after planting, DAP) *
' sigcint Standard error equation intercept *
e sigcdap? Std. error eqn. coef. on DAP *
"% a(c%) Maximum percent yield loss as weed *
% density approaches infinity *
¥ seedPric(c%) Crop seed price *
fide seedRate(c%) Crop seeding rate *

T T
’
SHARED cnum$%
Filenuml = FREEFILE
cs =0
OPEN cropparm$ FOR INPUT AS #Filenuml
DO UNTIL EOF(Filenuml)
cg =c% +1
INPUT #Filenuml, cropdata.cropld, cropdata.cname, cropdata.growrate,
cropdata.sigcint, cropdata.sigcdap?, cropdata.a, cropdata.seedRate,
cropdata.seedPric
crop(c%) = cropdata
LOOP
CLOSE #Filenuml
cnum¥ = c%
END SUB
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SUB GetHerbData (cropnum$, aptime%, herbfile$, herb AS hfile, herbtemp()
AS hfile)

] Last update: 02/05/91
T
e GetHerbData

'* This subprogram reads a file of weed treatment costs & rates, and

* %

'* selects the records required for a particular crop and application *
'* time. Herbicide treatment data comes from "Cultural and Chemical *
'* Weed Control in Field Crops" (Minn. Extension Service). *
1% *
'* Parameters passed to GetHerbData are: *
TN cropnum$ Crop code *
¥ aptime$% Application time code (1=PPI,2=PRE, *
"k 3=POST) *
"% herbfile$ Name of weed treatment rate & price file
¥ herb Treatment record form *
% herbtemp () Treatment record array *
[ *
' The herbtemp() records returned by GetHerbData include: *
¥ cropld Crop code *
'k aptimeld Application time code *
¥ herbId Treatment code *
¥ hname Treatment name *
e unitCost Treatment cost *
¥ minrate Minimum application rate *
' maxrate Maximum application rate *
§ o avrate Average application rate *
¥ droptrt 0/1 indicator for whether treatment to *
£ be dropped (1) or not (0) *

B e e e
!
Filenuml = FREEFILE
SHARED htemp%
OPEN herbfile$ FOR INPUT AS #Filenuml
is =0
DO UNTIL EOF(Filenuml)

INPUT #Filenuml, herb.cropld, herb.aptimeIld, herb.herbld,
herb.hname, herb.unitCost, herb.minrate, herb.maxrate,
herb.droptrt

herb.avrate = (herb.minrate + herb.maxrate) / 2

IF cropnum$ = herb.cropId AND aptime% = herb.aptimeld THEN
ig = is + 1
herbtemp(i%) = herb

END IF

LOOP

htemp% = i%

CLOSE #Filenuml
END SUB
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SUB GetKillData2 (killfile$, eff AS kfile, efftemp() AS kfile,
killparm() AS kfile, kmax$)
1

Last update: 02/12/91
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"% GetKillData2 *
'* This subprogram reads a file of weed treatment efficacy ratings. *
'* Herbicide treatment data come from "Cultural and Chemical Weed *
'* Control in Field Crops" (Minn. Extension Service). *
"% *
'* Parameters passed to GetKillData2 are: *
"% killfile$ Name of treatment efficacy file *
% eff Treatment record form *
"% efftemp() Treatment record array *
e killparm() Treatment record array *
¥ kmax$ Maximum number of treatments *
" *
'* The efftemp() record array returned by GetKillData2 contains: *
¥ aptimeld Application time code *
"k herbId Treatment code *
3 weedId Weed code *
% effic Treatment efficacy rating *
"x maxWdHt Maximum weed height for rated efficacy *
¥ maxCrnHt Maximum corn height for safe use on corn
L maxSoyHt Maximum soybean height for safe use *

R s s 2 e e e ]

!

Filenuml = FREEFILE
OPEN killfile$ FOR INPUT AS #Filenuml

is = 0
DO UNTIL EOF(Filenuml)
is =is + 1

INPUT #Filenuml, eff.aptimeld, eff.herblId, eff.weedld, eff.effic,
eff.maxWdHt, eff.maxCrnHt, eff.maxSoyHt

efftemp(is) = eff

LOOP

CLOSE #Filenuml

kmaxt = i%

REDIM killparm(kmax%) AS kfile

FOR i% = 1 TO kmax$
killparm(i%) = efftemp(i%)

NEXT i%

ERASE efftemp

END SUB
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SUB GetMachData (machfile$, machtemp() AS mfile)

4 Last update: 11/02/90
e
% GetMachData *
'* This subprogram reads a data file on farm machinery available in the*

'* model. *
"% *
'* Parameters read in by GetMachData are: *
e machfile$ Name of farm machinery data file. *
% machtemp () Indexed record file for data. *
"% *
'*# Variables returned by GetMachData (as machtemp() records) are: *
"% machcode Machinery code (see AutoChooseMach) *
ek machname Name of piece of machinery *
e AcHr Acres per hour covered (speed). *
'k CostAc Cost per acre (dollars/acre). *

1 Sk v v o o vl sk s st o sk o stk e sk ok s sk sk e s sk sk sk s o o sk sk sk sk sk e sk sk sk sk sk ke sk e sk e sk ke sk e sk e sk ke sk ke ek
SHARED machnum$%

Filenuml = FREEFILE

OPEN machfile$ FOR INPUT AS #Filenuml

it = 0
DO WHILE NOT EOF(Filenuml)
ig = i + 1

INPUT #Filenuml, machtemp(i%).machcode, machtemp(i%).machname,
machtemp (i%) .AcHr, machtemp(i%).CostAc
LOOP
machnum$% = i%
CLOSE #Filenuml
END SUB
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SUB GetStateBetaErrors (nfields%, wnum%, newscen$, betafile$, betaeps AS
bfile, betacgro(), betawgro(), betaw0O(), betawl(), betaw2()) STATIC

: Last update: 06-07-91
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¥ , GetStateBetaErrors *
"% Subprogram GetStateErrors reads correlated random errors corres- ¥
'* ponding to equations in the model, from an input data file. *
"% *
'* Parameters passed to GetStateBetaErrors are: *
¥ nfieldss Number of fields on farm *
"k wnums$ Number of weeds in model *
% newscens$ New scenario flag *
"% statenum$ Number of states of nature *
¥ betafile$ File containing synthetic error terms *
¥ betaeps Record array of synthetic eror terms *
"% *
'* Arguments returned by GetStateBetaErrors are: *
L% betawO(f,w,b) Array of pre-plant weed emergence coef. *
' errors by field, weed and coefficient (b)*
'k betawl(f,w,b) Array of post-plant weed emergence coef. *
'* errors by field, weed and coefficient (b)¥*
' NB: betawl(f%,2,2) is coef on quadratic *
¥ term. *
"% betaw2 (f,w,b) Array of post-cult. weed emergence coef. *
¥ errors by field, weed and coefficient (b)*
% betacgro(c) Array of crop growth coef. errors *
£ betawgro(w) Array of weed growth coef. errors *

kS s sk s ok Sk o Sk S b T s S s S S A s Sk s ek sk ek sk ek ek ek bk ek ek ok
'
Filenuml = FREEFILE
OPEN betafile$ FOR RANDOM AS #Filenuml LEN = LEN(betaeps)
statenum$ = LOF(Filenuml) \ LEN(betaeps)
IF betstate% >= statenum%$ THEN newscen$% = true%
IF newscen% = true$% THEN
betstates = 0
newsceny = false$%
END IF
FOR f% = 1 TO nfields%
betstate% = betstate% + 1
GET #Filenuml, betstate%, betaeps
betawO(f%, 1, 1) = betaeps.betaw010
betawO(f%, 1, 2) = betaeps.betaw0Oll
betaw0(f%, 1, 3) = betaeps.betaw012
betawO(f%, 2, 1) = betaeps.betaw020

betaw0(f%, 2, 2) = betaeps.betaw021
betawO(f%, 2, 3) = betaeps.betaw022
betaw0(f%, 3, 1) =0
betawO(f%, 3, 2) =0
betawO(f%, 3, 3) =0
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betawl(f%, 1, 1) = betaeps.betawllO
betawl(f%, 1, 2) = betaeps.betawlll
betawl(fs, 1, 3) =0

betawl(f%, 2, 1) = betaeps.betawl20
betawl(fg, 2, 2) =0

betawl(f%, 2, 3) = betaeps.betawl2?2
betawl(fs, 3, 1) = betaeps.betawl30
betawl(f%, 3, 2) = betaeps.betawl3l
betawl(fs, 3, 3) =0

betaw2(f%, 1, 1) = betaeps.betaw2l0
betaw2(f%, 1, 2) = betaeps.betaw2ll
betaw2(f%, 2, 1) = betaeps.betaw220
betaw2 (f%, 2, 2) = betaeps.betaw22l
betaw2(f%, 3, 1) = betaeps.betaw230
betaw2(f%, 3, 2) = betaeps.betaw23l

betacgro(l) = betaeps.betagroc
betacgro(2) = betaeps.betagros
betawgro(l) = betaeps.betagrol
betawgro(2) = betaeps.betagro2
betawgro(3) = betaeps.betagro3
NEXT f%
CLOSE #Filenuml

END SUB
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SUB GetStateErrors (nfields$%, wnum%, newscen%, epsfile$, epsilon AS
3 efile, epswO(), epswl(), epsw2(), epsseed(), epsyld(), epscgrow(),
3 epswgrow()) STATIC
' ! Last update: 04-29-91
1 ek ek e ek e ek ok e ek b ke ek sk s sk ok sk sk sk sk sk sk ek ok ek sk ko ok kb ke sk ek

v GetStateErrors *

% Subprogram GetStateErrors reads correlated random errors corres- *

S8 : '* ponding to equations in the model, from an input data file. *
2 - *

3 - '* Parameters passed to GetStateErrors are: *
E " nfieldss% Number of fields on farm *
3 L wnums Number of weeds in model *
3 Pk statenum$ Number of states of nature *
3 "% newscens$ New scenario flag *
"% epsfile$ File containing synthetic error terms *

"k epsilon Record array of synthetic eror terms *

"% *

'* Arguments returned by GetStateErrors are: *

¥ epswO(f,w) Array of pre-plant weed emergence errors *

% epswl(f,w) Array of post-plant weed emergence errors¥

"% epsw2(f,w) Array of post-cult. weed emergence errors¥*

"% epsseed(f,w) Array of weed seed production errors *

"k epsyld(f,c) Array of crop yield errors *

M% epscgrow(c) Array of crop growth errors *

"% epswgrow(w) Array of weed growth errors *

e e T
Filenuml = FREEFILE
OPEN epsfile$ FOR RANDOM AS #Filenuml LEN = LEN(epsilon)
statenum$ = LOF(Filenuml) \ LEN(epsilon)
IF errstate% >= statenum$ THEN newscen% = true%
IF newscen% = true$% THEN

errstatet = 0

newscen$ = false%
END IF
FOR f% = 1 TO nfields%

errstate% = errstate% + 1

GET #Filenuml, errstate%, epsilon

epswO(f%, 1) = epsilon.epswOl

epswO(f%, 2) = epsilon.epsw02

epswO(f%, 3) =0

epswl(f%, 1) = epsilon.epswll

epswl(f%, 2) = epsilon.epswl2

epswl(f%, 3) = epsilon.epswl3

epsw2(f%, 1) = epsilon.epsw?l

epsw2(f%, 2) = epsilon.epsw22

epsw2(f%, 3) = epsilon.epsw23

epsseed(f%, 1) = epsilon.epsseedl

epsseed(f%, 2) = epsilon.epsseed2
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epsseed(f%, 3) = epsilon.epsseed3
epsyld(f%, 1) = epsilon.epsyldc
epsyld(fs, 2) = epsilon.epsylds
epscgrow(l) = epsilon.epsgrowc
epscgrow(2) = epsilon.epsgrows
epswgrow(l) = epsilon.epsgrowl

epswgrow(2) = epsilon.epsgrow2
epswgrow(3) = epsilon.epsgrow3
NEXT f%

CLOSE #Filenuml
'resume$ = INPUTS(1)
END SUB

SUB GetWeedCompData (compfile$, comptemp() AS cfile)

! Last update: 11/02/90
T e e

% GetWeedCompData *
'* This subprogram reads a file of weed-crop competition indices. *
'* Herbicide treatment data come from "Cultural and Chemical Weed *
'* Control in Field Crops" (Minn. Extension Service). *
"% *
'* Parameters passed to GetWeedCompData are: *
¥ compfile$ Name of weed competition file *
'k comptemp () Competition record array *
"% *
'* The efftemp() array returned by GetWeedCompData contains: *
"% cropld Crop code *
"k weedId Weed code *
¥ i Competition index *

B T T T o e
!

SHARED compmax$

Filenuml = FREEFILE

OPEN compfile$ FOR INPUT AS #Filenuml

is =0
DO UNTIL EOF(Filenuml)
is = i + 1

INPUT #Filenuml, comptemp(i%).cropld, comptemp(i%).weedId,
comptemp(i%).1i
LOOP
compmax% = i%
CLOSE #Filenuml
END SUB
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SUB GetWeedParm3 (wnum%, parmfile$, wf AS wfile, weedparm() AS wfile)
F Last update: 04/28/91
P e e S ey
% GetWeedParm3 *
'* Subprogram GetWeedParm3 reads the names of weeds to be included in *
'* the model, along with related parameters. *
% *
'* Parameter passed to GetWeedParm3 is: *
% parmfile$ Name of the weed parameter file *
'k wf Record form for weed parameter file *
¥ weedparm() Record array for weed parameters *
"% *
'* Values returned by GetWeedParm3 are: *
¥ wnums Number of weeds *
'* Weedparm() record array includes *
'k weedId(w) Weed identification code *
'k wname$ (w) ’ Array of weed species common names *
% avgerm(w) Average total weed germination (based *
¥ on Forcella model w/Lamberton GDD data)*
& sOpropn(w) Array of pre-planting weed germ. propns¥*
¥ slpropn Array of post-plant weed germ. propns. *
"% s2propn Array of post-cult. weed germ. propns. *
¥ s3mortpn Array of weed seed death as propn of *
fik combined seed death and carryover *
5 wlpropag Array of viable seeds produced per post¥
¥ plant weed *
¥ w2propag Array of viable seeds produced per post*
' cultivation weed *
'k wXint Array of germination calibration eqn. * 1
gk intercept terms for season stage X *
¥ (0491, 2) *
% wXs Array of germination calibration eqn. *
" seed coefs. for season stage X (0,1,2) *
"% wXs2 Array of germination calibration eqn. *
4% squared seed coefs.in season stage X *
=N (0,1,2) ®
% sigXint Array of germ. calib. std. error eqn. *
3 intercept terms for season stage X *
o (0,1,2) »
ik sigXs Array of germ. calib. std. error eqn. *
i seed coefs. for season stage X (0,1,2) *
¥ sigXs?2 Array of germ. calib. std. error eqn. *
ok squared seed coefs.in season stage X *
* (0,1,2) B
% s3mortpn Array of proportion of non-germinated *
e seeds that die *
'k sigwint Intercept for std. error of weed growth*
bk sigwdap2 Days after planting”2 coef. in std.error
% of weed growth equation. *




216

1 kb ok e sk ok e s sk b e sk sk sk S sk sk s s sk sk s sk sk sk sk sk sk S ek ek ok ke ke ok ek ek ok ok
Filenuml = FREEFILE
is =0
OPEN parmfile$ FOR INPUT AS #Filenuml
DO UNTIL EOF(Filenuml)
is =iy + 1
INPUT #Filenuml, wf.weedld, wf.wname, wf.avgerm, wf.sOpropn,
wf.slpropn, wf.s2propn, wf.s3mortpn, wf.wlpropag, wf.w2propag,
wf.growrate, wf.wOint, wf.wOs, wf.w0s2, wf.wlint, wf.wls, wf.wls2,
wf.w2int, wf.w2s, wf.siglint, wf.sigls, wf.sig0s2, wf.siglint,
wf.sigls, wf.sigls2, wf.sig2int, wf.sig2s, wf.sig2s2, wf.sigwint,
wf.sigwdap2
weedparm(i%) = wf
LOOP
wnum$ = 1i%
CLOSE #Filenuml
END SUB

SUB GetYear (yearfile$, yr AS yfile, flddays(), rain(), crop() AS
cropfile, germtot(), randnum(), newscens) STATIC

t Last update: 05-17-91
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¥ GetYear *
¥ Subprogram GetYear reads annual state of nature data from an *
'* input file. *
"% *
'* Parameters passed to GetYear are: *
Lk yearnum$ Number of years *
Tes epsfile$ File containing synthetic error terms *
' newscens New scenario flag *
% randnum() Array of [0,1] random numbers *
"% *
'* Arguments returned by GetYear are: *
% yr Record array of year data uniform randomly
"% selected. *
% flddays(wk%) Weekly workable field days from 4/19 *
% (llwks) in current year *
'k rain(wkg) Weekly precipitation from 4/19 (11 weeks)¥*
¥ crop(c%) .maxyld Maximum yield for year *
"% germtot(ws) Total weed germination for current year *

R Rk R bk kR
’
IF newscen%$ = true% THEN
rys = 0
newscen% = false%
END IF
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3 ry$ = rys + 1

4 - Filenuml = FREEFILE

P OPEN yearfile$ FOR RANDOM AS #Filenuml LEN = LEN(yr)

yearnum$ = LOF(Filenuml) \ LEN(yr)
y% = INT(randnum(ry%) * yearnum$) + 1
: GET #Filenuml, y%, yr
‘ CLOSE #Filenuml

: flddays(l) = yr.fdl
flddays(2) = yr.fd2
flddays(3) = yr.fd3
flddays(4) = yr.fd4
flddays(5) = yr.fd5
flddays(6) = yr.fdé
flddays(7) = yr.fd7
flddays(8) = yr.fd8
flddays(9) = yr.fd9
flddays(10) = yr.£fd10
flddays(1l) = yr.fdll
rain(l) = yr.rainl
rain(2) = yr.rain2
rain(3) = yr.rain3
rain(4) = yr.rain4
rain(5) = yr.rain5
rain(6) = yr.rainé
rain(7) = yr.rain7
rain(8) = yr.rain8
rain(9) = yr.rain9
rain(1l0) = yr.rainlO
rain(ll) = yr.rainll
crop(l) .maxyld = yr.cymax
crop(2) .maxyld = yr.symax
germtot(l) = yr.foxgerm
germtot(2) = yr.lamgerm
germtot(3) = yr.piggerm

END SUB
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SUB InitializeScenario (wnum%, sumst() AS stype, farmstnr, farmstsd,
cswst(), ccwst(), cssst(), ccsst(), urp0001l#, ura0001#, ura00l#)

! Last update: 05-03-91
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'k InitializeScenario *
'* This subprogram initializes end-state summary values for each new *
'* scenario. *
I % *
'* Parameters passed to InitializeScenario are: *
% sumst() Record array of end-state summary stats. *
' farmstnr Cumulative end-state mean farm income *
% farmstsd Cumulative end-state mean income st. dev. *
& urp0001# Utility of risk preferrer with r(x)=-.0001 *
'k ura0001# Utility of risk averter with r(x)=.0001 *
"% ura001# Utility of risk averter with r(x)=.001 *
'k cssst(w),ccsst(w) Cum end-state mean seeds at harvest in CS, *
'k CC rotations *
"% cswst(w),ccwst(w) Cum end-state mean weeds at harvest in CS, *
' % CC rotations *

! e db ook o e e e ok o S o e dke o e e e o e ok s e ok e s sk s s o s e o e e ke o s s e e s e e e s e e s e e e e b e bbbk

REDIM sumst(3) AS stype

REDIM cswst(wnum%), ccwst(wnum%), cssst(wnum%), ccsst(wnum$)
farmstnr = 0

farmstsd = 0

urp0001# = 0O

ura0001# = 0

ura00l# = 0

END SUB




219

SUB InitializeYear (nfields%, wnum%, fld() AS ftype, crop() AS cropfile,
sw(), sOwf(), diskflag%(), infeas%(), endflag%(), wks, t%, yrs,
grmlflag%(), load(), OTsum, maxCwk$%, dropostc%(), droposts%(), h3c%,

h3s%)
( i Last update: 04-27-91
B T
% InitializeYear *
¥ Subprogram InitializeYear sets initial values for cost, seedbank,*
'* and computational flags for eachy iteration of the Year loop. *
"% *
'* Parameters passed to InitializeYear are: *
¥ nfields% Number of fields on farm *
Lk wnum$ Number of weeds in model *
Ik £1d¢) Record array of field data *
"% crop() Record array of crop data *
oi% sw(fs,ws) Array of current seedbank values by field, *
"% weed i
r'¥ sOwf (f%,ws) Array of initial seedbank values *
"% infeas% () Array of POST infeasibility indicators *
vk diskflags(f) Array of flags for completion of disking *
ek endflag%() Array of flags indicating end of field *
% activities *
"% wk$ Current week *
"k ts Time setting for present value calculations¥
' yrs Current year *
'x grmlflags() Flag for completion of FieldWeedGerm *
'* subprogram *
% load() Array for cumulative herbicide load on field
g OTsum Total hours overtime worked during season *
U maxCwk$ Last weed for corn planting *
'k dropostc%() Array of infeasible POST trt. flags for corn
' droposts%() Array of infeasible POST trt. flags for *
"% soybean *
"% h3c% Number of POST corn trts. *
"% h3s% Number of POST soybean trts. *
R T
wks = 0
ts = yrg - 1
OTsum = O

FOR f% = 1 TO nfields%
CALL ChooseCrop(f%, fld(), maxCwk%, wk%)
fld(fs%) .hflag = 0
fld(f%) .cost = 0
fl1d(£f%).cropHt = 0
fld(fs%) .ppiweek = 0
f1d(f%) .plweek = 0
fld(f%) .preweek = 0
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fld(f%) .postweek = 0
fld(f%) .precost = 0
f1d(f%) .postcost = 0
fld(f%) .precode = 0
f1d(f%) .postcode = 0
fld(f%) .preApTim = 0O
fld(f%) .ywf = crop(fld(f%).cropld).maxyld
diskflag%(f%) = false%
infeas%(f%) = false$
endflag%(f%) = falses
grmlflag%(f%) = falses
load(f%) = 0
FOR w% = 1 TO wnum%
sw(fs, wy) = sOwf(fy, ws)

NEXT w$

NEXT £f%

FOR dc% = 1 TO h3c%
dropostc%(dcg) = false$%

NEXT dc$

FOR ds% = 1 TO h3s%
droposts%(ds%) = false%

NEXT ds$%

END SUB

SUB InitializeState (wnum%, farmnr, sum() AS stype, csweed(), ccweed(),
csseed(), ccseed())

y Last update: 05-05-91
T P e

¥ InitializeState *
'* This subprogram initializes cumulative variables for a new state of*
'* nature. *
% *
'* Parameters passed to InitializeState are: *
'* farmnr Cumulative discounted farm net revenue *
'k cXseed(w) Cum seeds at harvest in CS and CC rotations*
& cXweed(w) Cum weeds at harvest in CS and CC rotations¥*
Ak sum(s) .nr Mean net revenue from 1. Corn in CS rotatn.*
"k 2. Soy in CS rot., and 3. Corn in CC rot. *
g sum(s) .sdnr St.dev. net rev. from 1. Corn in CS rotatn.*
¥ 2 74Soy*in“CS“rot.; “and ‘3. "Corn “In CC rot. ¥
% sum(s) . load Mean herb. load from 1. Corn in CS rotatn.*
¥ 2. Soy in CS rot., and 3. Corn in CC rot. *
¥ sum(s) .ypct Mean yield pct. from 1. Corn in CS rotatn.*
% 2. Soy in CS rot., and 3. Corn in CC rot. *
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REDIM sum(3) AS stype

REDIM csweed(wnum$), ccweed(wnum%), csseed(wnum%), ccseed(wnum%)

farmnr = 0

END SUB
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- SUB MakeHerbArray (cropnum$%, aptime$, herbfile$, herb AS hfile, kmaxs,
wnumg, eff() AS kfile, crop() AS cropfile, cppi() AS hfile, cpre()
AS hfile, cpost() AS hfile, sppi() AS hfile, spre() AS hfile,
spost() AS hfile, kle%(), k2c%(), k3c%(), kls%(), k2s%(), k3s%())

' Last update: 02-05-91

)

¥ MakeHerbArray

"k For each crop and weed control application time in the model,

'* Subprogram MakeHerbArray creates 1) arrays of feasible weed control

'* treatments and 2) arrays of corresponding efficacy ratings. To

'* identify feasible treatments, it chains to Subprogram GetHerbData

'* and then allows treatments to be dropped by chaining to Subprogram

'* UserDropTrts2. For the feasible treatments so identified, it chains*

* % % ¥ ¥ F

'* to MakeKillArray to construct an array of treatment efficacies. *
% *
¥ Parameters passed to MakeHerbArray are: *
% cropnum$ Crop identification code (corn or soy) *
¥ aptime% Application time code (PPI, PRE, POST) *
% herbfile$ Weed treatment file name *
&g herb Record form for weed treatments *
g herbtemp () Temporary record array for weed treatment*
% parameters *
% kmax$ Number of records in weed treatment effi-*
' cacy array (from GetKillData2) *
gk wnums Number of weed species *
gtk eff() Record array of weed trt. efficacy data *
"% *
"k Arguments returned by MakeKillArray are: *
"% hlcg, h2c%, h3c% Number of weed treatments (PPI,PRE,POST):*
% corn *
% hls%, h2s%, h3s$% Number of weed treatments (PPI,PRE,POST):*
% soy w»
ok k() Temporary array of efficacy data *
fik klc%(),k2c%() ,k3c%() Efficacy arrays (PPI,PRE,POST) for corn *
Lk kls%(),k2s%(),k3s%() Efficacy arrays (PPI,PRE,POST) for soybean
"% cppi(),cpre(),cpost() Treatment record arrays (PPI,PRE,POST) *
"% for corn ®
pik sppi(),spre(),spost() Treatment record arrays (PPI,PRE,POST) *
Hod for soy *

e e T
SHARED hlc%, h2c%, h3c%, hls%, h2s%, h3s%, htemp%
REDIM herbtemp(10) AS hfile
SELECT CASE cropnum$
CASE 1
SELECT CASE aptime%
CASE 1
CALL GetHerbData(cropnum$, aptime%, herbfile$, herb, herbtemp())
REDIM klc%(wnum%, htemp%), k%(wnum%, htemp$%)
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REDIM cppi(htemp%) AS hfile
' CALL UserDropTrts2(aptime%, htemp%, herbtemp(), cropnums,
crop())
CALL MakeKillArray(kmax%, aptime%, htemp%, wnums, eff(),
herbtemp(), k%())
hlc% = htemp$
FOR i% = 1 TO hlcs
cppi(i%) = herbtemp(i%)
FOR w$ = 1 TO wnum$
klcy(ws, i%) = k¥(ws, 1i%)
NEXT w$
NEXT i%
CASE 2

CALL GetHerbData(cropnum%, aptime%, herbfile$, herb, herbtemp())
REDIM cpre(htemp%) AS hfile
REDIM k2c%(wnum%, htemp%), k%(wnum%, htemp%)
' CALL UserDropTrts2(aptime%, htemp%, herbtemp(), cropnum%,
crop())
CALL MakeKillArray(kmax%, aptime%, htemp%, wnum%, eff(),
herbtemp(), k%())
h2c% = htemp$
FOR i% = 1 TO h2c%
cpre(i%) = herbtemp(i%)
FOR ws = 1 TO wnum$
k2c%(ws, i%) = k¥ (ws, 1i%)
NEXT w$
NEXT i%
CASE 3

CALL GetHerbData(cropnum%, aptime%, herbfile$, herb, herbtemp())
REDIM cpost(htemp%) AS hfile
REDIM k3c%(wnum%, htemp%), k%(wnum%, htemp$%)
CALL UserDropTrts2(aptime%, htemp%, herbtemp(), cropnum$,
crop())
CALL MakeKillArray(kmax%, aptime%, htemp%, wnum%, eff(),
herbtemp(), k%())
h3c% = htemp$
FOR i% = 1 TO h3c%
cpost(i%) = herbtemp(i%)
FOR w$ = 1 TO wnum$%
k3c%(w%, i%) = k¥(ws, 1i%)
NEXT w$%
NEXT i%
END SELECT
CASE 2
SELECT CASE aptime$%
CASE 1

CALL GetHerbData(cropnum%, aptime$%, herbfile$, herb, herbtemp())
REDIM sppi(htemp%) AS hfile

REDIM kls%(wnum%, htemp%), k%(wnum%, htemp%)
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' CALL UserDropTrts2(aptime$%, htemp%, herbtemp(), cropnum$,
crop())
CALL MakeKillArray(kmax%, aptime%, htemp%, wnum%, eff(),
herbtemp(), k%())
hls% = htemp%
FOR i% = 1 TO hls%
sppi(i%) = herbtemp(i%)
FOR ws = 1 TO wnum$%
klss(ws, i%) = ks(ws, i%)
NEXT w$%
NEXT i%
CASE 2
CALL GetHerbData(cropnum$%, aptime%, herbfile$, herb, herbtemp())
REDIM spre(htemp%) AS hfile
REDIM k2s%(wnum%, htemp%), k%(wnum%, htemp$%)
' CALL UserDropTrts2(aptime%, htemp%, herbtemp(), cropnum$,
crop())
CALL MakeKillArray(kmax%, aptime%, htemp%, wnum%, eff(),
herbtemp(), k%())
h2s% = htemp%
FOR i% = 1 TO h2s%
spre(i%) = herbtemp(i%)
FOR w$ = 1 TO wnum$
k2s%(w%, i%) = k%(ws, i%)
NEXT w$%
NEXT 1%
CASE 3
CALL GetHerbData(cropnum$, aptime$%, herbfile$, herb, herbtemp())
REDIM spost(htemp%) AS hfile
REDIM k3s%(wnum%, htemp%), k%(wnum%, htemp%)
CALL UserDropTrts2(aptime$%, htemp%, herbtemp(), cropnum$,
crop())
CALL MakeKillArray(kmax$%, aptime%, htemp%, wnums, eff(),
herbtemp(), k%())
h3s% = htemp%
FOR i% = 1 TO h3s%
spost(i%) = herbtemp(i%)
FOR w% = 1 TO wnum$%
k3s%(ws, i%) = k%(ws, i%)
NEXT w$
NEXT i%
END SELECT
END SELECT
END SUB
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SUB MakeKillArray (kmax%, aptime%, h%, wnum%, eff() AS kfile, herb() AS
hfile, k%())

Last update: 02/05/91
e

"k MakeKillArray *
'* Subprogram MakeKillArray creates an array of weed treatment efficacy
'* ratings corresponding to the weed control treatments selected by *

'* subprograms GetHerbData and UserDropTrts2. For those treatments that
'* correspond to crop and application time parameters of MakeHerbArray,*

'* it creates an efficacy array using data from GetKillData2. For *
'* treatments dropped in UserDropTrts2, it sets the efficacy rating at 0
'y *
'* Parameters passed to the subprogram are: *
"k kmax$% Number of efficacy ratings in array eff()*
"k aptime$ Application time code *
o h% Number of treatments in array herb() *
¥ wnums Number of weed species in model *
% eff() Array of efficacy ratings (killfile$) *
ke herb () Array of suitable treatments for this *
£ crop and application time *
"% *
'* Values returned by this subprogram are: *
'k k¥ (ws,1i%) Array of efficacy ratings for this crop =*
"k and application time (for permitted trts.)
e giving efficacy of trt. i% on weed w%. *

B Rk P T
!
FOR i%$ = 1 TO h%
FOR j% = 1 TO kmax$
IF herb(i%).herbId = eff(j%).herbId AND aptime% = eff(j%).aptimeld
THEN
droptrt% = herb(i%).droptrt
SELECT CASE droptrt$
CASE O
FOR w% = 1 TO wnum$%
IF eff(j%).weedId = wg THEN k%(w%, i%) = eff(j%).effic
NEXT w$%
CASE 1
FOR w$ = 1 TO wnum$
IF eff(j%).weedld = wg THEN
ks (ws, i%) =0
END IF
NEXT w$%
END SELECT
END IF
NEXT j$%
NEXT i%
END SUB
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SUB PlantCrop (f%, wk%, fld() AS ftype, maxCwk$%, minSwk%, newcost(),
hrs, maxhrs, machine() AS mfile, mp%, crop() AS cropfile, sw(), weed()
AS wfile, wnum$)

y Last update: 05-02-91
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i PlantCrop *

% Subprogram PlantCrop determines whether a field can be planted, *

'* based upon whether the time of the season is appropriate for planting

'* If it is too early for soybeans, then the field is skipped until the*

'* next week. If it is too late for corn, then the crop choice must be*

'* changed by calling ChooseCrop. *
' % *
'* Parameters passed to PlantCrop are: *
¥ fs Current field number *
% wk$ Current weed code *
e £f1d() Array of field information *
'k maxCwk$ Last week for planting corn *
% minSwk% First week for planting soybean *
'% newcost() Array of current week costs *
E ¥ hrs Current week cumulative hours works *
tk machine() Array of machinery parameters *
' mp$% Planter machinery code *
4 crop() Record array including crop seed price *
i & planting rate *
"% *
'* Value returned is: *
bk f1d(£f%) .plweek Planting week for field f% *
e
ChangeCrop:

croplds = f1d(f%).cropld
SELECT CASE cropIlds%
CASE 1
IF (wk% <= maxCwk%) THEN
f1d(£f%) .plweek = wk$
newcost(f%) = newcost(f%) + ((machine(mp%).CostAc +
crop(cropld%).seedRate * crop(cropld%).seedPric) *
fld(fs) .fsize)
hrs = hrs + fld(f%).fsize / machine(mp$%) .AcHr
ELSE
CALL ChooseCrop(f%, fld(), maxCwk$%, wk$%)
GOTO ChangeCrop:
END IF
CASE 2
IF (wk% >= minSwk%) THEN
fld(f%) .plweek = wk%
newcost(f%) = newcost(f%) + ((machine(mp%).CostAc +
crop(cropIld%).seedRate * crop(croplds).seedPric) *
f1d(f%) .fsize)
hrs = hrs + fld(f3%).fsize / machine(mp$%).AcHr

AR L
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SUB PostTrt (f%, nfields%, wnum%, wk%, fld() AS ftype, kmaxy, eff() AS
kfile, weedHt(), newcost(), newload(), hrs, maxhrs, machine() AS
mfile, ms%, mr%, infeas%(), endflag%(), d2wf(), d3wf(), sw(),
swlost(), w2germ())

; Last update: 04-28-91
1 sk ek sk etk ok ok sk sk ok ok ok sk sk s ok sk sk sk stk sk ok sk sk stk ok sk sk ok sk sk sk s sk sk sk s koo s sk ok

"% POSTTrt .
% Subprogram POSTTrt evaluates the recommended post-emergent weed *
'* treatment in light of weed growth since crop planting. It executes *
'* an appropriate POST treatment and calculates associated costs and *
'* labor use. It also calculates seed germination in the period *
'* following POST treatment. It returns csots, labor use, the week of *
'* POST treatment,and resulting weed densities & seed losses to *
'* germination to the main program. POST treatment may not occur less *
'* than 2 weeks after PRE/PPI. *
"% *
'* Parameters passed to POSTTrt are: *
sk f3 Field number *
ok nfields% Number of fields *
% wnums Number of weeds in model *
¥ wk$ Current weed code *
ok £f1d() Record array of field information *
% kmax$ Number of records in efficacy file *
¥ weedHt () Array of weed heights by species *
e eff() Record array of weed control efficacy *
"% newcost() Array of current week costs *
"% newload() Array of current week herbicide loads *
% hrs Current week cumulative hours works *
e machine() Record array of machinery parameters  *
' ms$% Sprayer machinery code *
x mr$ Rotary hoe machinery code *
& weed() Record array of weed parameters *
¥ d2wf (£%,w%) Array of weed seedling densities per m2%
% after PRE/PPI treatment *
"% sw(fs,ws) Current seedbank for weed w% in field f%
'k w2germ(w) Post-cult. weed densities (CalibrateGerm
' *
'* Arguments returned are: *
% f1d(f%) .postweek Post-emergent weed control week for *
' field f% *
'k d3wf (f%,ws) Array of weed seedling density at *
' harvest after PRE/PPI and POST treat- *
' ments. Assumes cultivation kills *
'% inter-row 80% of d2wf(). *
% swlost(£f%,w%) Seedbank losses to emergence, by species
% infeas%(£f%) Array of flags for infeasible *
¥ recommended POST treatments (O=not *
1 infeasible) *

B R R e e e S e e e e e s
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IF (f1d(f%).plweek = 0) THEN EXIT SUB
IF (f1d(f%).postcode < 10) THEN
IF (wk% - fld(f%).preweek) < 2 OR (wks% - fld(f%).plweek) < 2 THEN EXIT
SUB
ELSEIF (wk$ - fld(f%).plweek < 1) THEN EXIT SUB
END IF
IF £f1d(f%) .postcode <> 0 THEN
cropnum$ = fld(f%).cropIld
counts$ = 0
FOR k% = 1 TO kmax$
IF (eff(k%).aptimeId = 3 AND eff(k%).herbId = fld(f%).postcode) THEN
FOR w% = 1 TO wnum$%
IF eff(k%).weedId = w$ THEN
SELECT CASE cropnum$
CASE 1
IF (f1d(f%).cropHt > eff(k%).maxCrnHt OR weedHt(f%, w%) >
eff (k%) .maxWdHt) THEN infeas%(f%) = trues%
CASE 2
IF (f1d(f%).cropHt > eff(k%).maxSoyHt OR weedHt(f%, ws) >
eff (k%) .maxWdHt) THEN infeas$%(f%) = true%
END SELECT
IF infeas%(f%) = true% THEN EXIT SUB
4 d3wf(f%, ws) = surv(eff(ks).effic) * d2wf(f%, ws) +
weed(ws).s2germ * sw(f%, ws)
d3wf(fs, ws) = d2wf(fs, wy) * surv(eff(ks).effic) + w2germ(fs,
w%)
! swlost(f%, ws) = swlost(f%, ws) + weed(w$).s2germ * sw(fs,
w$)
swlost(f%, w%) = swlost(f%, ws) + w2germ(f%, w%)
count$ = count% + 1
END IF
NEXT w$
END IF
IF count$ = wnum% THEN EXIT FOR
NEXT k%
IF f1d(f%).postcode = 10 THEN
equip% = mr%
ELSE
equip% = ms$%
END IF
newcost(f%) = newcost(f%) + ((machine(equip%).CostAc +
f1d(£f%) .postcost) * fld(fs).fsize)
newload(f%) = fld(£f%).postload
hrs = hrs + fld(f%).fsize / machine(equip%).AcHr
ELSE
FOR w% = 1 TO wnum$
! d3wf(fs, ws) = d2wf(f%, ws) + weed(ws).s2germ * sw(fs%, w$)
d3wf (£, wy) = d2wf(fs, ws) + w2germ(fs, ws)
i swlost(f%, w%) = swlost(f%, ws) + weed(ws).s2germ * sw(f%, w%)
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swlost(f%, ws) = swlost(f%, ws) + w2germ(fs, w%)
NEXT w%
END IF
fl1d(f%) .postweek = wk%
endflag% (f%) = trues
END SUB
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SUB PostWEEDSIM (f%, wnum%, h3%, mf%, ms%, mr%, mp%, t%, r, sOwf(),
sw(), d2wf(), fld() AS ftype, cropnum%, crop() AS cropfile, weed() AS
wfile, k3%(), postherb() AS hfile, mach() AS mfile, compmax%, comp()
AS cfile, costnow, theta, nyears%, netpost(), hln%, h2n%, h3n%,
kln%(), k2n%(), k3n%(), ppinext() AS hfile, prenext() AS hfile,
postnext() AS hfile, decrule%, dropcode%, dropost%()) STATIC

4 Last update: 05/05/91
e

¥ PostWEEDSIM *
'* Subprogram PostWEEDSIM recommends the net-revenue-maximizing weed *
'* treatment POST strategy for the current year, ignoring *
'* future ramifications of current action. *
"% *
'* Parameters passed to PostWEEDSIM are: *
% fs Field number *
'k wnum$ Number of weed species *
"k nyears$ Number of years in model *
| & hlsg Number of PPI treatments (set at 1) *
"% h2% Number of PRE treatments (set at 1) *
& h3% Number of POST treatments *
'k mf%, ms%, mr%, mp% Field cultivator, sprayer, rotary hoe,*
‘% and planter machinery codes *
% ts Year *
'x i Discount rate *
¥ sOwf (w%) Array of initial seedbank densities in*
i this field *
i sw(f,w) Array of seed densities in actual fld *
S £f1d() Record array of field data *
% cropnum$ Crop code for current field *
¥ crop() Record array of crop parameters *
"% weed() Record array of weed parameters *
i k1l%(),k2%(),k3%() Arrays of efficacy ratings (PPI,PRE, * 3
% POST) * ‘
% postherb () Record array of POST treatment params

% ppinext() Record array of PPI next yr trt params
% prenext() Record array of PRE next yr trt params
% postnext() Record array of POST next yr trt params
% mach () Record array of machinery parameters *
% compmax$ Number of observations in competition *
' array *
¥ comp () Record array of weed-crop competition *
% data *
o costnow Current cost

% theta Proportion by which weed treatment *
% threshold net revenue to exceed no *
% control net revenue level. *
ok d2wf () Arrays for actual current weed den. *
& dlw(),d2w() Arrays of emerged weed densities in fld
¥ dropcode% Code for infeasible recom’d POST trt. *




231
"% dropost%(j) Array of infeasible POST treatments  *
% *
'* Arguments revised by PostWEEDSIM are: *
¥ f1d(f%) .postcode Recommended POST treatment code *
g% f1d(f%) .postname Recommended POST treatment name *
"% fld(f%) .postcost Cost per acre of recommended POST trt.*
& fl1d(f%) .postload Quantity of active chem. ingredient/ac¥*

! 3edkedke e dke s sk e vk e ok s ke sk ok e sk ke sk ok s ok e sk ke sk e sk ok ke dbe e sk sk s e v sk ok sk sk sk ok sk ok e ok sk ke sk sk s s sk ke sk sk s ke sk ke s ok e ke e ke ke e ok
'

cropnum$ = f1ld(£f%).cropld
hlg = 1
hl2n% = hln% + h2n% - 1

REDIM precode%(hl%), preAvRat(hlsg)

REDIM sOw(wnum%$), slw(wnum%), s2w(wnum$), w2(wnum$)

REDIM dlw(wnum%), d2w(wnum%, hlg), precost(hls)

REDIM d3w(wnum%, hl%, h3%), d3wij(wnum%), s3w(wnumsg), postcost(hl%, h3%)
REDIM sOwl(wnum%, hl%, h3%)

REDIM yldpost(hls, h3sg)

REDIM netpost(hl%, h3%), netpostO(hl%, h3%)

REDIM netpostl(hl%, h3%, hl2n%, h3n%)

FOR w$ = 1 TO wnum$
sOw(ws) = sOwf(fs, ws)
s2w(ws) = sw(fg, w%)
w2(ws) = (weed(w%).avgerm * weed(ws).s2propn * sOwf(fs, ws)) +

(weed(w%) .w2int + weed(w$).w2s * sOwf(£f%, w%))

NEXT w$

FOR i% = 1 TO hls
precost(i%) = costnow
precode%(i%) = fld(f%).precode
preAvRat(i%) = f1d(f%).preload
FOR w = 1 TO wnum%

d2w(ws, i%) = d2wf(fs, ws)
NEXT w$

NEXT i%

CALL WSPostReviseTrt(cropnum%, wnum%$, hl%, h3%,
crop(fld(f%).cropld).expMaxY, f£f1ld(f%).rotation, k3%(), d2w(), sOw(),
s2w(), weed(), crop(), precode%(), preAvRat(), postherb(), compmax$,
comp(), mach(ms%).CostAc, fld(f%).fsize, d3w(), d3wij(), s3w(),
yldpost(), postcost(), w2(), dropcode%, dropost%())

CALL WSSeedBank(wnum%, hl%, h3%, d3w(), s3w(), weed(), sOwl(), w2())

CALL WSPostRev(hl%, h3%, crop(cropnum$).price, yldpost(), postcost(),
precost(), t%, r, fld(f3%).fsize, crop(cropnum$).vc, netpost())

IF (t% + 1) < nyears% AND decrule% = 2 THEN

' Foresighted decision rule (2-year horizon)
FOR i%¥ = 1 TO hls
FOR j% = 1 TO h3s%
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netpost0(i%, j%) = netpost(i%, j%)
NEXT j%
NEXT i%
REDIM precode%(hl2n%), preAvRat(hl2n%)
REDIM d2w(wnum%, hl2n%), precost(hl2n%)
REDIM d3w(wnum%, hl2n%, h3n%), postcost(hl2n%, h3n%)
REDIM yldpost(hl2n%, h3n%), netpost(hl2n%, h3n%)
REDIM netpostl(hl%, h3%, hl2n%, h3n$)
IF f1d(f%).rotation = 1 THEN
nextcrop% = 1 + cropnum$ MOD 2
plcost = crop(nextcrop$).seedRate * crop(nextcrop%).seedPric +
mach(mp%) .CostAc
CALL WSNextYear(f%, wnum$%, nextcrop%, compmax$%, hln%, h2n%, hl2n$%,
h3n%, t%, r, mf%, ms%, mry%, mp%, kln%(), k2n%(), k3n%(), £f1d(),
weed(), mach(), comp(), crop(), ppinext(), prenext(), postnext(),
sOw(), sOwl(), slw(), s2w(), s3w(), dlw(), d2w(), d3w(),
yldpost(), precost(), netpostO(), netpostl(), plcost, theta,
netpost(), postcost(), precode%(), preAvRat(), hls, h3%)
CALL WSTopRev(hl%, h3%, hl2n%, h3n%, theta, netpostl(), kimaxs,
kjmax%, topnet)
ELSE
nextcrop% = cropnum$
plcost = crop(nextcrop%).seedRate * crop(nextcropt).seedPric +
mach (mp%) .CostAc
CALL WSNextYear(f%, wnum%, nextcrop%, compmax%, hln%, h2n%, hl2n$%,
h3n%, t%, r, mf%, ms%, mr%, mp%, kln%(), k2n%(), k3n%(), £fld(),
weed(), mach(), comp(), crop(), ppinext(), prenext(), postnext(),
sOw(), sOwl(), slw(), s2w(), s3w(), dlw(), d2w(), d3w(),
yldpost(), precost(), netpostO(), netpostl(), plcost, theta,
netpost(), postcost(), precode%(), preAvRat(), hls, h3%)
CALL WSTopRev(hl%, h3%, hl2n%, h3n%, theta, netpostl(), kimax$,
kjmax%, topnet)
END IF
topnet = topnet / 2

' Myopic decision rule
ELSE
CALL WSTopRevMyopic(hl%, h3%, netpost(), theta, kimax%, kjmaxt,
topnet)
END IF

fld(f%) .postname = postherb(kjmax$).hname

f1d(f%) .postcode = postherb(kjmax%).herbId

f1d(f%) .postcost = postherb(kjmax$).unitCost * postherb(kjmax$).avrate
fl1d(f%) .postload = postherb(kjmax%).avrate

END SUB
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- SUB PPITrt (f%, nfields%, wk%, fld() AS ftype, newcost(), newload(),
hrs, maxhrs, machine() AS mfile, ms%, mf%, preflags)

4 Last update: 01-05-91
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% PPITrE *
% *
'* Parameters passed to PPITrt are: *
% fs Current field number *
3 nfields% Number of fields *
¥ wk$ Current weed code *
i £f1d4() Record array of field information *
& newcost() Array of current week costs *
'k hrs Current week cumulative hours works *
¥ maxhrs Number of workable hours in week *
¥ machine() Record array of machinery parameters *
g ms$ Sprayer machinery code *
fd mfs% Field cultivator machinery code *
% *
'* Value returned is: *
e fld(f%) .ppiweek Pre-plant incorporated weed trt. week *
"% for field f% *
¥ preflags Flag for completion of PPI/PRE trt. *

B R USROS
'

IF (f1d(f%).preApTim < 1) OR (fld(f%).ppiweek <> 0) THEN EXIT SUB

IF fl1d(f%).precode <> 0 THEN
newcost(f%) = newcost(f%) + ((machine(ms%).CostAc +
machine(mf$).CostAc + fld(f%).precost) * fld(fs).fsize)
newload(f%) = f1d(f%).preload
hrs = hrs + (fld(f%).fsize / machine(mf%).AcHr) + (fld(fs) .fsize /
machine (ms%) .AcHr)
ELSE
newcost(f%) = newcost(f%) + machine(mf%).CostAc * fld(f%).fsize
hrs = hrs + fld(f%).fsize / machine(mf$%).AcHr
END IF
fl1d(f%) .ppiweek = wk$
preflag% = trues

END SUB
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SUB PRESurv (f%, nfields%, wnum$, fld() AS ftype, kmaxs, eff() AS kfile,
wlgerm(), d2wf(), rain())

4 Last Update: 04-22-91

B T T T R R R Rt
% PRESurv *
% Subprogram PRESurv returns the density of surviving weeds after *
'* implementation of the PPI or PRE weed control treatment. If less *
'* than 0.5 inches of rain falls within a week after PRE treatment,then*

'* herbicide treatment fails. *
"% *
'* Parameters passed to PRESurv are: *
% fs Current field *
ke nfieldss Number of fields on farm *
e wnums Number of weeds in model *
ok £f1d() Record array of field data *
% rain(wk) Array of weekly cumulative precipitation *
% kmax$ Total number of records in efficacy file *
&g eff() Record array of efficacy ratings by crop,*
"% weed .
'k wlgerm(f%,ws) Array of weed seedling densities per m2 *
i germinating after planting *
'k rain() Current year rain (from GetYear) *
"% *
'* Arguments returned by PRESurv are: *
% d2wf(f%,ws) Array of weed densities surviving PPI *
"% or PRE weed control treatment *

! ek sk ek e sk ke e ok ke e sk ke ke ok s sk st e sk s e sk e sk sk e sk sk e sk ok e sk ok o ok sk ok e s o s s o s e sk e s ek sk sk s sk ek
countg = 0
IF f1d(£f%).preApTim = 2 AND rain(fld(f%).preweek + 1) < .5 THEN
FOR w$ = 1 TO wnum$
d2wf(f%, ws) = wlgerm(fs, ws)
NEXT w%
EXIT SUB
END IF
FOR k% = 1 TO kmax$
IF (fl1d(f%).precode = eff(k%).herbId AND fld(f$).preApTim =
eff(k%).aptimeId) THEN
FOR w$ = 1 TO wnum$
IF eff(k%).weedld = w% THEN
d2wf (f%, ws) = surv(eff(ks).effic) * wlgerm(fs, ws)
count$ = count% + 1
END IF
NEXT w%
END IF
IF count% = wnum$ THEN EXIT FOR
NEXT k%

END SUB
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SUB PreTrt (f%, nfields%, wk%, fld() AS ftype, newcost(), newload(),
hrs, maxhrs, machine() AS mfile, ms%, preflag$)

; Last update: 01-05-91
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"% PRETrt *
¥ Subprogram PRETrt executes the recommended PRE treatment and *
'* calculates associated costs and labor use. It returns these and the*
'* week of PRE treatment to the main program. *
"% *
% *
'* Parameters passed to PRETrt are: *
% fs Current field *
% nfieldss Number of fields *
% wk$ Current weed code *
% f1d() Record array of field information *
"% newcost() Array of current week costs *
"% newload() Array of current weed herb. load *
% hrs Current week cumulative hours works *
"k machine () Record array of machinery parameters  *
"k ms$ Sprayer machinery code *
" *
'* Arguments returned are: *
g f1d(f%) .preweek Pre-emergent weed control trt. week for¥*
'k field f% *
g preflags Flag for completion of PPI/PRE trt. *
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'

IF (f1d(f%).preApTim <> 2) OR (fld(f%).plweek = 0) THEN EXIT SUB
f1d(f%) .preweek = wk%
IF £f1d(f%).precode < 0 THEN
newcost(f%) = newcost(f%) + ((machine(ms%).CostAc + fld(f%).precost) *
fld(fs) .fsize)
newload(f%) = f1d(f%).preload
hrs = hrs + fld(f%).fsize / machine(ms%).AcHr
END IF
preflags = true$

END SUB
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SUB PrintInitWeedSeeds (nfields%, wnum%, state%, yr%, weedparm() AS
wfile, sOwf())

§ Last update: 04-25-91
e e e e e e e e e e e e e ek kb sk sk sk sk sk sk s s sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok sk ke ok ek ok ok ok

"% PrintInitWeedSeeds *
% Subprogram PrintInitWeedSeeds prints weed seed density data *
'* at the beginning of the current simulation year. *
"% *
'* Parameters passed to PrintInitWeedSeeds are: *
"% nfields% Number of fields on farm *
"% wnum$ Number of weed species in model *
% state% Current state of nature *
i yrs Current year *
% weedparm() Record array of weed parameters *
i sOwf () Array of initial weed seed densities *

P T o T S ok de e S S S S S e o S sk s S b e e o e s e e s e s e s ek s e e e s s e e e e s e b s e s e e e e e e s e ook

PRINT

PRINT "Initial weed seed counts for State ";
PRINT USING "##"; state%;

PRINT " and Year ";

PRINT USING "#"; yr$

PRINT " Seedbank (seeds/m2)"
PRINT "Field L%
FOR w$ = 1 TO wnum$%
PRINT weedparm(w$) .wname;
PRINT " g
NEXT w$
PRINT
FOR f% = 1 TO nfields%
PRINT USING "###"; f%;
PRINT " s
FOR w$ = 1 TO wnum$%
PRINT. (T 8"
PRINT USING "###u#"; sOwf(£f%, ws);
ERINT MY L
NEXT w$%
PRINT
NEXT £%
PRINT

END SUB

o i
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SUB PrintRecoms (f%, cropname$, fld() AS ftype, topnet)
!

Last update: 02-13-91
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"k PrintRecoms *
¥ This subprogram prints weed control recommendations. *
'* Variables input to the subprogram are: *
'k fs Current field *
¥ cropname$ Name of current field crop *
Pk f1d() Record array of field data *
"% topnet Expected net revenue by following recoms. *
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PRINT USING "###"; f%;
PRINT " s
PRINT cropname$;
PRINT " e
rot$ = fld(£f%).rotation
SELECT CASE rot$%
CASE 1
PRENT=YCS "
CASE 2
PRINT "CC ";
END SELECT
PRINT " s
PRINT fld(f%).prename;
preApTim% = fld(f%).preApTim
SELECT CASE preApTim$
CASE 1
IF f1d(f%).precode <> 0 THEN
PRINT «"PPI L
ELSE
PRINT " L
END IF
CASE 2
PRINT "PRE s
END SELECT
PRINT f1d(f%).postname;
PRINT " ";
PRINT USING "###### . ##";, topnet

END SUB
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SUB ScreenHeader?2

f Last update: 12/29/90
B T e R
"% ScreenHeader?2 *

'* Subprogram ScreenHeader writes introductory remarks to the screen. *

! sededede koo ok s dk b sk sk ok sk s dk sk sk e sk sk e sk sk sk sk sk sk e sk s sk sk b sk sk sk sk sk s s sk e sk e e sk s e b e ke e e sk e e e ek
'

PRINT

PRINT

PRINT

PRINT " B T T T T "
PRINT " * WFARM * e
PRINT " ek kdkhhkkhhkk "
PRINT " "
PRINT " by Scott M. Swinton o
PRINT " Department of Agricultural and Applied Economics "
PRINT " University of Minnesota, St. Paul, MN 55108 m
PRINT " ¢

PRINT "WFARM generates a weed control strategy for corn and corn-soybean
rotations &

PRINT "that maximizes the farmer’'s expected wealth. Recommendations for
each "

PRINT "year are based upon the decision rule elected. One rule makes
recommendations"

PRINT "based upon current year information only, the other rule
incorporates expec- "

PRINT "tations about next year's likely weed infestation. Results are
for the whole "

PRINT "farm, and account for field time limitations. This version is
stochastic. "

PRINT "

"

PRINT "Press any key to continue."

'resume$ = INPUTS(1)

CLS

END SUB
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SUB SummaryAnnual (wnum$%, nfields%, fld() AS ftype, crop() AS cropfile,
netrev(), load(), yldpct(), d3wf(), sOwf(), csweed(), ccweed(),
csseed(), ccseed(), farmnr, sum() AS stype)

3 Last update: 05-05-91
1 sk e e e ek ek kbbb ok sk ok sk ok sk ke sk sk ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok skesk sk ok sk ok ok sk ok ek ook ok ook

"% SummaryAnnual *
'* This subprogram summarizes annual net revenue and herbicide load *
'* results by crop and rotation, as well as for the whole farm. *
% *
'* Parameters passed to SummaryAnnual are: *
% wnums Number of weed species *
% nfieldss Number of fields *
& if£1°d.() Record array for field characteristics *
% crop() Record array of crop characteristics *
% netrev() Array of net revenue by field *
% load() Array of chemical loads by field *
"k yldpet() Array of percent max yield realized *
!k d3wf () Array of end-season weed densities *
ek sOwf () Array of end-season weed seed densities *
% farmnet Farm net income for year *
‘% net(1l) Corn net income from CS rotation for year *
& net(3) Corn net income from CC rotation for year *
"% net(2) Soybean net income from CS rotation for yr.*
¥ lod(1) Mean herbicide load on corn in CS rotation *
. % lod(3) Mean herbicide load on corn in CC rotation *
g _ "% lod(2) Mean herbicide load on soybean in CS rotatn¥*
g : & net(s) Cumulative net income from 1. Corn in CS rot
% 2.08oy.4in €8 rot., and 3. Corn in CC rot. *
"% lod(s) Cumulative herb. load from 1. Corn in CS rot
s 2. Soy in CS rot., and 3. Corn in CC rot. *
¥ ypct(s) Cumulative yield pct. from 1. Corn in CS  *
" rot., 2. Soy in CS rot., and 3. Corn in CC *
ok num$ (s) Cumulative number fields in 1. Corn in CS *
% 2. Soy in CS rot., and 3. Corn in CC rot. *
"k farmnr Cumulative farm net income *
"% cssd(w),ccsd(w) Final seeds at harvest in CS and CC rotatns*
'% cswd(w),ccwd(w) Cum weeds at harvest in CS and CC rotations*
% cXseed(w) Average cumulative ending seed density by *
' rotation (CS, CC) *
% cXweed(w) Average cumulative ending weed density by *
ik rotation (CS, CC) *
"% sum(s) .nr Mean net revenue from 1. Corn in CS rotatn.*
o 2. Soy in CS rot., and 3. Corn in CC rot. *
i sum(s) .sdnr St.dev. net rev. from 1. Corn in CS rotatn.*
" 2. Soy in CS rot., and 3. Corn in CC rot. *
& sum(s).load Mean herb. load from 1. Corn in CS rotatn.*
g 2. Soy in CS rot., and 3. Corn in CC rot. *
"% sum(s) .ypct Mean yield pct. from 1. Corn in CS rotatn.*
¥ 2. Soy in CS rot., and 3. Corn in CC rot. *
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! ok S ok ok ok ks ok ok e sk e s sk ek e ok b e ok e sk s ok s ok o ok ok ok o sk sk e sk e sk s e sk sk ek o sk ok
REDIM cssd(wnum%), ccsd(wnum$), cswd(wnum$), ccwd(wnum$)
REDIM net(3), lod(3), ypct(3), num%(3)
farmnet = 0
FOR f% = 1 TO nfields%
cropnum$ = fld(f%).cropld
farmnet = farmnet + netrev(f%)
IF f1d(f%).rotation = 1 THEN
FOR w% = 1 TO wnum$
cswd(w$) = cswd(ws) + d3wf(fs, ws)
cssd(w%) = cssd(ws) + sOwf(fs, ws)
NEXT w%
SELECT CASE cropnum$
CASE 1
net(l) = net(l) + netrev(fs)
lod(1l) = lod(l) + load(f%)
ypet(l) = ypct(l) + yldpct(£f%)
num$(l) = num$(l) + 1
CASE 2
net(2) = net(2) + netrev(f%)
lod(2) = lod(2) + load(f%)
ypct(2) = ypct(2) + yldpct(£fs)
num$(2) = num%(2) + 1
END SELECT
ELSE
FOR w% = 1 TO wnum$
ccwd(ws) = ccwd(ws) + d3wf(fs, ws)
ccsd(ws) = ccsd(ws) + sOwf(fs, ws)
NEXT w$
net(3) = net(3) + netrev(fs)
lod(3) = lod(3) + load(f%)
ypet(3) = ypet(3) + yldpct(£fs)
num%$(3) = num$(3) + 1
END IF
NEXT f$%
farmnr = farmnr + farmnet
FOR s =1 TO 3
sum(s%).nr = sum(s$%).nr + net(s%)
sum(sg).sdnr = 0
sum(s%).load = sum(s%).load + lod(s%) / num%(s%)
sum(s%).ypct = sum(s%).ypct + ypct(s%) / num%(s%)

NEXT s%
FOR w% = 1 TO wnum$
csweed(w%) = csweed(w%) + cswd(w%) / (num%(l) + num$(2))

ccweed(w$) = ccweed(ws) + ccwd(w$) / num%(3)

csseed(w%) = cssd(w%) / (num%(l) + num%(2))
ccseed(w¥) = ccsd(ws) / num%(3)
NEXT w$

END SUB
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SUB SummaryScenario (scenout$, decrules, theta, lamseeds%, wnum%,
nstatess%, sumst() AS stype, farmstnr, farmstsd, cswst(), ccwst(),
cssst(), cecsst(), urp0001#, ura000l#, ura0O0l#)

4 Last update: 05-20-91

1 ks sk ek ek ks ek sk ko sk ek sk ok sk ek ks sk sk ek ek ke ek ko ko ok ok ko

1 "% SummaryScenario *
: ] '* This subprogram summarizes end-state revenue, herbicide load, yield*

'* percent, and weed & seed density results by crop and rotation, as *

'* well as for the whole farm. *

(% *

'* Parameters passed to SummaryScenario are: *

"% scenout$ Name of scenario output file *

"% decrule% Decision rule *

% theta Caution coefficient *

% lamseeds$ Lambsquarters initial seed density *

] ' wnums Number of weed species *

i i nstates$ Number of states *

3 ! % sumst() Record array of end-state summary stats. *

e farmstnr Cumulative end-state mean farm income *

% farmstsd Cumulative end-state mean income st. dev. *

E g urp0001# Utility of risk preferrer with r(x)=-.0001 *

jj ok ura0001# Utility of risk averter with r(x)=.0001 *

1 ik ura001# Utility of risk averter with r(x)=.001 *

: £ cep0001 Certainty equivalent mean ann NPV for *
3 % r(x)=-.0001 *
'k cea0001 Certainty equivalent mean ann NPV for *

"% r(x)=.0001 *

¥ cea001 Certainty equivalent mean ann NPV for *

"% r(x)=.001 *

o i 'k cssst(w),ccsst(w) Cum end-state mean seeds at harvest in CS *
8 e and CC rotations *
g ik cswst(w),ccwst(w) Cum end-state mean weeds at harvest in CS *
# ik and CC rotations *

? ek o S ok s e e ok o s ok s S ok s ok s s ok s sk s sk v S o s sk b s sk s s e ab e e e s e o sk e e ok s s b s s e s e e s e e e e s e b e ok

FOR s$ =1 TO 3
sumst(s%).nr = sumst(s%).nr / nstates$
sumst(s%).sdnr = sumst(s%).sdnr / nstates$ - sumst(s$).nr "~ 2
sumst(s$).sdnr = sumst(st).sdnr " .5
sumst(s%).load = sumst(s%).load / nstates%
sumst(s%).ypct = sumst(s%).ypct / nstates$
NEXT s%
farmstnr = farmstnr / nstates$%
farmstsd = farmstsd / nstates% - farmstnr ~ 2
farmstsd = farmstsd "~ .5
cep0001 = (-LOG(urp0001# / nstates%)) / -.0001
cea0001 = (-LOG(-ura0001# / nstates%)) / .0001
cea00l = (-LOG(-ura00l# / nstates%)) / .001
FOR w$ = 1 TO wnum$
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cswst(w%) = cswst(ws) / nstatess$

ccwst(w$) = ccwst(ws) / nstates$

cssst(w$) = cssst(w$) / nstates$

ccsst(ws$) = ccsst(ws) / nstates$
NEXT w$

Filenuml = FREEFILE

OPEN scenout$ FOR APPEND AS #Filenuml

WRITE #Filenuml, decrule%, theta, lamseeds$%, farmstnr, farmstsd,
cep0001, cea0001, cea00l, sumst(3).nr, sumst(3).sdnr, sumst(3).load,
sumst(3) .ypct, sumst(l).nr, sumst(l).sdnr, sumst(l).load,
sumst(l).ypct, sumst(2).nr, sumst(2).sdnr, sumst(2).load,
sumst(2).ypct, cswst(l), ccwst(l), cssst(l), ccsst(l), cswst(2),
ccwst(2), cssst(2), ccsst(2), cswst(3), ccwst(3), cssst(3), ccsst(3)

CLOSE #Filenuml

END SUB
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SUB SummaryState (wnum%, nyears%, r, sum() AS stype, farmnr, csweed(),
ccweed(), csseed(), ccseed(), sumst() AS stype, farmstnr, farmstsd,
cswst(), ccwst(), cssst(), ccsst(), urp0001#, ura0001l#, ura00l#,
stateout$)

; ] ! Last update: 05-20-91
E 1 ok o ok ok o sk ook sk ok ok ok o ook ook sk ok ok s ek o ok ok ok sk sk ek ek ok kool ak ek ko ko ok

o SummaryState *

'* This subprogram summarizes annual net revenue and herbicide load *

'* results by crop and rotation, as well as for the whole farm. *

=3 *

3 '* Parameters passed to SummaryState are: *

2 : 'k wnum$ Number of weed species *

i ' % nyearss$ Number of years *
2 : "k r Discount rate *
s % sum( ) Record array of annual summary stats. *
1i; ‘ "% farmnr Cumulative annual farm net income *
4 , ' cXseed(w) Average cumulative ending seed density by *
= ‘ % rotation (CS, CC) *
o % cXweed(w) Average cumulative ending weed density by *
j & rotation (CS, CC) *
3 *

'* Values returned by SummaryState are: *

'* sumst() Record array of end-state summary stats. *

'k farmstnr Cumulative end-state mean farm income *

ik farmstsd Cumulative end-state mean income st. dev. *

% urp0001# Utility of risk preferrer with r(x)=-.0001 *

% ura0001# Utility of risk averter with r(x)=.0001 *

% ura001# Utility of risk averter with r(x)=.001 *

% cssst(w),ccsst(w) Cum end-state mean seeds at harvest in CS &*

% CC rotations *

'¥ cswst(w),ccwst(w) Mean end-state weeds at harvest in CS and *

'* CC rotations *

¥ stateout$ Name of summary state data output file *

B R e e e e R R e s s e

FOR s = 1 TO 3
sum(s$).nr = sum(ss).nr * r / (1 - (1 + r) " -nyearss)
sumst(s%).nr = sumst(s%).nr + sum(s%).nr
sumst(s%).sdnr = sumst(s%).sdnr + sum(s%).nr " 2
sumst(s%).load = sumst(s%).load + sum(s%).load / nyearss$
sumst(s$%).ypct = sumst(s%).ypct + sum(s%).ypct / nyears$

NEXT s%

farmnr = farmnr * r / (1 - (1 + r) " -nyears%)

farmstnr = farmstnr + farmnr

farmstsd = farmstsd + farmnr " 2

urp0001# = EXP(.0001 * farmnr) + urp0001l#

ura0001# = -EXP(-.0001 * farmnr) + ura0001#

ura001l# = -EXP(-.001 * farmnr) + ura0O0l#

FOR w = 1 TO wnum$%
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cswst(ws) = cswst(ws) + csweed(ws) / nyears$
ccwst(ws) = ccwst(wy) + ccweed(ws) / nyears$
cssst(ws) = cssst(ws) + csseed(w$)
ccsst(wy) = ccsst(ws) + ccseed(ws)

NEXT w$%

Filenum4 = FREEFILE

OPEN stateout$ FOR APPEND AS #Filenumé&4

WRITE #Filenum4, sum(l).nr, sum(l).load / nyears%, sum(l).ypct /
nyears%, sum(2).nr, sum(2).load / nyears$%, sum(2).ypct / nyearss,
sum(3).nr, sum(3).load / nyears$%, sum(3).ypct / nyears$%, csweed(l) /
nyears$, ccweed(l) / nyears%, csseed(l), ccseed(l), csweed(2) /
nyears%, ccweed(2) / nyears$, csseed(2), ccseed(2), csweed(3) /
nyears%, ccweed(3) / nyears%, csseed(3), ccseed(3)

CLOSE #Filenum&4

END SUB

FUNCTION surv (x%)
! Last update: 4/27/91

e T e )
"% surv *
'* This function transforms WEEDIR weed control values for corn into *
'* weed survival rates (0,.1,.3,.5,.7,.9) (Kidder et al., Durgan et al)

¥ *
'* Parameter passed to function surv is: *
'k X% WEEDIR efficacy rating (0,1,2,3,4 or 5)
"% x
'* Value returned by function surv is: *
'* surv Proportion of weeds surviving treatment

1 s sk s ok sk s ok sk s ak s sk s sk ok sk ok ok sk sk e ok ok sk s sk sk sk s sk s sk sk s sk s sk sk sk sk sk sk ek ek ke ke ok
IF x$ < 0 THEN
surv = 1 - .2 * x% + .1
ELSE
surv = 1
END IF
END FUNCTION
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SUB WeedGrowth (f%, wk%, wnum$%, weed() AS wfile, fld() AS ftype,
weedHt (), epswgrow(), betawgro())

: Last update 06-06-91
R )

'k WeedGrowth *
¥ This subprogram "grows" the weeds in each field as a function of *
‘* the number of days since preplant-incorporated (PPI) or pre-emergent*
'* (PRE) weed control. *
"% *
'* Parameters passed to WeedGrowth are: *
ik fs Current field number *
K wk$ Current week number *
'k wnums$ Number of weeds in the model *
% weed() Record array of weed parameters *
% f1d() Record array of field data *
% epswgrow(w) Array of additive error terms *
"% betawgro(w) Array of coef. error terms *
"% *
'* Arguments returned by WeedGrowth are: *
L% weedHt (£%,w%) Array of weed heights (inches) in each *
% field *

7 e ak o 3ok o sk ok v sk Sk o s e ok S Sk st s e ok S sk s s b sk sk dbe s sk ab s e o e e b s e e s e e s s e e e e s b e e s e e e e s e e e ek

IF f1d(f%).precode < 0 THEN
IF f1d(f%).preApTim = 1 THEN
dap% = (wk% - f1d(f%).plweek) * 7
ELSEIF fl1d(f%).preApTim = 2 THEN
dap% = (wk% - fld(f%).preweek) * 7
END IF
ELSE
dap% = (wk% - fld(f%).plweek) * 7
END IF

IF dap% > O THEN
FOR w$ = 1 TO wnum$
IF fld(f%).cropIld = 2 THEN
sigwdgro = weed(ws).sigwint + weed(ws).sigwdap2 * daps " 2
IF sigwdgro < O THEN sigwdgro = 0
ELSE
sigwdgro =1
END IF
weedHt (f%, w%) = (weed(w%).growrate + betawgro(w$)) * dap$ "2+
sigwdgro * epswgrow(ws)
NEXT w$%
END IF

END SUB
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B WEEDSIM (f%, wnum%, hl%, h2%, h3%, mf%, ms%, mr%, mp%, t%, r,
sOwf(), fld() AS ftype, cropnum%, crop() AS cropfile, weed() AS wfile,
kls(), k2%(), k3%(), ppiherb() AS hfile, preherb() AS hfile,
postherb() AS hfile, mach() AS mfile, compmax%, comp() AS cfile,
theta, nyears%, netpost(), hln%, h2n%, h3n%, kln%(), k2n%(), k3n3%(),
ppinext() AS hfile, prenext() AS hfile, postnext() AS hfile, decrule%)
STATIC

Last update: 05/05/91

T
WEEDSIM *

Subprogram WEEDSIM recommends the net-revenue-maximizing weed *
treatment strategy pair (PRE,POST) for the current year, ignoring *
future ramifications of current action. *
*

Parameters passed to WEEDSIM are: *
f3 Field number *
wnums Number of weed species *
nyearss$ Number of years modeled *

hlsg Number of PPI treatments *

h2% Number of PRE treatments *

h3% Number of POST treatments *
hlng Number of PPI treatments (next year) *
h2n% Number of PRE treatments (next year) *
h3n% Number of POST treatments (next year) *

mf%, ms%, mry, mp% Field cultivator, sprayer, rotary hoe, *

and planter machinery codes *

decrule$ Decision rule code *

ywf Weed-free yield *

ts Year *

> Discount rate *

sOwf (w%) Array of initial seedbank densities in *

this field *

f1d() Record array of field data *
cropnum$ Crop code for current field *
crop() Record array of crop parameters *

weed () Record array of weed parameters *
kls(),k2%(),k3%() Arrays of efficacy ratings (PPI,PRE, *
POST) *

kin%(),k2n%(),k3n%() Arrays of efficacy ratings (PPI,PRE, *
POST) (for next year) *

ppiherb() Record array of PPI treatment parameters
preherb() Record array of PRE treatment parameters
postherb() Record array of POST treatment params. *
PPinext() Record array of PPI next yr trt params *
prenext() Record array of PRE next yr trt params *
postnext() Record array of POST next yr trt params¥*

mach () Record array of machinery parameters *
compmax$ Number of obs. in competition array *

comp () Record array of weed-crop competition *
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X data *
'x theta Proportion by which weed treatment *
¥ threshold net revenue to exceed no *
¥ control net revenue level. *
% dlw(),d2w() Arrays of emerged weed densities in *
¥ field *
g netpost() Array of expected net returns *
l* *
'* Arguments returned by WEEDSIM are: *
¥ f1d(f%) .precode Recommended PPI/PRE treatment code *
% fld(f%) .preApTim Recommended PPI or PRE application time*
4 f1d(f%) .prename Recommended PPI or PRE treatment name *
"% fld(f%) .precost Cost per acre of recommended PPI/PRE trt
' fld(f%) .preload Quantity of active chem. ingredient/ac *
% f1d(f%) .postcode Recommended POST treatment code *
"% fl1d(f%) .postname Recommended POST treatment name *
b fld(f%) .postcost Cost per acre of recommended POST trt. *
'k fld(f%) .postload Quantity of active chem. ingredient/ac *

R R R R R R R e
SHARED topnet
hl2% = hlg + h2g% - 1
hl2n% = hln% + h2n% - 1
REDIM precode%(hl2%), preAvRat(hl2%g)
REDIM sOw(wnum%), slw(wnum$%), s2w(wnum$), dlw(wnum$)
REDIM wO(wnum%), wl(wnum%$), w2(wnum$)
REDIM d2w(wnum%, hl2%), precost(hl2%)
REDIM d3w(wnum%, hl2%, h3%), d3wij(wnums), s3w(wnumg), postcost(hl2s,
h3%)
REDIM sOwl(wnum$%, hl2%, h3%), yldpost(hl2%, h3%), netpost(hl2%, h3%)
FOR w$ = 1 TO wnum$%
sOw(ws) = sOwf(£f%, ws)
wO(ws) = (weed(w$).avgerm * weed(ws).sOpropn * sOwf(f%, ws)) +
(weed(ws) .wOint + weed(ws).wOs * sOwf(f%, w$) + weed(ws).wOs2 *
sOwf(£f%, ws) " 2)
wl(wg) = (weed(w%).avgerm * weed(ws).slpropn * sOwf(f%, ws)) +
(weed(ws) .wlint + weed(w%).wls * sOwf(f%, w%) + weed(ws).wls2 *
sOwf (£%, ws) " 2)
w2(wg) = (weed(w$).avgerm * weed(w$).s2propn * sOwf(f%, ws)) +
(weed(w%) .w2int + weed(ws).w2s * sOwf(f%, ws))
NEXT w$
plcost = crop(cropnum$).seedRate * crop(cropnum$).seedPric +
mach(mp%) .CostAc
CALL WSWeedGerm(wnum%, weed(), sOw(), slw(), s2w(), dlw(), wO(), wl())
CALL WSPreTrt(wnum%, hl%, h2%, mf%, ms%, kls(), k2%(), dlw(),
fld(f%).ywf, ppiherb(), preherb(), mach(), fld(fs).fsize, plcost,
h12%, d2w(), precost(), precode%(), preAvRat())
CALL WSPostTrt(cropnum%, wnum%, hl2%, h3%, crop(fld(f%).cropld).expMaxy,
f1d(f%) .rotation, k3%(), d2w(), sOw(), s2w(), weed(), crop(),
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precode%(), preAvRat(), postherb(), compmax$%, comp(), mach(), ms%,
mrs, fld(f%).fsize, d3w(), d3wij(), s3w(), yldpost(), postcost(),
w2())
CALL WSSeedBank(wnum%, hl2%, h3%, d3w(), s3w(), weed(), sOwl(), w2())
CALL WSPostRev(hl2%, h3%, crop(cropnums).price, yldpost(), postcost(),
precost(), t%, r, fld(f%).fsize, crop(cropnumg).vc, netpost())
IF (t% + 1) < nyears% AND decrule% = 2 THEN
' Foresighted decision rule (2-year horizon)
REDIM netpostO(hl2%, h3%), netpostl(hl2%, h3%, hl2n%, h3n%)
FOR i = 1 TO hl2s
FOR j%$ = 1 TO h3%
netpost0(i%, j%) = netpost(i%, j%)
NEXT j%
NEXT i%
REDIM precode%(hl2n%), preAvRat(hl2n%)
REDIM d2w(wnum%, hl2n%), precost(hl2n$%)
REDIM d3w(wnum%, hl2n%, h3n%), postcost(hl2n%, h3n%)
REDIM yldpost(hl2n%, h3n%), netpost(hl2n%, h3n$%)
IF f1d(f%).rotation = 1 THEN
nextcrop% = 1 + cropnum$ MOD 2
plcost = crop(nextcrop%).seedRate * crop(nextcrop%).seedPric +
mach(mp%) .CostAc
CALL WSNextYear(f%, wnum%, nextcrop%, compmax%, hln%, h2n%, hl2n$%,
h3n%, t%, r, mf%, ms%, mrs, mp%, kln%(), k2n%(), k3n%(), fld(),
weed(), mach(), comp(), crop(), ppinext(), prenext(), postnext(),
sOw(), sOwl(), slw(), s2w(), s3w(), dlw(), d2w(), d3w(),
yldpost(), precost(), netpost0(), netpostl(), plcost, theta,
netpost(), postcost(), precode%(), preAvRat(), hl2%, h3%)
CALL WSTopRev(hl2%, h3%, hl2n%, h3n%, theta, netpostl(), kimax,
kjmax%, topnet)
ELSE
nextcrop% = cropnum$
plcost = crop(nextcrop%).seedRate * crop(nextcrops).seedPric +
mach(mp%) .CostAc
CALL WSNextYear(f%, wnum$%, nextcrop%, compmax$¥, hl%, h2%, hl2%, h3%,
t%, r, mf%, ms%, mr%, mp%, kls(), k2%(), k3%(), fld(), weed(),
mach(), comp(), crop(), ppiherb(), preherb(), postherb(), sOw(),
sOwl(), slw(), s2w(), s3w(), dlw(), d2w(), d3w(), yldpost(),
precost(), netpostO(), netpostl(), plcost, theta, netpost(),
postcost(), precode%(), preAvRat(), hl2%, h3%)
CALL WSTopRev(hl2%, h3%, hl2%, h3%, theta, netpostl(), kimax$,
kjmax%, topnet)
END IF
topnet = topnet / 2
'Myopic decision rule
ELSE
CALL WSTopRevMyopic(hl2%, h3%, netpost(), theta, kimax%, kjmaxs,
topnet)
END IF

ST T TS PR
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SELECT CASE kimax$
CASE IS <= hl%
£f1d(f%) .preApTim = 1
f1d(f%) .prename = ppiherb(kimax$).hname
fld(f%) .precode = ppiherb(kimax$).herbId
f1d(f%) .precost = ppiherb(kimax%).unitCost * ppiherb(kimax%).avrate
f1d(f%) .preload = ppiherb(kimax$).avrate
CASE IS > hlsg
f1d(f%) .preApTim = 2
fld(f%) .prename = preherb(kimax% - hl% + 1).hname
fld(f%) .precode = preherb(kimax% - hl% + 1).herbId
f1d(f%) .precost = preherb(kimax% - hl% + 1).unitCost *
preherb(kimax% - hl% + 1).avrate
f1d(f%) .preload = preherb(kimax% - hl% + 1).avrate
END SELECT
f1d(f%) .postname = postherb(kjmax$).hname
f1d(f%) .postcode = postherb(kjmax$).herbId
f1d(f%) .postcost = postherb(kjmax$).unitCost * postherb(kjmax%).avrate
fl1d(f%) .postload postherb(kjmax%) .avrate

END SUB
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SUB WSNextYear (f%, wnum%, cropnum%, compmax%, hl%, h2%, hl2%, h3%, t%,
r, mf%, ms%, mr%, mp%, kls(), k2%(), k3%(), fld() AS ftype, weed() AS
wfile, mach() AS mfile, comp() AS cfile, crop() AS cropfile, ppiherb()
AS hfile, preherb() AS hfile, postherb() AS hfile, sOw(), sOwl(),
slw(), s2w(), s3w(), dlw(), d2w(), d3w(), yldpost(), precost(),
netpost0(), netpostl(), plcost, theta, netpost(), postcost(),
precode%$(), preAvRat(), hl2o%, h3o%) STATIC
i ! Last update: 05/01/91
i ? ek ek ok e sk e sk ok ok ke ek ke e sk ek ke sk e sk ke sk ke sk sk sk ek sk b e sk sk b ek b ek ek ek ek ek ek ke ek ke ek
4 : & WSNextYear *
'* For each weed treatment strategy pair (PRE,POST) in the current year,

'* subprogram WSNextYear calcuates discounted net returns to each *

'* possible strategy pair in the next crop season. *

"% *

8 ‘ '* Parameters passed to WSNextYear are: *

3 "% f% Current field number *

i ‘ ' cropnum$ Current field crop number *

. ' wnum$ Number of weed species *

R ; "% compmax$ Maximum number of obs. in weed comp file
o ' "% hls Number of PPI treatments (next year) * 3
-4 "k h2% Number of PRE treatments (next year) * ’

- ‘ & hl2% Number of PPI + PRE trts. (next year) *

e k h3s Number of POST treatments (next year) *

i hl2o0% Number of PPI/PRE treatments (this year)

"% h3o% Number of POST treatments (this year) *

"% sOwls(ws,1i%,j%) Array of seedbank outcomes from current*

' year by PRE & POST treatment *

' ywf Weed-free yield *

% ts Year *

'* r Discount rate *

% mf%, ms%, mry, mp% Field cultivator, sprayer, rotary hoe, *

¥ and planter machinery codes *

% mach() Record array of machinery data *

"% crop() Record array of crop data *

% comp () Record array of weed competition data *

% weed() Record array of weed parameters *

% sOw(),slw(),s2w(),s3w() Arrays of seedbank densities *

' sOgerm(w%) Array of pre-plant germination rates *

¥ slgerm(ws) Array of germ. rates before POST trt. *

" s2germ(ws) Array of germ. rates after POST trt. *

% f1d() Record array of field data *

"% cropnum$ Crop code for current field *

% kls(),k2%(),k3%() Arrays of effic. ratings (PPI,PRE,POST)*

% ppiherb() Record array of PPI treatment parameters

¥k preherb() Record array of PRE treatment parameters

% postherb () Record array of POST treatment params. *

"% compmax$ Number of obs. in competition array *

' theta Proportion by which weed treatment *

'x threshold net revenue to exceed no *
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3 . % control net revenue level. *
?ﬁ 4 e dlw(),d2w(),d3w() Arrays of emerged weed densities *
f o precost() Array of costs before POST trt. *

% precode% () Array of PPI/PRE codes *

% preAvRat() Array of average herbicide rates *

‘ ¥ postcost() Array of costs from POST trt. *

o ¥ plcost Cost of planting *
3 ¥ yldpost() Array of expected yields *
': : "% netpost0() Array of expected net returns (cur. yr)*
i ! % *
'* Arguments output by WSNextYear are: *

% netpostl(i,j,k,1) Array of discounted net returns *

¥ resulting from all combinations of *

"% treatments over two years. *

7 sk ke s sk ok S sk ok sk sk ok sk ok s ok sk sk ok S sk s s ok s s sk b s sk sk b s sk sk ek b ke kb ek koo
REDIM sOwtemp(wnum%), d3wij(wnum$)
REDIM EwO(wnum%$), Ewl(wnum%), Ew2(wnum$%)
tts = ts + 1
FOR i%$ = 1 TO hl2o0%
FOR j% = 1 TO h3o%

FOR w$ = 1 TO wnum$
sOwtemp(w%) = sOwl(w%, i%, j%)

EwO(w%) = (weed(w%).avgerm * weed(w$).sOpropn * sOwtemp(ws)) +
(weed(w%) .wO0int + weed(w%).wOs * sOwtemp(w$) + weed(w$).wOs2 *
sOwtemp (wg) ~ 2)

Ewl(w%) = (weed(w%).avgerm * weed(ws).slpropn * sOwtemp(ws)) +
(weed(w%) .wlint + weed(w$).wls * sOwtemp(ws) + weed(ws).wls2 *
sOwtemp (ws) "~ 2)

Ew2(w%) = (weed(w%).avgerm * weed(w%).s2propn * sOwtemp(w$)) +
(weed(w%) .w2int + weed(ws).w2s * sOwtemp(w$))

NEXT w%

maxyld = crop(cropnum%) .expMaxyY

rots = fld(f%).rotation

fsizes = fld(f%).fsize

CALL WSWeedGerm(wnum%, weed(), sOwtemp(), slw(), s2w(), dlw(),
EwO(), Ewl())

CALL WSPreTrt(wnum$%, hl%, h2%, mf%, ms%, kls(), k2%(), dlw(),
fld(f%).ywf, ppiherb(), preherb(), mach(), fld(fs).fsize, plcost,
hl2%, d2w(), precost(), precode%(), preAvRat())

CALL WSPostTrt(cropnum$%, wnum$%, hl2%, h3%, maxyld, rot%, k3%(),
d2w(), sOw(), s2w(), weed(), crop(), precode%(), preAvRat(),
postherb(), compmax$%, comp(), mach(), ms%, mr%, fsize%, d3w(),
d3wij (), s3w(), yldpost(), postcost(), Ew2())

CALL WSPostRev(hl2%, h3%, crop(cropnum$).price, yldpost(),
postcost(), precost(), tts, r, fld(fs).fsize, crop(cropnum$).vc,
netpost())

FOR k% = 1 TO hl2s
FOR 1% = 1 TO h3s

netpostl(i%, j%, k%, 1%) = netpostO(i%, j%) + netpost(ks, 1%)
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NEXT 1%
NEXT k%
NEXT j$%
NEXT i$%
END SUB

SUB WSPostRev (hl2%, h3%, p, yldpost(), postcost(), precost(), t%, r,
fldSize%, vc, netpost())

! Last update: 02/05/91
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ke WSPostRev *
'* This subprogram calculates the present value of net revenue by *
'* treatment pair after POST treatment. *
"% *
'* Parameters passed to subprogram PostRev are: *
"% hl2% Number of PPI/PRE treatments *
% h3% Number of POST treatments *
e P Price of crop *
"% yldpost(i,j) Array of expected prdn. after POST trt*
% postcost(i,j) Array of POST treatment costs *
% precost(i) Array of PRE treatment costs *
ik t$ Year *
'k . Discount rate *
'k fldSizes Field size *
"% ve Variable cost/acre for crop (net of *
% weed trt) *
"% *
'* Variables returned by subprogram PostRev are: *
'x netpost(i,j) Present value of net revenue by trt pair

B S R T T R S S 2 S e S e s e e e

’

FOR i = 1 TO hl2s
FOR j% = 1 TO h3%
netpost(i%, j%) = ((p * yldpost(i%, j%) - vc) * fldSizes -
(postcost(i%, j%) + precost(is))) / (1 + r) " t%
"PRINT i%, j%, netpost(i%, j%)
NEXT j%
NEXT i%
'resume$ = INPUTS(1)
END SUB
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SUB WSPostReviseTrt (cropnum$%, wnum%, hl%, h3%, ywf, rots, k3%(), d2w(),
sOw(), s2w(), weedparm() AS wfile, crop() AS cropfile, precode%(),
preAvRat(), postherb() AS hfile, compmax%, compparm() AS cfile,
sprayCst, fldSize%, d3w(), d3wij(), s3w(), yldpost(), postcost(),
w2(), dropcode%, dropost%())

; Last update: 04/29/91
ek e e ek sk ok ok s sk b e e sk sk sk ke s sk sk e s sk ke sk e sk sk ok sk ok ek ok e e sk sk ok s sk sk ke ok e sk sk ke e deskskeoke ke ok

'* species and treatment

"% WSPostReviseTrt *
'* This subprogram calculates density of surviving weeds, adds late *
'* germinating weeds, estimates crop yields, and updates the weed *
'* seedbank after POST-emergent treatment. If atrazine (code 103) *
‘* PRE and POST rate will exceed 3 lbs/acre, yield is set at zero (in *
'* order to exclude illegal use of atrazine). *
'* *
'* Parameters passed to WSPostReviseTrt are: *
"k cropnum$ Code of current field crop *
' wnum$ Number of weed species *
"% hls=1 Number of PPI/PRE treatments *
'k h3% Number of POST treatments *
% k3%(ws,j%) Array of POST efficacy ratings by weed *

*

*

*

¥ w2(ws,1%) Array of emerged weed seedlings by PRE
% treatment

¥ sOw(wg) Array of initial weed seedbank densitie*
kg s2w(wg) Array of seedbank densities after PRE *
"%

weedparm()

Array of weed germination, death params*

"X compparm() Array of competition parameters *
¥ compmax$ Number of records in compparm() *
'% crop() Record array of crop data *
¥ ywf Expected weed-free yield *
"k rots Rotation g
'k sprayCst Cost of spraying *
% fldSize% Field size *
'k precode% () PPI/PRE treatment codes array *
& preAvRat() PPI/PRE treatment avg. rates array *
% postherb () POST treatment parameter array *
"% dropcode% Code for infeasible recommended POST trt
'k dropost%(j) Array of infeasible POST treatments *
% *
'* Variables returned by WSPostReviseTrt are: *
- d3w(ws,1i%,j%) Array of weed densities at harvest by *
' PRE and POST treatments. Assumes cult.*
¥ kills 80% of d2w(). *
x s3w(ws) Array of weed seed densities at harvest*
'x yldpost(i%,j%) Array of expected field crop production*
‘% by PRE & POST treatments *
% postcost(j%) Array of POST treatment costs *

R R R R S S R B e S S R R s 2 e s
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FOR i% = 1 TO hls
FOR j% = 1 TO h3%

IF dropcode% = postherb(j%).herbId THEN
dropost%(j%) = true%
dropcode% = -1

END IF

FOR wl% = 1 TO wnum$%

IF dropost%(j%) = true% THEN
kill3s = -9
ELSE
kill3s = k3%(wls, j%)

END IF

’

d3w(wls, i%, j%) = surv(k3s(wlg, j%)) * d2w(wls, i%) +
weedparm(wl$) .s2germ * s2w(wlg)

d3w(wls, i%, j%) = surv(kill3g) * d2w(wls, i%) + w2(wls)
d3wij(wlg) = d3w(wls, i%, j%)

NEXT wls

yldpost(i%, j%) = yield2(wnum%, ywf, cropnum$%, compmax%, compparm(),
crop(), d3wij())

IF (precode%(i%) = 103 AND postherb(j%).herbId = 103 AND
(preAvRat(i%) + postherb(j%).avrate > 3)) THEN yldpost(i%, j%) = 0

IF (rot% = 1) AND (precode%(i%) = 103 OR postherb(j%).herbId = 103)
THEN yldpost(i%, j%) = 0

IF postherb(j%).herbId = 0O THEN
appcost = 0
ELSE
appcost = sprayCst

END IF

postcost(i%, j%) = (postherb(j%).unitCost * postherb(j%).avrate +
appcost) * fldSize%

NEXT j%
NEXT i%

FOR w$ = 1 TO wnum$%
" s3w(ws) = (1 - weedparm(ws).s2germ) * s2w(ws) - weedparm(w$).s3death
* sOw(ws)
s3w(wg) = s2w(ws) - w2(ws) - weedparm(ws).s3mortpn * (1 -
weedparm(w$) .avgerm) * sOw(ws)
NEXT w$
END SUB

BT
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SUB WSPostTrt (cropnum%, wnum%, hl2%, h3%, ywf, rots, k3%(), d2w(),
sOw(), s2w(), weedparm() AS wfile, crop() AS cropfile, precode%(),
preAvRat(), postherb() AS hfile, compmax%, compparm() AS cfile, mach()
AS mfile, ms%, mrs, fldSizes, d3w(), d3wij(), s3w(), yldpost(),
postcost(), w2()) STATIC

! Last update 04/22/91
1 ek s e sk vk e ok ok s e sk sk s ke sk sk ok ke sk sk s e sk sk s e sk ok ok ke sk sk ok sk ke sk sk sk sk ke sk sk ok e e sk sk sk e sk ok ke e ok ok ok ek ok ke e sk ok ke ek

¥ WSPostTrt *

'* This subprogram calculates density of surviving weeds, adds late *

. '* germinating weeds, estimates crop yields, and updates the weed *

! '* seedbank after POST-emergent treatment. If atrazine (code 103) *

'* PRE and POST rate will exceed 3 lbs/acre, yield is set at zero (in *

'* order to exclude illegal use of atrazine). *

% *

_ '* Parameters passed to WSPostTrt are: *

b 'k cropnum$ Code for current field crop *

'k wnums Number of weed species *

"% hl2s% Number of PPI/PRE treatments *

' h3% Number of POST treatments *

' compmax$ Number of records in compparm() *

' ms$,mr$ Sprayer and rotary hoe machine codes  *

! "% fldSize% Field size *

: ' k3%(ws,j%) Array of POST efficacy ratings by weed *

g "% species and treatment *

x d2w(ws,i%) Array of emerged weed seedlings by PRE *

] " treatment *

E "% w2 (w) Expected post-cult weed emergence *

: "X sOw(wg) Array of initial weed seedbank densitie*

g "% s2w(w$) Array of seedbank densities after PRE *

4 & weedparm() Array of weed germination, death params*

,; ' compparm() Array of competition parameters *

F % crop() Record array of crop data *

g ' mach() Record array of machinery data *

3 x ywf Expected weed-free yield *
ik "% rots Rotation =
% precode% () PPI/PRE treatment codes array *

% preAvRat() PPI/PRE treatment avg. rates array *

% postherb() POST treatment parameter array *

"% *

F : '* Variables returned by WSPostTrt are: *
:fjg . 'k d3w(ws,1i%,j%) Array of weed densities at harvest by *
& % PRE and POST treatments. Assumes cult.*
. 'x kills 80% of d2w(). *
" s3w(ws) Array of weed seed densities at harvest¥*

'k yldpost(i%,j%) Array of expected field crop production*

' by PRE & POST treatments *

"% postcost(j%) Array of POST treatment costs *

! 3o T e S o S ok S e o S S o e S e o S S s o S o s b db s e e e o sk s ol e o s e e e s e s s e ek e e b e ke e e e ek

’
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REDIM seedmort(wnums)

FOR i% = 1 TO hl2s
FOR j% = 1 TO h3s%
FOR wl% = 1 TO wnum$%
d d3w(wls, i%, j%) = surv(k3s(wls, j%)) * d2w(wls, i%) +
weedparm(wls).s2germ * s2w(wls)
d3w(wlg, i%, j%) = surv(k3s(wlsg, j%)) * d2w(wlsy, i%) + w2(wls)
d3wij(wls) = d3w(wls, i%, j%)
NEXT wl$
yldpost(i%, j%) = yield2(wnum%, ywf, cropnum$, compmax%, compparm(),
crop(), d3wij())
IF (precode%(i%) = 103 AND postherb(j%).herbId = 103 AND
(preAvRat(i%) + postherb(j%).avrate > 3)) THEN yldpost(i%, j%) = 0
IF (rot% = 1) AND (precode%(i%) = 103 OR postherb(j%).herbId = 103)
THEN yldpost(i%, j%) = 0
IF postherb(j%).herbId = O THEN
appcost = 0
ELSEIF postherb(j%).herbId = 10 THEN
appcost = mach(mr$).CostAc
IF cropnum% = 1 THEN yldpost(i%, j%) = .985 * yldpost(i%, j%)
'NB: This 1.5% yield loss corresponds to stand loss of 2-5%

(Gunsolus)
ELSE
appcost = mach(ms$%).CostAc
END IF

postcost(i%, j%) = (postherb(j%).unitCost * postherb(j%).avrate +
appcost) * fldSize%
‘PRINT USING "######"; 1%; j%; d3w(l, i%, j%); yldpost(is, j%);
postcost(i%, j%)
NEXT j%
NEXT i%
'resume$ = INPUTS(1)
FOR w% = 1 TO wnum$%
" s3w(wg) = (1 - weedparm(w%).s2germ) * s2w(wg) - weedparm(w$).s3death
* sOw(ws)
s3w(wg) = s2w(ws) - w2(w%) - weedparm(ws).s3mortpn * (1 -
weedparm(ws) .avgerm) * sOw(w%)
NEXT w$%
END SUB
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SUB WSPreTrt (wnum%, hl%, h2%, mf%, ms%, kl%(), k2%(), dlw(), ywf,
ppiherb() AS hfile, preherb() AS hfile, mach() AS mfile, fldSizes,
plcost, hl2%, d2w(), precost(), precode%(), preAvRat())

! Last update: 02/05/91
R R R kR ke T

'* WSPreTrt *
'* This subprogram calculates density of surviving weeds and corres- ¥
'* ponding yields after PRE-emergent treatment. *
I* *
'* Parameters passed to subprogram WSPreTrt are: *
' wnums$ Number of weed species in model *
b hls Number of PPI treatments *
% h2% Number of PRE treatments *
"% hl2% Number of PPI + PRE treatments (-1) *
' mf$% User-designated field cultivator code *
'* ms$ User-designated spray rig machinery code
"% kls(ws,g%) Array of PPI efficacy ratings

'k k2% (w%,1%) Array of PRE efficacy ratings for contrl
% i% on weed species w% *
' dlw(ws) Array of weed densities prior to PRE trt
' ywf Weed-free yield for this field *
'k ppiherb() Record array of PPI trt. costs, rates *
"% preherb() Record array of PRE trt. costs, rates *
tik fldSizes Field size (acres) *
% mach () Array of machinery names, costs, rates *
' plcost Cost of planting crop *
% fldSize% Field size *
"% *
'* Variables returned by subprogram WSPreTrt are: *
'k d2w(ws,1i%) Array of emerged weed densities *
s precost(ig) Array of total PRE treatment costs *
' preAvRat(i%) Array of PRE/PPI average rates *
% precode% (i) Array of PRE/PPI treatment codes *

R
FOR g% = 1 TO hls
FOR w% = 1 TO wnum$
d2w(ws, g%) = surv(kls(ws, g%)) * dlw(ws)
NEXT w$
IF ppiherb(g%).herbId = 0 THEN
appcost = mach(mf%).CostAc
ELSE
appcost = (mach(mf$).CostAc + mach(ms%).CostAc)
END IF
precost(gt) = (ppiherb(g%).unitCost * ppiherb(g$).avrate + appcost +
plcost) * fldSize$%
precode%(g%) = ppiherb(g%).herbId
preAvRat(g%) = ppiherb(g%).avrate
NEXT g%
j% = hls
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FOR i% = 1 TO h2%
IF preherb(i%).herbId = 0 THEN GOTO DropNoControl:
js =js +1
FOR w = 1 TO wnum$
d2w(ws, j%) = surv(k2s(ws, i%)) * dlw(ws)
NEXT w$
appcost = (mach(mf$).CostAc + mach(ms$).CostAc)
precost(j%) = (preherb(is%).unitCost * preherb(i%).avrate + appcost +
plcost) * fldSize%
precode%(j%) = preherb(i%).herbId
preAvRat(j%) = preherb(i%).avrate
DropNoControl:
NEXT i%

END SUB
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SUB WSSeedBank (wnum%, hl2%, h3%, d3w(), s3w(), weed() AS wfile, sOwl(),
w2())

! Last update: 05-02-91

# 33k kbbb sk sk ok ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok sk ok sk sk sk ek oo koo ke ke

' WSSeedBank *

'* This subprogram calculates the post-harvest weed seed bank for each*

'* species. *
"% *
'* Parameters passed to subprogram WSSeedBank are: *
"% wnums Number of weed species *
> hl2s Number of PPI/PRE treatments *
'k h3% Number of POST treatments *
'k d3w(ws,1i%,j%) Array of weed densities at harvest for each *
' PRE/PPI and POST treatment. *
¥ s3w(w) Post-cult weed seed density *
¥ w2(w) Post-cult weed germination *
"% weed(w%) .wlpropag Mean seeds per mature post-plant weed *
¥ NB: 80% post-plant weeds assumed killed by *
¥ cultivation *
' x weed(w$) .w2propag Mean seeds per mature post-cult. weed *
¥ experr(w) Array of expected values for error term *
(% *
'* Variables returned by subprogram WSSeedBank are: *
% sOwl(ws,1i%,j%) Array of expected seed bank densities post- *
Lo harvest, by weed species and PPI/PRE and POST*

1 ek e s sk ok e sk sk ok e ook e s sk ok e e sk ok e e sk sk e s e e s s o sk s ek ok sk s e sk sk e e sk sk ek sk sk ke e ek sk sk e e s ko ok
REDIM experr(wnum$)
experr(l) = 407
experr(2) = 95
experr(3) = 198
FOR i% = 1 TO hl2g
FOR j% = 1 TO h3s
FOR w% = 1 TO wnum%
sOwl(ws, i%, j%) = s3w(w%) + weed(ws).wlpropag * .2 * (d3w(w%, i%,
j%) - w2(ws)) + weed(ws).w2propag * w2(w%) + experr(ws)
IF sOwl(w%, i%, j%) < O THEN sOwl(w%, i%, j%) =0
NEXT w$
NEXT j%
NEXT i%
END SUB

2 e e e s s RN
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SUB WSTopRev (hl20%, h3o%, hl2%, h3%, theta, netpostl(), kimax%, kjmaxs,
topnet)

! Last update: 02/12/91

o

% WSTopRev *

'* This subprogram identifies the strategy with the highest net revenue*

'* exceeding the B/C threshold. *
% *
'* Parameters passed to subprogram WSTopRev are: *
% hl2% Number of PPI/PRE treatments (year 0) *
r% h3s% Number of POST treatments (year 0) *
'* hl2o0% Number of PPI/PRE treatments (year 1) *
% h3o% Number of POST treatments (year 1) *
'% netpostl(i,j,m,n) Array of net revenues from 2-yrs strats¥*
% theta Proportion by which weed treatment *
' threshold net revenue to exceed no *
' control net revenue level. *
"% *
'* Variables returned by subprogram WSTopRev are: *
"% topnet Highest net revenue of 2-yrs strategies*
% kimax$ PRE trt. no. earning highest net revenue
"% kjmax$ POST trt. no. earning highest net rev. *

B T T T e T
'
topnet = (1 + theta) * netpostl(l, 1, 1, 1)
kimax% = 1
kjmaxs = 1
FOR i% = 1 TO hl2o0%
FOR j% = 1 TO h3o%
FOR m$ = 1 TO hl2%
FOR n% = 1 TO h3%
IF netpostl(i%, j%, m%, n%) > topnet THEN
topnet = netpostl(i%, j%, m%, n%)
kimaxs = i%
kjmax% = j%
END IF
NEXT n$%
NEXT m$%
NEXT j%
NEXT 1%
ERASE netpostl
END SUB
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SUB WSTopRevMyopic (hl2%, h3%, netpost(), theta, kimax$%, kjmax%, topnet)
! Last update: 04/21/91

! ek ke ook ok ok s sk ok ok e sk ok ks sk ok e sk ok ke sk sk s sk sk e sk sk sk sk sk sk ok sk sk sk e sk sk ok ok s sk sk sk ek ok
"% WSTopRevMyopic *
'* This subprogram identifies the strategy with the highest net revenue*

'* exceeding the B/C threshold among myopic l-year strategies. *
"% *
'* Parameters passed to subprogram WSTopRevMyopic are: *
% hl2% Number of PPI/PRE treatments *
' h3% Number of POST treatments *
"% netpost(i,j) Array of net revenues from l-yr strats.*
ok theta Proportion by which weed treatment *
' threshold net revenue to exceed no *
' control net revenue level. *
' % *
'* Variables returned by subprogram WSTopRevMyopic are: *
% topnet Highest net revenue of 2-yrs strategies*
'k kimax$ PRE trt. no. earning highest net revenue
'k kjmax$ POST trt. no. earning highest net rev. *
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topnet = (1 + theta) * netpost(l, 1)
kimaxg = 1
kjmaxs = 1
FOR i% = 1 TO hl2%
FOR j% = 1 TO h3%
IF (netpost(i%, j%) > topnet) THEN
topnet = netpost(i%, j%)
kimax% = i%
kjmax$ = j%
END IF

NEXT j$%
NEXT i$%
END SUB
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SUB WSWeedGerm (wnum$%, weed() AS wfile, sOw(), slw(), s2w(), dlw(),
w0(), wl())
: Last update: 04/19/91

! ek ok sk ek ek sk s sk sk ok Sk sk sk s A sk sk ek sk ek ek ek ek ke ek ke ek ke ke ek

% WSWeedGerm

'* This subprogram calculates weed seedling germination as a function *
'* of seeds from previous season. *
"% *
'* Parameters passed to subprogram WeedGerm are: *
% wnums Number of weed species *
ik sOw(wg) Array of initial seedbank densities for*
Sk species w% (seeds/m2) *
ek weed(w%) .sOgerm Array of pre-plant germination props. *
ik weed(w$) .slgerm Array of germination proportions at PRE*
ik treatment *
S w0 (w%) Array of pre-plant germ. densities *
. wl(ws) Array of post-plant germ. densities *
! % *
'* Variables returned by subprogram WeedGerm are: *
fik slw(wg) Array of seedbank densities for species*
'k w$ at planting *
" dlw(ws) Array of emerged weed densities prior to
' PRE treatment *
"% s2w(ws) Array of seedbank densities prior to PRE
"% treatment *

R R T R R P B E RS S Eaa
’

FOR w$ = 1 TO wnum$

" slw(w%) = (1 - weed(w%).sOgerm) * sOw(ws)

' dlw(w$) = weed(w%).slgerm * slw(w$)

slw(ws) = sOw(ws) - wO(ws)

dlw(ws) = wl(wg)

s2w(ws) = (slw(ws) - dlw(ws))
NEXT w$

" swlost(f%, ws) = wOgerm(f%, w%) + wlgerm(fs, ws)
END SUB
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FUNCTION yield2 (wnum%, ywf, cropnum$%, compmax$%, comp() AS cfile, crop()
AS cropfile, d())

! Last update: 12/16/90
R R R R R R R R R R R R R R TR R R S e ey

"% yield?2 *
'* This function calculates expected yield based upon weed density. *
I* *

'* The yield equation is from Cousens’ hyperbolic model with individual*
'* weed species. At weed densities approaching zero, percent yield loss
'* is given by comp().i for species w% in crop c%. Maximum percent yld*

'* loss density of all weeds approaches infinity is crop().a. *
% *
'* Parameters passed to function yield are: *
'k wnums Number of weed species *
% ywf Expected weed-free yield *
"% cropnums Crop code *
'k compmax$ Number of observations in competition *
' array *
% comp () Record array of weed-crop competition *
' * parameters, including comp().1i *
"% crop() Record array of crop parameters, incl. *
' crop().a, maximum percent yield loss *
'x from weed competition *
"% d(ws) Array of weed densities/m2 *
"% *
'* The value returned by function yield is: *
"% yield2 Expected crop yield *

R T e
a% = crop(cropnumg%).a
idsum = 0
FOR c% = 1 TO compmax$
cropld$ = comp(c%).cropld
IF cropld%$ = cropnum% THEN
w$ = comp(c%).weedId
id = comp(c%).i * d(ws)
idsum = idsum + id
END IF
NEXT c%
yield2 = ywf * (1 - idsum / (100 * (1 + idsum / a%)))
END FUNCTION
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FUNCTION ypen (croplds, ywf, plwk$)

Last update: 05-02-91
T B e e ey

% ycpen *
"X Function ypen() calculates a crop yield penalty due to late *
'* planting. Value returned by ycpen is the proportion of potential *
'* yield lost. *
"% *
'* Parameters passed to ypen are: *
'k cropldsg Crop identification code *
¥ ywf Maximum weed-free yield *
'k plwks Planting week *
"% *
'* Data for yield penalty functions from: J.L. Gunsolus, "Mechanical and
'* Cultural Weed Control in Corn and Soybeans," Am. J. Alt. Ag. *
'* 5(1990): 114-119. *

e
pldays = 112 + plwky * 7
SELECT CASE cropld$
CASE 1
SELECT CASE plday$
CASE IS <= 120
ypen = 0
CASE 121 TO 130
ypen = .07
CASE 131 TO 145
ypen = .13
CASE IS >= 146
ypen = .24
END SELECT
CASE 2
SELECT CASE plday$%
CASE IS <= 135
ypen = 0
CASE 136 TO 145
ypen = .03
CASE 145 TO 156
ypen = .09
CASE 157 TO 166
ypen = .18
CASE 167 TO 176
ypen = .3
CASE IS >= 176
ypen = .43
END SELECT
END SELECT
END FUNCTION
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