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ABSTRACT 

A bioeconomic simulation model of weed management is 

developed in this research. The model identifies nearly 

optimal tactics for weed control in corn and soybean, based 

on weed population density estimates. By incorporating 

multiple controls and weed species into a dynamic model, it 

fills a gap between existing multiple species, multiple 

control static models and single species, single control 

dynamic ones. Its open design allows it to run with any 

suitable set of input parameter data. 

The model simulates weed germination, growth, repro­

duction, susceptibility to control treatments, and reduction 

of crop yields. Three annual weeds are included: mixed 

green and yellow foxtails, common lambsquarters, and redroot 

pigweed. Weed control recommendations are made by identi­

fying the optimal control that maximizes expected net income 

per acre for a one- or two-year planning horizon. 

Dynamic stochastic simulation experiments are conducted 

to test the recommendations module in the context of a syn­

thetic southwestern Minnesota corn and soybean farm. Exper­

iments examine annualized net farm income and herbicide load 

per acre for a six-year simulation under twenty states of 

nature. The experiments compare outcomes from various 1) 

levels of weed population information, 2) economic decision 



rules, 3) farm sizes, 4) initial weed densities, and 5) 

herbicide bans. 

Simulation results impute substantial value to weed 

population information, low initial weed seed levels, and 

availability of triazine herbicides. They also indicate 

that the quantity of herbicides used may be reduced if weed 

management decisions are based upon weed population informa­

tion. 
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I. INTRODUCTION 

1.1 Why Weeds Matter 

Weeds cause serious crop losses by competing for light, 

water, space and nutrients. A study by the Weed Science 

Society of America estimated the average annual value of 

U.S. crop losses due to weeds to be $7.5 billion during 

1975-79 (Chandler et al.). Corn (Zea mays L.) and soybeans 

(Glycine max (L.) Merr.) account for over half of these 

losses. 

Herbicides are the preferred method of weed control in 

the United States. They offer selective weed control that 

costs less than tillage or hand weeding and controls a 

broader spectrum of weed species than existing biological 

controls. Moreover, pre-emergent herbicides offer implicit 

insurance against the possibility that bad weather will 

prevent a farmer from destroying weeds by timely tillage 

once the crop emerges. Ninety-six percent of U.S. corn and 

soybean cropland was treated with herbicides in 1988. This 

accounted for 81% of all herbicides applied to U.S. crops 

that year (Osteen and Szmedra). 

A drawback of herbicide use is the potential health 

hazard posed. Human exposure to herbicides through residues 

consumed in food is slight, as is the concomitant risk of 

cancer (Archibald and Winter). However, herbicides contri-

1 
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bute significantly to groundwater contamination in rural 

areas. An estimated 46 million Americans drink water from 

groundwater supplies that may be contaminated by pesticides, 

which include insecticides, nematicides and fungicides, as 

well as herbicides (Nielsen and Lee). Two herbicides were 

found to be the most widespread pesticide contaminants in a 

1988 survey of 500 Minnesota wells. Atrazine was found in 

31% of the wells, while alachlor was detected in 3% (Klaseus 

et al.). Not coincidentally, these are the herbicides most 

commonly used on corn in Minnesota. Alachlor is also the 

number two choice for soybeans in Minnesota (National 

Agricultural Pesticide Impact Assessment Program, NAPIAP). 

Herbicides are more likely than other pesticides to 

enter the groundwater because 1) they are more heavily 

applied than other pesticides, 2) many are applied directly 

to the soil in pre-plant incorporated or pre-emergent treat­

ments, and 3) even post-emergent treatments are usually 

applied when crops and weeds are small and much soil is 

exposed. Where spray rigs are dumped or washed out, herbi­

cides can create point source contamination in addition to 

the non-point contamination associated with normal chemical 

treatment of crops. 

The groundwater contamination problem is typically cast 

as the result of an economic externality: Farmers perceive 

all the benefits of agricultural chemicals, while paying 

only some of the costs. In particular, they avoid paying 
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most of the environmental costs of water pollution. The 

conclusion is that they "overuse" chemicals. The public 

policy debate around reducing groundwater contamination 

focusses on introducing incentives or regulations forcing 

farmers to realize the full social costs of chemical use 

(Segerson). Policy alternatives recently proposed include 

bans, taxes, marketable use permits (see, e.g., Gianessi et 

al.), and public purchase of chemical use rights (Taff and 

Cox) . 

1.2 The Role of Information in Weed Management 

An alternative explanation for part of the chemical 

"overuse" is that farmers lack full information for maximi­

zation of private net benefits. Profit maximization pre­

supposes that the decision maker has complete information 

about prices and the production process. Yet at key deci­

sion making moments, most farmers possess very limited 

information on weed populations in their fields and their 

potential economic effects. 

The information problem is due in part to the timing of 

weed control decisions. Weeds may be controlled using her­

bicides at three stages during the growing season. Before 

the crop is planted, herbicides may be incorporated into the 

soil (pre-plant incorporated, PPI). After crop planting, 

they may be sprayed onto the soil surface (pre-emergent, 

PRE). Both of these techniques kill weed seedlings before 
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emerge. After the weed seedlings emerge, they may be killed 

by tillage or by herbicide (post-emergent, POST). Weed 

seedlings are visible only prior to the POST treatment. 

Earlier weed control decisions must be made on the basis of 

forecasted weed infestations. Ad hoc decisions tend either 

to follow rules of thumb or to be based upon weed pressure 

the previous season. But many viable weed seeds in the soil 

are holdovers from previous years. At best, these decisions 

are based on weak forecasts of the potential weed problem. 

Good information on the weed seed population and asso­

ciated germination rates is not enough. Crop yield loss due 

to weeds is the key economic component of the weed problem. 

Even if all prices and costs are known in advance, evalua­

ting the need for weed control requires three further kinds 

of information. The first concerns crop yield loss due to 

each weed species as weed density increases. Such a produc­

tion function allows estimation of the opportunity cost of 

failing to control weeds. The second concerns the efficacy 

of available weed control measures toward the weed species 

present. Knowledge of likely control efficacy allows pre­

diction of yield loss in the presence of different weed 

control treatments. The third type of information concerns 

the rate of seed production and mortality by each weed that 

reaches maturity. Combined with the first two kinds of 

information, these weed population growth parameters permit 

forecasts of possible crop yield loss in future years. 
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Previous research has highlighted the differences in 

optimal weed control strategy between dynamic weed-crop 

models (which include weed population growth parameters) and 

static ones (which do not). Five studies from the United 

Kingdom and Australia found that the economic threshold for 

weed control occurs at a lower weed density in a dynamic 

model than a static one (Auld et al., Cousens et al. 1986, 

Doyle et al., Murdoch, Pandey 1989). Doyle et al. and 

Cousens et al. (1986) found that the dynamic threshold was 

not reached every year, so optimum herbicide application was 

lower than conventional practice. In a dynamic bioeconomic 

model of Colorado continuous corn with two weed variables 

(aggregate grasses and aggregate broadleaves), King et al. 

also found optimal herbicide use to be lower than conven­

tional practice. These results suggest that better biolo­

gical information about weeds in crops could increase long 

term farm net incomes while reducing chemical use. 

No model reviewed has combined dynamic analysis with 

multiple individual weed species. Nor has any combined 

dynamic analysis with multiple weed control treatments. 

Prior efforts have 1) modeled the weed management problem 

dynamically with aggregated weeds and a single control (King 

et al.), 2) modeled it dynamically with a single weed 

species ·and a single control {Auld et al., Cousens et al. 

1986, Doyle et al., Murdoch, Pandey 1989, Taylor and Burt), 

or 3) modeled it statically with many individual weed 
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species and control treatments (Kells and Black, Kidder et 

al., Lybecker et al. (1991b), Wilkerson et al. 1991). 

Pannell (1989a, 1989c) has modeled static control of a 

single species in a single crop with variable rates of a 

single treatment. Cousens et al. (1987b) have stressed the 

need both for multi-species weed models and for stochastic 

modeling. 

A dynamic, multiple species, multiple control bioeco-

nomic weed management model has the potential to identify 

weed management strategies that are more profitable than 

those currently in use. Based upon results from previous 

dynamic weed-crop studies, it is also expected that such a 

model will recommend less herbicide use over the long run 

than conventional practices which entail regular spraying. 1 

In this respect, the model may facilitate the substitution 

of management for agricultural chemicals that has been advo-

cated by proponents of low-input agriculture (Daberkow and 

Reichelderfer). The value of weed population information is 

the key to the model's usefulness. 

The value of weed population information depends in 

part upon the farmer's ability to act upon it. For farmers, 

weather makes the time interval for effective action a 

1 It is important to recognize, however, that such 
herbicide reductions occur only in the long run. In early 
years, a dynamic weed control strategy is likely to call for 
more weed control than a static one, in order to reduce the 
weed seed population. 
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random variable. Apland (1988) has defined field time as 

the "time during which conditions are satisfactory for field 

work" (p. 1). The prevalence of pre-emergent herbicide 

applications on Minnesota corn and soybean farms can be 

interpreted as a response to the risk that rainy weather 

will impede field access for timely cultivation, rotary hoe 

or post-emergent herbicide treatment. 

For a weed model to be of practical value as a manage­

ment decision tool, it needs to perform well under a wide 

range of environmental conditions. This calls for model 

evaluation in a context which simulates both environmental 

variability and farm resource constraints. 

The analytical approach followed in this study is 

computer simulation of the biological and economic envi­

ronment. As Jock Anderson has noted, simulation is useful 

when "the degree of control and isolation imposed on a 

formal experiment may prevent ready extrapolation to the 

less-controlled real world" (p. 35). This is certainly true 

of agronomic experiments in weed control. Simulation can 

accommodate rapid experimentation with a stochastic system 

which, under field conditions, is only observable once each 

season. By generating sets of outcomes from applying 

management strategies to random variables, it allows sta­

tistical evaluation of results. In addition, sensitivity 

analysis of a simulation model can aid investigators in 
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identifying those research areas likely to offer the 

greatest returns. 

1.3 Objectives 

The problem to be examined in this research is how 

information concerning weed population dynamics can be used 

to improve farmer decisions on weed control. "Improve" in 

this sense means increase the farmer's expected utility, 

where expected utility refers to the farmer's preferences 

over different probability distributions of projected net 

returns. 

The initial objective is to design and validate a 

dynamic bioeconomic model for control of multiple weed 

species in corn and soybean. The model should include a 

variety of control alternatives. It should provide recom­

mendations on weed control both before and after weed 

seedlings emerge. 

The second objective is to apply the bioeconomic model 

to evaluate weed control strategies by stochastic simula­

tion. Strategies to be evaluated will include static and 

dynamic decision rules. The value of weed population infor­

mation will be estimated for these under a range of sce­

narios with different crops, crop rotations, producer risk 

attitudes, and initial weed pressure. 

The third objective is to apply the best decision rule 

to predict farm-level impacts of bans on atrazine and the 
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triazine herbicides. Impacts on both farm net income and 

chemical use will be examined. 

1.4 Hypotheses 

This research will test a set of hypotheses using 

results from multi-year stochastic simulations with the weed 

management model. The following nine null hypotheses are 

stated in falsifiable form: 

Hl. Strategies using weed population information yield 

discounted net income streams equal to those that 

do not. 

H2. Strategies using weed population information 

result in applying amounts of chemicals equal to 

those that do not. 

HJ. For a given level of information, strategies using 

dynamic economic decision rules yield discounted 

net income streams equal to ones using static 

rules. 

H4. For a given level of information, strategies using 

dynamic economic decision rules result in applying 

amounts of chemicals equal to ones using static 

rules. 

H5. An increase in acreage farmed with the same labor 

and machinery set does not affect the discounted 

net income stream per acre. 
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HG. Low and high initial weed seed populations will 

result in equal discounted net income streams. 

H7. Low and high initial weed seed populations will 

generate equal amounts of chemical application per 

acre. 

HS. Herbicide bans will not affect the stream of 

discounted net income. 

H9. Herbicide bans will not affect chemical applica­

tion per acre. 

The thesis is organized into six chapters. In Chapter 

2, the economic theory of pest management is reviewed, with 

special attention to weeds and to model evaluation under 

uncertainty. Chapter 3 describes the simulation model in 

detail. Chapter 4 presents the procedures used to develop 

parameter estimates to run the model and to validate it. 

Chapter 5 presents results from the deterministic and 

stochastic simulation models. It discusses outcomes of 

stochastic simulations used to a) estimate value of weed 

population information, b) evaluate alternative decision 

rules, c) compare results from different initial weed seed 

densities, d) evaluate the importance of timely weed 

control, and e) compare herbicide policy alternatives. 

Chapter 6 summarizes the contribution of the model and 

identifies opportunities for future research. 



II. A CONCEPTUAL MODEL OF WEED MANAGEMENT ECONOMICS 

The weed management decision aid developed in this 

research builds upon a conceptual model of pest management 

economics. The model is formulated as an economic control 

problem subject to a set of biological processes. This 

chapter presents the theoretical basis for the normative 

decision aid developed subsequently. It further presents a 

framework for ex ante testing of the decision aid. 

2.1 Economics of Pest Management 

Pest control inputs differ from other agricultural 

inputs in that they do not directly increase output, but 

instead reduce losses caused by a damage agent (e.g., a 

noxious insect, weed or plant disease). The general model 

of pest management in crops is concisely summarized by 

Feder. It presupposes the existence of a damage function 

giving crop loss as a function of pest numbers. Pesticide 

usage can reduce pest numbers via a "kill function" which 

generates the proportion of the pest population controlled 

for a given amount of pesticide applied. With respect to 

application rate, the kill function is assumed to have a 

positive first derivative and a negative second derivative 

on the closed interval [0,1]. Treating other variable costs 

11 
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as fixed, a slightly modified version of Feder's profit 

function can be written, 

1I = p{yo - D(W* [1-k(H)] )} - CH - C 0 (2 .1) 

where Il denotes profit, Y is crop yield, P is product price, 

D is the yield loss or damage function, W is the number of 

pests, k € [0,1] is the kill function, H is the amount of 

pesticide used, c is pesticide unit cost, and c0 denotes 

variable costs unrelated to pest control. The superscript o 

denotes pest-free levels. It is assumed that damage in­

creases with weed density (D'(W) > 0) and efficacy increases 

with treatment dosage (k' (H) > 0) but is independent of weed 

density (k' (W) = 0). 

As it stands, pests and pesticides each constitute a 

single variable in equation (2.1), as though each represents 

a homogeneous group. Single pest models are useful for 

analytical purposes; however, they abstract considerably 

from reality. Yet even in the insect control economics 

literature, multispecies models are rare (Boggess et al., 

Regmi). Weeds are far from homogeneous. They vary not only 

in the level of damage each species inflicts on the crop, 

but also in the susceptibility of each to different control 

treatments. Consequently, both individual weed species and 

control treatments must be explicitly included in the model. 

The model can be simplified by recognizing that most pesti­

cides are applied at recommended rates. However, the dif­

ferentiability of equation (2.1) is sacrificed. Instead, a 
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discrete level of expected profit is associated with each 

control alternative. Rewriting equation (2.1) as an optimi-

zation problem using small letters to denote vectors and 

capitals to denote scalars, 

max re 
h 

= P{Y0ij - D( [1.il.
1j-k(wsp,h) ] 1w)} - (c 1Ij)h - c 0i}2.2) 

where ~ is a j vector of net revenues corresponding to weed 

control treatments h, w is an i vector of weed species den-

sities, wsp is an i vector of weed species identifiers, h is 

a j vector of control treatments, k is an (ixj) matrix of 

weed mortality functions relating each weed species to each 

control treatment, c is a j vector of unit costs associated 

with treatments h, 1 1 is an i vector of ones, 1j is a j 

vector of ones, and Ij is a (jxj) identity matrix. 

2.1.1 Economic management of a biological system 

Biological dynamics add another layer of complexity. 

Weed seeds deposited in one season will either die or germi-

nate over a period of years. A dynamic economic model 

requires endogenous functions for the seed bank and resul-

tant weed density levels. For planning horizons extending 

beyond one season, outcomes of management practices need to 

be discounted. 

Assuming that the farm manager's utility is defined on 

discounted cumulative net income at the end of a planning 

horizon, management strategies can be evaluated using the 
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net present value of accumulated profits (NW) discounted at 

rate r. The dynamic version of equation (2.2) thus becomes, 

T 

max NWT= L 
t=O 

h 

P{Y~\ j -D ( w~) }- ( c~Ij) ht- cg\ j 
( 1 + r) t 

subject to the equations of motion, 

wt= w(st-1) 

st = s ( s t-1 I wt I w~) 

w~ = [\ il
1
j - k(wsp, h)] 'we 

(2. 3) 

(2.4) 

(2. 5) 

(2. 6) 

where NWT is a jr vector of net wealth positions in period T 

contingent upon the T-period path of j control treatments 

followed. w(st_ 1) is an i vector germination function rela­

ting the current number of weeds to the seed bank for each 

species, with w' ( st_ 1) > O assumed. w~ is an i vector of 

weeds surviving to compete with the crop and to reproduce. 

s is an i vector function associating end of season weed 

seed bank density (st) with seed bank density in the pre-

vious season, (st_ 1), cumulative weed seedling germination 

during the season (wt) , and seed production by weeds sur­

viving to reproduce (w~) It is assumed that s' ( st_ 1 ) > O, 

s' (wt) < o, and s' (w~) > o. 

The seed bank state variables link control activities 

in one period to repercussions in subsequent ones. Under 

the assumptions stated above, differentiation of equation 

(2.3) with respect to the arguments of the seed bank equa-
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tion (2.6) reveals that net wealth is decreasing in weed 

seed bank and weeds at harvest in any time period. The 

decrease is greatest in the early periods of the planning 

horizon because resulting increases in the weed seed bank 

cause increased weed populations and yield losses of longer 

duration. The derivative of net wealth with respect to 

cumulative weed germination is indeterminate, since germi-

nation is associated with both decline of the seed bank and 

increase in number of weeds at harvest. On the basis of 

these signs alone, it is clear that the dynamic problem in 

equations (2.3-2.6) is considerably more sensitive to con-

trol actions than the static problem in equation (2.2). 

The dynamic maximization problem is framed here as one 

in which the control treatment is the choice variable. This 

requires a word of explanation. Since the existing weed 

management literature1 generally concerns a single control 

treatment, it tends to focus upon treatment rate and weed 

density as choice variables. Two management strategies are 

typically examined: 1) take weed density as given and choose 

the treatment rate that maximizes utility, or 2) take the 

treatment rate as given and choose the weed density thresh-

old at which to apply it. Moffitt and Pannell (1990) have 

both demonstrated that the optimal rate approach of the 

1 Cousens et al. (1986), Doyle et al., Murdoch, Pandey, 
and Taylor and Burt examine a single weed in a single crop; 
King et al. and Lybecker et al. (1988, 1991a) look at two or 
three weed species aggregates in a single crop. 
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first strategy insures profits that will always be at least 

as high as those for the weed density threshold approach. 

In practice, herbicides are applied at or near the 

recommended rates published on their labels. Typically, the 

"kill function," giving weed mortality as a function of her-

bicide rate, is unknown outside the manufacturer's labora-

tories. For practical purposes, the optimizing farm manager 

is obliged to take application rates (and expected efficacy) 

as given. This study works from the premise that realistic 

choice variable is which control treatment to apply (at the 

recommended rate). "No control" is included in the treat-

ment set, so there is an implicit threshold weed density 

determining whether or not to choose the "no control" 

option. 

2.1.2 Thresholds for weed control 

To characterize the density threshold for weed control, 

Auld et al. have defined a net gain function, G(·), as the 

gain in net revenue,~(·), from controlling weeds. In 

static form from equation (2.2), this is simply 

max G ( whr, P, c r) = 1t ( whr, P, c r) - 1t (who, P) 
h 

(2.7) 

where whr = [1 11j' - k(wsp,hr)] •wh0 denotes the j vector of 

post-control weed populations corresponding to the j vector 

of treatments hr at the recommended rate, wh0 denotes the 

uncontrolled population of weeds at harvest, and 
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cr = (c'I)hr is the cost of control at the recommended rate. 

Note that G(") can take negative values if the cost of weed 

control exceeds its benefits. The threshold of interest 

here, variously termed the "economic-injury level" (Stern et 

al.), the "action threshold" (Moffitt et al., Moffitt and 

Farnsworth) or the "economic threshold" (Cousens 1987) is 

the weed density whO* satisfying G (wh0*) = o. This is the 

pest population density "at which the cost of control 

measures equals the increased return on yield which would 

result" (Cousens 1987, p. 15). 1 This leads to the decision 

rule that weeds should be controlled at any pre-treatment 

density who exceeding the threshold wh~, 

l 
r• 

hI* if [D(wh 0 ) -D(whr•)] ~ _E_ 
h= p 

O otherwise 

(2. 8) 

where hr* denotes the weed control that maximizes net reve-

nues at recommended application rates, whr* denotes the 

resulting i vector of post-control weed species populations, 

and er* denotes the combined chemical and mechanical costs 

of weed treatment at the recommended rate. 

However, the static economic threshold ignores the 

fundamental recursion relationship inherent in this dynamic 

1Note this differs from Headley's classic marginalist 
definition of the economic threshold as "the population that 
produces incremental damage equal to the cost of preventing 
that damage" (p. 105). Headley assumes that pesticide rate 
is a control variable as well as the pest population level 
at which to apply the pesticide. 
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problem: The value of the current state is a function both 

of its value per se and of the value of future states that 

can be reached from it. This is the essence of Cousens' 

(1987) dynamic "economic optimum threshold." Failure to 

control weeds in the current period not only reduces current 

crop yields. If aggregate weed seed production is density-

independent, it also leads to greater weed reproduction, 

which reduces returns in the next and subsequent periods. 

The dynamic optimum weed control path is expressed 

using the tools of dynamic programming. To simplify the 

notation of equations (2.3-2.6), retain w~ and ht, letting xt 

represent all other variables. If the problem is solved 

backwards from the final stage, then by Bellman's principle 

of optimality, the optimal path may be found by solving at 

each prior stage for the control that maximizes the value of 

the current stage plus that of the subsequent actions. 

Adapting the structure used by Kennedy to the notation at 

hand, the recursive solution equation to the dynamic pro-

granuning problem in equations (2.3-2.6), can be stated, 

vt{w~} = max [ 7t t{w~, xt, h) + Vt+i {s{w~, xt, h)}] 
h 

(2. 9) 

where Vt(") is the current period value function, ~t is 

current period net returns, Vt+1 (") is the discounted value 

function for the next period, S(·) (borrowed from the seed 

bank equation) is the transition function linking period t 

with period (t+l), t=T ... 1. By assumption, the initial 
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condition is given and a transversality condition fixes the 

value of the terminal state. 

Applying this notion to Auld et al.'s formulation of 

equation ( 2. 8) , define DVt+1 (~, xt, ht) as a value of future 

yield damage function. Then, revising equation (2.8), the 

dynamic economic threshold can be expressed as the weed 

density in period t that solves the dynamic version of (2.7) 

for w~0* generating the decision rule, 

(

hn if [D ( w~0 ) - D ( w~n) -DVt+l {w~·, xt, hj] ~ 
h = 

0 otherwise 

er 
p ( 2. 10) 

Under the assumptions of equations (2.3-2.6), damage is an 

increasing function of weeds at harvest, which in turn are 

indirectly an increasing function of weeds at harvest -- and 

hence of weed control in the previous period. As Figure 

2.1 illustrates, this implies that 1) the dynamic net gain 

function (G0 (w)) lies above the static one (G5 (w)), and 2) 

the dynamic economic optimum threshold (wr) lies at a lower 

weed density than the static economic threshold (w0*). 

2.2 simulation versus Optimization 

The weed management problem is one of finding an 

optimal weed control strategy over the farm manager's 

planning horizon. As such, an optimization algorithm such 

as mathematical programming or dynamic programming would 
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Figure 2.1: Dynamic and static net gain functions 
compared. 

seem appropriate. Unfortunately, both present serious 

computational drawbacks related to the fact that at each 

time period after initialization, state variables explicitly 

depend upon the sequence of previous controls. This creates 

a formidable data storage problem analogous to that of 

numerous state variables in a control problem (Moffitt and 

Farnsworth) . The dimensionality problem can be surmounted 

only by accepting a "near optimal" solution incorporating 

few controls and making simplifying assumptions to reduce 

the number of state variables (Taylor and Burt, Zacharias 

and Grube). For an integer mathematical programming model 

the dependence of states on prior controls implies that the 
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number of "activities" grows exponentially with each time 

period added to the planning horizon. In particular, if 

both pre- and post-weed emergence control treatments are 

allowed, the length of the discounted cumulative profit 

vector associated with the dynamic control problem in 

equations (2.3-2.6) becomes unmanageable, especially on a 

microcomputer. For 10 pre-emergent and 8 post-emergent 

controls, 512,000 net wealth values must be evaluated over a 

three-year planning horizon. Both optimization techniques 

are thus impractical for more than a handful of control 

treatments or very few periods. 

Two added drawbacks of dynamic programming are, first, 

it requires assigning discrete values to the state vari­

able ( s). For the weed seed bank state variables, this can 

distort the process of biological reproduction. Second, 

modelin~ multiple weed species aggravates the already 

daunting dimensionality problem. 

Simulation is well suited to the representation of 

large, complex systems (Orcutt) and their inherent stochas­

ticity (J. Anderson). Moreover, it is more flexible and 

freer of dimensionality problems than the optimization 

techniques considered. For these reasons, it has been used 

in other recent economic analyses of biological pest 

management (Boggess et al., King et al., Regmi, Reichel­

derfer and Bender). This study's objective of designing an 

economic framework for a set of biological submodels makes 
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paramount the need for flexibility and structural openness. 

Consequently, simulation was chosen as the analytical 

method. 

Simulation requires accurate representation of the 

systems being modeled. For weed management, those systems 

are largely biological. Given the choice of simulation over 

optimization methods, identifying decision rules for approx­

imately optimal management strategies becomes important. 

Specific approaches to biological modeling and economic 

decision rules are presented in Chapter 3. One of the rules 

employed is, in fact, a dynamic programming optimal control 

over a two-year time horizon. 

2.3 Evaluation of Model Recommendations 

The weed management model presented above abstracts 

from reality in two important ways. First, it is deter­

ministic, relying upon expected values of yield loss and 

weed population change in order to develop recommended 

strategies. Second, it ignores constraints on farm labor, 

management and machinery resources. In fact, uncertainty 

touches farm production in a variety of ways. Weather 

conditions affect crop growth, weed germination and growth, 

and the availability of workable field days. Field time 

constraints imposed by labor and machinery endowments 
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combined with inclement weather limit the potential for 

timely management. 

If untimely management causes reduced yields, then a 

management strategy that is optimal from a per-acre, deter­

ministic standpoint may not be so in a whole-farm, stochas­

tic framework. One operating hypothesis based upon this 

difference is that farmers "overapply" pre-emergent herbi­

cide for fear they will lack the time to apply post-emergent 

weed control. 

In order to test the sensitivity of model recommenda­

tions to the uncertainties and time constraints inherent in 

farming, prior evaluation is in order. Ex ante evaluation 

of the recommendations model is carried out through stochas­

tic simulation of weed and crop management in a whole farm 

framework. The whole farm framework introduces intrasea­

sonal timeliness considerations to the general model of 

equations (2.3-2.6). Crop yield penalties are associated 

with untimely completion of management tasks such as 

planting and weed control. The weed-free yield of equation 

(2.3) is reformulated as Y~, 

y"'O = yo ( 1 - 0"' ) ( 2. 11) 

where 6
7 

€ [0,1] is the proportion of potential crop yield 

lost by time r during cropping season t. Actual crop yield 

may be further reduced by weather-induced treatment efficacy 

failures or the infeasibility of post-emergent treatments 

beyond a given stage in the weed or crop life cycle. 
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For a farm with more than one field, discounted cumu-

lative farm net income is defined as the summation over all 

fields of discounted cumulative per-acre net income times 

the acreage (Af) of each field (f). Let ~ft denote net 

revenue per acre from field f in season t (as in the numer-

ator of equation (2.3)), except that Y~ substitutes for Y0 • 

Then discounted cumulative farm net income (FNW) at the end 

of the planning horizon is 

T F 

FNWT =EE 
t=O f=l 

Ai1t ft ( 2 .12) 
( 1 + r) t 

2.3.1 Choosing among distributions of discounted net income 

streams 

Stochastic simulation generates distributions of 

discounted cumulative farm net incomes. Choosing among 

these distributions requires assumptions about farm manager 

attitudes toward risk. 

Expected utility theory provides a framework within 

which attitudes toward risk can be examined. Under the 

assumptions that preferences are ordered, continuous, and 

independent, there exists a utility function u such that 1) 

for any risky prospect x or y, u(x) > u(y) if and only if x 

is preferred to y, and 2) the expected utility of a risky 

prospect equals the utility of the expectation of the risky 

prospect (Arrow, Hernstein and Milnor). 
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Within the context of expected utility theory, two 

general approaches can be taken to choosing among empirical 

distributions of revenue gains. The method of stochastic 

dominance identifies general classes of preferences over 

which outcome distributions can be classified as risk effi­

cient or not. Alternatively, single valued utility func­

tions associate specific levels of utility with a given 

attribute. Certainty equivalent money metrics of utility 

can be developed from some single-valued utility functions. 

These allow interpersonal utility comparisons. This re­

search assumes specific single valued utility function forms 

in order to make more discriminating comparisons than are 

possible using stochastic dominance. 

According to the definition of Keeney and Raiffa, "a 

decision maker is risk averse if he prefers the expected 

consequence of any nondegenerate lottery to that lottery" 

(p. 149). One measure of risk aversion that is invariant to 

linear transformations of the utility function is the Pratt­

Arrow coefficient of absolute risk aversion, l. This is 

defined as l = -u"(~)/u'(~), where u is the individual's 

utility function for attribute ~. The Pratt-Arrow coeffi­

cient can be interpreted as the rate of change in marginal 

utility of~ (Raskin and Cochran). 

Comparing the utility of decision makers with different 

levels of risk aversion is complicated, and especially dif­

ficult without a common measuring unit. One money metric of 
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utility is the certainty equivalent, "the amount x such that 

the decision maker is indifferent between (lottery) L and 

the amount x for certain," where L is a lottery yielding 

various possible levels of outcome variable x 1 with asso-

ciated probabilities (Keeney and Raiffa, p. 143). A family 

of functional forms that lends itself to money metric 

comparisons of expected utility is that corresponding to 

constant absolute risk attitudes, given by 

{

-e-h 
U(1t) = 1t 

e -.h 

for 1 > O 
for 1 = o 
for 1 < o 

( 2. 13) 

where e is the natural exponent (Keeney and Raiffa, p. 167). 

Constant risk attitude utility functions allow evaluation of 

weed management strategies over a range of specified levels 

of risk aversion or preference. The money metric of utility 

provided by the easily-calculated certainty equivalent is 

the means of doing this. For these functions, the certainty 

equivalent of u(~), ~ce' for a distribution of outcomes on 

'ff I is 

1tce 

ln E[-U(1t)] 

l 
E [ 1t] 

ln E [ u ( 1t)] 

1 

for .t > o 
for .t = o 
for 1 < o 

( 2. 14) 

where E is the expectations operator (Robison and Barry, p. 

38) • 
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2.3.2 Value of weed population information 

The value of information to a decision maker with a 

specified utility function can be inferred from the differ­

ence in certainty equivalents between information states 

(Byerlee and Anderson, Regmi) . Byerlee and Anderson use the 

notion of compensating variation to make an important 

distinction between the value of a prediction and that of a 

predictor. The former is the amount of money which would 

leave a decision maker indifferent between the. posterior 

expected utility of maximizing expected utility with prior 

information and that of having done so with the prediction. 

The value of a predictor must be judged over the range of 

stochastic states which it purports to predict. The predic­

tor's value is the amount of money which would leave the 

decision maker indifferent between the posterior expected 

utility of maximizing expected utility with prior informa­

tion and the integral over all states of nature of having 

done so with the prediction. This definition of the value 

of a predictor will be applied to estimate the value of weed 

population information from stochastic simulation results. 

With broad brush strokes, this chapter has laid out a 

conceptual model of weed management along with methods for 

evaluating its performance. The next chapter presents a 

computer model that implements the ideas introduced here. 



III. THE SIMULATION MODEL 

The simulation model described in this chapter makes 

operational the theoretical model presented in Chapter 2. 

It is composed of two parts: a recommendations module 

(WEEDSIM) and a whole farm model (WFARM). The former gene­

rates ex ante weed control recommendations using information 

about weed seed or seedling populations combined with 

expected rates of weed germination and crop yield loss due 

to weeds. The latter simulates the labor and machinery 

resource constraints and probabilistic field time con­

straints that characterize actual farms. The simulation 

model is written in Microsoft QuickBasic (version 4.5); a 

listing of the computer program may be found in Appendix 

A.2. This chapter describes the structure and program flow 

of the simulation model. 

Both the recommendations module and the whole farm 

model are designed to be flexible and open to evolution. 

Flexibility is incorporated in two ways. First, the program 

is written in modular fashion. Virtually all program 

operations are executed by procedures called from the main 

program. These can be modified or replaced without harming 

the operation of the larger model, so long as the required 

values are passed back from the subroutine to the main 

28 
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program. Second, all numerical parameters required to run 

the model are read in as text files. Hence, without 

changing any program code, input parameters can be changed 

as desired. The model's flexibility is intended to facili­

tate its evolution as biological modeling advances. It is 

anticipated that some of the simple subroutines currently 

based on statistically estimated relationships will even­

tually be supplanted by biological process models. 

3.1 structure of the Recommendations Module 

The purpose of the recommendations module is to iden­

tify the most attractive treatment strategy. Three types of 

decision rules are available. All three require crop yield 

predictions for the current season. One also incorporates 

yield predictions for the next season. These predictions 

rely upon a system of biological equations that predict 

yield loss, weed control, weed germination, and evolution of 

the weed seed bank. This section will begin with a dis­

cussion of the decision rule alternatives and proceed to 

examine their biological data requirements. 

The recommendations module runs on a set of parameter 

data files. Appropriate files may be prepared by any 

researcher capable of supplying suitable coefficients for 

the weed germination, weed seed production and mortality, 
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and crop yield equations that run the model. 1 Additional 

input files include data on the cost, rates and efficacy of 

weed control treatments. Initial values supplied by the 

user include crop name, rotation, expected price and expec-

ted weed-free yield, the discount rate, variable costs per 

acre, and weed seed or seedling density per square meter (by 

species). The weed density values are critical -- they 

provide the necessary initial values for simulation of 

expected weed populations and resulting crop yield loss. 

The program flow of the WEEDSIM recommendations module 

is illustrated in Figure 3.1. Based upon initial weed seed 

counts provided by the user, WEEDSIM calculates expected 

pre- and post-planting weed germination. Every possible PPI 

and PRE weed control treatment included in the model is 

evaluated jointly with every possible POST treatment. For 

each PPI/PRE and POST pair, the expected yield is calculated 

from the expected density of weeds at harvest. The asso-

ciated present value (PV) of net returns is calculated from 

user-supplied cost and crop price information. If the user 

has specified a dynamic (e.g., two-year) decision rule, the 

model calculates the expected change in the weed seed bank 

for each species, and then evaluates all PPI/PRE and POST 

weed control combinations for the following year, starting 

from each combination in the initial year. WEEDSIM recom-

1 Procedures used for statistical estimation of the 
parameters used in this thesis are outlined in Chapter 4. 



Year t+1 

31 

Pre-plant 
weed germination 

Poat-plant 
weed germination 

Weed 
aeedbank 

Crop 
yield 

PV net return 

Weed seed 
counts 

Coata, 
ef flcacy 

Choose beat NPV 

WEEDSIM Flow Chart 

Fiqure 3.1: Flow chart of the WEEDSIM recommendations 
module. 

mends the PPI/PRE and POST pair for the initial year that 

generates the highest net present value (NPV) for the speci-

fied decision rule. The post-emergence recommendations 
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module, PostWEEDSIM, is identical, except that it begins 

with the "POST action" stage using weed seedling counts 

provided by the user. The economic decision rules and the 

biological submodels are discussed below. 

3.1.1 Economic decision rules 

The three economic decision rules included in the 

recommendations module are: 1) a "myopic" rule that makes 

recommendations maximizing current season expected net 

revenue, 2) a "cautious myopic" rule that applies a lower 

threshold for weed control to the same one-year planning 

horizon, and 3) a "foresighted", two-year rule that chooses 

the current year weed control strategy based upon expected 

returns over the current year and the next. 

The "myopic" rule recommends the weed control action 

(including "no control") that maximizes the difference 

between the value of yield saved in the current year and the 

cost of treatment. Recalling the algebraic statement of the 

problem in equation (2.7), this rule can be stated: 

max G(whr, P, c r) = 1t (whr, P, c r) - 1t (wh 0 , P) 
h 

Based upon initial weed seed counts provided by the user, 

the model forecasts weed density and its impact on current 

year crop yields. Expected yields are calculated for all 

combinations of pre- and post-emergent weed control. From 

the resultant expected net revenue values (calculated in 
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subroutine WSPostRev), the model selects the highest (using 

the sorting subroutine WSTopRevMyopic) and makes its recom-

mendation accordingly. This is the kind of decision rule 

employed in the multiple weed species bioeconomic models 

currently available or in development for field use 

(Lybecker et al., 1991a, Wilkerson et al., 1991). 

The "cautious myopic" decision rule (also implemented 

by WSTopRevMyopic) is designed to recognize that a dynamic 

optimal weed control strategy maintains a lower equilibrium 

weed population than a static one. The "cautious myopic" 

decision rule recommends weed control when it is nearly 

profitable--but not quite, given a single year planning 

horizon. This results in performance over time that may be 

superior to the strictly myopic rule. Mathematically, the 

"cautious myopic" rule is a variant of the myopic one: 

max G ( whr , p, c I) = 1t ( whr , p, c r) - ( 1 - e ) 1t ( wh0 , p) 
h 

(3 .1) 

where e € [0,1] represents the proportion by which the no 

control base case is decreased. The rule implies greater 

willingness to treat weeds than in the myopic profit-maximi-

zing case. It seeks to mimic the optimal dynamic weed con­

trol threshold at w~* in Figure 2.1, while still using the 

more easily computed myopic net gain function Gs(w). It 

does so by lowering the net gain threshold for implementing 

weed control from o to -e~cw0 ), as shown in Figure 3.2. 

Computationally, it is equivalent to the myopic rule, except 
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that it uses (1 - O)ff(wO) as the base case in selecting the 

optimum treatment rather than ff(w0). The "cautious myopic" 

rule is related to the benefit-cost ratio (B/C) criterion 

used by Regmi. However, with more than two treatments, 

present value of net revenue is a better measure, since a 

suboptimal strategy may appear attractive under the B/C 

criterion if its cost is low. 

Net Gain (G(w)) 

v1:v1· 
0 Weed density (w) 

Fiqure 3.2: "Cautious myopic" decision threshold emulates 
the dynamic threshold with a static one. 

The two-year decision rule forecasts expected yields 

one year into the future. In order to do this, it predicts 

seed production by those weeds that reach maturity under 

each weed control scenario in the current year, using sub-



35 

routine WSSeedBank. This creates as many predicted initial 

seed bank conditions for year 2 as there are paired PPI/PRE 

and POST control treatments. For each predicted initial 

weed seed bank in year 2, the model repeats the procedure of 

predicting expected yield for each weed control treatment, 

us ing subroutine WSNextYear. Finally, the model selects the 

combination of treatments in years 1 and 2 that yield the 

highest expected present value of net wealth over the two 

year period (using subroutine WSTopRev). The PPI/PRE treat­

ment for year 1 from this combination is the one the model 

recommends. In the final year of a given planning horizon, 

i t substitutes a myopic decision rule for the two-year rule. 

The two-year rule uses the dynamic decision rule (equa­

t ion (2.10)) to obtain an optimal control over a two-year 

t ime horizon. Among the three decision rules, only this one 

explicitly incorporates weed seed reproduction and death. 

3.1.2 Biological submodel 

All three decision rules rely upon predictions of weed 

infestations and estimates of their impact upon crop yield. 

The biological submode! generates these through a set of 

subroutines simulating each step in the process of weed 

growth and competition with the crop. 

Two analytical approaches are possible for predicting 

biological phenomena: process simulation and statistical 

estimation. Where process simulation is feasible, it is the 
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more desirable of the two, because it explicitly includes 

environmental factors which tend to enter statistical esti­

mation as dummy variables or unexplained disturbance. 

The only process model now available that is suited to 

this weed management model is the Forcella (1991) weed ger­

mination predictor, which is still under development. While 

advances in process modeling of weed-crop competition have 

recently taken place (e.g., Maxwell and Ghersa, Wilkerson, 

et al. 1990, Williams et al.), they have not yet reached the 

point of modeling multiple weeds. As biological process 

simulation moves forward, subroutines or object files could 

easily be made compatible with this model. 

For the time being, statistical estimation provides the 

best means available of predicting biological processes. 

This section offers an overview of the relevant biological 

literature and functions included in the model. 

3.1.2.1 Weed population dynamics 

Careful modeling of the germination, reproduction and 

mortality of weed plants and seeds is crucial to a dynamic 

weed management model. Virtually all prior attempts to 

simulate weed populations have focused upon a single grass 

weed species in a single crop. In similar weed control 

models, Cousens et al. (1986) incorporated innate dormancy 

based on seed age in a wild oat population model, and Doyle 

et al. built in induced dormancy based on seedbank depth in 
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a blackgrass population. Taylor and Burt, followed by 

Pandey and Pandey and Medd, modeled the wild oat seed bank 

as a function of the seed bank in the previous period and 

wild oat seed panicles at harvest. King et al. modeled the 

seed banks of both aggregate grass and aggregate broadleaf 

weeds as linear functions of the seed bank in the previous 

period and the number of weeds at harvest. The Taylor and 

Burt, Pandey, Pandey and Medd, and King et al. models all 

ignored the dormancy issue. 

Experimental evidence suggests that weed seed germi­

nation occurs as a proportion of the seeds in the seed bank 

(Cavers and Benoit, Forcella 1990, 1991). For simplicity, 

this model treats weed seedling germination as a Markovian 

process, ignoring dormancy. In the absence of weed control, 

weed seed germination in stage r of the growing season can 

be specified as 

w-iit = a-ci 8 it-1 (3.2) 

where w'Tit is seedling germination by weed species i in stage 

r, s 1t_ 1 is the seed bank of weed species i in the previous 

season, and a'Ti is a parameter representing the proportion 

of weed seeds of species i germinating during stage r. Note 

that a'Ti may be estimated as a coefficient, or treated as a 

function itself. In the Forcella germination model, 

cumulative seasonal weed germination is simulated as a 1 = 

a 1 (AGDD), where AGDD is cumulative April growing degree 

days. 
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For management purposes, weed seedling germination in 

row crop fields takes place in three stages: prior to crop 

planting, after planting, and after post-emergent weed 

control. Germination prior to crop planting, w01 t, follows 

equation (3.2). Only weed species tolerant of cool weather 

germinate in significant numbers at this stage. These weeds 

are killed by the crop planting operation, but their numbers 

require tracking since they represent a loss from the soil 

seed bank. Weed seedlings germinating with the crop seeds, 

w1it' represent a competitive threat to the crop. Due to the 

use of pre-emergent herbicides, germination and emergence 

are not necessarily equivalent. Weeds that emerge can be 

expressed as those that germinated and survived any control 

treatment, 

wijt = w1it [l - k(wspi, hljt)] (3.3) 

where hljt is a dummy variable for pre-emergent weed control 

treatment j in period t. Some of these surviving weeds may 

be killed by post-emergent weed control treatments, h2jt• 

Weeds that get established with the crop and compete for 

more than four to six weeks cause the greatest reduction in 

crop yields (Stoller et al.). Some weed seedlings emerge 

after post-emergent treatment, w21 jt. These compete weakly 

with the crop. However, some reach reproductive maturity 

and set seed. Weeds at harvest can be expressed as, 

wi~t = wijt [l - k(wi, h2jt)] + w2ijt (3.4) 
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where h2jt is post-emergence weed control treatment j, and 

w2ijt is weed emergence following post-emergent weed control. 

WEEDSIM, the recommendations module, simulates these 

steps through four procedures. WSWeedGerm accepts para­

meters for the number of weed species being modeled, initial 

weed seed counts for each, and germination rates for each 

species before and after planting. It returns expected weed 

density (w11 t) and an updated seed bank for each weed 

species. WSPreTrt accepts input parameters for the number 

of weed species, number of PPI and PRE weed treatments, PPI 

and PRE efficacy ratings, operating costs for field culti­

vator and sprayer, herbicide rates and unit costs, field 

size, and variable cost/acre. It calls a weed survival 

function (Surv), passing weed species and treatment type, to 

obtain the proportion of weeds of each species surviving 

each type of treatment. WSPreTrt allows either a PPI or a 

PRE weed control, but not both. It returns the expected 

density of weeds surviving PPI/PRE treatment, along with the 

associated cost and treatment identity. WSPostTrt executes 

similar functions on the weed densities output from WSPreTrt 

to predict the number of weeds surviving each combination of 

PPI/PRE and POST treatment. 

The soil seed bank is the link between seasonal weed 

populations. It contains a stock of viable seeds which 

grows with the deposition of new seeds and shrinks through 

seed death and germination. By reducing the number of weeds 
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surviving to reproduce, weed control practices affect seed 

bank growth. 

Reproducing weeds add seeds to the soil seed bank. 

Abstracting from the age and size of individual weeds, their 

mean contribution is a simple multiple of the number of 

weeds at harvest, h 
wi jt • These seeds join the survivors from 

the previous season, determining the current seed bank, sit' 

2 

sit (1-I: «si-P J sit-1 + Y iwft (3.5) 
S=O 

where ~a51 represents the number of seeds of species i lost 

through germination during the S=3 stages of period t, #1 

represents those lost through seed death in the soil, and y 1 

represents mean seed production per mature weed. 

The recommendations module implements the seed produc-

tion equation via procedure WSSeedBank. This returns up-

dated seed bank densities based upon parameters for number 

of weed species, end-of-season weed densities, mean seed 

production per weed, seed mortality rates, and previous year 

seed densities updated to subtract cumulative germination 

during the season. 

3.1.2.2 Weed control efficacy 

Weed control "efficacy" refers to the toxicity of a 

control treatment toward the target weed. As implied by the 

function k(wsp,h), it is determined by the choice and 
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quantity of the control input, h, and the susceptibility of 

the weed species, wsp. 

Herbicide efficacy ratings for treatment at recommended 

rates are available by weed species (e.g., Durgan et al.). 

These are expressed as a set of discrete levels, such as 

"poor," "fair," "good," or "excellent," which correspond to 

quantiles. Because recommended rates are fixed, the weed 

control function for a given treatment jumps discontinuously 

from a stated efficacy level to zero if some condition for 

efficacy fails. For herbicides sprayed upon the soil before 

weed seedlings emerge (pre-emergent herbicides), a common 

condition is that sufficient rain fall to move the chemical 

into the soil layer where weed seeds are germinating. For 

herbicides sprayed on weeds that have already emerged (post-

emergent herbicides), common conditions are 1) that no rain 

wash the chemical from the weed leaves within four hours of 

spraying, and 2) that weeds be at a susceptible life cycle 

stage. 

The kill function employed here takes the form, 

r {k ij if con di ti ons sui table ( 3 • 6 ) 
k(wspi,hj) = Kijwi, Kij = . 

O otherwise 

where hj is treatment j applied at the recommended rate and 

kij is the proportion of weeds of species i killed as a 

result. As noted above, the recommendations module imple-

ments this using the Surv function, which transforms effi-

cacy ratings from Durgan et al. into survival rates based 
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upon weed species and treatment type. The input data file 

includes additional information on efficacy of mechanical 

weed control methods. 

The fact that some POST treatments are not efficacious 

for weeds or crops greater than a specified size makes it 

desirable to model plant growth. Since only the 4-6 weeks 

after crop planting are of interest, a rudimentary growth 

equation will suffice. For this short period, the average 

height of a plant species, phi, can adequately be modeled as 

a simple quadratic function of the number of days after 

planting, phi = 61 (DAP) 2 • This form appears to work accep­

tably for both crops and weeds. Efficacy thresholds stated 

in terms of number of leaves are readily converted to height 

format due to the high correlation between height and leaf 

number. When plants exceed the height threshold for POST 

efficacy of a given treatment, its efficacy is assumed to be 

nil, as in equation (3.6). 

3.1.2.3 Yield loss due to weeds 

The appropriate form for modeling yield as a function 

of weed density is much debated. Most researchers agree 

that the yield function is nonlinear, although some hold 

that a linear form is suitable approximation within the 

range of weed populations found in farmer's fields (Marra 

and Carlson) . 
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There is general agreement that crop yields decline to 

some minimum level at high weed densities, since weed-weed 

competition becomes more important than weed-crop competi-

tion. The debate centers around what occurs at low densi-

ties. The issue is clouded by the high variability of crop 

yields at low weed densities. Zimdahl (1980) argues that 

the yield function takes a sigmoidal form. Yield loss is 

negligible at low weed populations, since there is no signi-

ficant competition for resources between crop and weed. 

There has been little verification of this theory, as only 

King et al. have fit a sigmoidal functional form to data. 

Cousens (1985a) counters that crop yield loss per weed 

is greatest at low weed densities. When weeds are few, they 

grow larger and compete more vigorously with the crop. To 

capture this, he proposes the hyperbolic yield function: 

Iw l y = Y"[l - 100(1 + Iw/ A) (3.7) 

where Y0 , I and A are parameters to be estimated from data. 

I represents percentage loss in crop yield per unit of weed 

density as density approaches zero, and A represents the 

maximum percentage crop yield loss asymptote as weed density 

approaches infinity. The hyperbolic form, illustrated in 

Figure 3.3, is approximately linear at low weed densities. 

At high densities it becomes asymptotic to the minimum yield 

level (Ymin) given by Y0*(1-A/100). Cousens found this func­

tional form to outperform 18 others from previously 
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published studies, based on residual sums of squares and F-

test comparisons when fit to 22 sets of weed density-crop 

yield data. 1 

Crop yield (Y) 

Ymin 

0 Weed density (W) 

Figure 3.3: Crop yield as a hyperbolic function of weed 
density. 

One multivariate formulation of equation (3.7) is 

presented in equation (3.8), where the subscript i denotes 

the weed species. 

1 None of these studies used a sigmoidal form. 
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E Iiwi 
i 

100(1 + ~ Iiwj A) 
(3.8) 

The competitive effect of an additional weed of species n is 

given by the derivative in equation (3.9). 

ay 
awn 

-YA 2 

I I a 
n 100 (A+ L IiWi) 2 

i 

(3.9) 

This implies that as the combined density of all weed spe-

cies in a field increases, crop yield declines monotoni-

cally, but at a diminishing rate. The individual I; coeffi­

cients implicitly serve as competitive indices for each weed 

species. Note that interspecific weed competition is impli-

cit in (3.8), since the competitive effect of an additional 

weed of one species depends in part on the density of the 

other species. 

The hyperbolic form is the most appealing for several 

reasons. The hyperbolic and logistic forms are preferable 

to the linear one because they bring prior knowledge about 

plant ecology to an otherwise unconstrained statistical 

estimation problem. Moreover, the linear form can generate 

negative yields at high weed densities. The ready interpre-

tation of its coefficients makes the hyperbolic form more 

attractive than the logistic a priori. When the linear, 

logistic, and hyperbolic forms were compared for this study, 
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the hyperbolic form provided the best statistical fit, based 

upon log likelihood function and the standard error of esti­

mate (SEE). In fact, the hyperbolic form is rapidly gaining 

acceptance (Stoller et al.), although its nonlinearity makes 

estimation somewhat more cumbersome than for the linear or 

linearized logistic forms. 

To implement the yield function, the recommendations 

module procedure WSPostTrt calls function Yield2. Yield2 

returns a predicted yield based upon input parameters for 

number of weed species, crop identity, weed-free crop yield, 

late-season weed density, and weed-crop competition 

parameters. 

The structure of the WEEDSIM recommendations module is 

illustrated in Figure 3.4. The initial biological subrou­

tines predict the expected weed infestation and expected 

response to controls. The recommended treatments are deter­

mined by the economic decision rule chosen. 

3.2 structure of the Whole Farm Model 

The WEEDSIM module generates weed management recommen­

dations for a typical acre of corn or soybean field. The 

whole farm shell for the recommendations module, WFARM, both 

captures the effects of limited time and machinery, and 

allows modeling of stochastic phenomena (weather in partic­

ular). This permits evaluation of the recommendations 
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WEEDSIM Subprograms 

WSWeedGerm 
WSPreTrt 
WSPostTrt 
WSPostRev 

' 
No • WSTopRevMyopic 

Yes l 
WSSeedBank 
WSNextYear 

WSWeedGerm 
WSPreTrt 
WSPostTrt 
WSPostRev 

WSTopRev 
Fiqure 3.4: Structure chart of the WEEDSIM module. 

module through stochastic simulation, before testing it on 

real fields. 

The flow of the WFARM model is illustrated in Figure 

3.5. WFARM begins a simulation season by choosing a year at 

random from a historical data file. The year record 

includes data on maximum weed-free yield, precipitation, 
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Fiqure 3.5: Flow chart of the WFARM whole farm model. 

workable field days, and simulated total weed germination. 

WFARM also draws pseudo-random coefficients and disturbance 

terms from data files associated with each of the equations 
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that runs the WFARM model. Then the model runs the WEEDSIM 

module for each field, to obtain a PPI/PRE weed management 

recommendation. Next weed pre-plant germination is simu­

lated, with associated losses from the weed seed bank. 

According to whether WEEDSIM recommended a PPI or a PRE 

treatment, the field is treated with a PPI herbicide and the 

crop planted, or else it is disked first, planted and 

treated with a PRE herbicide. Post-plant weed germination 

as well as weed and crop growth are simulated week by week. 

The PostWEEDSIM module is run for each field. If the recom­

mendation is feasible given the simulated size of the crop 

and weed, it is implemented. Late-germinating weeds plus 

those that survived prior weed control influence crop yield 

and set seed, contributing to the weed seed bank. The cycle 

repeats for the duration of the simulation period, with dis­

counted net returns accumulated annually. 

3.2.1 The role of timely operations and rainfall 

The WFARM model steps through the season week by week, 

simulating crop and weed biology as well as implementation 

of the weed control recommendations, in light of available 

precipitation and field working days. By tracking indivi­

dual activities in each field, late planting can be pena­

lized and untimely weed treatments ruled out. 

Planting is the first operation to trigger timeliness 

penalties if delayed too long. The penalty reflects losses 
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incurred when crops in a northerly climate fail to attain 

the optimal number of growing degree days. Yield penalties 

for planting after the optimal period (implemented by sub­

routine Ypen) are stepwise in time for both corn and soybean 

(Gunsolus 1990a). As farm size increases, these penalties 

come into play. 

Timeliness for post-emergent weed control is related to 

weed and crop size. Efficacy ratings for many post-emergent 

chemical and mechanical weed control measures are contingent 

upon the size of the weeds or crop. The model simulates 

plant growth during the first few weeks after emergence 

us ing simple quadratic functions of days after planting (in 

subroutines CropGrowth and WeedGrowth). Recommended treat­

ments may become infeasible or ineffective when the weed or 

crop grows too large for a given treatment. The model 

allows re-evaluation of the recommended weed control plan at 

this point, taking as given the pre-emergent treatment 

already implemented. Of course, revised plans incur higher 

costs or provide poorer efficacy. 

Apart from timeliness matters, herbicide efficacy is 

another important factor subject to environmental vagaries. 

Pre-emergent chemical weed control requires at least a half 

inch of rain within one week of application to attain rated 

efficacy levels. Failing this, efficacy is nil. The only 

recourse is post-emergence weed treatment. on the other 

hand, pre-plant incorporated and post-emergence control 
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treatments are assumed to have deterministic efficacy. In 

the first case, soil moisture is presumed sufficient to 

bring the chemical into contact with germinating weed seeds. 

In the latter case, it is supposed that if rain threatens, a 

farmer will not spray or rotary hoe. 

3.2.2 Sequence of whole-farm model operations 

The specific subprograms that implement the operations 

illustrated in the WFARM flow chart (Figure 3.5) are shown 

in Figure 3.6. The resource base for the model farm in­

cludes farm acreage, machinery type and size, and labor. 

Parameters for these are input by the user at the start of a 

model run. Other parameters read from sequential data files 

upon initialization of the model include weed treatment 

rates and costs (read by GetHerbData) ; treatment efficacy 

ratings (read by GetKillData) ; machinery costs and rates of 

operation (read by subroutine GetMachData) ; weed growth, 

expected germination and population dynamics equation coef­

ficients (including coefficients for auxiliary variance 

equations; read by subroutine GetWeedParm3); crop growth, 

expected yield and maximum yield loss percent coefficients 

(read by GetCropData); and weed-crop competition coeffi­

cients (read by GetCompData) . 

At the outset of a season, the whole farm model runs 

the WEEDSIM recommendations module for each field on the 

farm. Recommendations are developed based upon expected 
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weed seed germination and maximum yield levels. The whole 

farm model then implements the recommended weed management 

plan, subject to random weed germination, weed seed produc­

tion, weed-free crop yield, weed-induced crop yield loss, 

time available for field work, and herbicide efficacy. 

Crop and weed growth as well as farmer management are 

simulated field by field. The model starts each simulation 

season by reading the number of weekly available field 

working days, weekly precipitation, maximum yields, and 

predicted weed species germination rates (Forcella 1991) 

from a data file (using subroutine GetYear) . It proceeds by 

reading from a file of random coefficients and additive 

error terms associated with the estimated equations (via 

subroutines GetStateBetas and GetstateErrors) . Actual num­

bers of germinated weeds at each stage (pre-plant, post­

plant and post-cultivation) are generated by subroutine 

CalibrateGerm, which adjusts the expected yearly germination 

levels for dependence upon seed density and heteroscedastic 

errors. The germination calibration equations utilize 

randomized coefficients as well as additive random error 

terms (from GetstateBetas and GetStateErrors). These take 

the form, 

w"t'it = (ai• + ecx"t'i) 8 it-1 + ui"t' (3.10) 

where air is estimated germination of weed species i at 

stage r, €air is additive random coefficient error, and uir is 

additive random equation disturbance. 
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Weeks loop 
Fields loop #2 
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Fiqure 3.6: Subprograms in the WFARM whole farm model. 

Simulated field management begins the first week that 

corn can be planted, around the week of April 19-25 in 

southwestern Minnesota. Weed seedling emergence prior to 

crop planting is simulated first (with subroutine FieldWeed-

Germ}. Field cultivation (with subroutine FieldCult} and 

incorporation of any recommended PPI herbicide (with subrou-

tine PPITrt} follows, up to the available number of field 
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working days that week. 1 Crop planting is next (with sub-

routine Plantcrop), if the crop can be planted that early. 

For a crop requiring warmer soil, such as soybean, which · 

cannot be planted before May, the feasibility of planting is 

re-evaluated the following week. After planting, the model 

simulates weed seedling emergence in the presence of any 

recommended pre-emergent weed control (with subroutines 

PRETrt and PRESurv) . Each week, the model simulates the 

growth of the crop (using CropGrowth), as well as those 

weeds that survive PPI and PRE control (using WeedGrowth). 

Growth occurs at randomized rates plus additive random 

errors (from GetStateBetas and GetStateErrors). Within a 

field, they remain constant for the season. Based on 

empirical results, errors for the two crops are hetero-

scedastic, while those for the weeds are homoscedastic. 

Since weed germination is stochastic, the model revises 

POST weed control recommendations based upon the number of 

weeds surviving any pre-emergent treatment (implementing 

subroutine PostWEEDSIM). This is essentially a call to 

WEEDSIM, taking as given post-plant weed emergence and any 

already implemented soil-applied weed control. Post-emer-

gent weed control by rotary hoe begins the week following 

planting. For chemical treatments, it begins 2-3 weeks 

1 Only conventional tillage is included in the whole 
farm model. Some reduced tillage practices require no pre­
plant field cultivation unless pre-plant incorporated 
herbicides are used. 
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after planting. Ensuing weed survival is simulated in 

subroutine WSPostTrt. The final weed densities used to 

calculate crop yield and additions to the weed seed bank are 

simulated in the main program. 

At any stage in this sequence, the tasks may be inter­

rupted by the end of available field time in the week. At 

this time, the week's activities are tallied. For each 

field, costs are accrued and the density of remaining seeds 

in the soil updated. Planting dates are recorded, since 

weed-free yield is reduced from the maximum level according 

to the delay between the optimum planting time and the one 

achieved in a given field. 

At the end of a simulated year, stochastic yields and 

weed seed densities are calculated for each field. As 

estimated equations for these were homoscedastic, random 

errors from GetStateErrors are simply added to expected 

values calculated from other arguments developed in the 

model. Since the expected values are either composites from 

several data sets (yield coefficients) or values imposed 

from review of the literature (seed reproduction coeffi­

cients), these coefficients are not randomized. Costs, net 

revenue, and the weed seed bank state variables are updated. 

Simulation proceeds to the next year (following implementa­

tion of subroutine InitializeYear), if another is called for 

in the planning horizon. 
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The whole farm model is nested in a "state of nature" 

loop used for stochastic simulation. States of nature are 

drawn at random from input data files. The states include 

1) the year parameters obtained with GetYear, 2) the random 

coefficient deviations from the mean in GetStateBetas, and 

3) the random disturbance terms associated with individual 

fields obtained with GetstateErrors. In a given simulation 

year, equation coefficients and error terms vary from field 

to field, but the year parameters (maximum crop yield, ex­

pected weed germination, rainfall, field days) are constant 

for all fields. 

When multiple scenarios are run, an outer set of loops 

is added to control the experimental factors varied under 

the different scenarios. The simulation runs summarized in 

Chapter 5 had two outer scenario loops, one for decision 

rules, and one for initial weed seed density settings. 

3.2.3 controllability of the biological system 

The biological components of the simulation model 

essentially provide an accounting of seed and weed numbers. 

Whether the model is capable of maintaining an equilibrium 

weed seed population depends upon the parameters supplied 

and the stochastic errors generated. 

The biological system is controllable in a given year 

if there exists a PPI/PRE and POST treatment pair such that 

the seed bank for each weed species can be reduced by the 
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outset of the next season. While this should not be a 

formidable requirement, two quite different conditions can 

impede controllability. First, random disturbances in a 

given season may make short-term controllability impossible. 

When random errors are large, as may be the case for hetero­

scedastic equations, stochastic model results may far 

diverge from expected values. Second, mixing parameters 

est imated from data sets using different measurement metho­

dologies can lead to explosive simulated weed populations. 

Seed counts, in particular, may differ by orders of magni­

tude according to the method used (compare, e.g., seed 

counts in King et al. and Forcella and Lindstrom 1988b). 

Since germination rate estimates are based on the previous 

season seed count, the same density of observed seedlings 

may lead to vastly different germination coefficients. When 

estimating parameters from data, it is advisable to estimate 

the group of weed population dynamics equations from the 

same set of data. 

This note of caution sets the stage for the next 

chapter. Chapter 4 presents the methods employed to develop 

and validate the set of parameter estimates used to test the 

s imulation model. 



IV. DATA AND ESTIMATION 

The simulation model described in Chapter 3 requires 

parameters provided through input files. This chapter des­

cribes the development of the input parameter sets used to 

run the WEEDSIM and WFARM models. It reports methods used 

to generate correlated pseudo-random variables to simulate 

error terms for the stochastic simulation experiments 

discussed in chapters 5 and 6. Where out-of-sample data 

were available, it also reports results of equation-by­

equation validation tests. 

Input parameters for the model are developed for the 

weed species that are economically important to corn and 

soybean farmers in southwestern Minnesota. Since tillage 

tends to keep biennial and perennial weeds from getting 

established in row crops, these are all annuals. They 

include: green and yellow foxtails (Setaria viridis (L.) 

Beauv. and S. glauca (L.) Beauv.), redroot pigweed (Amaran­

thus retroflexus L.), and common lambsquarters (Chenopodium 

album L.). In addition, yield loss estimates for other weed 

species are presented in instances where they were present 

in significant numbers. 

Parameters are developed using a variety of techniques, 

according to the quality and availability of suitable data. 

Germination rates are predicted using the Forcella (1991) 

58 
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growing degree days model combined with 1985-86 agronomic 

field trial data from the U.S. Department of Agriculture 

North Central Soil Conservation Research Laboratory in 

Morris, Minnesota. Seed production is estimated from that 

same data set. Yield loss parameters are estimated using 

eleven sets of agronomic trial data for Upper Midwest corn 

and soybean. Weed control efficacy ratings are drawn from 

extension literature (Durgan et al.). Finally, days avail-

able for field work, precipitation, and growing degree days 

are obtained from historical records at the Southwest Exper-

iment Station of the University of Minnesota, Lamberton, 

Minnesota (Ford, Fuchs) . All statistical estimation was 

carried out using SHAZAM version 6.2 (White et al.). 

The 1985-86 Morris data set is the only one available 

for Minnesota that includes observations on weed seed den-

sity, emerged weed seedling density, and crop yield over 

more than one year. Consequently, its strengths and weak-

nesses have important ramifications for the quality of the 

parameters estimated. The data were generated through an 

agronomic experiment examining the impact of different 

tillage methods upon weed seed movement and emergence in 

corn, soybean and wheat crops1 (Forcella and Lindstrom 

1988a, 1988b). Weed seed densities were estimated from soil 

samples of the experimental plots. Six soil cores were 

1Data used for this thesis include only the corn and 
soybean plots. 
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sampled from each conventional tillage plot, representing 

1:5218 of the top 10 centimeters of soil. Emerged weed 

seedling densities were estimated from counts of sample 

quadrates placed in the field plots. The weed seedling 

sampling quadrate covered 1:369 of the plot surface. Seed 

and seedling samples did not necessarily come from the same 

locations within a plot. Samples were counted before crop 

planting, after crop emergence, and after mid-season lay-by 

cultivation. The research plots were split, with two thirds 

of each plot treated with PPI and PRE herbicides and one 

third left untreated in each year of the experiment. The 

late-season weed count was performed only on the treated 

sub-plots. The post-emergence weed count was conducted on 

the treated plots only in 1985. 

The weed count procedure allows pre-plant weed seed 

germination to be estimated from all plots. Post-planting 

weed germination can be estimated from the untreated sub­

plots, while post-cultivation germination can be estimated 

from the treated sub-plots. Late-season weed counts in­

cluded only seedlings that emerged after cultivation. 

Hence, total weed density in the crop row may be inferred as 

the sum of post-emergence density and post-cultivation den­

s ity, where post-cultivation density on untreated sub-plots 

is assumed to be the same as on the treated ones. 1 Total 

1Forcella (1991), personal communication. 
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weed density is the basis for estimation of weed-crop 

competition and weed seed production coefficients. 

Substantial sampling error contributes to the variance 

of estimated equations. Since seed density estimates are 

extrapolations from a rather small sample, their variability 

is quite high. Weed seedling density estimates come from 

larger areas that are not necessarily coincident with the 

seed samples. Hence, considerable sampling error enters 

into germination proportion estimates and weed seed produc­

tion estimates, as has been observed elsewhere (Ball and 

Miller, Wilson et al.). To a lesser extent, this is also 

true of weed-crop competition estimates, since yields were 

measured from the entire plot area, not just the areas 

sampled for weed density. Total late-season weed density is 

inferred from earlier weed density estimates, rather than 

direct sample counts. 

4.1 Weed population dynamics functions 

4.1.1 Germination functions 

Weed seedling germination parameters are required by 

the WEEDSIM and WFARM models for weed germination 1) before 

crop planting (WSWeedGerm and FieldWeedGerm), 2) after crop 

planting (WSPreTrt and PRETrt), and 3) after lay-by cultiva­

tion (WSPostTrt and POSTTrt) . Two methods are available to 

develop weed seedling germination parameters. The first is 
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to estimate them statistically from the 1985-86 Morris data. 

The second is to simulate them using the Forcella (1991) 

seedling emergence model. 

The potential of statistical estimation for attaining 

reliable coefficient estimates is limited by the reliability 

of the data. First, the weed seed density and seedling 

emergence data are themselves estimates extrapolated from 

relatively small samples. The associated sampling variance 

considerably augments the expected variance of. a regression 

equation. This is especially true of the post-emergence and 

post-cultivation weed counts, for which only half the 144 

observations were usable. Second, examination of the data 

reveals that germination rates were dramatically higher in 

1985 than in 1986. This could be modeled statistically 

using dummy variables, but that still would not explain the 

difference in a manner easily applied to a simulation model. 

Third, the presence of many plots in which no seedlings of a 

given weed species emerged suggests that tobit regression 

would generate the best coefficient estimates. However, 

tobit residuals have poorly defined properties, particularly 

regarding correlation with residuals from related equations. 

While tobit regression forecasts the probability that the 

mean of the dependent variable will be zero, it cannot pre­

dict specific cases of zeroes. Residuals calculated by sub­

tracting predicted values from actual values may have a 
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highly skewed distribution. Yet regression residuals are 

required for stochastic simulation. 

The Forcella (1991) emergence model offers a non­

statistical alternative. It forecasts weed seedling emer­

gence in the absence of herbicides. The model predicts the 

rate of weed seedling emergence as a function of cumulative 

growing degree days (GOD) for the month of April. A GOD is 

defined as the average of the high and low daily tempera­

tures in degrees Celsius minus ten. The Forcella emergence 

equations for all three weed species in the model are non­

linear functions with a single maximum. In effect, if April 

is too cool or too hot, fewer weeds than the maximum will 

emerge. Denoting Y as emergence rate and X as cumulative 

April GOD, Forcella's emergence equations are as follows: 

foxtail, Y = o. 0205*0. 9587x*x2•
4958 

lambsquarters, Y = -8.1326 + 1.3876*X - 0.0127*X2 

pigweed, Y = 16766.9*(7.68E-29) 11x*x- 1•4679 

All three functions have biologically reasonable forms, 

although the lambsquarters quadratic predicts negative 

emergence if April GOD are fewer than 6.2 or more than 

103.0. Predicted emergence rates as a function of GOD are 

illustrated in Figure 4.1. 

The Forcella germination model offers a clear expla­

nation for the disparity between the two sample years. 

However, it lacks the statistical richness of a 144 case 

data set. Indeed, Forcella's simulation equations were 
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Figure 4.1: Total emergence of three weed species as 
related to growing degree days in April (from Forcella, 
1991) 

120 

developed from a very small time series data set. Compared 

with the tobit residuals problem, however, there is no 

difficulty in calculating artificial "pseudo-residuals" as 

the difference between actual seedling emergence numbers and 

those predicted by applying the Forcella predicted rates to 
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the observed seed bank. 1 Given these strengths and the 

general objective of developing reasonable parameter values 

for incorporation into the simulation model, Forcella's 

model was chosen. 

The Forcella predicted emergence rates corresponding to 

the Morris 1985-86 data set are presented in Table 4.1. 

Table 4.1: Predicted cumulative weed emergence rates 
(Forcella model) for 1985 and 1986 in Morris, Minnesota. 

Weed s2ecies 
Foxtail 
Common lambsquarters 
Redroot I2.i.sllieed 

Predicted 
1985 
.447 
.297 
.142 

emergence rate 
1986 
.061 
.067 
.020 

Because the Forcella emergence rates do not distinguish 

between stages of the cropping season, the 1985-86 Morris 

weed density data were partitioned in order to identify the 

proportion of total weed emergence that occurs at each 

stage . Mean emergence proportions by stage of the season 

are presented in Table 4.2. They are consistent with the 

results published by Chepil. 

1The term "pseudo-residuals" is adopted in order to 
reserve the word "residuals" for those obtained from a 
statistically estimated predictor. 
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Table 4.2: Weed seedling emergence proportions for three 
stages of the cropping season (Morris, MN, 1985-86). 

Stage of the season 
Pre-planting 
Post-crop emergence 
Post-cul ti vat ion 

Foxtail 
.18 
.72 
.10 

Weed s12ecies 
Lambsgyarters 

.40 

.54 

.06 

PiID[:eed 
0 

.92 

.08 

4.1.1.1 Calibration of the Forcella germination predictor 

Predicted weed density is calculated as the product of 

cumulat ive emergence rate, emergence proportions per stage 

and estimated weed seed density. Pseudo-residuals were 

generated by subtracting the predictions from actual values. 

The pseudo-residuals were regressed on weed seed density to 

test for systematic bias. In anticipation of spatially 

correlated seed data (due to the presence of weedy strips in 

the untreated sub-plots), seemingly unrelated regression 

(SUR) was applied to the emergence pseudo-residual equations 

for all three species. Results suggested that bias was 

present in most cases, with predicted germination rates 

deviating from actual ones in a linear or quadratic relation 

to seed density. This was corrected by calibrating the 

pseudo-residuals against weed seed numbers. 

The calibration regressions for pre-plant weed emer-

gence are presented in Table 4.3. The Breusch-Pagan 

Lagrange multiplier test for contemporaneous correlation 

(Judge et al., p.456) generated an insignificant x2 (3) value 

of 0.72, so ordinary least squares (OLS) regression was 

applied. Pseudo-residuals representing the difference 
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between actual pre-planting weed densities and the Forcella 

predicted values were regressed on seed density and squared 

seed density. As no pigweed seedlings emerged at this 

stage, pigweed was omitted. The significance of the regres­

sions (F(2,141) = 30.63 for foxtail and F(2,141) = 360.73 

for lambsquarters) suggested a need for calibration. Loga­

rithmically transformed absolute residuals from the first 

set of regressions were regressed on the same independent 

variables to test for heteroscedasticity. Significant evi­

dence of nonconstant variance was present for lambsquarters, 

F{2 ,141) = 8.26. Weighted least squares (WLS) regression of 

the pseudo-residuals was performed, using the standard error 

of estimate as the weighting factor. 

The unweighted foxtail and weighted lambsquarters 

cal ibration regressions imply that for both weeds, the 

Forcella predictor under-estimates pre-plant weed densities 

when seeds are few, and over-estimates them when seeds are 

many. As both equations are quadratic, at extremely high 

seed densities, the sign of the mis-calibration reverses 

itself. For weed seed densities in the 0-3000 seeds/m2 

range, however, the Forcella predictor over-estimates at 

high densities. over-estimation is particularly severe for 

l ambsquarters. The presence of significant intercept terms 

in both regressions is at first perplexing, since if no 

seeds are present, we expect no seedling emergence. The 

intercept term is, in fact, a compensation for seed sampling 
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Table 4.3: Calibration regressions of the pre-planting weed 
density pseudo-residuals. 

Coefficient 
Weed species d. f. Constant Seeds Seedsz- SEE R2 

Pseudo-residuals (OLS) 
Foxtail 141 12.92 -0.031 0.22E-5 26.7 .30 

(4.37) (-5.09) (2.36) 

Lambs quarters 141 3.41 -0.11 0.26E-3 4.3 .84 
(7.01) (-16.3) (23.63) 

Loq absolute residuals (OLS) 
Foxtail 142 2.11 1.3E-4 0.9 .02 

(24. 71) ( 1. 52) 

Lambsquarters 142 0.63 0.0017 0.9 .05 
(6.98) (2.87) 

Weighted pseudo-residuals (WLS) 
Lambsquarters 141 2.76 -0.090 2.lE-3 1.9 .46 

(6.36) (-10.57) (10.54) 
Note: t-statistics presented in parentheses. 

d.f. denotes degrees of freedom. 
SEE denotes standard error of estimate. 

error evident in cases where the density of emerged weeds 

observed in experimental plots exceeded the estimated seed 

density. 

Similar calibration regressions were applied to weed 

densities observed after crop emergence. In this case, the 

Breusch-Pagan x2 (3) statistic was 5.90 for the unweighted 

and 10.96 for the weighted systems. These statistics are 

significant at the 20% and 5% levels, respectively, so 

seemingly unrelated regression (SUR} was applied to the 

pseudo-residuals. The heteroscedasticity tests were fol-

l owed as above, using a logarithmic transformation of the 

absolute residuals. Results, presented in Table 4.4, again 
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suggest that the Forcella model under-estimates weed emer-

gence at low seed populations and over-estimates it a high 

ones. 

Table 4.4: Calibration regressions of the post-planting weed 
density pseudo-residuals. 

Coefficient 
Weed s2ecies d.f. Constant Seeds Seeds2 

Pseudo-residuals (SUR) 
Foxtail 70 14.70 -0.068 

(0.95) (-4.79) 

Lambsquarters 70 

Redroot Pigweed 69 

4.09 -0.044 
(2.45) (-4.06) 

-3.63 
(-1. 58) 

0.028 
(2.14) 

Log absolute residuals (OLS) 
Foxtail 69 1.93 0.0026 

(9.26) (6.20) 

Lambsquarters 70 1. 33 0.0021 
(7.83) ( 1. 93) 

Redroot pigweed 70 1. 51 6.3E-4 
(9.61) ( 1. 45) 

-1. 7E-5 
(-2.25) 

-0.31E-6 
(-4.61) 

Partially weighted pseudo-residuals (SUR) 
Foxtail (wtd.) 70 11.12 -0.084 

(2.92) (-3.49) 

Lambsquarters 70 3.91 -0.042 
(2.33) (-3.83) 

Redroot pigweed 69 -3.37 0.0026 -1. 7E-5 
(-1. 48) ( 1. 95) (-2.14) 

Note: t-statistics presented in parentheses. 

SEE R2 

117.4 .24 

12.1 .16 

13.0 .08 

1. 3 .40 

1.2 .05 

1.1 .03 

2.3 .13 

12.1 .16 

13.1 .07 

The calibration regressions for weed emergence 

following lay-by cultivation also used SUR, since the 

Breusch-Pagan x2 (3) statistics were significant at the 5% 
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level (10.05 for the unweighted and 31.34 for the partially 

weighted systems) . Because the partially-weighted SUR 

matrix was not positive definite as originally formulated, 

constant terms were dropped. The results are presented in 

Table 4.5. The table suggests that calibration of the 

Table 4.5: Calibration regressions of the post-cultivation 
emergence weed density pseudo-residuals. 

Weed s2ecies d.f. Constant 
Coefficient 
Seeds Seeds2 

Pseudo-residuals (SUR) 
Foxtail 70 

Lambsquarters 70 

Redroot Pigweed 70 

1.11 -0. 0072 
(0.69) (-5.16) 

0.59 -0.0063 
(2.02) (-3.34) 

0.16 -0.0011 
(0.82) (-2.08) 

Log absolute residuals (OLS) 
Foxtail 69 0.40 0.0015 

(3.38) 

Lambs quarters 70 

Redroot pigweed 70 

(1.83) 

-0.45 
(-3.37) 

9.4E-4 
( 1. 07) 

-0. 54 -1. 4E-4 
(-3.98) (-0.36) 

-1. 6E-7 
(-2.35) 

Partially weighted pseudo-residuals (SUR) 
Foxtail(wtd.) 71 -0.0059 

Lambsquarters 71 

Redroot pigweed 71 

(-2.60) 

-0.0041 
(-2.50) 

-8.6E-4 
-2.11 

Note: t-statistics presented in parentheses. 

SEE R2 

12.3 .23 

2.1 .13 

1.3 .02 

1.4 .18 

1.0 .02 

1. 0 .00 

2.6 

2.1 

1.4 
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pseudo-residuals is most important for foxtail and lambs­

quarters predictions, which are slightly over-estimated at 

moderate to high seed densities. Since the weeds that 

emerge after mid-season cultivation tend not to be con­

trolled, their reproduction makes an important contribution 

to the weed seed bank (Forcella and Lindstrom 1988b) . 

Hence, calibration of these is important. 

Final parameter estimates retained from the calibration 

regressions are 1) the unweighted foxtail and weighted 

lambsquarters least squares estimates for pre-planting weed 

emergence, 2) the partially weighted SUR estimates for post­

planting weed emergence, and 3) the weighted foxtail and 

unweighted lambsquarters SUR estimates for post-cultivation 

weed emergence. 

4.1.1.2 Validation of the calibrated germination predictor 

The calibrated germination functions were validated 

against out-of-sample data from 1990 field trials at the 

USDA North Central Soil Conservation Laboratory in Morris, 

Minnesota. The data came from two sites. The 16 observa­

tions from the Central Farm contain very high weed seed den­

sities for all three species modeled. The 24 observations 

from the North Farm generally have low weed seed densities. 

Jointly, they represent a wide range of weed pressures. 

The procedure followed was to input observed seed 

counts as initial values into the Forcella emergence model, 
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as calibrated by the equations presented above. Predicted 

seedling densities before crop planting, after crop planting 

and after lay-by cultivation were generated. The predicted 

densities were then subtracted from actual 1990 densities to 

generate a set of residuals. These residuals were adjusted 

for heteroscedasticity using the 1985-86 auxiliary regres-

sion results. The distributions of adjusted 1990 residuals 

were compared with the distributions of the 1985-86 estima­

tion residuals using a x2 goodness-of-fit test. 

The x2 statistic is used to test the null hypothesis 

that the predicted values (1990 residuals) are indepen-

dently, identically distributed random variables from the 

same cumulative distribution function (CDF) as the observed 

(198 5-86) ones. Since all parameters of the observed 1990 

empirical distributions are implicitly known, the test 

statistic is calculated as follows: 

J 

x2 = L 
j=l 

(N·a-NP) 2 
] ] 

NP 
] 

(4 .1) 

where J is the number of adjacent categories into which 

observations are grouped, N is the number of observations in 

each group, the superscript a represents estimation resi-

duals from the Morris 1985-86 trials, and the superscript p 

represents residuals from the predicted weed density values 

in 1990 (Law and Kelton, pp. 194-198). In each case, pre-

dieted 1990 observations were sorted in ascending order and 

grouped into six categories containing roughly equal numbers 
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of residuals. Frequency counts for the same categories were 

taken from the actual residuals of the 1985-86 weighted 

regressions. Results for the weed seedling emergence resi-

duals are presented in Table 4.6. 

Table 4.6: Chi-square goodness-of-fit test for residuals 
from 1990 predictions of weed seedling emergence relative to 
the 1985-86 estimation residuals. 

Lambs- Redroot 
Timing of emergence Foxtail quarters Pigweed 

Pre-plant 127.86 14.37 29.57 
Post-plant 13.46 22.00 47.11 
Post-cultivation 67.78 59.06 156.27 

Note: x2 (5) critical values at the 90% and 95% confidence levels are 
9.24 and 11.07, respectively. 

The discrepancy between the distributions of f orecasted 

residuals and estimated ones is large. The problem comes 

from two sources: 1) the narrow range of weed seed densities 

in the original 1985-86 data set, and 2) the choice of 

intra-seasonal germination proportions based on the 1985 

case alone. Lambsquarters 1990 residuals were sharply 

negatively skewed, indicating serious underprediction of 

emergence at all three stages. This is due in part to the 

large negative quadratic term in the pre-plant emergence 

equation. The 1985-86 Morris data set includes no seed 

densities higher than 750 seeds per square meter. The 

quadratic term proved much too negative when applied to the 

1990 data set, which included plots with over 4500 seeds/m2• 

Indeed, negative lambsquarters densities were forecast in 
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some cases. Foxtail 1990 emergence residuals indicated 

overprediction of emergence at the pre-plant stage, but 

underprediction at the later stages. Pigweed 1990 emergence 

res iduals were generally more kurtic than the 1985-86 ones; 

also , post-cultivation emergence was underpredicted. 

Table 4.7: Descriptive statistics on weed seed density in 
the Morris 1985, 1986 and 1990 data sets. 

Weed species and 
Statistic 
Number of observations 

Foxtail 
Mean 
Standard deviation 
Minimum 
Maximum 

Lambsquarters 
Mean 
Standard deviation 
Minimum 
Maximum 

Redroot piqweed 
Mean 
Standard deviation 
Minimum 
Maximum 

1985 
72 

251 
536 

0 
3177 

42 
89 

0 
522 

73 
58 

0 
189 

Year 
1986 

72 

700 
1187 

19 
7095 

118 
152 

0 
780 

320 
386 

38 
1963 

1990 
40 

1808 
2608 

0 
12071 

746 
1105 

0 
4268 

1161 
998 

0 
3599 

All 3 
years 

184 

765 
1573 

0 
12071 

225 
595 

0 
4268 

406 
668 

0 
3599 

4.1 .1.3 Recalibration of the Forcella germination predictor 

Because the goodness-of-fit tests indicate that the 

estimated weed emergence equations are not valid, the equa-

t i ons were re-estimated including the 40 additional observa-

t i ons from the 1990 Morris data. The chief reason for doing 

this was that the 1990 data include a much wider range of 
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weed seed densities than the 1985-86 data. The differences 

are summarized by the descriptive statistics in Table 4.7. 

The revised estimates are presented in tables 4.3R, 

4.4R and 4.5R. The null hypothesis of no contemporaneous 

correlation was rejected for all three sets of equations. 

Significant evidence of heteroscedasticity was also present 

in the logarithmically transformed absolute residuals of 

every equation. Variances all took quadratic forms which 

increase at moderate to high weed seed densities and then 

decline at extremely high seed densities. 

The revised weighted regressions all exhibit less sen­

sitivity to high weed seed densities. In particular, the 

coefficient on the pre-plant lambsquarters pseudo-residuals 

weighted equation drops by a factor of forty, from -2.lE-4 

to -5.2E-6. Coefficient signs in the pre-plant equations 

are otherwise similar. However, contrary to the original 

calibration equations, the revised post-plant equations 

imply that the Forcella model underpredicts as seed density 

increases, linearly for foxtails and pigweed, quadratically 

for lambsquarters. The same is true of post-cultivation 

germination, where the revised weighted pseudo-residuals 

equations increase linearly with weed seed density. Plots 

of the uncalibrated and recalibrated weed germination 

functions are presented in appendix figures Al.l - Al.3. 
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Table 4.3R: Revised calibration regressions of the pre-plant 
weed density residuals including the 1990 Morris data. 

Coefficient 
Weed s:gecies d. f. Constant Seeds Seeds2 SEE R2 
Pseudo-residuals (SUR) 
Foxtail 181 7.21 -0.012 1.0E-6 27.2 .08 

(2.96) (-3.89) (2.84) 

Lambsquarters 181 -1. 08 0.024 -4.7E-6 11. 7 .29 
(-1. 11) (5.94) (-3.57) 

Log absolute residuals (OLS) 
Foxtail 181 1. 77 6.9E-4 -6.lE-8 0.9 .23 

(21.63) (6.86) (-5.15) 

Lambsquarters 181 0.66 0.0027 -6.0E-7 1.1 .28 
(7.24) (7.04) (-4.95) 

Weighted pseudo-residuals (WSUR) 
Foxtail 181 6.93 -0.011 9.7E-7 2.7 .05 

(3.97) (-2.24) (2. 35) 

Lambsquarters 181 0.74 -0.014 5.2E-6 1.9 .22 
(2.01) (-2.64) (4.09) 

Note: t-statistics in parentheses. 
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Table 4.4R: Revised calibration regressions of the Morris 
post-planting weed density residuals including 1990. 

Coefficient 
Weed species d. f. Constant Seeds Seeds2"" SEE R2 

Pseudo-residuals (SUR) 
Foxtail 109 -14. 07 o .156 -7. 7E-6 224. O • 41 

(-0.54) (5.73) (-2.50) 

Lambsquarters 109 

Redroot Pigweed 109 

-1.55 
(-0.56) 

-6.43 
(-1. 29) 

Log absolute residuals (OLS) 
Foxtail 109 2. 91 

Lambsquarters 109 

Redroot pigweed 109 

(19.76) 

1.17 
(8.51) 

1.91 
(16.54) 

0.075 
(8. 46) 

0.086 
(6.43) 

0.0010 
(6.56) 

0.0025 
(5.24) 

0.0021 
(6.57) 

Weighted pseudo-residuals (WSUR) 
Foxtail 110 1.01 0.078 

Lambsquarters 11 O 

(0.18) (9.02) 

2.24 
(2.32) 

Redroot pigweed 109 1.32 0.026 
(0.78) {11.87) 

-8.8E-6 
(-3.19) 

-1. 7E-5 
(-3.48) 

-7.8E-8 
(-4. 41) 

-5.lE-7 
(-3.44) 

-6.lE-7 
(-5.19) 

6.9E-6 
(4.76) 

Note: t-statistics presented in parentheses. 

25.8 .70 

38.7 .51 

1. 3 .34 

1.3 .30 

0.9 .33 

2.4 .36 

2.7 .13 

3.2 .53 
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Table 4.5R: Revised calibration regressions of the Morris 
post-cultivation emergence weed density residuals including 
1990 data. 

Coefficient 
Weed s2ecies d.f. Constant Seeds Seeds2 
Pseudo-residuals (SUR) 
Foxtail 110 1.98 

(0.37) 
0.023 

(9.01) 

Lambsquarters 110 0.28 0.0060 
(0.79) (13.78) 

Redroot Pigweed 109 -1.60 
(-1.50) 

Log absolute residuals (OLS) 
Foxtail 109 1.41 

Lambs quarters 

(9.54) 

109 -0.52 
(-4.97) 

Redroot pigweed 109 0.22 
( 1. 69) 

0.022 
(7.34) 

0.0011 
(6.82) 

0.0019 
(5.42) 

0.0024 
(6.48) 

Weighted pseudo-residuals (WSUR) 
Foxtail 110 -2.82 0.024 

Lambsquarters 110 

(-2.67) {17.71) 

0.26 
(1.33) 

0.0040 
(3.43) 

Redroot pigweed 110 0.67 0.0052 
(2.16) (5.93) 

-3.8E-6 
(-3.54) 

-8.2E-8 
(-4.65) 

-3.8E-7 
(-3.34) 

-6.lE-7 
(-4.52) 

Note: t-statistics presented in parentheses. 

4.1.2 Seed production 

SEE R2 

51.4 .42 

3.5 .65 

8.2 .63 

1. 3 .36 

1. 0 .34 

1. 0 .38 

2.0 .68 

2.9 .07 

1. 7 .09 

After weeds go to seed, the soil seed bank contains all 

those seeds from the previous season that have not been lost 

through germination or seed death as well as the new seeds 

that were deposited by the weeds that survived to reproduce. 

The seed bank is updated at the end of each season by the 

WSSeedBank procedure in WEEDSIM and in the year-end 
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accounting loop in WFARM. Rewriting equation (3.5) in 

stochastic form, 

sit = (1 - Ea. i s - Pi) sit- 1 + Y iwfjt + eit (4.2) 
s 

where ais is the proportion of seeds of species i germinated 

during growth stages (s=0,1,2), ~i € [0,1] is the propor­

tion of seeds of species i that die in the soil, yi € [O,oo] 

is the average number of seeds deposited by each weed of 

species i at maturity, and eit is a disturbance term. 

Defining s 3 it- 1 = ( 1 - I:ais) sit- 1 , equation ( 4. 2) can be 

estimated as follows, 

h 
sit = f1§3it-1 + f2st-1 + f3wijt + eit (4.3) 

where f 1 = 1, f 2 = -~i and f 3 = yi. 

As with the seedling emergence calibration regressions, 

there is reason to suspect that the error term in equation 

(4.3) will be spatially correlated. The Breusch-Pagan test 

generates the x2 (3) test statistic 5.41, which exceeds the 

conservative critical value x2 (3,.20)=4.64. Because some 

evidence of spatial correlation is present, the three 

equations were estimated as a system. 

A further methodological issue is proper specification. 

The presence of two predetermined right-hand side variables 

calls into question whether the error term might be corre-

lated with the independent variables. The system of equa-

tions was estimated using both SUR and three-stage least 

squares (3SLS), where 3SLS used early and late-season weed 
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biomass as instrumental variables. The Hausman specifica­

tion test was applied to the seeds per weed coefficient 

estimates to test the hypothesis that the SUR estimates are 

consistent (given that they are more efficient than 3SLS). 

Results for the foxtail, lambsquarters and pigweed esti­

mates, respectively, were 1.44, 1.72, and 0.77. As none of 

these exceeds the x2 (3,.05) critical value of 3.84, the SUR 

estimates were retained. 

The seed bank data include numerous outliers. A 

preliminary attempt to screen the data for influential 

observations identified eight of the 36 observations which 

exhibited high potential leverage (h1) accompanied by high 

studentized residuals or DFBETAS statistics (Belsley et 

al.). Rather than drop 22% of the sample, it was decided to 

proceed with all observations. 

Seemingly unrelated regressions were performed on the 

system of three weed seed equations with the restriction 

that the coefficient on s 31 t_ 1 , f 11 = 1. Results are presented 

in Table 4.6. As the equations lack an intercept, their 

significance must be judged from t-ratios. The hypothesis 

of homoscedasticity could not be rejected upon regressing 

absolute residuals from the SUR equations on the same 

independent variables. 
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Table 4.8: SUR estimates of weed seed mortality and 
reproduction coefficients with all observations (n=72). 

Weed 

Foxtail 

Lambsquarters 

R. p igweed 

Coefficient estimates 
Seeds3(1985) Seeds(1985) Seeds/weed(1986) 

f 1 i f2i f3i 
1 -0.78 12.3 

1 

1 

(-2.66) (2.95) 

-0.50 
(-2.41) 

1.19 
(2.27) 

6.5 
(2. 21) 

8.8 
( 1. 04) 

Note: t-ratios in parentheses. 

Two aspects of the results in Table 4.8 are discon-

certing. First, the average seed production estimates (f31 ) 

are extremely low. Forcella and Lindstrom (1988b) obtained 

similar results for 1985 from harvesting samples of weed 

seed heads from conventional tillage treatments in the same 

fields. This can partly be explained by the fact that these 

weeds were mostly small, late-emerging ones (Forcella, 

personal communication, 1991). Buhler1 (1991a) has found 

that weeds surviving herbicide treatment produce far fewer 

seeds than survivors of exclusively mechanical treatments. 

Nonetheless, seed production by the two broadleaved species 

was expected to exceed substantially that by the foxtails. 

Second, the seed death coefficient estimate on the previous 

1 Unpublished single year research results from the 
Rosemount experiment station in 1990 found giant foxtails to 
produce a mean of 1180 seeds/plant under rotary hoe and 
cultivation, versus only 120 seeds/plant under PRE and POST 
herbicide treatment. Seeds/plant for Pennsylvania smartweed 
were 510 and o for the same treatments. 
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seed bank term (s1t_ 1), f 21 , which is expected to lie in the 

interval [-(1-I:a 1s) ,O], falls outside that interval in two 

cases. In the foxtail equation, it drops below -(1-I:a1s) 

= - 0.55, although the coefficient estimate remains within a 

95% confidence interval of that threshold. In the pigweed 

equation, however, f 23 is greater than zero, so much so that 

the hypothesis ~3 € (-(1-I:a3s) ,O] can be rejected with 95% 

confidence. These results confirm the converse of Ball and 

Miller's observation that, "low correlations between seed 

counts and weed counts indicate that seed count estimates 

alone were poor predictors of weed flora" (p. 372). 

Proceeding by imposing restrictions from theory in 

spite of the pigweed seed death coefficient estimate, the 

pigweed coefficient, f 23 , was set at -0.10 and the foxtail 

one , f 21 , at -o. 45. These imply seed carryover of 76% for 

pigweed and 10% for foxtail, respectively. The seed produc­

tion regression results from the added restrictions imply 

seed carryover of 20% for lambsquarters. Presented in Table 

4.9 , the resulting seed production estimates are still 

extreme! y 1 ow. 
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Table 4.9: Restricted SUR estimates of weed seed mortality 
and reproduction coefficients with all observations (n=72). 

Weed 

Foxtail 

Lambsquarters 

R. pigweed 

Seeds3(1985) 
f 1 i 

1 

1 

1 

Coefficient estimates 
Seeds(1985) Seeds/weed(l986) 

f3i f2i 8. 8 
-0.45 (2.55) 

-0.53 
(-2.66) 

-0.10 

6.0 
( 2. 12) 

13.1 
( 1. 62) 

Seed production estimates in the literature are higher 

by several orders of magnitude. Under cultivated condi-

t i ons, seed production has been reported at 100,000 to 

200 ,000 seeds/m2 for green foxtail (Cavers and Benoit), 

14, 400 to 41,900 seeds/plant for common lambsquarters (Crook 

and Renner), and 117,000 for redroot pigweed (W. Anderson). 

Two points about these high numbers should be kept in mind. 

Fi r st, many of the seeds are not viable. Chepil found the 

percent of fresh germinable seed to be 11-76% for green 

foxtail, 42-55% for common lambsquarters, and 71-83% for 

redroot pigweed. Second, high seed production figures 

mostly come from plants that grew the entire season and were 

undamaged by herbicide. 

As a compromise, two estimates of viable seed produc-

t ion were developed for each species. Seed production by 

plants emerging after lay-by cultivation is assumed to be 

that presented in Table 4.9. Based upon Buhler's (199la} 

preliminary results concerning seed production by herbicide-
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damaged weeds, seed production by weeds emerging prior to 

lay-by cultivation and surviving to reproduce is assumed to 

be 90, 120 and 130 seeds/plant for foxtails, lambsquarters 

and pigweed. This multiplies the estimated coefficients by 

ten for foxtail and pigweed, and by twenty for lambsquarters 

(to bring it in line with pigweed). It is assumed that all 

fields are treated with herbicide at least once in the 

season, so no herbicide-free seed production estimates were 

developed. 

Rather than specify seed mortality explicitly, leaving 

surviving seed bank carryover as residual, both are calcu­

lated as fixed proportions of the seeds that do not emerge, 

based on the 1985 values. While the proportions are those 

that obtained in 1985, at least this approach does not 

impose exact mortality percentages on each succeeding year, 

based on 1985. Denoting the carryover proportion, hl; = 1 -

~ais - f3;, since hl; + 13; = 1 - L:ais' given simulated ai, the 

known ratio hl/(hl; + 13;) = ~;/(1 - L:a;s), where L:a 1s is 

simulated total emergence, ~; is the new ~ 1 , and the new 13; = 

1 - ~&is - ~;. The mortality proportions of non-germinated 

seed numbers so calculated were foxtails, 0.714; 

lambsquarters, 0.818; and pigweed, 0.116. These estimates 

imply that pigweed seeds have significantly greater longe­

vity than those of the other two species. The literature on 

weed seed mortality in the soil is very scanty. In two 

five-year experiments, Chepil found seed losses after five 
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years, unaccounted for by germination, to be 23-64% for 

foxtails, 36-49% for common lambsquarters, and 54-63% for 

redroot pigweed. He concluded that since no foxtail had 

germinated in the last two to three years, all 23-64% of 

foxtail seed were dead. Lambsquarters and pigweed, however, 

continued to germinate in small numbers. Given that seed 

viability declines at an exponential rate (Roberts and 

Feast), it is reasonable to suppose that no more than five 

percent of the original seeds survived. This puts mortality 

at 31-44% for lambsquarters and 49-58% for pigweed. By 

comparison, results from applying the mortality proportion 

coefficients to expected Forcella germination rates based 

upon 1974-90 Lamberton data are 52%, 68% and 11% for fox-

tails, lambsquarters and pigweed, respectively. 

One positive aspect of the low seed production 

estimates is that they counterbalance the relatively high 

seed germination rates from the Forcella model. 1 This is 

especially true of late season weed emergence, which is 

largely uncontrollable. High seed production rates could 

violate the controllability condition on the simulation 

model, namely, that the population of viable weed seeds 

diminish under the most potent control strategy. 

1 The high germination rates are an artifact of using a 
germination test to count viable seeds. 
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4.2 Yield function 

The crop yield function in the simulation model is 

executed by function Yield2. Data used to estimate coeffi­

cients for it were obtained from several sources. Weed 

density and yield data come from rainfed trials at five 

agricultural experiment stations in Minnesota and Wisconsin. 

In all, there are six sets of corn yield data and five of 

soybean yield data for the year 1989 plus the 1985-86 Morris 

data set, which covers both crops. 

Data from a variety of locations in the upper Midwest 

offer an opportunity to evaluate the stability of the yield 

loss coefficients estimated. That they are mostly from a 

single year is a serious drawback, since temperature and 

rainfall are important determinants of crop yield, weed ger­

mination and losses caused by weeds. Climate across several 

locations in the same region is undoubtedly correlated, 

meaning that different years are needed in order to repre­

sent a range of environmental conditions. 

The yield function is assumed to follow the hyperbolic 

form given by equation (3.8} with an additive error term, u, 

which is independently and identically distributed (i.i.d.} 

normal N(O,a2}. Under these conditions, it can be estimated 

by maximizing the logarithmic normal likelihood function 

L = -(n/2}ln(2~} - (n/2}ln(a2} - (1/2a2}u'u 

where a2 denotes the variance and e = Y - f (w) is the resul­

ting residual (Judge et al., p. 523}. 
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The yield function was fit to corn and soybean yield 

data and densities of foxtails (green, yellow and giant), 

common lambsquarters, redroot pigweed and velvetleaf 

(Abutilon theophrasti Medic.). Parameter estimates for the 

corn yield function are presented in Table 4.10. Those for 

the soybean yield function are presented in Table 4.11. 

General background on the data is provided in appendix table 

Al.1. Since coefficient estimates are asymptotically nor­

mally distributed (Judge et al., p. 506), asymptotic t­

values are reported in parentheses for hypothesis tests. 

In general, weed-free yield (YWF) estimates for both 

crops are close to expected values of 150-160 bushels/acre 

for corn and 40-50 bushels/acre for soybean. Except for 

several insignificant negative estimates, the competition 

coefficients (!FOX, ILAM, !PIG, and IVEL) fall within a 

reasonable range. However, none of the estimates of pigweed 

competition in corn or lambsquarters competition in soybean 

is significantly different from zero at the 5% confidence 

level. 
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Table 4 .10: Corn yield as an unrestricted hyperbolic 
function of weed density in seven Minnesota and Wisconsin 
research trials. 

Equa- Coefficient estimate1 

tion Site2 d.f. S.E.E. YWF A IFOX ILAM IPIG 
Cl L 16 7.8 155.2 93.1 0.46 

(28.4)** (0.30) (0.78) 

C2 L 44 13.4 164.3 37.7 4.20 -1.13 
(60.6)** (2.79)** (1.70)* (-0.20) 

C3 M 43 17.2 149.8 6.8E7 0.83 1.00 1. 98 
(40.9)** (0.01) (2.43)** (0.26) (1. 05) 

C4 w 89 24.3 168.1 133.2 0.90 7.06 -12.69 
(30.9)** (3.61)** (4.12)** ( 1. 42) (-0.44) 

cs A 57 22.8 132. 9 85.4 -0.31 10.90 18.34 
(11.5)** (4.18)** (-0.39) (1.82)* (1.38) 

C6 A 60 19.2 143.6 126.9 5.39 
(25.8)** (3.52)** (3.46)** 

C7 M3 64 14.5 106.3 34.3 0.89 3.75 -2.06 
(23.3)** (5.01)** ( 1. 65) (1.50) (-1.27) 

Note: In the tables that follow, asymptotic t-values are presented in 
parentheses. One and two asterisks denote significance at the 10% and 
5% probability levels of Type II error. Large numbers are presented in 
scientific notation, where "x En" denotes x * ion. 

1 The following equations contained other broadleaved weeds with I 
coefficient estimates as follows: 

Cl: Mixed broadleaves: 1.98 (0.70) 
C4: Velvetleaf: 7.13 (1.57), Common ragweed: -8.48 (-1.84)* 
CS: Velvetleaf: 3.61 (2.25)**, Other broadleaves: 2.44 ( 0.79) 
C6: Velvetleaf: 2.85 (4.12)** 
C7: Other weeds: 2.21 (1.17). 

Equations Cl and C7 included dummy variables for low input management 
practices and dummy variables, respectively. 

2 In this and subsequent yield tables, "site" refers to the year 
1989 unless otherwise indicated. Sites are: 

A - Arlington, WI R - Rosemount, MN 
L - Lamberton, MN W - Waseca, MN 
M - Morris, MN. 

3 Years 1985-86 in pooled sample. YWF represents 1985 yield; 
coefficient estimate for 1986 dummy is 50.6 (7.61)**· 
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Table 4 .11: Soybean yield as an unrestricted hyperbolic 
function of weed density in six Minnesota and Wisconsin 
research trials. 

Equa- Coefficient estimate1 

tion Site d.f. S.E.E. YWF A IFOX II.AM IPIG 

Sl L 16 4.5 41. 9 5.8 6.06 
(7. 77)** (0.47) (0.79) 

S2 w 24 6.9 49.1 90.7 0.17 6.61 -1.48 
(5.95)** (7 . 6 3) ** ( 1. 5 7) (1. 60) (-0.29) 

S3 w 138 6.1 38.0 126.7 0.682 -2.65 3.86 
(17.5)** ( 15 . 1) ** ( 5 . 2 4) ** ( - 0 . 9 8) (5.05)** 

S4 L 33 11.3 42.8 2.4Ell 0.35 
(17.7)** (0.00) (3.70)** 

SS R 58 4.5 29.4 126.5 1. 54 1. 80 -0.45 
(28.9)** (2.26)** (2.96)** (0.63) ( -1. 24) 

S6 M3 28 3.6 38.7 28.1 0. 72 0.14 -0.10 
(30.0)** (1.79)* ( 1. 02) (0.23) (-0.14) 

1 The following equations contained other broadleaved weeds with I 
coefficient estimates as follows: 

Sl: Mixed broadleaves: -69.2 (-0.84) 
S2: Velvetleaf: 0.21 ( 0.26) 
S3: Velvetleaf: 6.03 ( 3.45)** 
SS: Nightshade: 1.14 ( 1.26) 
S6: Other weeds: 2.50 ( 1.22). 

Equations Sl and S6 included dummy variables for low input management 
practices and waterlogged plots, respectively. 

2 Foxtails were measured in dry weight units (g/m2), which are not 
directly comparable with density units. A regression of foxtail density 
on dry weight using 1989 Lamberton data found considerable unexplained 
variability (R2=0.12). 

3 Years 1985-86 in pooled sample. YWF represents 1985 yield; 
coefficient estimate for 1986 dummy is 9.1 (3.63)**· 
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Estimates of maximum yield loss (A) are less satis-

factory. Five of the 13 exceed 100, implausibly suggesting 

yield loss over 100%. The A parameter estimates do not 

offer an obvious candidate for a "typical" yield loss level 

to impose. The median A for corn is 93.1. For soybean it 

is 108.6. As weed density approaches infinity, yield loss 

can be expected to become quite high. A reasonable hypo-

thesis is A = 90%. In Table 4.12, results of that hypothe-

sis test are presented. 

Table 4.12: Results of hypothesis test that maximum yield 
loss coefficient A=90 for corn and soybean yield equations. 

Coefficient Standard Test 
estimate error Asymptotic statistic 

Equation d.f. A SE(A) t(H0 ) t(.05) 

Cl 16 93.1 314.7 0.01 2.12 
C2 44 37.7 13.5 -3.87 2.02 
C3 43 6.8E6 l.lEll 0.00 2.02 
C4 89 133.2 36.9 1.17 1. 99 
cs 57 85.4 20.4 -0.23 2.00 
C6 60 126.9 36.1 1. 30 2.00 
C7 64 34.3 6.8 -8.19 2.00 

Sl 16 5.8 12.4 -6.79 2.12 
S2 24 90.7 11.9 0.06 2.06 
S3 138 126.7 8.4 4.37 1. 97 
S4 33 2 .4Ell l.1El7 0.00 2.03 
SS S8 126.5 56.1 0.65 2.00 
S6 28 28.1 15.7 -3.94 2.05 

Note: t(H0 ) = (A - 90)/SE(A) 

In eight of the 13 equations, the hypothesis cannot be 

rejected with 95% confidence. The eight include all cases 

where the A estimate exceeds 100%. In tables 4.13 and 4.14, 



91 

all 13 equations are re-estimated with A set parametrically 

at 90. 

Table 4.13: Corn yield as a hyperbolic function of weed 
density setting A = 90. 

Equa- Coefficient estirnate1 

tion Site2 d.f. S.E.E. YWF IFOX HAM IPIG 

Cl L 17 7.8 155.3 0.05 
(35.1)** (2.34)** 

C2 L 45 13 .6 163.0 0.16 0.10 
(65.5)** (2.80)** (0.26) 

C3 M 44 17.5 150.3 0.11 -0.06 0.22 
(30. 7)** (1.89)* (-0.11) (0.82) 

C4 w 90 24.6 171.2 0.11 0.96 -1. 20 
(29.2)** ( 5. 43) ** ( 1. 52) (-0.31) 

cs A 58 22.8 131. 9 -0.28 9.91 16.96 
(13.2)** (-0.40) ( 3 . 2 0) ** ( 1. 6 6) 

C6 A 61 19.5 146.7 7.86 
(25.7)** (5.38)** 

Cl M3 65 15.1 99.8 0.18 0.83 0.06 
(34.4)** ( 2 . 3 8 ) ** ( 2 . 11) (0.15) 

1 The following equations contained other broadleaved weeds with I 
coefficient estimates as follows: 

Cl: Mixed broadleaves: 1.99 (0.68) 
C4: Velvetleaf: 0.78 (1.38), Common ragweed: -0.97 (-1.85)* 
CS: Velvetleaf: 3.42 (3.25)**, Other broadleaves: 2.28 ( 0.97) 
C6: Velvetleaf: 3.50 (4.12)** 
C7: Other weeds: 0.24 (0.63). 

Equations Cl and C7 included dummy variables for low input management 
practices and waterlogged plots, respectively. 

2 Refers to year 1989 unless otherwise indicated. Sites are: 
A - Arlington, WI R - Rosemount, MN 
L - Lamberton, MN W - Waseca, MN 
M - Morris, MN. 

3 Years 1985-86 in pooled sample. YWF represents 1985 yield; 
coefficient estimate for 1986 dummy is 42.9 (7.44)**· 
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Table 4 .14: Soybean yield as a hyperbolic function of weed 
density setting A = 90. 

Equa- Coefficient estimate1 

tion Site d.f. S.E.E. YWF IFOX ILAM IPIG 
Sl L 17 4.7 43.1 -0.00 

(15.5)** (-0.09) 

S2 w 25 6.9 49.2 0.17 6.78 -1. 61 
(6.00)** (1. 59) (2.32)** (-0.30) 

S3 w 139 7.2 38.3 1. 672 -14.02 7.18 
(14.2)** ( 4. 04) ** ( -1. 55) (3 .17)** 

S4 L 34 11.5 42.8 0.49 
(14. 7)** (2.24)** 

SS R 59 4.5 29.8 1. 91 3.69 -0.61 
(30.3)** (3.94)** (1.21) (-1.68)* 

S6 M3 29 3.6 37.8 0.23 0.10 -0.00 
(36.4)** (1. 35) (0.38) (-0.01) 

1 The following equations contained other broadleaved weeds with I 
coefficient estimates as follows: 

Sl: Mixed broadleaves: 30.65 (1.39) 
S2: Velvetleaf: 0.22 (0.28) 
S3: Velvetleaf: 15.37 (1.98)** 
SS: Nightshade: 1.46 (1.15) 
S6: Other weeds: 1.32 (1.64). 

Equations Sl and S6 included dummy variables for low input management 
practices and waterlogged plots, respectively. 

2 Foxtails were measured in dry weight units (g/m2), which are not 
directly comparable with density units. A regression of foxtail density 
on dry weight using 1989 Lamberton data found considerable unexplained 
variability (R2=0.12). 

3 Years 1985-86 in pooled sample. YWF represents 1985 yield; 
coefficient estimate for 1986 dummy is 8.6 (3.64)**· 
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Setting maximum yield loss parametrically at 90% has 

little effect on standard errors of estimate (SEE). Only 

for equation S3 does the SEE increase by more than 5%. 

Parameterizing A has little effect on the number of 

significant competition coefficients in corn. Two new 

foxtail coefficients become significant (Cl and C7), and one 

lambsquarters coefficient does as well (C7). In soybean, 

the results are similar. One significant lambsquarters 

coefficient is gained (S2) and so is one pigweed coefficient 

(85). However the last of these is negative, which implau­

sibly implies that soybean yield increases with pigweed 

density. Parameterizing A can have a large effect on the 

magnitude of competition coefficients. In equations C2, C4, 

C7 and Sl, some I estimates change by a factor of ten or 

more. Except for C4, these are equations for which the 

hypothesis A=90 was rejected. 

Equations C7 and S6 use the Morris 1985-86 data, so 

they are of particular interest. That the hypothesis A=90 

was rejected for these equations is unfortunate, since it 

appears justified for most of the other yield functions. 

Since the A parameter influences the other coefficient 

estimates, the restriction was imposed anyway, to keep the 

C7 and S6 equations consistent. Judging from the SEE's, 

variability in the predicted yield is little different with 

A parameterized at 90. Equation S6 shows insignificant weed 

competition coefficients before and after the parameter-
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ization of A. Equation C7, which had no significant I coef-

ficients before parameterization of A, gains significance on 

the foxtail and lambsquarters ones (although their absolute 

values diminish considerably) . 

Heteroscedasticity has been found in some yield-weed 

density functions in the form of decreasing variance (Roush 

and Radosevich). If present, it should be compensated for 

in order to obtain efficient parameter estimates. More 

important, in generating random yield variables, it needs to 

be modeled explicitly. In order to test the hypothesis that 

the yield models are homoscedastic in their competition 

coefficients, the hyperbolic yield function was linearized 

and OLS regressions run on the absolute residuals. The test 

was applied to equations C7 and S6. Equation (3.8) was made 

linear as follows: 

Y = Y011 -
L Iiwi 
i 

100(1 + ~ Iiwi/ A) 

(3.8) 

Defining Q as percent yield loss due to weeds, (3.8) can be 

rewritten, 

Q 5100( 1- :a) = 
L Iiwi 

l+ 

Multiplying through by the right-hand side denominator, 
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Liiwi 
i 

Now, subtract Q:EI 1w;fA from both sides, 

Q = L Iiwi (1-Q/A) 
i 

Dividing through by (1 - Q/A) and rearranging produces the 

expression, 

QA = Liiwi 
A-Q i 

(4.4) 

By setting A and YWF parametrically at 90 and the nonlinear 

YWF estimate, respectively, the dependent variable in equa-

tion (4.4) can be calculated, yielding a regression that is 

linear in weed density. 

To test for heteroscedasticity, residuals from esti-

mation of (4.4) were saved, and their absolute values re-

gressed on the weed density independent variables. Neither 

the corn nor the soybean regressions gave significant evi-

dence of heteroscedasticity. The corn residuals regression 

had an adjusted R2 = 0.01 and F(3,65) = 1.29. The soybean 

residuals regression summary statistics were adjusted R2 = 

0.06 and F(3,29) = 1.69. The 95% confidence level test 

statistic for F(3,65) is 2.75. Since the null hypothesis 

that the equations are homoscedastic cannot be rejected, 

there is no need for weighted estimation. 

Summarizing the yield function results, the median 

competition coefficient estimates for corn with A=90 are: 
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foxtail, 0.11, common lambsquarters, 0.89, and redroot 

pigweed, 0.14. For soybeans, they are: foxtail, 0.36, 

lambsquarters, 1.88, and pigweed, -0.30. Expert opinion 

suggests that pigweed should be on par with lambsquarters, 

and that foxtails should be only half as competitive 

(Lybecker et al. 1991b). Generally speaking, corn is 

expected to compete more strongly against weeds than 

soybean. 

Final competition coefficient estimates were chosen to 

reflect the information obtained from all estimated equa-

tions in light of expert opinion. The Morris 1985-86 fox-

tail and lambsquarters corn yield coefficient estimates fall 

in the middle of the pack. The pigweed value is set equal 

to the lambsquarters one. It remains within a 95% confi-

dence interval of the Morris 1985-86 estimate. For soybean, 

competition parameters equal to the lambsquarters median 

were selected for both lambsquarters and pigweed. Final 

parameter choices are presented in Table 4.15. 

Table 4.15: Final yield parameters chosen for the weed 
management simulation model. 

Lambs- Redroot 
Equation Foxtail quarters Pigweed 

Yield loss (Ii) 
Corn 0.2 0.8 0.8 
Soybean 0.2 1.9 1.9 
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4.2.1 Validation of corn yield equation 

Validation data from the 1990 Morris data set were 

available for corn, but not soybean. Because 40 observa­

tions with herbicide and 40 without were available in 1990, 

two observations per farm were dropped to make it conform to 

the 72 residuals from estimation of the 1985-86 equations. 

Two types of residuals were generated from the 1990 data: 

1) residuals by subtracting predicted 1990 yields based on 

1990 weeds from actual 1990 yields, and 2) residuals by 

subtracting predicted 1990 yields based on predicted 1990 

weeds from actual 1990 yields. The three sets of residuals 

permitted three hypothesis tests: 1) Residuals from regres­

sion of predicted 1990 yields from actual weeds are distri­

buted as those from 1985-86, 2) Residuals from regression of 

predicted 1990 yields from predicted weeds are distributed 

as those from 1985-86, and 3) Residuals from regression of 

predicted 1990 yields from predicted weeds are distributed 

as those from predicted 1990 yields from actual weeds. The 

x2(5) test statistics were 16.33, 18.68 and 8.49, respec­

tively. Since the x2 (5,.05) critical value is 11.07, the 

first two hypotheses can be rejected with 95% confidence. 

We cannot, however, reject the hypothesis that the distri­

butions of residuals from 1990 predicted yields based on 

actual and projected weed densities are the same. As shown 

in Table 4.7, the 1990 weed densities deviated drastically 

from the 1985-86 data. This fact, plus the fact that the 
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yield coefficients were developed from a number of data sets 

obtained from different years and locations were interpreted 

as sufficient reason not to reject the validity of the 

estimated yield equation. 

4.3 Weed control efficacy 

The model incorporates the principal corn and soybean 

weed control treatments currently practiced in Minnesota. 

These are executed via calls to function Surv from proce­

dures WSPreTrt and WSPostTrt in WEEDSIM and PRESurv and 

POSTTrt in WFARM. The predominant chemical treatments 

encountered in a 1988 survey of Minnesota farms (Gianessi 

and Puff er) have been updated to delete those no longer 

legal (chloramben) and add new arrivals of importance (e.g., 

sethoxydim, nicosulfuron). Mechanical control in the form 

of rotary hoeing has also been added. 

"Kill" functions for these treatments take the form of 

weed control step functions based upon the efficacy ratings 

from available herbicide data (Durgan et al., Kidder et al.) 

along with new data from recent experiments with mechanical 

control (Gunsolus 1990b and 199la) . Herbicide treatments are 
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Table 4.16: Efficacy percentage and application time of weed 
control treatments included in the model, by crop. 

Percentage Killed1 Materials cost 
Application 

time3 
Fox- Lambs- Pig- per acre2 

Treatment 

Corn 
No control 
Alachlor 4E 
Atrazine 4F 
Bromoxynil 2E 
Cyanazine 4F 
Dicamba 4S 
Eradicane (EPTC) 6.7E 
Nicosulfuron 
Rotary hoe 
2,4-D Amine 4S 

Soybean 
No control 
Acifluorfen 2S 
Alachlor 4 MT 
Bentazon 4S 
Imazathapyr 2L 
Metribuz in DF 
Rotary hoe 
Sethoxydim l.SEC 
Trifluralin 4E 

0,1,2 
0,1 
0,1,2 
2 
0,1,2 
1,2 
0 
2 
2 
2 

0,1,2 
2 
0,1 
2 
2 
0,1 
2 
2 
0 

tail guarter weed PRE POST 

0 
90 
90 

0 
90 
10 
90 
90 
30 

0 

0 
10 
90 

0 
90 
so 
30 
90 
90 

%------ --$-

0 
30 
90 
90 
90 
90 
70 
30 
so 
90 

0 
10 
30 
10 
10 
90 
so 

0 
70 

0 
90 
90 
70 
so 
90 
so 
90 
so 
90 

0 
16.2S 

6.78 

14. 71 
6.05 

lS.48 

0 0 
90 
90 16.99 
90 
90 
90 16.62 
so 

0 
90 S.2S 

0 

4.07 
6.89 
8.80 
6.0S 

17.98 

1.49 

0 
lS.03 

11.22 
18.11 

16. 72 

4 

4 

1 Efficacy percentages are a linear transformation of the quali­
tative ratings published in Durgan et al. where "good" efficacy is 
interpreted as 90% efficacious and "poor" as 10% efficacious. 

2 Applied at the average of the recommended rates in Durgan et al. 
Application costs per acre (Fuller et al., 1991), omitting labor, are: 

PPI (sprayer & cultivator) $4.82 
PRE (sprayer) $1.40 
POST (sprayer) $1.40 
Rotary hoe $2.04. 

3 Codes are as follows: O=pre-plant incorporated, l=pre-weed 
emergence, 2=post-weed emergence. 

4 Rotary hoe causes 3-S% stand loss (Gunsolus, personal 
communication), leading to an average loss of 1.5% of yield. 
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assumed to be applied at the manufacturer's recommended 

rate, so variable application rates are not considered. 

Chemical and mechanical treatments included in the model are 

listed in Table 4.16. 

4.4 weed and crop growth rates 

Certain weed control treatments are not feasible 

beyond a given stage of weed or crop growth. For example, 

rotary hoeing does not effectively control weeds once their 

roots are well established. Atrazine efficacy drops sharply 

from its 90% rating on foxtails once the weedy grass exceeds 

1.5 inches height. This temporal efficacy threshold 

requires information on plant growth rates, which are simu­

lated using procedures CropGrowth and WeedGrowth in WFARM. 

The period of interest covers the first several weeks of the 

growing season, before the post-emergence weed control 

decision is taken. 

Growth rates for corn, soybean, mixed green and yellow 

foxtails, common lambsquarters, and redroot pigweed were 

estimated from reported University of Minnesota weed control 

experimental data at the Lamberton, Morris, Rosemount and 

Waseca reserch stations (Eberlein et al. 1987, 1988; Buhler 

et al. 1989). Regression of plant height on squared days 

after planting (DAP2 ) provided higher coefficients of deter­

mination than regression on linear DAP. Because plant size 
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must remain non-negative, no intercept was included. 

Results from the quadratic regressions are presented in 

Table 4.17. Coefficient estimates for weed growth range 

from 0.0033 to 0.0051. For crops, estimates are higher, 

0.0100 for corn and 0.0069 for soybean. Corn field data 

were analyzed separately from soybean field data. All 

equations based on the latter were heteroscedastic. In 

Table 4. 17: Estimated crop and weed seedling growth rates: 
OLS, heteroscedasticity test, and weighted least squares. 

Coefficient estimates 
OLS Abs. residuals WLS 

Plant n DAP2 Constant DAP2 adj .R2 DAP2 

Corn 23 0.0100 1. 556 0. 0011 .025 
( 14. 84) 1 (1.80) (1. 25) 

Soybean 40 0.0069 0.133 0.0024 .317 0.0069 
(14.37) (0.28) (4.37) (13.47) 

Foxtail 21 0.0044 0.457 0.0009 .036 
(in corn) ( 9.85) (0.79) ( 1. 32) 
Foxtail so 0.0048 0.031 0.0020 .294 0.0050 
(in soybean) (13. 04) (0.08) (4.63) (13.39) 

Lambsquarters 20 0.0033 0.740 0.0002 -.044 
(in corn) (13.26) (1. 69) (0.45) 
Lambsquarters 39 0.0047 -0.716 0.0033 .545 0.0034 
(in soybean) (10.02) (-1.82) (6.82) (44.43) 

R. pigweed 16 0.0035 0.276 0.0006 .106 
(in corn) (12.78) (0.64) ( 1. 66) 
R. pigweed 27 0.0051 -0.347 0.0031 .462 0.0040 
(in soybean) (9.84) (-0.77) (5. 72) (10.96) 

Velvetleaf 23 0.0033 0.345 0.0005 - .073 
(in corn) ( 7.49) (0.63) (0. 67) 
Velvetleaf 40 0.0031 -0.037 0. 0011 .212 0.0034 
(in soybean) (11.39) (-0.12) (2.83) (11.73) 

1 t-ratios in parentheses. 
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general, estimates differ little between corn and bean 

datasets. For modeling weed growth, results from the two 

data sets were combined, weighted by the number of 

observations (n) . 

4.5 Input data files for stochastic simulation 

The input data files for stochastic simulation contain 

three types of variables. The first are correlated, pseudo­

random, additive error terms. These are called in procedure 

GetStateErrors and used to adjust predicted values in proce­

dures CalibrateGerm, CropGrowth, and WeedGrowth, as well as 

the yield and weed seed production equations of WFARM. They 

are generated from the empirical probability distributions 

of residuals from the estimated equations. The second set 

of random variates are pseudo-random, multivariate normal 

deviates from estimated coefficient values. These are 

called in procedure GetstateBetas and used to adjust equa­

tion coefficient values in CalibrateGerm, CropGrowth and 

WeedGrowth. The third set of input variables are actual 

historical data on random natural processes such as preci­

pitation, days when soil conditions were suitable for field 

work, growing degree days, and weed-free yields. These are 

called in procedure GetYear and used in CalibrateGerm 

{Forcella predicted germination) and PRETrt (weekly rain-
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fall), as well as the weekly loops (field days) and year-end 

accounting loop (weed-free yield) of the main WFARM program. 

4.5.1 Generation of pseudo-random disturbances 

For the thirteen equations estimated from the 1985-86 

and 1990 Morris, MN, data sets, correlated, pseudo-random, 

additive error terms were generated using the generalized 

multivariate process generator developed by King. The 

procedure creates multivariate normal variables using a 

method proposed by Naylor et al., and then transforms them 

to correlated random variables based on empirical marginal 

distributions. The five crop growth functions, which were 

estimated from data assembled from experiment station trials 

around Minnesota in 1987-89, were assumed to be uncorrelated 

with one another and with the other 13 equations. 

In order to generate the correlated random variates, a 

correlation matrix was estimated from residuals of the re­

tained equations, including the revised germination calibra­

tion equations. Those 13 equations include the following: 

two weighted SUR pre-plant emergence calibrations (WWOFOX 

and WWOLAM) , three weighted SUR post-planting germination 

calibrations (WWlFOX, WWlLAM and WWlPIG), three weighted SUR 

late season germination calibrations (WW2FOX, WW2LAM and 

WW2PIG), two yield (SOYYLD, CORNYLD nonlinear maximum 

likelihood) and three unweighted SUR seed bank equations 

(FOXSEED, LAMSEED and PIGSEED). Correlation coefficients 
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were estimated from the largest number of observations 

available that included both members of each pair of 

variables. Sample size ranged from 184 for the correlation 

between pre-plant emergence equations to only 24 for the 

correlation between soybean yields and the weed seed bank 

equations. Since the normal statistic generated to test for 

significance of the correlation coefficients is a function 

of sample size (Freund) , coefficients of the same magnitude 

do not necessarily have the same significance level. 

Table 4.18: Correlation of residuals from crop yield and 
weed population dynamics equations. 1 

WWOFOX 1. 00 
WWOLAM .14 1. 00 
WWlFOX -.12 .16* 1. 00 
WWlLAM .28*** .32*** .15 1. 00 
WWlPIG .01 .09 .45*** . 21** 1. 00 
WW2FOX .01 .10 o2 0 0 1.00 
WW2LAM .13 .15 0 0 0 .24*** 1. 00 
WW2PIG -.09 .07 0 0 0 .53*** .15 1. 00 
CORNYLD -.24** -.06 .29** .10 .18 .13 -.09 .10 
SOYYLD -.04 .27 -.35* -.06 .06 -.21 -.07 -.36** 
FOX SEED .05 .01 -.00 .01 -.13 .15 .13 -.14 
LAMSEED -.05 .16 .05 -.12 -.11 -.03 .51*** .07 
PIGSEED .07 .12 -.02 .08 -.21 -.17 .21 -.08 

CORNYLD 1. 00 
SOYYLD 0 1. 00 
FOXSEED -.41*** .38* 1. 00 
LAMSEED -.23 .30 .10 1. 00 
PIGSEED -.17 -.05 .15 .33*** 1. 00 

1 Asterisks denote statistical significance at the 0.10 (*), 0.05 
(**), and 0.01 (***) levels for rejection of the hypothesis that p=O 
(Freund, p. 381). 

2 Single zeroes identify coefficients assumed to be zero because the 
data could not support their estimation. 

The correlation matrix is presented in Table 4.18. 

most correlations are low in absolute value but have the 

expected signs. In particular, correlations are 1) positive 
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across the weed seed bank equations, 2) negative between 

corn yields and weed seed production, 3) generally positive 

across weed emergence, and always across emergence at the 

same seasonal stage. The only striking incongruities are the 

significantly positive correlations between soybean yield 

and both foxtail seed production and pre-plant lambsquarters 

emergence. 

A total of 1080 pseudo-random observations were gene­

rated for each of the thirteen correlated and five uncorre­

lated error terms above. These were needed to accommodate 

one for each of up to nine fields in twenty six-year simu­

lations. Visual comparison of graphed cumulative distribu­

t i on functions generated by the pseudo-random variates 

compared with the data used to generate them identified no 

obvious differences. Descriptive statistics on the vari­

ables, presented in Table 4.19, reveal that, with the 

exception of the seed production equations, all means are 

zero± 0.3. Mean seed production errors are large, however, 

due to the estimation restriction of regression through the 

origin. Means for these are 407, 95 and 198 seeds/m2 for 

foxtails, lambsquarters and pigweed, suggesting that the 

seed bank increases unaccountably from year to year. These 

l arge expected values were incorporated into the data used 

by the WeedGerm subroutine to forecast germination in the 

WEEDSIM recommendations module. 
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Variability in the pseudo-random disturbance terms is 

quite high. While the standard deviations and extrema for 

the seed equations are the most striking, standard devia-

t i ons for the germination equations are also high, given 

that these are weighted regression results. 

Table 4 .19: Descriptive statistics on 1080 pseudo-random 
disturbance terms. 

standard 
Egyation Mean deviation Minimum Maximum 
Germination 1 

WWO FOX -0.17 2.62 -9.81 17.21 
WWO LAM -0.12 2.18 -6.41 15.91 
WWl FOX 0.04 3.20 -16.40 11. 70 
WWlLAM -0.15 2.81 -12.54 11. 37 
WWlPIG 0.00 1.89 -4.60 9.58 
WW2 FOX -0.01 2.69 -10.64 22.16 
WW2 LAM 0.13 3.17 -10.45 19.97 
WW2 PIG 0.10 1.85 -3.42 6.92 
Yield 
CORNYLD -0.24 15.96 -46.20 32.49 
SOYYLD 0.09 3.70 -11. 39 6.90 
seed production 
FOXSEED 407.33 1183.28 -1520.16 6944.16 
LAMSEED 95.12 157.77 -237.34 767.44 
PIGSEED 197.77 368.95 -162.23 1911. 52 
Plant growth 
CORN GROW -0.12 3.33 -11.77 8.94 
SOY GROW -0.04 1.19 -3.78 4.51 
FOXGROW -0.03 1. 33 -3.97 4.36 
LAMGROW 0.02 1. 22 -4.49 3.41 
PIGGROW -0.03 1. 09 -3.12 3.95 

1 All eight germination equations are weighted regressions. 

4.5.2 Generation of pseudo-random coefficients 

Recognizing that coefficients estimated from data are 

random variables, pseudo-random coefficients were generated 
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for the eight germination calibration equations as well as 

the five crop and weed growth equations. Since coefficients 

for the two yield equations and the three weed seed produc­

tion equations were chosen from aggregates of prior studies 

or literature citations, these were treated as if they were 

known values. 

The pseudo-random coefficient variates for the germi­

nation equations were generated as multivariate normal 

deviates from the coefficient estimates. As the coeffi­

cients had been estimated by SUR, they were assumed to be 

distributed multivariate normal. Where heteroscedasticity 

was present in the original regressions, the weighted 

regressions were the basis for the pseudo-random coefficient 

deviate generation. Like the pseudo-random disturbance 

terms, the 1080 random deviates for each coefficient esti­

mate in the eight germination calibration equations were 

generated using the multivariate normal process generator 

proposed by Naylor et al. and developed by King. Coeffi­

cient deviates for the five plant growth equations were 

generated as independent normal random variates. 

The lower-triangular covariance matrices used to 

generate the coefficient deviates are presented in Table 

4.20. Coefficients in the three different systems of 

estimated equations are assumed to be unrelated. The 

s tandard deviations of the quadratic days-after-planting 

(DAP) term coefficients in the independent growth equations 
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for corn and soybean are 0.0007 and 0.0005. The pooled 

standard deviations of the quadratic DAP coefficients for 

foxtail, lambsquarters and pigweed are, respectively, 

0.00040, 0.00040, and 0.00046. Except for the constant 

terms, coefficient estimate variability is quite modest. 

Table 4.20: Covariance of coefficients in weighted weed 
germination calibration equations. 

Pre-plant germination (WO) 
Constant (Fox) 3.05 
Seeds (Fox) -4.81E-03 2.45E-05 
Seeds2 (Fox) 3.80E-07 -2.0lE-09 
Constant (Lam) 6.15E-02 -2.74E-05 
Seeds (Lam) -l.64E-04 l.46E-06 
Seeds2 (Lam) 2.88E-08 -3.04E-10 

(Wl) 

7.46E-05 

l.69E-13 
1. 65E-09 1. 36 

-l.13E-10 -9.61E-04 2.71E-05 
2.36E-14 2.20E-07 -6.36E-09 l.59E-12 

Post-plant germination 
Constant(Fox) 31.40 
Seeds (Fox) -1.32 
Constant (Lam) 0.66 
Seeds2 (Lam) -3. 97E-08 
Constant (Pig) 3.46 
Seeds (Pig) -l.06E-03 

8.46E-05 0.93036 
l.31E-10 -6.51E-08 2.07E-12 

-l.22E-08 2.87 -3.21E-04 0.28 
3.61E-06 -l.49E-05 4.71E-11 -1.21E-03 4.64E-06 

Post-cultivation germination (W2) 
Constant (Fox) 1.26 
Seeds (Fox) -3.89E-04 
Constant (Lam) 4.60E-02 
Seeds (Lam) -l.58E-05 
Constant (Pig) 1.50 
Seeds (Pig) -l.36E-05 

2.23E-06 
l.16E-08 
1. 02E-07 

-3.30E-05 
3.46E-07 

3.96E-02 
-5.84E-05 1.28E-06 
5.75E-03 -l.37E-06 9.SOE-02 
l.85E-06 l.68E-08 -9.07E-05 7.83E-07 

Note: Fox= foxtails, Lam= lambsquarters, and Pig = redroot pigweed. 

4.5.3 Inter-year variability 

Most biological relationships in the simulation model 

were estimated from one- or two-year data sets. Yet the 
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inter-year variability faced by farmers typically dwarfs 

that within a year. Of particular interest are 1) the 

reliance of pre-emergent herbicides upon rainfall during the 

first week after application in order to be effective, 2) 

the availability of days suited to field work (soil dry 

enough to withstand tractoring), 3) weed-free crop yields, 

and 4) weed germination rate. In order to capture variabi­

lity across years, data from the Southwest Experiment 

Station at Lamberton, Minnesota, were incorporated into 

random access data files. The data include weekly total 

precipitation (Table 4.21), average weed-free corn and 

soybean yields {Table 4.22), weekly days suited to field 

work (Table 4.23), and expected weed germination rates 

(Table 4.24). The last of these are predicted from data on 

cumulative growing degree days {10° c. base) in the month of 

April, based on the Forcella (1991) simulation model. 
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Table 4.21: Weekly precipitation at Lamberton, MN, for the 
period April 19 - July 4, 1974-1990. 

Preci2itation in inches for the weed beginning 
Year 4{'.19 4{'.26 5{'.03 5{'.10 5{'.17 5{'.24 501 6{'.07 6{'.14 6{'.21 6{'.28 
1974 0 0.12 0. 71 0.73 2.37 0.84 2.31 1. 31 0 0.10 0.08 
1975 2.11 0.48 0.15 0.50 0.43 0 0.63 0.62 1. 93 0.56 0 
1976 0.48 0.08 0 0.09 0 0.27 0 0.15 0.14 0.76 0 
1977 1.01 0 1.08 0.19 1.02 0.34 0.05 0.27 4 . 52 0.20 0.45 
1978 0.62 0.03 0.74 0.31 0.12 1.42 0.69 0.04 0.84 0.07 0. 72 
1979 0.59 0.59 0.89 2.12 0.13 0.80 0.03 1. 37 1. 79 0.01 1. 72 
1980 0 0 0 0.16 0.58 4.41 1. 82 0. 74 0 0.91 0.34 
1981 0.42 0.16 0.16 0.07 0.06 0.05 0.37 0.70 1. 54 0.29 0.39 
1982 0.34 0.02 0.37 2.04 1.46 0.42 2.22 0.56 0. 77 0 . 02 0 
1983 0 1. 54 2.61 0.09 0.15 0.21 0.49 0.19 3.21 0.50 2.18 
1984 0 2.49 1. 68 0.37 0.09 0.50 0.17 3.61 2.70 1.42 0.05 
1985 3.99 0.55 0.12 1. 91 0.14 1. 56 0.27 0.38 0.28 3.46 0 
1986 0.61 4.09 0.45 0.44 0 1. 60 0.32 0.57 0.12 1. 30 1. 32 
1987 0.04 0.03 0.05 0.37 0.42 1.47 0 0.74 0.93 0.28 0.07 
1988 0.84 0.70 0.43 0 0.91 0.16 0 0.03 0.36 0.20 0.18 
1989 0.51 1.44 0.30 0 0.19 0.06 0.01 0.06 0.26 1. 79 0 
1990 0.05 1. 29 0.28 1. 52 2.14 0.59 0.30 0.25 2.58 0 0.25 
Mean 0.68 0.80 0.59 0.64 0.60 0.86 0.57 0.68 1. 29 0.70 0.46 
Min. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 
Max. 3.99 4.09 2.61 2.12 2.37 4.41 2.31 3.61 4.52 3 . 46 2.18 
Pr~ .47 . 47 .35 .35 .35 .53 . 29 .53 .59 .47 .23 

Source: Seeley. 
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Table 4.22: Weed-free corn and soybean yields at the 
Southwest Experiment station, Lamberton, MN, 1974-90. 

Mean 

Year 
1974 
1975 
1976 
1977 
1978 
1979 
1980 
1981 
1982 
1983 
1984 
1985 
1986 
1987 
1988 
1989 
1990 

Standard deviation 
Minimum 
Maximum 

Source: Ford. 

Yield in 
Corn 
101 

54 
22 

146 
110 

89 
108 

84 
151 
102 

90 
109 
165 
163 

56 
155 
129 
107.9 

40.8 
22 

165 

bushels/acre 
Soybean 

31 
34 
14 
42 
43 
50 
41 
44 
42 
39 
41 
42 
51 
48 
26 
41 
39 
39.3 
9.0 

14 
51 

Note: Regression of the two yield series on a trend variable 
gave insignificant F{l,15) statistics, 3.81 for corn and 
1.48 for soybean. This suggests no trend in yields, and 
hence no need to detrend the data to obtain a stationary 
yield distribution. 
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Table 4.23: Weekly days suitable for field work, Southwest 
Experiment Station, Lamberton, MN, April 19 - July 4, 1974-
90. 

Days suitable for field work during the week beginning 
Year 4Ll9 4L26 5L03 5Ll0 5Ll7 5L24 5L31 6L07 6Ll4 6L21 6L28 
1974 7 5 5 0 0 0 0 0 6 7 7 
1975 0 0 6 3 6 5 4 5.5 1 4 7 
1976 5 5 7 6.5 7 5 7 6.5 6 4 6 
1977 1 7 3 6 1 2 6 5 1 4 5 
1978 0 2 5 5 6 5 2 6 3 6 5 
1979 0 0 2.5 4 7 3.5 5.5 1 2.5 6 4 
1980 5 7 7 3 4 3 0 3 5 5 4 
1981 1 3 3 5 5 5 4 1 3 7 5.5 
1982 0 6 3 0 1 2 4 1 1 7 7 
1983 0 1 1 6 4 5 3 5 0 4 0 
1984 3 2 1 4 6 5 5 1 0 1 7 
1985 3 0 7 3 5 6 3 6 7 7 2 
1986 3 1 5 2 7 3 6 5 7 5.25 3 
1987 7 7 7 6.5 5 3 7 5.5 7 6 7 
1988 3.75 4 7 7 5 7 7 7 7 7 6 
1989 5 1 6.5 7 5.5 7 6 7 7 5 7 
1990 7 3 7 2.5 1. 5 5 4 7 2 6.5 7 
Mean 3.0 3.2 4.9 4.1 4.5 4.2 4.3 4.3 3.9 5.4 5.3 
Min. 0 0 1 0 0 0 0 0 0 1 0 
Max. 7 7 7 7 7 7 7 7 7 7 7 

Source: Seeley. 
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Table 4.24: Predicted weed emergence rates in absence of 
herbicide treatment, Lamberton, MN, 1974-90 (Forcella 
model) . 

Year 
1974 
1975 
1976 
1977 
1978 
1979 
1.9~() 

1.981. 
1982 
1983 
1984 
1985 
1986 
1987 
1988 
1989 
1990 
Mean 
Min. 
Max. 

April 
cum. GDD1 

41. 39 
1.11 

53.06 
101.94 
11.11 
16.67 
'5'5 .. ()() 
56.94 
26.94 
9.72 

11.11 
90.56 
30.28 
94.17 
29.44 
47.50 
76.94 
44.35 
1.11 

101. 94 

Predicted germination rate 
Foxtail Lambsguarters R. Pigweed 

0.388 0.275 0.149 
0.000 0.000 0.000 
0.441 0.297 0.145 
0.286 0.013 0.100 
0.052 0.057 0.014 
0 .. 114 0.115 0.055 
() .. ~~'5 () .. ~~~ () .. ~~~ 
0.441 0.291 0.1.43 
0.245 0.200 0.121 
0.040 0.042 0.008 
0.052 0.057 0.014 
0.344 0.134 0.110 
0.284 0.222 0.132 
0.326 0.099 0.107 
0.275 0.217 0.130 
0.423 0.291 0.148 
0.407 0.234 0.123 
0.269 0.168 0.097 
0.000 0.000 0.000 
0.447 0.298 0.149 

1 Cumulative growing degree days (GOD) defined as 
[(max T - min T)/2] - 10, where Tis temperature in °c. 

Source: Fuchs. 

4.5.4 Coefficient input files 

Best parameter estimates from estimation of the crop 

yield, weed germination, weed seed production, and seedling 

growth functions were incorporated into input data files to 

run the weed management decision support model. Parameter 

values passed to the simulation model are summarized in 

Table 4.25. 

Other input files were obtained from published 

sources. Herbicide rates, average costs, and efficacy 
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ratings come from Durgan et al. Machinery costs and 

operating speed data are from Fuller et al. The late 

planting yield loss step function data come from Hicks and 

Peterson and Gunsolus (1990a). 

Table 4.25: Summary of biological parameter values passed to 
the weed management simulation model. 

Egyation 
Lambs­

Foxta il gyarters 

Yield loss ( I 1) 

Corn 
Soybean 

0.2 
0.2 

Seeds/plant ( y 1) 

Weeds surviving cultiv. 90 
Weeds emerging post-cult. 9 

0.8 
1.9 

120 
6 

Proportion of total emergence by stage 
Pre-plant ( a 01 ) O .18 o. 40 
Post-plan~ing. (a11 ) 0.72 0.54 
Post-cultivation (a21 ) 0.10 0.06 

Proportion of non-emerged 
seeds that die in soil 0.714 0.818 

Seedling growth1 0.0048 0.0033 

Redroot 
Pi~eed 

0.8 
1.9 

130 
13 

0.00 
0.92 
0.08 

0.116 

0.0038 

1 Coefficients are for the squared days-after-planting 
{DAP2) term. Crop coefficients are: Corn 0.0100, Soybean 
0.0069. 

4.6 Model Verification and Validation 

4.6.1 Model verification 

Model verification answers the question, "Does it do 

what it's supposed to do?" Verification is an inherent part 

of model development. It can only be treated as an indepen-
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dent activity if a) the model is very simple or b) the 

modeler is rash enough not to test components along the way. 

Law and Kelton identify five techniques for model ver­

ification: 1) write and debug the model in discrete modules, 

2) have other programmers check the code, 3) trace the evo­

lution of variable values as the simulation runs, 4) test 

the model under simplified assumptions, and 5) display model 

results at a graphics terminal as it runs. All but the last 

of these techniques has been applied in development of the 

weed management model. Most of the program modules were 

identified in Chapter 3. The code was reviewed by King 

(personal communication) and by Alessi. The QuickBasic 4.5 

program editor includes a powerful debugging trace called 

"watchpoint" which was used routinely in program verifi­

cation. In addition, the time-honored technique of running 

a simplified program with strategically placed PRINT state­

ments was used repeatedly. With all that said, there 

remains a significant probability of erroneous code in a 

program as large as this. However, every effort has been 

made to reduce this likelihood. 

The sequence of program development also provids some 

assurance of minimal programming error. Verification of the 

model proceeded in tandem with programming individual mod­

ules and procedures. The general process can be viewed as a 

set of concentric circles. First a core program was deve­

loped and tested. Subsequent layers were added to it, each 



116 

one contributing complexity and requiring re-verification of 

itself and of the whole. 

4.6.2 Model validation 

The original version of the simulation model was vali­

dated against out-of-sample data from 1990 field trials at 

the North Central Soil Conservation Research Laboratory in 

Morris, Minnesota. Only partial validation of the model was 

feasible, given available data. Validation was conducted 

for the emergence and corn yield functions. Results were 

presented in sections 4.1.1.2 and 4.3.1. Statistical vali­

dation was not possible for the seed bank, plant growth and 

soybean yield functions. 

The 1990 Morris data come from two sites. The 16 

observations from the Central Farm contain very high weed 

seed densities for all three species modeled. The 24 obser­

vations from the North Farm generally have low weed seed 

densities. Descriptive statistics on the pooled sample are 

presented in Table 4.7. Jointly, observations from the two 

farms represent a wide range of weed pressures. As dis­

cussed above, the validation tests led to recalibration of 

the germination calibration equations and acceptance of the 

corn yield equation in its original form. 

Statistical validation is the first step in a process 

which extends to sensitivity analysis and field experimenta­

tion if the model's useful life continues (France and Thorn-
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ley). Since one intended purpose of this weed management 

model is to help identify research priorities for weed 

scientists, sensitivity analysis is an appropriate future 

application. Validation of the model by agronomic field 

experiments in Rosemount and Morris, Minnesota, is currently 

underway (Buhler 199lc). 

With the model on the road to validation, it was 

applied to the set of model evaluation and hypothesis tests 

outlined in Chapter 1. The results of a set of stochastic 

simulation experiments are presented in the next chapter. 



V. SIMULATION EXPERIMENTS 

The stochastic simulation framework developed in the 

final section of Chapter 4 provides a tool for evaluating 

the recommendations module in a whole-farm context. This 

can be done computationally in a manner analogous to con­

trolled scientific experimentation (see, e.g., Dent and 

Blackie, Law and Kelton). Experiments designed to test the 

hypotheses presented in Chapter 1 can be conducted in a 

simulation environment that mimics the unexplained varia­

bility associated with model parameters estimated from data. 

Stochastic simulation will be used 1) to estimate the value 

of weed population information, 2) to appraise different 

weed control decision rules, 3) to examine the effects of 

farm size and initial weed seed density, and 4) to predict 

optimal farmer response to a set of possible policy restric­

tions on herbicide use. 

s.1 The Deterministic Model: Base case for Simulation 

Before proceeding with description of the simulation 

experiments, it is fitting to present deterministic model 

results. These take two forms. First, the recommendations 

module (WEEDSIM) generates weed control recommendations 

based upon expected weed infestations. Second, recommenda­

tions also depend upon the crop rotation, the kind of weed 

118 
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population information available, and expected crop prices. 

Due to carryover problems inherent to certain herbicides in 

certain climates (e.g., atrazine on soybeans after corn in 

the northern U.S.), the crop rotation determines which 

treatments will be included in the feasible set. As for 

information, when seed counts are available, soil-applied 

weed treatment recommendations can be made. When weed 

seedling counts are available, post-emergence control 

recommendations are feasible. Somewhat less reliable ones 

may be made from predictions based on seed counts and 

expected emergence rates. 

As discussed in the theoretical chapter, model recom­

mendations are developed based upon the value of yield saved 

by weed control relative to the cost of weed control. The 

model parameters developed in Chapter 4 predict yield loss, 

but the model user must define expected weed-free yield, 

crop prices, variable costs and the rate of discount. 

Assumptions used for the model runs presented here are 

listed in Table 5.1. For the deterministic case, weed-free 

yields are set at their 1974-90 means from the Southwest 

Experiment Station of the University of Minnesota at Lamber­

ton, MN (see Table 4.22). Prices and variable costs are 

drawn from Fuller et al (1991). The 4% rate of discount, 

which is used for the two-year decision rule, is a standard 

value for the inflation-free time value of money in the 

United States. Costs of weed control are the product of 
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average 1990 herbicide unit costs and average recommended 

application rates (Durgan et al.). Net returns from the 

model are calculated as gross revenues minus weed control 

costs minus allocated variable costs. Net returns are 

returns to land, labor, management and fixed capital. 

Table 5.1: Parameter settings for deterministic runs of the 
weed control recommendations model. 

Level 
Parameter Unit Corn Soybean 

Weed-free yield bu/acre 108 39 
Crop prices $/bushel 2.15 5.65 
Variable costs $/acre 126.15 62.70 
Discount rate percent 4% 

Table 5.2 presents recommendations for a set of three 

conventionally tilled fields such as those used in the sto-

chastic simulation. The fields grow continuous corn, corn 

in a corn-soybean rotation, and soybean in rotation. Three 

weed species are included, 1) mixed green and yellow fox-

tails, 2) common lambsquarters, and 3) redroot pigweed. 

While these are the most common annual weeds in southwestern 

Minnesota, they constitute but a small subset of possible 

weeds, and model results are likely to be sensitive to the 

weed species chosen. Two initial weed seed densities are 

assumed, one for "low" weed pressure, the other for "high" 

weed pressure, based upon the 1985-86 Morris data. The 

"low" weed pressure case has foxtails, lambsquarters, and 
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pigweed seeds present at 175, 25 and 50 seeds/m2 • For the 

"high" weed pressure case, they are present at ten times 

these levels. Two decision rules are considered. The 

"myopic" rule bases recommendations upon the expected net 

gain from weed control in the current year. The "fore-

sighted" rule bases them upon the present value of expected 

net wealth at the end of two years. 

Table 5.2: Weed control recommendations for corn and soybean 
under two rotations, two initial weed seed populations and 
two decision rules. 

Weed control recommendation 
Cro2 Rotation1 PPILPRE Time2 POST 

11Myo12ic11 decision rule 
Low initial weed seeds 

Corn cc No control Atrazine & oil 
Corn cs Cyanazine PPI 2,4-D 
Soybean SC Trifluralin PPI Rotary hoe 

High initial weed seeds 
Corn cc No control Atrazine & oil 
Corn cs Cyanazine PPI 2,4-D 
Soybean SC Trifluralin PPI Rotary hoe 

"Foresighted" decision rule 
Low initial weed seeds 

Corn cc No control Atrazine & oil 
Corn cs Cyanazine PPI 2,4-D 
Soybean SC Trifluralin PPI Rotary hoe 

High initial weed seeds 
Corn cc Cyanazine PPI Atrazine & oil 
Corn cs Alachlor PPI Cyanazine 
Soybean SC Trifluralin PPI Rotary hoe 

~ cc denotes continuous corn; cs denotes corn-soybean. 
2 PPI denotes pre-plant incorporated; PRE denotes pre­
emergence. 

The two rules generate identical weed control 

recommendations when weed pressure is low. When it is high, 
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however, the two-year rule calls for more thorough weed 

control in corn, to reduce the seed population. As post­

emergence weed controls in soybean are quite costly relative 

to their efficacy (see Table 4.16), only rotary hoeing is 

recommended. For the same reason, POST herbicides tend to 

be eschewed by soybean farmers in all but special cases 

(Simmonds and Brosten). Over a period of years, the result 

is that the two-year rule establishes a managed steady state 

weed seed population at a lower level than the myopic rule. 

Figure 5.1 illustrates this for foxtails where weed control 

is not constrained by available farm resources. Weed seed 

germination and seed production rates are held constant at 

1974-90 mean values. 

In a whole-farm context, of course, resources are con­

straining. This implies that the timeliness of operations 

is not always optimal. Late planting incurs yield penal­

ties. Some weed control measures become infeasible when 

weeds outgrow their stage of susceptibility to post-emer­

gence treatment. Other measures become infeasible when the 

crop reaches a susceptible stage. The timing of weed con­

trol operations on a farm is largely determined by the size 

of the cropped area, the amount and kind of machinery, the 

number of skilled operators available, and the suitability 

of weather for field work. In any given season, all of 

these except workable field days tend to be predetermined. 
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Fiqure 5.1: Foxtails seed bank evolution from low initial 
level in corn-soybean rotation: Myopic and two-year deci­
sion rules compared. 

The resource endowment of the base case farm used in 

simulations is presented in Table 5.3. It is a 480-acre 

cash grain farm located in southwestern Minnesota. The farm 

is divided into six 80-acre fields. Two fields each are 

devoted to continuous corn, rotational corn and rotational 

soybean. During the planting and weed control season (April 

- June) the farm has two full time tractor operators avail-

able for field operations seven days per week, ten hours per 

day. The farm has two tractors capable of doing field work 

(160 and 120 horsepower). The machinery complement used in 

the simulation includes a 28-foot field cultivator, a 30-

foot sprayer, an 8-row planter, an 8-row cultivator, and a 
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16-foot rotary hoe (Talley) . Other machinery used for 

plowing and harvest operations is omitted, as it is not used 

in operations associated with weed control. Rates of field 

coverage and associated costs per acre for use of this 

equipment were obtained from Fuller et al. (1990). 

Table 5.3: Characteristics of the base case farm used in 
simulation. 

Characteristic 

Labor 
Workers 
Max. days per week 
Max. hours/ day 

Land 
Field size 
Continuous corn 
Rotation corn 
Rotation soybean 

Machinery 
2 tractors 
Field cultivator 
Planter ( 8-row) 
Sprayer 
Cultivator (8-row) 
Rotary hoe 

Unit 

acres 
proportion 
proportion 
proportion 

horsepower 
feet 
rows 
feet 
feet 
feet 

Amount 

2 
7 

10 

80 
1/3 
1/3 
1/3 

120,160 
28 

8 
30 
30 
16 

Table 5.4 illustrates the effect of reduced workable 

field days. Weed management results with the number of 

workable field days in 1982 are contrasted with those for 

1987 using the recommendations in Table 5.2. In 1982, only 

18 workable days were available at Lamberton between April 

19 and June 20, whereas in 1987, 55 workable days were 

available during that period. Crop yields, germination 
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rates and precipitation were held constant at their 1974-90 

means for the simulation. 

Table 5.4: Impact of restricted workable field days: Simu­
lated weed management on base farm in 1982 versus 1987 using 
the two-year decision rule with high initial weed seeds. 

Performance Measurement Workable field days 4/19 - 6/20 
criterion unit 18 (1982) 55 (1987) 
Farm net revenue dollars - 6,582 1,675 
Herbicide load 

Cont. corn lbs ai/acre1 2.7 4.2 
Rotn. corn lbs ai/acre 4.3 4.3 
Rotn. soybean lbs ai/acre 0.8 0.8 

Percent max. yield 
Cont. corn percent 71. 6 76.6 
Rotn. corn percent 70.6 75.9 
Rotn. soybean percent 66.4 64.7 

Weed density 
plants/m2 Foxtails 94 107 

Lambs quarters plants/m2 10 6 
Pigweed plants/m2 9 10 

1 Pounds of chemical active ingredient per acre. 

Weed-free yields in 1982 and 1987 were both high, 151 

and 163 bushels per acre for corn and 42 and 48 bu/acre for 

soybean, so other things being equal, net revenue is ex-

pected to be high. Since initial weed pressure for both 

years is identical in the simulation, differences in percent 

of maximum (weed-free) yield obtained are entirely due to 

timeliness and infeasible weed control treatment penalties. 

Late planting penalties take the form of yield loss. Under 

1982 conditions, late planting leads to a 7% yield loss on 

the corn fields. Infeasible weed control penalties increase 

yield loss and/or treatment cost. The lower herbicide load 
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on continuous corn in 1982 is due to post-emergence atrazine 

application becoming infeasible because the foxtails had 

grown too large. The higher weed densities in 1987 are due 

to infeasibility of the recommended rotary hoeing of weeds 

in soybeans. In both cases, the next best alternative was 

not to control weeds. The interplay between yield loss and 

treatment cost is discussed more thoroughly in the context 

of herbicide bans in Swinton and King. 

5.2 Design of the simulation Experiments 

5.2.1 Experimental factors 

The simulation experiments are designed to examine the 

hypotheses presented in Chapter 1. The experimental factors 

examined are 1) the decision rule, 2) initial weed seed pop­

ulation level, 3) farm size, 4) weed seed population infor­

mation available to the farm manager, and 5) herbicide 

restriction policy. These factors are summarized in Table 

5.5. 

The decision rules reviewed are the myopic, the cau­

tious myopic, and the foresighted (or two-year) rule. The 

myopic decision rule chooses the weed control plan that max­

imizes current year expected net revenue. The "cautious 

myopic" rule described in Chapter 3 is computationally equi­

valent to the myopic one, except that it employs a lower 

(ergo, more cautious) threshold for weed control. In the 
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simulation experiments here, it reduces by five percent the 

expected net revenue from no control against which control 

treatments are evaluated (ie., in equation (3.1), 0 = 0.05). 

The two-year rule applies an optimal control with a two-year 

time horizon to the multiple weed species management 

problem. 

Table 5.5: Levels of experimental factors employed in 
stochastic simulation. 

Experimental factor Unit Low Medium High 

Farm size acres 480 720 

Initial weed seeds 
Foxtails seeds/m2 175 1750 
Lambs quarters seeds/m2 25 250 
Pigweed seeds/m2 50 500 

Decision rule Myopic Cautious 2-year 
myopic1 

Information on weed sample None2 seedlings3 seeds & 
population counts seedlings 

Herbicide bans policy No ban Atrazine Triazines 
ban ban4 

Treat if expected net revenue exceeds 95% of expected 
return with no control (i.e, theta= 0.05). 

2 Strategies are, for corn, EPTC (plus safener) PPI and 
dicamba POST; for soybean, trifluralin PPI and bentazon 
POST. 

3 POST strategy from model; PPI/PRE same as above. 

4 Including atrazine, cyanazine and metribuzin. 

Weed species and density are the crucial variables in 

the weed management model. Observed densities in the field 
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vary immensely. The initial weed seed densities used in the 

simulations represent the bottom and top quartiles of the 

1985-86 Morris data set. Relative proportions also repre­

sent those observed in that data set. For combined green 

and yellow foxtails, common lambsquarters and redroot pig­

weed, the "low" initial weed seed populations are 175, 25, 

and 50 seeds per square meter (m2 ) • The "high" initial 

populations are ten times that high. 

In order to test the hypothesis that farmers apply 

liberal doses of soil-applied herbicides as insurance 

against untimely post-emergent control, two farm sizes are 

included. Farm acreage includes both owned and rented land. 

The 480-acre farm represents a medium-large southwest Minne­

sota cash grain farm (Talley). The machinery complement is 

fairly typical of the wide variety of equipment present on 

such farms. The 720-acre farm represents a large cash grain 

farm. The machinery complement is the same, as a means of 

testing the hypothesis that, with other factors constant, 

yield penalties due to untimely weed control operations 

increase with farm acreage. 

Three levels of weed population information are 

examined. The "high information" case includes estimates of 

both weed seeds (prior to time of application of soil­

applied herbicides) and weed seedlings (prior to application 

of post-emergence control measures). The model makes all 

weed control recommendations. The "POST information" case 



129 

includes only post-emergence weed seedling density esti­

mates. Soil applied weed control follows extension recom­

mendations. The recommendations used in the simulation are 

EPTC plus safener, pre-plant incorporated (PPI) on corn, and 

trifluralin, PPI on soybean (Gunsolus 199lb). Finally, the 

"no information" case follows extension recommendations 

independent of weed population information for all control. 

The recommendations used in the simulation experiments are 

the PPI measures stated above, followed by dicamba POST on 

corn and bentazon POST on soybean (Gunsolus 199lb). The 

information levels applied here correspond to the flexible, 

mixed, and fixed weed control strategies evaluated by King 

et al. and Lybecker et al. (199la). 

Weed seed and seeding population information are 

assumed known with certainty. While on the surface this 

seems an unrealistic assumption, it was made in order not to 

exaggerate the already substantial random variability in the 

stochastic model. The pseudo-random errors generated for 

the stochastic simulation model implicitly reflect the 

sampling error associated with weed seed and seedling den­

sity data used to estimate model parameters. To introduce 

sampling error again would be to double count. 

The last experiment examines the effect of three alter­

native policy restrictions on herbicide use. These are 

1) no change from current policy, 2) ban on atrazine, and 
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3) ban on all triazine herbicides. Three triazines are 

included among the treatments used for the simulation model. 

Besides atrazine, they are cyanazine and metribuzin. The 

relatively abundant presence of atrazine in groundwater has 

led to growing public concern about its use. 

s.2.2 Experimental methods 

The unit of observation for the simulation experiments 

is the farm "state of nature," a six-year period of simu­

lated weed management. Six years encompasses three complete 

corn-soybean rotations. While this may not be sufficient 

time to reach a managed steady state, it is long enough to 

differentiate among the dynamic tendencies of different 

management strategies. 

Each experiment is replicated under twenty states of 

nature. A state of nature governs each six-year weed man­

agement period beginning from a given initial weed seed bank 

level. Each simulation year draws upon historical data from 

the Southwest Experiment Station at Lamberton, MN, covering 

weed-free yields, precipitation levels, available field time 

and April growing degree days (from which expected weed seed 

germination rates are calculated). The years are chosen at 

random from a uniform distribution of the 17 years 1974-90. 

Within a year, pseudo-random error terms are added to 

predictions from field-level biological equations. For the 

germination calibration equations, these disturbances are 
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heteroscedastic, varying with weed seed density. Multi­

variate normal pseudo-random deviates are also added to the 

statistically estimated coefficients in the weed germination 

and plant growth equations. The same sequence of years and 

random disturbances and random coefficients is applied to 

each simulation experiment. 

Several performance criteria are used to evaluate the 

outcomes of the simulation experiments. The present value 

of accumulated net returns at the end of the period is 

presented in the form of the annual annuity payment which 

would generate that sum (Weston and Copeland, p.80). This 

is termed "the annualized net present value of accumulated 

income," or simply "annualized net income." The standard 

deviation of this value provides a measure of variability. 

The money-equivalent values of expected utility from con­

stant absolute risk attitude (CARA) exponential utility 

functions are presented for decision makers with coeffi­

cients of absolute risk aversion of -.0001 (mildly risk­

loving), O (risk-neutral), .0001 (mildly risk-averse), and 

.001 (strongly risk-averse). These values are typical of 

those reported for annual farm income in studies which 

elicited risk attitudes in the United States (Raskin and 

Cochran). 

Biological performance measures include the mean 

percentage of yearly maximum yield attained, mean weed 

density (plants per square meter), and end-period weed seed 
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density (seeds per square meter). In the absence of time 

series data on true maximum potential yields, maximum yield 

is defined as the weed-free yield observed at the Lamberton 

station. 

Herbicide load provides a measure of the environmental 

impact of chemicals used. Strictly a quantitative index, it 

fails to capture such important qualitative aspects as toxi­

city to humans and to weeds of individual chemicals. Since 

the new post-emergence herbicides are applied at rates as 

low as one-half ounce per acre (e.g., nicosulfuron), versus 

several pounds for the older compounds, this is increasingly 

important. However, the new, low-dose compounds tend to be 

recommended rarely by the model, due to their relatively 

high cost. Since the older ones vary less in dose level, 

the herbicide load index is less misleading than might be 

feared. In the absence of more sophisticated indices, raw 

herbicide load gives a rough measure of chemicals entering 

the biosphere. 

5.3 Results of the Simulation Experiments 

Results of the stochastic simulation experiments 

provide the means to test the nine hypotheses set forth in 

Chapter 1. Other salient points are discussed less for­

mally. The principal statistic used for hypothesis tests is 

the paired difference t statistic. By taking into account 
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the fact that the variables being compared come from the 

same experimental block, the paired difference t-test is 

more discerning than tests designed to compare independent 

variables. It assumes that the two variables share the same 

distribution and that their difference follows a normal 

distribution with mean zero. The statistic is similar to an 

ordinary t statistic, except that the sample standard devia-

tion in the denominator is divided by the square root of the 

number of degrees of freedom (Mendenhall et al., p. 517): 

d - µd 
t = sd/fii 

where a is the sample mean difference, µd is the population 

mean difference, sd is the sample standard deviation, and n 

is the number of observations. 

The baseline simulation results, which are presented 

in tables 5.6 and 5.7, are discussed in the following sub-

sections. They cover three information levels (none, POST 

only, and high), two initial weed seed densities (low and 

high), and three decision rules (myopic, cautious myopic, 

and two-year) . 
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Table 5.6: Stochastic simulation results for 480-acre farm with low 
initial weed seed density: 6 year simulation under 20 states of nature. 

Information level & decision rule 
No infor- Seedling counts Seed & seedling counts 
mation Myopic Cautious 2-year Myopic Cautious 2-year 

Mean annualized net income ($) 
(Standard deviation) 
Farm 2,718 

7,065 
Cont. corn -2,963 

(3,867) 
Rotn. corn -2,178 

(2,873) 
Rotn. soy 7, 859 

(3,294) 

9,699 
(7,488) 

-444 
(4,393) 

-462 
(3,006) 
10,604 
(2,990) 

8,340 
(8,432) 

-915 
(4,674) 

-903 
(3,474) 
10,158 
(3,628) 

Mean herbicide load (lb ai/ac) 
Cont. corn 4.88 5.27 
Rotn. corn 4.88 5.01 
Rotn. soy 1.50 0.77 

Mean percent of max. yield (%) 
Cont . corn 76 80 
Rotn. corn 77 80 
Rotn. soy 71 73 

Mean weed density (plants/m2 ) 

Continuous corn 
Foxtails 76 42 
Lambsqtrs 3 3 
Pigweed 20 12 

Corn-soybean rotn. 
Fox tails 99 74 
Lambsqtrs 5 5 
Pigweed 20 12 

5.25 
5.02 
0. 77 

79 
78 
72 

54 
3 

12 

70 
4 

15 

9,011 
(8,861) 

-871 
(4,410) 

-512 
(3,664) 
10,394 
(3,128) 

5.39 
5.06 
0.79 

80 
81 
74 

48 
3 

13 

56 
5 

13 

Mean terminal weed seed density (seeds/m2 ) 

Continuous corn 
Foxtails 2,273 
Lambsqtrs 176 
Pigweed 2,542 

Corn-soybean rotn. 
Foxtails 3, 929 
Lambsqtrs 205 
Pigweed 2,637 

1,240 
150 

1,535 

2,650 
179 

1,657 

1,448 
163 

1,471 

2,161 
203 

1,813 

1,396 
151 

1,526 

1,936 
204 

1,683 

10,386 
(7' 270) 

-278 
(3,927) 

4 
(3,022) 
10,660 
(2,943) 

2.81 
2.99 
0.76 

79 
80 
74 

61 
3 

10 

74 
5 

11 

1,412 
157 

1,271 

2,616 
188 

1,528 

9,047 
(8,448) 

-804 
(4,577) 

-337 
(3,386) 
10,188 
(3,596) 

2.83 
2.92 
0. 77 

77 
79 
72 

75 
3 

10 

72 
5 

13 

1,792 
175 

1 , 245 

2,231 
209 

1,606 

10,104 
(8,827) 

-325 
(4,492) 

-28 
(3,693) 
10,458 
(3,060) 

2.94 
3.05 
0 . 79 

80 
82 
74 

55 
3 

10 

56 
5 

12 

1,432 
160 

1,256 

1,915 
215 

1,542 
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Table 5.7: Stochastic simulation results for 480-acre farm with high 
initial weed seed density: 6 year simulation under 20 states of nature. 

Information level & decision rule 
No infor- Seedling counts 
mation Myopic Cautious 2-year 

Mean annualized net income ($) 
(Standard deviation) 
Farm -19,315 

(8,917) 
Cont. corn -10,090 

(4,700) 
Rotn. corn -9,322 

Rotn. soy 
(3,351) 

97 
(2,996) 

-6,489 
(6,543) 
-5,127 
(3,410) 
-5,898 
(2,400) 
4,535 

(3,105) 

Mean herbicide load (lb ai/ac) 
Cont. corn 4.88 5.47 
Rotn. corn 4.88 5.05 
Rotn. soy 1.50 0.76 

Mean percent of max. yield (%) 
Cont. corn 57 69 
Rotn. corn 59 67 
Rotn. soy 50 58 

Mean weed density (plants/m2 ) 

Continuous corn 
Fox tails 290 112 
Lambsqtrs 6 4 
Pigweed 49 23 

Corn-soybean rotn. 
Foxtails 295 181 
Larnbsqtrs 7 7 
Pigweed 46 23 

-7,336 
(7,642) 
-5,570 
(3' 771) 
-6,139 
(3,114) 
4,372 

(3,494) 

5.44 
5.06 
0.78 

67 
65 
58 

122 
4 

23 

177 
7 

26 

-5,656 
(7, 499) 
-5,223 
(3,632) 
-5,227 
(2,814) 
4,794 

(3,197) 

5.42 
5.05 
0.79 

70 
70 
61 

105 
4 

23 

119 
7 

22 

Mean terminal weed seed density (seeds/m2) 

Continuous corn 
Foxtails 5, 725 
Larnbsqtrs 189 
Pigweed 4,630 

Corn-soybean rotn. 
Foxtails 7,441 
Larnbsqtrs 220 
Pigweed 4,807 

1,562 
149 

2,278 

3 '925 
186 

2,427 

1,903 
163 

2,259 

3,540 
212 

2,610 

1,673 
152 

2,240 

2,325 
211 

2,360 

Seed & seedling counts 
Myopic Cautious 2-year 

-4,751 
(6,316) 
-4,255 
(3,478) 
-5,328 
(2,289) 
4,832 

(2,938) 

3.63 
3.33 
0.76 

71 
68 
59 

113 
4 

16 

167 
7 

20 

1,595 
161 

1,638 

3,565 
200 

2,152 

-5,610 
(7,737) 
-4,788) 
(3,898) 
-5,460 
(3,162) 
4,639 

(3,624) 

3.57 
3.31 
0. 77 

69 
67 
59 

124 
4 

17 

167 
7 

23 

1,982 
176 

1,663 

3,185 
230 

2,250 

-3,751 
(7 I 587) 
-4,251 
(3,771) 
-4,626 
(2,928) 
5,127 

(3,125) 

3.58 
3.50 
0.78 

72 
72 
62 

100 
4 

16 

113 
8 

20 

1,614 
166 

1,640 

2,239 
230 

2,057 
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Experiment 1: Value of weed population information 

The ranking of information from greatest (seed and 

seedling counts) to least (no weed information) correlates 

perfectly with annualized net income. This is true for both 

low and high initial weed seed pressures under all decision 

rules. This result is consistent with the proof of Chavas 

and Pope that costless information cannot reduce net 

returns. 

The hypothesis that strategies using and ignoring weed 

population information yield equal annualized net income 

(Hypothesis Hl), is ~ubjected to two sets of paired diffe­

rence t-tests in Table 5.8. In the first set of tests, 

POST-only seedling ,count information is compared with no 

information. Under all three decision rules and both ini­

tial weed pressures, the hypothesis can be rejected with 99% 

confidence (the one-tailed t(19;.0l) test value is 3.17). 

In the second set of tests, the annualized net income with 

high information is compared to that with POST-only infor­

mation. Again, the hypothesis of equal returns can be re­

jected with 99% confidence in all cases. As expected, the 

value of the two-year decision rule is greatest when seed 

count information is also included. The value of informa­

tion is especially significant when initial weed pressure is 

high. The significant value of information encountered here 

is consistent with the findings of Bosch and Eidman, Byerlee 

and Anderson, King et al., and Regmi. 



137 

Table 5.8: Paired difference t-tests of annualized income 
over 20 states of nature: Gains in annualized net farm 
income due to high and POST information. 

HIGH over POST information POST over NO information 
Initial weeds, Mean Standard t Mean Standard t 
decision rule diffe- devia- sta- diffe- devia- sta-

rence ti on tis tic rence ti on tis tic 
Low initial weeds 

Myopic 687 913 3 . 37 6,981 3,525 8 . 86 
Cautious 707 996 3.18 5,622 4,046 6.21 
Two-year 1,093 598 8.18 6,293 5,839 4.82 

High initial weeds 
Myopic 1,738 792 9.81 12,826 6,814 8.42 
Cautious 1, 727 778 9.93 11,978 7,400 7.24 
Two-year 1,906 876 9.73 13' 658 6,702 9.11 

Hypothesis H2, that the same level of herbicide is 

applied regardless of information level, is soundly rejected 

in the paired difference t-tests presented in Table 5.9. 

However, the results differ by information level. Compared 

to no information, high information leads to significantly 

lower herbicide load for virtually all crops, rotations and 

initial weed pressures. Compared to POST information, high 

information leads to significantly lower herbicide loads in 

both corn rotations. On the other hand, compared with no 

information, POST weed seedling counts lead to herbicide 

loads that are higher in corn (both rotations) and lower in 

soybean. The increased load in corn is due to WEEDSIM's 

propensity to recommend POST 2,4-D or atrazine over the "no 

information" default of dicamba. These dramatic results 

should be interpreted with some caution, however, since the 

base "no information" case uses a PPI treatment with a 
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particularly high herbicide load (EPTC at 4.5 pounds of 

active ingredient per acre) . 

Table 5.9: Paired difference t-tests of herbicide load over 
20 states of nature: Change in load due to high and POST 
weed population information. 

Change in herbicide load from HIGH information 
Over POST information Over NO information 

Initial weeds, Mean Standard t Mean Standard t 
decision rule diffe- devia- sta- diffe- devia- sta-

rence tion tistic rence tion tistic 
Low initial weeds - lb ai/A - - lb ai/acre -

Cont. corn 
Myopic 
Cautious 
Two-year 

-2.46 0.40 -27.22 
-2.42 0.37 -29 . 08 
-2.45 0.30 -36.30 

Rotn. corn 
Myopic -2.02 
Cautious -2.10 
Two-year -2.00 

Rotn. soybean 
Myopic -0.01 
Cautious 0.00 
Two-year -0 . 00 

High initial weeds 
Cont. corn 

0.20 -45.73 
0.29 -32.59 
0.22 -41.06 

0.01 -1.83 
0 . 00 0.00 
0.02 -0.90 

Myopic -1.84 0.17 -48 . 55 
Cautious -1.87 0.22 -38.85 
Two-year -1.84 0.21 -39.02 

Rotn . corn 
Myopic -1.72 0.17 -44.89 
Cautious -1.75 0.16 -48.59 
Two-year -1.55 0.24 -28.52 

Rotn. soybean 
Myopic -0.00 0.00 -0.00 
Cautious -0.00 0 . 01 -1.17 
Two-year -0.01 0.01 -2.17 

-2.07 0.47 -19.47 
-2.05 0.47 -19.35 
-1.93 0.37 -23.11 

-1. 88 
-1. 95 
-1.80 

-0.74 
-0.73 
-0.26 

0.20 -41.32 
0.28 -31.09 
0.22 -36.63 

0.03 -104.20 
0.04 -86.04 
0. 71 -1.66 

-1.25 0.24 -23.46 
-1.30 0.30 -19.64 
-1.30 0.27 -21.14 

-1.54 0.15 -45.09 
-1.56 0.15 -46.75 
-1.37 0.22 -28.07 

-0.74 0.03 -118.37 
-0.73 0.02 -142.98 
-0.72 0.02 -144.47 

Change from POST info. 
Over NO information 

Mean Standard t 
diffe- devia- sta-

rence tion tis tic 
- lb ai/acre -

0.40 
0.37 
0.52 

0.14 
0.15 
0.18 

-0.73 
-0.73 
-o. 71 

0.59 
0.57 
0.55 

0.18 
0.19 
0.17 

-0.74 
-o. 72 
-0. 71 

0.19 9.53 
0.18 9.20 
0.17 13.87 

0.07 9.14 
0.07 10.00 
0.07 10.98 

0.04 -88.68 
0.04 -86.04 
0.04 -74.91 

0.18 15.05 
0.17 15.14 
0.19 12.89 

0.06 13.22 
0.07 12.33 
0.10 7.69 

0.03 -120.65 
0.02 -137.55 
0.03 -110.95 

The value of information is intimately linked to the 

decision maker's attitude toward risk (Byerlee and Ander-

son) . Table 5.10 suggests that the value of weed population 

information is highest when weed pressure is high. This 

runs counter to what would be expected if the key decision 

was whether or not to control. In that case the most valu-

able information would be that which implies that control is 

unneeded. It appears, however, that the key decision is how 
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to control, rather than whether to control. When weed pres-

sure is high, sub-optimal rules of thumb have more serious 

repercussions than when it is low. 

Table 5.10: Value of weed population information under four 
expected utility functions. 

Experimental 
factor 

Coefficient of absolute risk aversion 
-.0001 0 .0001 .001 

- - - - - - $ equivalent - - - - - -
Low initial weeds 

Seed & seedling information 
Myopic 7,670 
Two-year 8,590 

Seedling information only 
Myopic 7,197 
Two-year 7,550 

High initial weeds 
Seed & seedling information 

Myopic 12,476 
Two-year 14,303 

Seedling information only 
Myopic 10,932 
Two-year 12,420 

7,668 
7,387 

6,981 
6,293 

14,564 
15,564 

12,826 
13,658 

Difference between seed & seedling 
and seedling information only 

Low initial weeds 
Myopic 473 687 
Two-year 1,040 1,093 

High initial weeds 
Myopic 1,544 1,738 
Two-year 1,883 1,906 

7,321 
6,054 

6,592 
4,958 

16,396 
16,697 

14,576 
14,930 

729 
1,096 

1,821 
1,767 

4,666 
3,756 

4,794 
2,616 

18,734 
20,643 

17,224 
19,262 

- 128 
1,140 

1,510 
1,381 

The value of weed population information increases 

monotonically with risk aversion when initial weed pressure 

is high and decreases with risk aversion when it is low. 

The estimated value of post-emergence weed seedling counts 
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exceeds that of seed counts alone. Values for seedling 

counts under the two-year decision rule range from $2,616 

($5.45 per acre) for the strong risk averter facing low 

initial weed pressure to $19,262 ($40.13 per acre) for the 

strong risk averter confronting high initial weed pressure. 

The difference between the value of high information 

and that of the POST information alone provides a rough 

estimate of the supplementary value of seed information on 

top of seedling counts. To decision makers with the speci­

fied utility functions using the two-year rule, it would be 

worth an additional $1,040 ($2.17 per acre) to $1,906 ($3.97 

per acre) to obtain seed bank estimates. This suggests that 

obtaining weed population information is a viable commercial 

proposition. This possibility is discussed further in 

section 5.4. 

5.3.2 Experiment 2: Evaluation of decision rules 

The hypothesis that strategies using dynamic decision 

rules yield the same annualized net income as static ones 

(H3) cannot be rejected. The paired difference t-tests in 

Table 5.11 indicate that the two-year and cautious myopic 

decision rules do not yield higher annualized net incomes 

than the myopic rule. 
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Table 5.11: Paired difference t-tests of annualized net 
income under high information: Gains by two-year and 
cautious myopic decision rules over myopic decision rule. 

Mean Standard t 
Initial weeds, diffe- devia- sta-
decision rule rence ti on tistic 

- - - - $ - - - -
Two-year over Myopic 

Low initial weeds - 282 4,226 -0.30 
High initial weeds 1,000 4,701 0.95 

cautious over Myopic 
Low initial weeds -1,339 4,643 -1.29 
High initial weeds - 859 4,289 -0.90 

The ranking of decision rules by certainty equivalence 

puts the two-year rule first when initial weed pressure is 

high. When initial weed seed density is low, the myopic 

rule ranks first for risk neutral and risk averse decision 

makers, while the two-year rule ranks first with the mild 

risk lover. The cautious myopic rule is lowest of all for 

the four utility functions specified under all simulation 

scenarios. It is also dominated under the mean-variance 

efficiency criterion (Anderson et al.) when initial weed 

pressure is high. 
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Table 5.12: Certainty-equivalent of annualized farm net 
income under four exponential expected utility functions. 

Experimental 
factor 

Coefficient of absolute risk aversion 
- . 0001 0 . 0001 . 001 
- - - - - - $ equivalent - - - - - -

Low initial weeds 
Seed & seedling information 

Myopic 
Cautious myopic 
Two-year 

Seedling information 
Myopic 
Cautious myopic 
Two-year 

No information 

High initial weeds 
Seed & seedling information 

12,564 
11,981 
13 ,485 

12,091 
11,259 
12,445 

4,895 

Myopic - 3,086 
Cautious myopic - 3,231 
Two-year - 1,259 

Seedling information 
Myopic 
Cautious myopic 
Two-year 

No information 

- 4,630 
4,930 

- 3,142 

-15,562 

10,386 
9,047 

10,104 

9,699 
8,340 
9,011 

2, 718 

- 4,751 
- 5,610 
- 3,751 

- 6,489 
7,336 

- 5,656 

-19,315 

7,378 
4,744 
6,111 

6,649 
4,210 
5,015 

57 

- 7,056 
- 9,673 
- 6,756 

- 8 '877 
-11,067 
- 8,523 

-23,453 

- 3'110 
-10,258 
- 4,021 

- 2,982 
9,548 

- 5,161 

- 7 '776 

-16,641 
-25,877 
-14,733 

-18,151 
-26,211 
-16,113 

-35,375 

The hypothesis that herbicide load does not differ 

between dynamic and static decision rules (H4) can be re-

jected in specific cases when weed pressure is high. Herbi-

cide loads appear virtually identical across decision rules 

within information levels, as indicated in tables 5.6 and 

5.7. Nonetheless, the paired difference t-tests presented 

in Table 5.13 reveal that differences do exist. When ini-

tial weed pressure is high, the two-year decision rule leads 
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to higher herbicide loads in rotational corn and soybean 

than the myopic rule. For soybean, the two-year rule calls 

for more herbicide than the myopic rule even when weed 

pressure is low (t(19;.05) = 2.43). Contrary to expecta-

tion, the cautious myopic rule does not lead to a signifi-

cantly different herbicide load than the myopic one. 

Table 5.13: Paired difference t-tests of herbicide load 
under high information: Gains by two-year and cautious 
myopic decision rules over myopic decision rule. 

Two-year over Myoyic Cautious over Myoyic 
Mean Standard t Mean Standard t 

Cropping system, diffe- devia- sta- diffe- devia- sta-
initial weeds rence ti on tis tic rence ti on tis tic 

- - lbs ai/acre - - - - lbs ai/acre - -
Continuous corn 

Low initial weeds 0.13 0.49 1.23 0.02 0.55 0.14 
High initial weeds -0.05 0.24 -0.85 -0.05 0.38 -0.65 

Rotational corn 
Low initial weeds 0.06 0.26 1.00 -0.07 0.25 -1. 21 
High initial weeds 0.17 0.19 3.97 -0.02 0.19 -0.47 

Rotational soybean 
Low initial weeds 0.02 0.04 2.43 0.01 0.05 1. 25 
High initial weeds 0.02 0.03 2.63 0.01 0.04 1. 29 

The myopic rule, preferred by risk averse decision 

makers when weed pressure is low, generally leads to lower 

herbicide loads, although the difference is significant only 

for the cases cited above. This apparent contradiction sup-

ports Pannell's (1990) finding that when the yield function 
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strictly convex, the expected utility of risk averse 

decision makers is maximized by reducing weed control. 

Related to the lack of distinction between decision 

rules regarding herbicide load, end-period weed seed den­

sities are also not uniformly lower with the dynamic two­

year rule. Aggregating all weed species and weighting by 

the number of fields in each rotation, mean terminal seed 

densities are lowest under the two-year decision rule. 

5.3.3 Experiment 3: Effect of farm size 

An increase in farm size from 480 to 720 acres results 

in a sharp decline in mean annualized net farm income per 

unit of land. However hypothesis H5 cannot be rejected, 

since the decline is not generally statistically significant 

under the paired difference t-tests presented in Table 5.14. 

The exception is the myopic decision rule when weed pressure 

is low, in which case annualized net income is reduced at 

the 10% significance level (one-tailed t(19;.10) = 2.09). 

Nonetheless, Table 5.15 indicates that when weed pressure is 

low, mean farm net income is only marginally higher despite 

using 50% more land. When weed pressure is high (Table 

5.16), mean annualized net income is actually lower under 

all decision rules on the larger farm. Untimely crop man­

agement results in yield penalties, lower herbicide load and 

higher weed pressure than in the 480-acre farm case. Mean 



145 

percent of maximum corn yield is lower across the board due 

to late planting penalties and cases where weed controls 

become infeasible. Herbicide load is lower because treat-

ments become infeasible. The result is higher mean weed 

density and higher terminal weed seed population in vir-

tually every case. 

In spite of the reduced terminal wealth per acre on 

the larger farm, evidence does not support the profitability 

of commonly practiced blind PPI/PRE control. In no instance 

did the mixed strategy of POST information generate higher 

mean annualized net farm income than high information with 

the same decision rule. 

Table 5.14: Paired difference t-tests of annualized farm net 
income per acre: Change due to increasing farm size from 480 
to 720 acres. 

Low initial weeds 

Information level 
decision rule 

Mean Standard 
diffe- devia-
rence ti on 

- - $/ac - -
Seed & seedling 

Myopic 
info. 

Cautious myopic 
Two-year 

Seedling info. only 
Myopic 
Cautious myopic 
Two-year 

No information 

-5.39 
-2.73 
-3.38 

-6.05 
-3.35 
-3. 71 

-9.46 

10.67 
13.06 
11.65 

11.23 
13. 23 
11.49 

15.88 

t 

sta­
tistic 

-2.26 
-0.93 
-1.30 

-2.41 
-1.13 
-1.45 

-2.66 

High initial weeds 
Mean Standard t 

diffe- devia- sta-
rence tion tis tic 

_ _ $/ac - -

-4.11 
-2.46 
-2.60 

-3.50 
-1. 86 
-2.41 

-3.99 

12.47 
12.92 
10.21 

12.28 
13.01 
10.74 

15.40 

-1.47 
-0.85 
-1.11 

-1.28 
-0.64 
-0.98 

-1.16 
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Table 5.15: Stochastic simulation results for 720-acre farm 
with low initial weed seed density: 6 year simulation under 
20 states of nature. 

Information level 
No infor- Seedling counts 
mation Myopic Cautious 2-year 

Mean annualized net income ($) 
(Standard deviation) 
Farm -2,735 10,189 

(14,914) (14,230) 
Cont. corn -6,713 -2,584 

(6,557) (6,825) 
Rotn. corn -6,568 -2,756 

(6,368) (5,669) 
Rotn. soy 10,545 15,529 

(6,018) (5,622) 

10,095 
(14,224) 
-2,590 
(6,811) 
-2,808 
(5,672) 
15,494 
(5,607) 

Mean herbicide load (lb ai/ac) 
Cont. corn 4.88 5.25 
Rotn. corn 4.88 5.01 
Rotn. soy 1.50 0.78 

Mean percent of max. yield (%) 
Cont. corn 71 76 
Rotn. corn 71 75 
Rotn. soy 68 73 

Mean weed density (plants/m2 ) 

Continuous corn 
Foxtail 130 
Lambsqtrs 4 
Pigweed 27 

Corn-soybean rotn. 
Foxtail 126 
Lambsqtrs 5 
Pigweed 32 

72 
2 

12 

75 
5 

14 

5.24 
5.00 
0.78 

76 
75 
73 

72 
2 

12 

78 
5 

14 

10,843 
(14,260) 
-2,486 
(6,783) 
-2,360 
(5,688) 
15,689 
(5,653) 

5.34 
5.06 
0.79 

77 
77 
74 

63 
3 

12 

62 
5 

13 

Mean terminal weed seed density (seeds/m2 ) 

Continuous corn 
Foxtail 4,454 
Lambsqtrs 205 
Pigweed 3,268 

Corn-soybean rotn. 
Foxtail 4, 379 
Lambsqtrs 308 
Pigweed 3,819 

1,893 
152 

1,548 

2,395 
222 

1,749 

1, 911 
152 

1,583 

2,474 
228 

1,755 

1, 722 
154 

1,549 

2,032 
223 

1,693 

& Decision rule 
Seed & seedlin& counts 

Myopic Cautious 2-year 

11,702 
(14,125) 
-1,849 
(6,486) 
-1,961 
(5,790) 
15,512 
(5,553) 

2.76 
2.91 
0.78 

76 
76 
73 

84 
3 

10 

78 
5 

12 

1,951 
164 

1, 313 

2,435 
232 

1,575 

11,605 
(14' 137) 
-1,858 
(6,472) 
-2 '013 
(5,812) 
15,476 
(5,542) 

2.75 
2.90 
0.78 

76 
76 
73 

85 
3 

10 

82 
5 

13 

1,968 
164 

1,330 

2,534 
233 

1,588 

12, 720 
(14,248) 
-1,575 
(6,661) 
-1,504 
(5,762) 
15,799 
(5,673) 

2.85 
3.08 
0.79 

77 
77 
74 

71 
3 

10 

62 
5 

12 

1,825 
163 

1,316 

2,042 
232 

1,523 
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Table 5.16: Stochastic simulation results for 720-acre farm 
with high initial weed seed density: 6 year simulation under 
20 states of nature. 

Information level & Decision rule 
No infor- Seedling counts Seed & seedling counts 
mation Myopic Cautious 2-year Myopic Cautious 2-year 

Mean annualized net income ($) 
(Standard deviation) 
Farm -31,847 -12,257 

(13,291) (12,043) 
Cont. corn-15,839 - 8,743 

(5,291) (5,647) 
Rotn. corn-16,334 -10,549 

(5,105) (4,570) 
Rotn. soy 326 7,035 

(5,733) (5,369) 

-12,343 
(12,012) 
- 8,764 

(5,651) 
-10,582 

(4,571) 
7,004 

(5,351) 

Mean herbicide load (lb ai/ac) 
Cont. corn 4.88 5.44 
Rotn. corn 4.88 5.07 
Rotn. soy 1.50 0 . 77 

Mean percent of max. yield (%) 
Cont. corn 56 67 
Rotn. corn 55 63 
Rotn. soy 50 59 

Mean weed density (plants/m2 ) 

Continuous corn 
Fox tails 273 125 
Lambsqtrs 5 3 
Pigweed 57 22 

Corn-soybean rotn. 
Foxtails 335 177 
Lambsqtrs 8 7 
Pigweed 59 25 

5.44 
5.06 
0. 77 

67 
63 
59 

127 
3 

22 

177 
7 

25 

-10,205 
(12,499) 
- 8,489 

(5,628) 
- 9,224 

(4,846) 
7,508 

(5,548) 

5.45 
5.07 
0.79 

68 
66 
62 

105 
4 

22 

126 
7 

22 

Mean terminal weed seed density (seeds/m2 ) 

Continuous corn 
Foxtails 6, 733 
Lambsqtrs 205 
Pigweed 5,881 

Corn-soybean rotn. 
Foxtails 8, 473 
Lambsqtrs 315 
Pigweed 6,170 

2,182 
152 

2,269 

3,526 
230 

2,509 

2,205 
153 

2,281 

3,550 
233 

2,534 

1,864 
155 

2,263 

2,494 
230 

2,312 

-10,084 
(12,058) 
- 7,709 

(5,678) 
- 9 '772 

(4,642) 
7,397 

(5' 307) 

3.58 
3.31 
0.78 

68 
64 
59 

128 
4 

17 

166 
7 

22 

2,258 
165 

1,707 

3,248 
240 

2,178 

-10,184 
(12,078) 
- 7' 728 

(5,663) 
- 9' 811 

(4,679) 
7,355 

(5,295) 

3.56 
3.27 
0.78 

68 
64 
59 

129 
4 

17 

167 
7 

22 

2,307 
166 

1,750 

3,290 
245 

2,210 

- 7,553 
(12,487) 
- 7,184 

(5,839) 
- 8,322 

(4,891) 
7,954 

(5,490) 

3.62 
3.52 
0 . 79 

70 
68 
62 

106 
4 

17 

117 
8 

19 

1,975 
167 

1,700 

2,385 
244 

2,010 
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5.3.4 Experiment 4: Value of initial seed bank 

The value of a low initial weed seed bank is manifest 

in both the medium and large farm cases. Paired difference 

t-tests show that mean annualized net income is signif i­

cantly greater when initial weed seed banks are low than 

when they are high (one-tailed t(19;.0l) = 3.17). Hypo­

thesis H6 is rejected under every decision rule and infor­

mation level, as displayed in Table 5.17. The clear value 

of a low initial weed seed bank provides empirical support 

for the principle of a dynamic decision rule. 

The second point of interest concerning initial seed 

banks is that the standard deviation of annualized net 

income is lower when the seed bank starts high (tables 5.6 

and 5.7). This echoes the finding of Roush and Radosevich 

that the variance of yield functions declines as weed compe­

titive pressure increases. As weed pressure increases, it 

displaces the effect of other environmental factors on the 

variability of yield (and, by extension, annualized net 

income) . 

As expected, low initial weed seed density also results 

in reduced chemical load. For corn under both rotations, 

paired difference t-tests in Table 5.18 reveal that with 

high information, a low initial weed seed bank leads to sig­

nificantly lower herbicide load than a high one. 
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Table 5.17: Paired difference t-tests of annualized farm net 
income: Gains from low initial seed bank over high one. 

Mean Standard t 
Information level diffe- devia- sta-
decision rule rence ti on tistic 

- - - - $ - - - -
Seeds & seedling info. 

Myopic 15,137 3,867 17.51 
Cautious myopic 14,657 3,323 19.73 
Two-year 13,855 3,723 16.64 

Seedling info. only 
Myopic 16,188 4,597 15.75 
Cautious myopic 15,676 3,724 18.83 
Two-year 14,667 4,189 15.66 

No information 22,032 8,044 12.25 

Table 5.18: Paired difference t-tests of herbicide load 
under high information: Gains from low initial seed bank 
over high one by cropping system. 

Mean Standard t 
Cropping system, diffe- devia- sta-
decision rule rence ti on tis tic 

- lbs ai/acre -
Continuous corn 

Myopic -0.82 0.35 -10.55 
Cautious myopic -0.74 0.28 -11. 99 
Two-year -0.64 0.28 -10.09 

Rotational corn 
Myopic -0.34 0.18 -8.18 
Cautious myopic -0.39 0.27 -6.38 
Two-year -0.45 0.17 -11.50 

Rotational soybean 
Myopic -o.oo 0.01 -1. 62 
Cautious myopic -o.oo 0.03 -0.08 
Two-year 0.00 0.03 0.47 

In general, the low initial seed bank results in 

higher yields, lower weed densities and lower terminal weed 
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seed populations. It appears that the weed seed bank levels 

converge to a managed equilibrium. Mean terminal weed seed 

densities for both initial levels were very close, despite 

having started an order of magnitude apart (tables 5.6 and 

5.7). Under the two-year decision rule with high informa­

tion, the model allows foxtail seed populations to grow from 

175 to 1,432 seeds/m2 , while those starting at 1,750 drop to 

1,614 seeds/m2 • Lambsquarters seed densities change from 25 

and 250 seeds/m2 to 160 and 166. Pigweed seeds multiply 

more dramatically (partly because of longer seed survival in 

the soil). From 50 and 500 seeds/m2 , they increase to 1,256 

and 1,640 seeds/m2 , respectively. 

5.3.5 Experiment s: Impact of herbicide bans 

Herbicide bans reduce mean annualized farm income in 

every case. The reduction is statistically significant 

(one-tailed t(19;.05) = 2.43) for a triazines ban under all 

scenarios reviewed. It is statistically significant for an 

atrazine ban when initial weed pressure is high. Under the 

two-year decision rule it is also significant when initial 

weed pressure is low. Hence, the hypothesis that a herbi­

cide ban does not affect annualized net income (HS) can be 

rejected in every instance for a triazines ban and can be 

rejected when initial weed pressure is high for an atrazine 

ban. 
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The income impact of restricting weed control options 

is greatest when weed pressure is high. The high informa-

tion case with the two-year decision rule, shown in Table 

5.19, is a case in point. When weed pressure is low, the 

atrazine ban reduces mean annualized net farm income by $296 

for a 480-acre farm. Since atrazine is an option only on 

the 160 acres of continuous corn, the loss on those fields 

is $1.85 per acre. When initial weed pressure is high, 

however, the atrazine ban costs $720, or $4.50 per acre of 

continuous corn. The ban on triazines affects the corn-

soybean rotation fields as well, both via cyanazine use on 

corn and metribuzin on soybean. The reductions in 

Table 5.19: Paired difference t-tests of changes in 
annualized farm net income due to bans on atrazine and all 
triazines. 

Initial weeds, 
decision rule 

Low initial weeds 
Myopic 
Cautious myopic 
Two -year 

High initial weeds 
Myopic 
Cautious myopic 
Two-year 

Atrazine ban Triazines ban 
Gain over No Ban base case Gain over No Ban base case 

Mean Standard t Mean Standard t 
diffe- devia- sta- diffe- devia- sta-
rence ti on 

- - - - $ - - - -

-196 
-280 
-296 

-1,056 
-1,235 

-720 

975 
606 
535 

619 
641 
483 

tis tic 

-0.90 
-2.07 
-2.48 

-7.62 
-8.62 
-6.67 

rence ti on 
- - - - $ - - - -

-613 
-741 
-867 

-1,863 
-2' 213 
-1,905 

997 
828 
609 

1,189 
1,186 
1,040 

tis tic 

-2.75 
-4.00 
-6.37 

-7.01 
-8.34 
-8.19 
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annualized net farm income are $867 and $1,905 for low and 

high initial weed seed populations, respectively. This 

amounts to $1.81 and $3.97 per acre, farm-wide. 

The modest farm level impact of an atrazine ban is 

consistent with the results of Cox, and Cox and Easter. 

Focusing upon average weed populations in continuous corn 

with expected yield of 152 bu/ac and corn at $2.43/bu, Cox 

estimates an atrazine ban in southeastern Minnesota to cost 

$7.93 per acre. Due in part to lower expected yields in 

southwestern Minnesota and lower assumed corn price, the 

comparable figures from this study are $1.85 and $4.50, at 

low and high initial weed pressures, respectively. 

The cost per acre of a triazines ban estimated in this 

stack is considerably lower than the $29.76 per acre drop in 

returns to management and fixed resources calculated by 

Cashman et al. The difference is likely accounted for by 

the yield function in their deterministic linear programming 

model of an Indiana corn-soybean cash grain farm. Their 

model appears to be particularly sensitive to a ban on 

metribuzin, due perhaps to the different weed species incor­

porated in their model. 

Results from these three studies, however, apply to 

partial equilibrium analysis only. The general equilibrium 

regional analysis of Osteen and Kuchler (1987) suggests that 

bans on atrazine and the entire triazine family would cause 
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increases in corn and soybean prices that would more than 

offset income losses due to increased costs and/or reduced 

yields. The computable general equilibrium results of 

Hrubovcak et al. also highlight the link between input 

demand and output price. 

In general, annualized income can be ranked such that 

no ban > atrazine ban > triazines ban. The same ranking 

holds for the certainty equivalents of all four utility 

functions specified, as shown in Table 5.20. Interestingly, 

Table 5.20: Certainty equivalent expected utility under bans 
on atrazine and all triazines with high information and 
two-year decision rule. 

Standard 
deviation Coefficient of absolute risk aversion Initial weeds, 

tYQe of ban ann. income -.0001 0 .0001 .001 

Low initial weeds 
No ban 
Atrazine ban 
Triazines ban 

High initial weeds 
No ban 
Atrazine ban 
Triazines ban 

8,827 
8, 775 
8,871 

7,587 
7,489 
7,635 

- - $ equivalent - - - - - - - - -

13 '485 
13' 117 
12,642 

-1,259 
-2,050 
-3, 138 

10,104 
9,808 
9,237 

-3,751 
-4,471 
-5,656 

6, 111 
5,826 
5,221 

-6,756 
-7,421 
-8, 726 

-4,021 
-4,337 
-4,534 

-14,733 
-15,323 
-16,656 

the standard deviation of annualized farm income decreases 

under an atrazine ban. This is likely due to the fact that 

when field days are scarce, post-emergence atrazine becomes 

an infeasible treatment, so income variability is more 
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closely tied to field days variability when atrazine is an 

option. 

The bans also have significant impacts on herbicide 

loads. However, since the impact depends upon the weed 

control treatment that substitutes for the banned herbicide, 

the direction of the impacts is indeterminate. Where no 

control, mechanical control or low-dose herbicides are sub­

stituted, chemical load decreases. Where higher dose herbi­

cides are substituted, on the other hand, chemical load 

increases. 

Herbicide bans have especially marked impacts on che­

mical load in continuous corn. Table 5.21 shows that the 

hypothesis of unchanged chemical load (H9) in continuous 

corn can be rejected in all cases under both bans (two­

tailed t(l9;.0l) = 2.86). When initial weed seed popula­

tions are low, herbicide load increases. When they are 

high, herbicide load dedclines. Banning atrazine results in 

substitution of more costly, higher dose herbicide alterna­

tives such as alachlor and cyanazine or lower-dose 2,4-D on 

continuous corn. The net financial outcome is that costs 

are slightly higher, while the biological result, shown in 

Table 5.22, is that weed populations in continuous corn rise 

slightly, but other performance indicators are virtually 

unaffected. At high initial weed seed levels, Table 5.22 

indicates that the effect of substituting slightly less 
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efficacious treatments is to allow foxtail populations to 

rise and to reduce the mean percent of maximum crop yield 

attained. 

Table 5.21: Paired difference t-tests of changes in 
herbicide load due to bans on atrazine and all triazines. 

Atrazine ban Triazines ban 
Cropping system, Gain over No Ban base case Gain over No Ban base case 
initial weeds, Mean Standard t Mean Standard t 
decision rule diffe- devia- sta- diffe- devia- sta-

rence ti on tis tic rence ti on tis tic 
lb ai/acre - - - - lb ai/acre - -

Continuous corn 
Low weeds - myopic 0.11 0.16 2.91 0.59 0.29 9.00 
Low weeds - two-year 0.17 0.26 2.99 0.75 0.36 9.22 
High weeds - myopic -0.27 0.15 -8.19 -0.39 0.21 -8.37 
High weeds - two-year-0.13 0.18 -3 .13 -0.16 0.21 -3.33 

Rotational corn 
Low weeds - myopic 0 0 - - 0. 71 0.27 11.65 
Low weeds - two-year 0 0 - - 0.54 0.23 10.34 
High weeds - myopic 0 0 - - 0.00 0.21 0.03 
High weeds - two-year 0 0 - - -0.16 0.13 -5.63 

Rotational soybean 
Low weeds - myopic 0 0 - - -0.00 0.00 -1.45 
Low weeds - two-year 0 0 - - -0.00 0.01 -0.98 
High weeds - myopic 0 0 - - -0.00 0.01 -1.65 
High weeds - two-year 0 0 - - 0.00 0.02 0.31 

In the corn-soybean rotation fields, the effect of a 

ban on chemical load is apparent only on corn. When initial 

weed pressure is low, chemical load increases. When it is 

high, chemical load declines (Table 5.21), at least under 

the two-year decision rule. As in the continuous corn case, 

a triazines ban leads to reduced mean yields and increased 

populations of foxtails and lambsquarters (Table 5.22). The 
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substitute weed control treatments also appear to reduce 

pigweed populations. 

Table 5.22: Impact of herbicide bans on biological perfor-
mance indicators under high information using the two-year 
decision rule. 

Experi- Low initial weeds High initial weeds 
mental TyQe of ban TYQe of ban 
factor None Atrazine Triazines None Atrazine Triazines 

Mean herbicide load (lb ai/ac) 
Cont. corn 2.94 3.11 3.69 3.58 3.44 3.40 
Rotn. corn 3.05 3.05 3.59 3.50 3.50 3.35 
Rotn. soy 0.79 0.79 0.78 0.78 0.78 0.78 

Mean percent of max. yield (%) 
Cont. corn 80 80 79 72 71 69 
Rotn. corn 82 82 81 72 72 71 
Rotn. soy 74 74 74 62 62 61 

Mean weed density (plants/m2 ) 

Continuous corn 
Fox tails 55 54 60 100 105 125 
Lambsqtrs 3 3 3 4 5 7 
Pigweed 10 10 9 16 18 16 

Corn-soybean rotation 
Fox tails 56 56 60 113 113 133 
Lambsqtrs 5 5 5 8 8 8 
Pigweed 12 12 11 20 20 18 

Mean terminal weed seed density (seeds/m2) 

Continuous corn 
Foxtails.._ 1,432 1,654 1,836 1,614 1,935 2,162 
Lambsqtrs 160 163 174 166 174 190 
Pigweed 1,256 1,273 1,202 1,640 1,730 1,622 

Corn-soybean rotation 
Fox tails 1,915 1,915 1,985 2,239 2,239 2,498 
Lambsqtrs 215 215 230 230 230 237 
Pigweed 1,542 1,542 1,513 2,057 2,057 1,973 



157 

These results provide some guidance in designing policy 

to restrict groundwater contamination from triazine herbi­

cides. First, bans on atrazine or the triazine family 

reduce crop yields of corn and soybean. In partial equi­

librium (holding prices fixed), this translates to a reduc­

tion in farm income. Policy impacts need to be evaluated in 

general equilibrium to determine whether price changes will 

offset the reduced yields. 

The income effect of the bans is greatest when weed 

pressure is high. The micro-level impact of a ban on farm 

income turns on the density and species composition of the 

weed infestation. A well-designed policy should recognize 

this. Rather than impose a ban across the board, more 

flexible policy alternatives are preferable (Segerson). 

From least to most flexible, these include 1) regional bans 

where groundwater threats are greatest (e.g., Cox), 2) a ban 

with specified exceptions, 3) government purchase of herbi­

cide use rights (e.g., Taff and Cox), 4) marketable herbi­

cide use permits, 5) a tax (Gianessi et al., Hrubovcak et 

al.), and 6) a subsidy on weed management information. 

General equilibrium models further suggest that chemical use 

can be reduced by cutting crop price supports or increasing 

set-asides (Hrubovcak et al.). These alternatives all 

deserve further study. 
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The chemical load effect of the bans is not necessarily 

to reduce the quantity of chemicals applied to the land. Of 

course, the objective of a ban is to prevent a specific che­

mical from being released into the environment. It should 

be recognized, however, that banning one chemical may result 

in greater ambient quantities of some alternative chemical 

or chemicals. Certain chemicals which are not now perceived 

as groundwater threats could become threats if used more 

extensively. 

5.4 Discussion of the Value of Weed Information 

The significant gross value of information deserves 

closer examination to evaluate the practical feasibility of 

a weed management model such as WEEDSIM. When acquiring 

information incurs costs, those costs determine the feasi­

bility of using information-intensive management practices 

(Fohner et al.). The costs of information are divided 

between those involved in obtaining weed population esti­

mates and those of using the predictor embodied in this 

model. If the model is provided free of cost by the public 

sector, then the value of the model to a decision maker with 

a specified utility function is equal to the difference 

between the calculated value of information and the private 

cost of obtaining weed population data. As the model's 
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value is estimated as a residual, private costs must first 

be examined. 

The cost of obtaining weed population information 

depends upon sampling intensity and measurement methods. 

Given a normal probability distribution, the sampling inten­

sity depends on 1) the maximum tolerable error, 2) the de­

sired likelihood that a parameter estimate falls within the 

associated confidence interval, and 3) a, a prior estimate 

of the population standard deviation, a (Snedecor and 

Cochran, p. 59). If 1) and 2) are held constant across weed 

species, multiple species sampling intensity is determined 

by the species with the largest a. 
Wilson et al. decomposed the variance of weed seed 

density estimates by field, field division, and soil cores 

within a division. Most variability occurred within soil 

cores within a division. For yellow foxtail, common lambs­

quarters and redroot pigweed, the variance component of soil 

cores within a division was 98, 54, and 63 percent. Of 

secondary importance was variability between fields, respon­

sible for 2, 35, and 37 percent of variance, respectively. 

Wilson et al. calculate the number of soil cores needed to 

obtain seed estimates within 50% of the mean 20% of the time 

as four for lambsquarters. Extending their analysis, fig­

ures for yellow foxtail and redroot pigweed are 36 and 3 (by 

the formula in Snedecor and Cochran). The numbers of core 
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samples required using this calculation for the 1985-86 and 

1990 pooled Morris data (Table 4.7) for foxtails, lambs­

quarters and pigweed are 28, 46 and 18. 1 The Wilson et al. 

variance decomposition suggests that additional sampling 

would be necessary to capture the between-field variance of 

lambsquarters and pigweed. Adequate sampling intensity to 

meet the stated level of accuracy might cover one subdi-

vision of each field with a large number of cores sampled 

from that area. 

The principal cost of estimating seed populations is 

that of counting seeds. So long as soil cores are compo-

sited, this is the cost per composite sample. Buhler 

(1991b) estimates seed sampling and extraction costs at $14 

per composite sample (net of equipment, building and travel 

costs). Of this, field sampling (relevant for weed seedling 

counts as well as seed counts) amounts to $2.50. This might 

rise by a factor of two to four given the numbers of soil 

cores calculated above. Suppose field sampling costs $10 

per composite sample and travel costs $20 per farm. Then 

the variable cost of obtaining composite samples from six 

fields is approximately $150 (21.50 x 6 + 20). 

1 The number of cores actually sampled per plot was six 
for conventional tillage plots and twelve for reduced til­
lage plots (Forcella and Lindstrom 1988b). 
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The fixed costs of analyzing the samples are the cost 

of building and equipment depreciation. Cost per sample for 

these is difficult to estimate. 1 However, even if total 

cost were triple the estimated $150 variable cost, the pur-

chase would be worthwhile to a decision maker with any of 

the utility functions specified except an extreme risk aver-

ter following the myopic rule with low initial weed seeds. 

Given the low sampling costs and high estimated value 

of post-emergent weed seedling counts, the potential welfare 

gains due to the model are substantial. It appears that 

seed counts are likely to be feasible for most decision 

makers. POST seedling counts should be feasible for all 

decision makers in the range of risk attitudes considered. 

This suggests that the ex ante value of the model as a deci-

sion aid -- net of private information acquisition costs 

is significantly positive. However, these estimates are 

indicative only. Much more research needs to be done on 

weed population sampling methods and associated costs before 

reliable conclusions can be drawn. For seed density, in 

particular, timely estimates are important. This militates 

in favor of seed extraction rather than germination methods 

1The centrifuge seed extraction process requires a 
centrifuge, dryer, blower and freezer at an estimated cost 
of $20,000. The germination method, followed by Forcella 
and Lindstrom, requires a germinator ($12,000) plus a 
freezer and greenhouse of unspecified cost (Buhler, 1991b). 
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(Ball and Miller), despite of the accuracy advantages as­

cribed to germination (Forcella 1991). Forcella's (1991) 

finding that sampling in spring provides more accurate seed 

bank estimates than sampling in autumn makes timely analysis 

doubly important. 



VI. SUMMARY AND CONCLUSION 

Weed control is at once a major contributor to and a 

potentially major detractor from social welfare in the 

United States. The high crop yields afforded by chemical 

weed control help farmers prosper and keep consumer food 

costs low. Yet herbicides and their metabolites also leach 

into the groundwater, posing a poorly understood threat to 

human health. 

This thesis · began by positing incomplete information as 

a partial explanation for heavy herbicide use. Information 

deficiency offers an alternative to the more common economic 

externality rationale for pesticide "overuse." While the 

externality case builds upon the assumption that decision 

makers successfully optimize private utility, the incomplete 

information case assumes that they fail to do so. From a 

policy design standpoint, the incomplete information argu­

ment is more appealing because it implies a technical rather 

than a distributional solution. 

Weed growth, reproduction and competition with crops 

are biological processes intimately linked with stochastic 

environmental and ecological processes. Since farmers make 

weed management decisions under uncertain~y about outcomes, 

it is insufficient to test the incomplete information hypo­

thesis by demonstrating that a certain prediction or recom­

mendation could have left a farmer better off. Most of us 
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find instances in which we could have been better off had we 

acted on a particular piece of advice. But that knowledge 

will change our behavior the next time only if we believe 

the predictor is reliable. The predictor must be reliable 

enough on average to leave us more satisfied with the out-

come having followed the advice at whatever cost, than 
' 

having proceeded witn our best prior choice (Byerlee and 

Anderson) . For the case at hand, demonstrating that weed 

control decisions are systematically inadequate due to 

insufficient information requires constructing a predictor 

that outperforms ordinary weed control decisions. The 

improvement in performance must be great enough to overcome 

t he associated costs. This appears to be true for the 

WEEDSIM model. 

6 .1 Summary 

The WEEDSIM weed management bioeconomic model developed 

he re identifies nearly optimal tactics for weed control in 

corn and soybean, based on weed population density esti-

mates. By incorporating multiple controls and weed species 

into a dynamic model, it fills a gap between existing mul-

t iple species, multiple control static madels and single 

species, single control dynamic ones. Its open design 

a llows it to run with any suitable set of input parameter 

data. 
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Within a limited economic optimization framework, 

WEEDSIM links several simple submodels of weed germination, 

reproduction, susceptibility to controls, and competition 

with crops. Simulation of weed biology and crop yield 

response allows the model to predict crop yield loss under 

different weed control tactics. Balancing the value of 

yield loss against the cost of a given weed control, the 

model generates recommended control tactics. Two mechanisms 

for striking that balance are evaluated. A two-year optimal 

control rule chooses the current year tactics consistent 

with maximizing discounted expected net returns over a two 

year planning horizon. A one-year "myopic" rule limits its 

perspective to maximization of expected net returns in the 

current year. 

The thesis devotes considerable attention to statis­

tical estimation and validation of biological functions, 

since they constitute a key part of the predictor whose 

informational value is being evaluated. The short available 

time series of weed population dynamics data is a deficiency 

that required re-estimation of weed germination equations 

after unsatisfactory validation results. As in other bio­

economic modeling studies (Briggs, Regmi, Zacharias and 

Grube) , the existing base of biological data was found to be 

less than desired. Developing the input parameter set 

required stretching the use of biological data beyond the 

purposes for which it was originally gathered. Remaining 
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gaps were bridged with assumptions. Even this much informa­

tion was available only for three species of weeds1 , whose 

choice may have an important effect on the simulation 

results. 

In addition to addressing the question: "Is the current 

weed control information typically used by farm managers 

complete?", the model seeks to identify how much information 

is desirable. It does so by comparing two levels of supple­

mental information to the base practice of following general 

extension recommendations abstracted from information on the 

specifics of the weed problem. Sample counts of emerged 

weed seedlings constitute one form of information; sample 

counts of weed seeds in the soil the other. 

A whole-farm stochastic simulation model is developed 

and employed to evaluate WEEDSIM. Called WFARM, it provides 

a means to capture the labor, equipment and field time con-

straints faced by corn and soybean farmers when choosing and 

implementing weed control treatments. Like WEEDSIM, WFARM 

is a dynamic model that allows strategies to be evaluated on 

the basis of multi-year simulations. The stochastic factors 

are 1) randomly selected historical environmental parameters 

(e.g., rain, field time, weed-free crop yields) and 2) ran-

dom disturbances in the estimated biological functions. 

Repeated model runs under identical sets of stochastic 

1Mixed green and yellow foxtails, common lambsquarters, 
and redroot pigweed. 
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exogenous production factors permit comparison of differing 

management strategies under uncertainty. Strategies are 

compared on the basis of several performance criteria over 

the simulation period: mean and standard deviation of annu­

alized net farm income, three additional utility functions 

over annualized net income, mean herbicide load, mean per­

cent of maximum crop yield, mean weed density, and mean 

terminal weed seed density. 

Hypothesis tests of results from the six-year simula­

tion experiments yield several clear conclusions: First, 

strategies using weed population information increase annu­

alized net farm income. Mean annualized net farm income can 

be ranked from highest to lowest by information level such 

that mean income with weed seed and seedling counts (high 

information) exceeds mean income with weed seedling counts 

alone (POST information) which, in turn, exceeds mean income 

with no weed population information. The same ranking ob­

tains for expected utility under all four specified utility 

functions. Second, strategies using "high" weed population 

information tend to use less chemical over the long term 

than those that do not. Third, compared with a high initial 

weed seed bank, a low one raises mean annualized net income 

and expected utility. Fourth, compared with a high initial 

weed seed bank, a low one reduces herbicide load in corn. 

Fifth, bans on atrazine and on all triazine herbicides 

reduce mean annualized net farm income. Sixth, bans on 

-- -

·1 
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atrazine and triazines change herbicide load levels, but the 

changes may result in either an increase or a decrease. 

Equally instructive were the hypothesis tests that did 

not yield statistically clear results: 1) The two-year and 

myopic decision rules do not generate significantly diffe­

rent mean terminal wealth levels. Moreover, the cautious 

myopic rule fails to outperform the myopic rule by any per­

formance criterion. 2) Apart from heavier herbicide use on 

soybean under the two-year rule, herbicide load does not 

differ by decision rule. Although terminal weed seed den­

sities are generally lower under the two-year decision rule 

than under the two myopic rules, they are not lower across 

the board. 3) While increasing farm size reduces mean annu­

alized net farm income, the reduction is only statistically 

significant when initial weed pressure is low and even then 

only under the myopic and "no information" scenarios. 

4) Despite income-reducing field time constraints on the 

720-acre farm, rule-based pre-emptory PPI/PRE weed control 

followed by an information-based POST control fails to 

generate higher mean annualized net farm income than using 

weed population information for both controls. 

Rejection of the hypothesis that net farm income is the 

same with and without weed population information confirms 

the thesis that . weed management decisions made without weed 

population information tend to be sub-optimal. However, it 

begs the question:, "Is the value of that information worth 
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the cost?" Based on certainty equivalent money metrics of 

utility for four utility functions, the calculated value of 

weed population information far exceeds the likely cost of 

acquiring it. This is true of both emerged weed seedling 

counts and weed seed counts from soil samples. The excess 

value of the former is dramatic. 

The importance of dynamic modeling is highlighted by 

rejection of the null hypothesis that initial seed density 

levels do not influence mean terminal wealth. In parti­

cular, this suggests that foresighted decision rules are 

likely to perform better than myopic ones, even though that 

could not be demonstrated with statistical significance. 

The financial and expected utility advantage of uti­

lizing weed population information in weed control decisions 

is sufficient reason to adopt such a practice. Weed popula­

tion information provides a valuable supplementary input 

which increases the technical efficiency of weed management. 

Research results presented here suggest that it may also 

reduce herbicide load. 

The herbicide ban impact analysis brings out three 

points. First, the farm-level impact of a ban depends upon 

the severity and composition of the weed problem on that 

farm. Second, the private, firm-level cost of a ban on 

atrazine alone is not very high, due to the availability of 

substitutes which are only slightly more expensive or less 

efficacious at controlling weeds. Banning all triazines 
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would be two to five times more costly due to reduced sub­

stitution options and effects on rotational corn and 

soybean. Third, total chemical load will not necessarily 

decrease just because a single herbicide or family of herbi­

cides is banned. Alternative policies offering greater 

flexibility in weed management and/or aimed at reducing 

total herbicide load may be preferable to across-the-board 

bans. Alternatives that deserve further study include mar­

ketable use permits, taxes, purchase of usage rights, and 

subsidies on weed management information (e.g., computerized 

decision aids, weed seed soil analyses). 

6. 2 Potential uses for model 

The WEEDSIM recommendations module gave very promising 

r esults in the stochastic simulation evaluation. Its high 

value, net of imputed costs of information acquisition, 

suggests that it can provide farmers and crop consultants 

with a beneficial decision. Clearly, before it can go into 

service in such a capacity, the model will require further 

validation. Validation field trials for 1991 have been 

established at Rosemount and Morris, Minnesota (Buhler 

199lc). 

Because 'it synthesizes information on weed population 

dynamics, cont~ol treatment efficacy and weed-crop competi­

tion, the whole-farm stochastic model offers a comprehensive 
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framework for identifying research needs in weed management. 

Sensitivity analysis of key parameters influencing recommen­

dations could help to chart a course for future applied 

research based on explicit estimates of expected returns to 

research. 

Finally, the potential of the whole-farm stochastic 

model for policy analysis can be extended much further than 

the indicative analysis presented in this thesis. The 

strengths of this model for firm-level herbicide policy 

analysis are three: 1) its modeling of weed biology allows 

it to capture biological dynamic effects, 2) its expandable 

range of herbicide treatments captures substitution effects 

missed by such models as that of Knutson et al., and 3) its 

expandable set of weed species allows it to quantify policy 

impacts by severity and type of weed infestation. 

6.3 Directions for future research 

The potential uses of the model point to desirable 

directions for future research, particularly for setting 

research priorities and analyzing potential public policies. 

Returns to weed management research can be examined in 

two ways. The distribution of annualized net farm incomes 

can be examined for potential gains in certainty equivalents 

of expected utility from reducing overall income variance. 

Sensitivity analysis of specific parameters and groups of 
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related parameters can suggest gains from specific research 

projects (e.g., Bosch and Shabman). The seed production 

parameters would be a good group to start with, as unex­

plained variation in their statistical estimation for this 

thesis was especially high. 

As noted in Chapter 3, biological process simulation 

offers a promising alternative to the statistical methods 

used to model plant growth and population dynamics in this 

thesis. Differences between observed and simulated behavior 

tend to be much lower in process models than statistical 

ones, since the former make endogenous many of the environ­

mental factors that remain exogenous to statistical models. 

The Forcella (1991) model used here provides a first step in 

that direction for weed germination. The recent work of 

Williams et al. points to possibilities for process modeling 

of weed-crop competition, although the challenge of accommo­

dating of multiple weeds remains to be tackled. 

Simply substituting more realistic functional forms 

would improve the WEEDSIM and WFARM models. The step func­

tions used for weed control efficacy and yield penalties are 

strong candidates for replacement. Eradat Oskoui and Voor­

hees are developing a quadratic yiel~ penalty function for 

late planting in corn and soybean that would be one option. 

Better statistical estimates of model parameters can be 

developed from field experiments designed with that purpose 

in mind. Sounder weed seed population parameters are parti-

-- ---
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cularly needed. The time series experiments required for 

their estimation are rare and difficult to conduct. Uniform 

measurement standards are also needed in order to make model 

operation consistent across input data sets. Competing 

methods of counting seeds (e.g., Forcella, 1991, Ball and 

Miller), counting emerged weeds (in the crop row versus both 

in the row and in between), and determining sampling inten­

sity all demand further study. New investigations should 

include cost and timeliness, along with accuracy, as perfor­

mance criteria. 

In spite of its weak showing in stochastic simulation, 

the cautious myopic decision rule deserves further exami­

nation. From theory, the principle of reducing the static 

economic threshold for weed control is sound. A range of 

levels for the percent reduction in the no control threshold 

should be attempted to determine whether and under what 

conditions values exist that make that rule preferable to 

the myopic one. 

Further policy analysis should examine a wider range of 

policy scenarios than the two bans reviewed here. In parti­

cular, herbicide taxes should be examined in a search for 

ban-equivalent tax leve~s under specified levels of weed 

pressure. Such alternatives as marketable herbicide use 

permits, government purchase of herbicide use rights, and 

weed population information subsidies also deserve formal 

review. 





A.1 Miscellaneous Figures and Tables 

Table Al.1: Data sets used for estimation of yield and weed 
population dynamics equations. 

Equa- Data set Principal 
ti on name Descri~tion Investigator 
Cl,Sl VI CMS Variable Input Crop J. Gunsolus 1 

Management Study 
C2 LAMCULT Cultivation/rotary hoe study J. Gunsolus 
C3 MOR CULT Cultivation/rotary hoe study J. Gunsolus 
C4 WAS CULT Cultivation/rotary hoe study J. Gunsolus 
cs NT CULT Cultivation effects on no-till D. Buhler2 

corn 
C6 CHI CULT Cultivation effects on chisel- D. Buhler 

plowed corn 
C7,S6 FORC8S86 Tillage/rotary hoe study F. Forcella3 

S2 ROHOYD Rotary hoe study J. Gunsolus 
S3 RRWASDW Reduced herbicide rate study J. Gunsolus 
S4 DRYWTRR Reduced herbicide rate study J. Gunsolus 
SS PDMECH Planting date effect on D. Buhler 

mechanical weed control 

1Department of Agronomy and Plant Genetics, University of Minnesota, St. 
Paul, MN. 

2Agricultural Research Service, U.S. Department of Agriculture, 
University of Minnesota, St. Paul, MN. 

3Agricultural Research Service, U.S. Department of Agriculture, North 
Central Soil Conservation Research Laboratory, Morris, MN. 
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Figure Al.1: Pre-plant weed densities for 1985: Forcella predictions 
(F) versus recalibrated predictions (C). 
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Figure Al.2: Post-crop emergence weed density in 1985: Forcella 
predictions (F) versus recalibrated predictions (C). 
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Figure Al.3: Post-cultivation weed emergence for 1985: Forcella 
predictions (F) versus recalibrated predictions (C). 



A.2 Listing of the WFARM and WEEDSIM program code 

Last update: 06/10/91 

' WFARM6 version stochastic w/ random coefs. & 2-year decision rule. 
'*********************************************************************** 
'* 
'* 
'* 
'* 
'* 

WFARM: 
A Bioeconomic Weed Management Simulation Program 

by Scott M. Swinton 

* 
* 
* 
* 
* 
* 
* 
* 
* 

'* WFARM implements WEEDSIM recommendations for weed control in corn 
'* and soybean. Recommendations are based upon the present value of 
'* expected yield loss in each of the years of the simulation. Years 
'* are linked by the weed seedbank, whose growth is affected by weed 
'* control measures reducing the number of weeds setting seed. * 

* 
provided by the user for stochastic simula- * 

'* 
'* Nine data files must be 
'* tion. 
'* 

These are listed in AutoDataFiles. * 

'* For further details, see comments with the GetWeedParm and 
'* GetKillData subprograms. 
'* 

* 
* 
* 
* '* The WEEDSIM module (subprograms beginning with WS) generates a set * 

'*of preplant-incorporated (PPI), pre-emergent (PRE) and post-emergent* 
'* (POST) weed control recommendations prior to planting in each * 
'* simulation year. Those may be updated and revised by the PostWEEDSIM 
'* module according to conditions prior to the POST application. * 
'*********************************************************************** 

, ******************************* 
' * Functions and Subprograms * 
, ******************************* 
TYPE cropf ile 

cropid AS INTEGER 
cname AS STRING * 8 
maxyld AS SINGLE 
expMaxY AS SINGLE 
growrate AS SINGLE 
sigcint AS SINGLE 
sigcdap2 AS SINGLE 
a AS SINGLE 
seedRate AS SINGLE 
seedPric AS SINGLE 
price AS SINGLE 
vc AS SINGLE 

END TYPE 



TYPE hfile 
cropid AS INTEGER 
aptimeid AS INTEGER 
herbid AS INTEGER 
hname AS STRING * 16 
unitCost AS SINGLE 
minrate AS SINGLE 
maxrate AS SINGLE 
avrate AS SINGLE 
droptrt AS INTEGER 

END TYPE 
TYPE kfile 

aptimeid AS INTEGER 
herbid AS INTEGER 
weedid AS INTEGER 
ef f ic AS INTEGER 
maxWd.Ht AS SINGLE 
maxCrnHt AS INTEGER 
maxSoyHt AS INTEGER 

END TYPE 
TYPE wfile 

weedid AS INTEGER 
wname AS STRING * 8 
avgerm AS SINGLE 
sOpropn AS SINGLE 
slpropn AS SINGLE 
s2propn AS SINGLE 
s3mortpn AS SINGLE 
wlpropag AS SINGLE 
w2propag AS SINGLE 
growrate AS SINGLE 
wOint AS SINGLE 
wOs AS SINGLE 
w0s2 AS SINGLE 
wlint AS SINGLE 
wls AS SINGLE 
wls2 AS SINGLE 
w2int AS SINGLE 
w2s AS SINGLE 
sigOint AS SINGLE 
sigOs AS SINGLE 
sig0s2 AS SINGLE 
siglint AS SINGLE 
sigls AS SINGLE 
sigls2 AS SINGLE 
sig2int AS SINGLE 
sig2s AS SINGLE 
sig2s2 AS SINGLE 
sigwint AS SINGLE 
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sigwdap2 AS SINGLE 
END TYPE 
TYPE cfile 

cropid AS INTEGER 
weedid AS INTEGER 
i AS SINGLE 

END TYPE 
TYPE mfile 

machcode AS INTEGER 
machname AS STRING * 15 
AcHr AS SINGLE 
CostAc AS SINGLE 

END TYPE 
TYPE ftype 

fnum AS INTEGER 
cropid AS INTEGER 
prevCrop AS INTEGER 
fsize AS INTEGER 
hflag AS INTEGER 
preApTim AS INTEGER 
precode AS INTEGER 
postcode AS INTEGER 
prename AS STRING * 16 
postname AS STRING * 16 
precost AS SINGLE 
postcost AS SINGLE 
ywf AS SINGLE 
rotation AS INTEGER 
cost AS SINGLE 
plweek AS INTEGER 
ppiweek AS INTEGER 
preweek AS INTEGER 
postweek AS INTEGER 
cropHt AS SINGLE 
preload AS SINGLE 
postload AS SINGLE 

END TYPE 
TYPE efile 

epswOl AS SINGLE 
epsw02 AS SINGLE 
epswll AS SINGLE 
epswl2 AS SINGLE 
epswl3 AS SINGLE 
epsw21 AS SINGLE 
epsw22 AS SINGLE 
epsw23 AS SINGLE 
epsyldc AS SINGLE 
epsylds AS SINGLE 
epsseedl AS SINGLE 
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epsseed2 AS SINGLE 
epsseed3 AS SINGLE 
epsgrowc AS SINGLE 
epsgrows AS SINGLE 
epsgrowl AS SINGLE 
epsgrow2 AS SINGLE 
epsgrow3 AS SINGLE 

END TYPE 
TYPE bfile 

betaw010 AS SINGLE 
betawOll AS SINGLE 
betaw012 AS SINGLE 
betaw020 AS SINGLE 
betaw021 AS SINGLE 
betaw022 AS SINGLE 
betawllO AS SINGLE 
betawlll AS SINGLE 
betaw120 AS SINGLE 
betawl22 AS SINGLE 
betawl30 AS SINGLE 
betawl31 AS SINGLE 
betaw210 AS SINGLE 
betaw211 AS SINGLE 
betaw220 AS SINGLE 
betaw221 AS SINGLE 
betaw230 AS SINGLE 
betaw231 AS SINGLE 
betagroc AS SINGLE 
betagros AS SINGLE 
betagrol AS SINGLE 
betagro2 AS SINGLE 
betagro3 AS SINGLE 

END TYPE 
TYPE yfile 

year AS INTEGER 
fdl AS SINGLE 
fd2 AS SINGLE 
fd3 AS SINGLE 
fd4 AS SINGLE 
fdS AS SINGLE 
fd6 AS SINGLE 
fd7 AS SINGLE 
fd8 AS SINGLE 
fd9 AS SINGLE 
fdlO AS SINGLE 
fdll AS .SINGLE 
rainl AS SINGLE 
rain2 AS SINGLE 
rain3 AS SINGLE 
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rain4 AS SINGLE 
rains AS SINGLE 
rain6 AS SINGLE 
rain7 AS SINGLE 
rain8 AS SINGLE 
rain9 AS SINGLE 
rainlO AS SINGLE 
rainll AS SINGLE 
cymax AS INTEGER 
symax AS INTEGER 
foxgerm AS SINGLE 
lamgerm AS SINGLE 
piggerm AS SINGLE 

END TYPE 
TYPE stype 

nr AS SINGLE 
sdnr AS SINGLE 
load AS SINGLE 
ypct AS SINGLE 

END TYPE 
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' Make all arrays dynamic - Use with QB/AH option (see pp. 347-348) 
'$DYNAMIC 
' (Command disabled if 11 'x$DYNAMIC 11 written.) 

DECLARE FUNCTION ypen! (cropid%, ywf, plwk%) 
DECLARE FUNCTION yield2! (wnum%, ywf!, cropnum%, compmax%, comp() AS 

cfile, crop() AS cropfile, d!()) 
DECLARE FUNCTION surv! (x%) 
'DECLARE SUB ScreenHeader2 () 
DECLARE SUB PrinterHeader () 
'DECLARE SUB UserParameters () 
DECLARE SUB AutoDataFiles (cropparm$, parmfile$, compfile$, herbfile$, 

killfile$, fdayf1le$, machfile$, seedfile$, epsfile$, yearfile$, 
betafile$) 

DECLARE SUB AutoParameters (fld() AS ftype, cropmax%, crop() AS 
cropfile, nyears%, r, hrsday, tractors%, nfields%, theta, maxCwk%, 
minSwk%, decrule%, nweeks%, nstates%) 

DECLARE SUB GetCropParm (cropparm$, cropdata AS cropfile, crop() AS 
cropfile) 

DECLARE SUB GetWeedParm3 (wnum%, parmfile$, wf AS wfile, weedparm() AS 
wfile) 

DECLARE SUB GetKillData2 (killfile$, eff AS kfile, efftemp() AS kfile, 
killparm() AS kfile, kmax%) 

DECLARE SUB GetHerbData (cropnum%, aptime%, herbfile$, herb AS hfile, 
herbtemp() AS hfile) 

'DECLARE SUB UserDropTrts2 (aptime%, trtmax%, herb() AS hfile, cropnum%, 
crop() AS cropfile) 
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DECLARE SUB MakeKillArray (kmax%, aptime%, h%, wnum%, eff() AS kfile, 
herb() AS hfile, k%()) 

DECLARE SUB MakeHerbArray (cropnum%, aptime%, herbfile$, herb AS hfile, 
kmax%, wnum%, eff() AS kfile, crop() AS cropfile, cppi() AS hfile, 
cpre() AS hfile, cpost() AS hfile, sppi() AS hfile, spre() AS hfile, 
spost() AS hfile, klc%(), k2c%(), k3c%(), kls%(), k2s%(), k3s%()) 

DECLARE SUB GetWeedCompData (compfile$, comptemp() AS cfile) 
DECLARE SUB GetMachData (machfile$, machtemp() AS mfile) 
'DECLARE SUB ChooseMachinery (machnum%, machtemp() AS mfile, mt%, mp%, 

ms%, me%, mr%, mf%) 
DECLARE SUB AutoChooseMach (mt%, mp%, ms%, me%, mr%, mf%) 
DECLARE SUB AutoWeedSeeds (nfields%, wnum%, lamseeds%, sOwf()) 
'DECLARE SUB UserWeedSeeds (nfields%, wnum%, weedtemp() AS wfile) 
'DECLARE SUB GetSeedData (nfields%, wnum%, seedfile$, sOwf!()) 
DECLARE SUB ScreenNotice () 
DECLARE SUB PrintinitWeedSeeds (nfields%, wnum%, state%, yr%, weedparm() 

AS wfile, sOwf()) 
DECLARE SUB InitializeScenario (wnum%, sumst() AS stype, farmstnr!, 

farmstsd!, cswst!(), ccwst!(), cssst!(), ccsst!(), urpOOOl#, uraOOOl#, 
uraOOl#) 

DECLARE SUB InitializeState (wnum%, farmnr, sum() AS stype, csweed(), 
ccweed(), csseed(), ccseed()) 

DECLARE SUB GetYear (yearfile$, year AS yfile, flddays!(), rain!(), 
crop() AS cropfile, germtot!(), randnum(), newscen%) 

DECLARE SUB GetStateErrors (nfields%, wnum%, newscen%, epsfile$, epsilon 
AS efile, epswO!(), epswl!(), epsw2!(), epsseed!(), epsyld!(), 
epscgrow(), epswgrow()) 

DECLARE SUB GetStateBetaErrors (nfields%, wnum%, newscen%, betafile$, 
betaeps AS bfile, betacgro!(), betawgro!(), betawO(), betawl(), 
betaw2()) 

DECLARE SUB InitializeYear (nfields%, wnum%, fld() AS ftype, crop() AS 
cropfile, sw!(), sOwf!(), diskflag%(), infeas%(), endflag%(), wk%, t%, 
yr%, grmlflag%(), load(), OTsum, maxCwk%, dropostc%(), droposts%(), 
h3c%, h3s%) 

DECLARE SUB CalibrateGerm (nfields%, wnum%, wf() AS wfile, sOwf!(), 
wOgerm!(), wlgerm!(), w2germ!(), epswO(), epswl(), epsw2(), germtot(), 
betawO(), betawl(), betaw2()) 

DECLARE SUB ChooseCrop (f%, fld() AS ftype, maxCwk%, wk%) 
DECLARE SUB WSWeedGerm (wnum%, weed() AS wfile, sOw(), slw(), s2w(), 

dlw(), wO(), wl()) 
DECLARE SUB WSPreTrt (wnum%, hl%, h2%, mf%, ms%, kl%(), k2%(), dlw(), 

ywf, ppiherb() AS hfile, preherb() AS hfile, mach() AS mfile, 
fldSize%, plcost, hl2%, d2w(), precost(), precode%(), preAvRat()) 

DECLARE SUB WSPostTrt (cropnum%, wnum%, hl2%, h3%, ywf!, rot%, k3%(), 
d2w!(), sOw!(), s2w!(), weedparm() AS wfile, crop() AS cropfile, 
precode%(), preAvRat!(), postherb() AS hfile, compmax%, compparm() AS 
cfile, mach() AS mfile, ms%, mr%, fldSize%, d3w(), d3wij(), s3w(), 
yldpost(), postcost(), w2()) 
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DECLARE SUB WSSeedBank (wnum%, hl2%, h3%, d3w!(), s3w!(), weed() AS 
wfile, sOwl(), w2()) 

DECLARE SUB WSPostRev (hl2%, h3%, pl, yldpost!(), postcost!(), 
precost!(), t%, r!, fldSize%, vc, netpost()) 

DECLARE SUB WSTopRevMyopic (hl2%, h3%, netpost(), theta, kimax%, kjmax%, 
topnet) 

DECLARE SUB WSNextYear (f%, wnum%, cropnum%, compmax%, hl%, h2%, hl2%, 
h3%, t%, r, mf%, ms%, mr%, mp%, kl%(), k2%(), k3%(), fld() AS ftype, 
weed() AS wfile, mach() AS mfile, comp() AS cfile, crop() AS cropfile, 
ppiherb() AS hfile, preherb() AS hfile, postherb() AS hfile, sOw(), 
sOwl(), slw(), s2w(), s3w(), dlw(), d2w(), d3w(), yldpost(), 
precost(), netpostO(), netpostl(), plcost, theta, netpost(), 
postcost(), precode%(), preAvRat(), hl2o%, h3o%) 

DECLARE SUB WSTopRev (hl2o%, h3o%, hl2%, h3%, theta, netpostl(), kimax%, 
kjmax%, topnet) 

DECLARE SUB WEEDSIM (f%, wnum%, hl%, h2%, h3%, mf%, ms%, mr%, mp%, t%, 
r, sOw(), fld() AS ftype, cropnum%, crop() AS cropfile, weed() AS 
wfile, kl%(), k2%(), k3%(), ppiherb() AS hfile, preherb() AS hfile, 
postherb() AS hfile, mach() AS mfile, compmax%, comp() AS cfile, 
theta, nyears%, netpost(), hln%, h2n%, h3n%, kln%(), k2n%(), k3n%(), 
ppinext() AS hfile, prenext() AS hfile, postnext() AS hfile, decrule%) 

DECLARE SUB PrintRecoms (f%, cropname$, fld() AS ftype, topnet!) 
DECLARE SUB PPITrt (f%, nfields%, wk%, fld() AS ftype, newcost!(), 

newload(), hrs!, maxhrs, machine() AS mfile, ms%, mf%, preflag%) 
DECLARE SUB FieldWeedGerm (f%, nfields%, wnum%, swlost(), grmlflag%(), 

wOgerm(), wlgerm()) 
DECLARE SUB DiskField (f%, mf%, diskflag%(), fld() AS ftype, mach() AS 

mfile, newcost(), hrs!) 
DECLARE SUB PlantCrop (f%, wk%, fld() AS ftype, maxCwk%, minSwk%, 

newcost(), hrs, maxhrs, machine() AS mfile, mp%, crop() AS cropfile, 
sw(), weed() AS wfile, wnum%) 

DECLARE SUB PreTrt (f%, nfields%, wk%, fld() AS ftype, newcost!(), 
newload(), hrs!, maxhrs!, machine() AS mfile, ms%, preflag%) 

DECLARE SUB PRESurv (f%, nfields%, wnum%, fld() AS ftype, kmax%, eff() 
AS kfile, wlgerm!(), d2wf!(), rain!()) 

DECLARE SUB CropGrowth (f%, wk%, crop() AS cropfile, fld() AS ftype, 
epscgrow(), betacgro()) 

DECLARE SUB WeedGrowth (f%, wk%, wnum%, weed() AS wfile, fld() AS ftype, 
weedHt!(), epswgrow(), betawgro()) 

'DECLARE SUB RotaryHoe (f%, wnum%, wk%, fld() AS ftype, kmax%, eff() AS 
kfile, weedHt!(), newcost!(), newload!(), hrs!, maxhrs!, mach() AS 
mfile, mr%, infeas%(), weed() AS wfile, rotflagl%()) 

DECLARE SUB PostTrt (f%, nfields%, wnum%, wk%, fld() AS ftype, kmax%, 
eff() AS kfile, weedHt(), newcost(), newload(), hrs, maxhrs, machine() 
AS mfile, ms%, mr%, infeas%(), endflag%(), d2wf(), d3wf(), sw(), 
swlost(), w2germ()) 

'DECLARE SUB ModifyHerbArray (h3%, f%, fld() AS ftype, post() AS hfile, 
kmax%, wnum%, eff() AS kfile, crop() AS cropfile, k3%(), dropcode%) 
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DECLARE SUB PostWEEDSIM (f%, wnum%, h3% , mf%, ms%, mr%, mp%, t%, r , 
sOwf(), sw(), d2wf(), fld() AS ftype , cropnum%, crop() AS cropfi l e, 
weed() AS wfile, k3%(), postherb() AS hfile, mach() AS mfile, 
compmax%, comp() AS cfile, costnow, theta, nyears%, netpost(), h l n%, 
h2n%, h3n%, kln%(), k2n%(), k3n%(), ppinext() AS hfile, prenext( ) AS 
hfile, postnext() AS hfile, decrule%, dropcode%, dropost%()) 

DECLARE SUB WSPostReviseTrt (cropnum%, wnum%, hl%, h3%, ywf, rot%, 
k3%(), d2w(), sOw(), s2w(), weedparm() AS wfile, crop() AS cropfi le, 
precode%(), preAvRat(), postherb() AS hfile, compmax%, compparm( ) AS 
cfile, sprayCst, fldSize%, d3w(), d3wij(), s3w(), yldpost(), 
postcost(), w2(), dropcode%, dropost%()) 

'DECLARE SUB PrintResults (yr%, nfields%, wnum% , weed() AS wfile, sw!(), 
netrev!(), load() , yldpct(), OTsum) 

DECLARE SUB SummaryAnnual (wnum%, nfields%, fld() AS ftype, crop() AS 
cropfile, netrev(), load(), yldpct(), d3wf(), sOwf(), csweed(), 
ccweed(), csseed(), ccseed(), farmnr , sum() AS stype) 

DECLARE SUB SummaryState (wnum%, nyears%, r, sum() AS stype, farmnr , 
csweed(), ccweed(), csseed(), ccseed(), sumst() AS stype, farmstnr , 
farmstsd, cswst(), ccwst(), cssst(), ccsst(), urpOOOl#, uraOOOl# , 
uraOOl#, stateout$) 

DECLARE SUB SummaryScenario (scenout$, decrule%, theta!, lamseeds%, 
wnum%, nstates%, sumst() AS stype, farmstnr!, farmstsd!, cswst!() , 
ccwst!(), cssst!(), ccsst!(), urpOOOl#, uraOOOl#, uraOOl#) 

CONST false% = 0, true% = NOT false% 
' ON ERROR GOTO Chkerror 

'************************************ 
'* Array Parameters & Definitions * 
'************************************ 
, ************* 
' * Constants * 
, ************* 

wrnax% = 3: 'Maximum number of weed species in model 
hlmax% = 7: 'Maximum number of PPI weed treatments in model 
h2max% = 7 : 'Maximum number of PRE weed treatments in model 
h3max% = 8: 'Maximum number of POST weed treatments in model 
hl2max% = hlmax% + h2max% - 1 
hmax% = hl2max% + h3max% * 2 
killmax% = hmax% * wrnax% 
weeksmax% = 11: · 'Number of weeks starting 4/19 
statemax% = 20: 'Maximum number of states of nature 
fldsmax% = 9 
machmax% = 12 
cropmax% 
compmax% 

2 
cropmax% * wrnax% 



I ********************* 
' * Array Definitions * 
I ********************* 
DIM cropdata AS cropfile 
DIM crop(cropmax%) AS cropfile 
DIM herbarray(hmax%) AS hfile 
DIM cppi(hlmax%) AS hfile 
DIM cpre(h2max%) AS hfile 
DIM cpost(h3max%) AS hfile 
DIM sppi(hlmax%) AS hfile 
DIM spre(h2max%) AS hfile 
DIM spost(h3max%) AS hfile 
DIM herb AS hf ile 
DIM weedfile AS wfile 
DIM weedparm(wmax%) AS wfile 
DIM compparm(compmax%) AS cfile 
DIM killparm(killmax%) AS kfile 
DIM efftemp(killmax%) AS kfile 
DIM ef f AS kf ile 
DIM machine(machmax%) AS mfile 
DIM fld(fldsmax%) AS ftype 
DIM epsilon AS efile 
DIM year AS yf ile 
DIM sum(3) AS stype 
DIM sumst(3) AS stype 
DIM betaeps AS bfile 

' Arrays for GetErrorTerms 
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REDIM epswO(fldsmax%, wmax%), epswl(fldsmax%, wmax%), epsw2(fldsmax%, 
wmax%) 

REDIM epsseed(flsmax%, wmax%), epsyld(fldsmax%, cropmax%) 

' Arrays for WEEDSIM 
REDIM netpost(hl2max%, h3max%) 

' Arrays for MakeHerbArray 
REDIM klc%(wmax%, hlmax%), k2c%(wmax%, h2max%), k3c%(wmax%, h3max%) 
REDIM kls%(wmax%, hlmax%), k2s%(wmax%, h2max%), k3s%(wmax%, h3max%) 

'***************** 
'* Global values * 
'***************** 

, ****************** 
' * Screen setting * 
, ****************** 

SCREEN 0 
COLOR 14, 1, 8 
CLS 



'CALL ScreenHeader2 

I ************* 
' * Constants * 
I ************* 
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CALL AutoDataFiles(cropparm$, parmfile$, compfile$, herbfile$, 
killfile$, fdayfile$, machfile$, seedfile$, epsfile$, yearfile$, 
betafile$) 

CALL GetCropParm(cropparm$, cropdata, crop()) 
' CALL UserParameters 

CALL AutoParameters(fld(), cropmax%, crop(), nyears%, r, hrsday, 
tractors%, nfields%, theta, maxCwk%, minSwk%, decrule%, nweeks%, 
nstates%) 

ranyears% = nstates% * nyears% 
dropcode% = -1 
CALL GetWeedParm3(wnum%, parmfile$, weedfile, weedparm()) 
CALL GetWeedCompData(compfile$, compparm()) 
CALL GetKillData2(killfile$, eff, efftemp(), killparm(), kmax%) 
FOR cropnum% = 1 TO cnum% 

FOR aptime% = 1 TO 3 
CALL MakeHerbArray(cropnum%, aptime%, herbfile$, herb, kmax%, 

wnum%, killparm(), crop(), cppi(), cpre(), cpost(), sppi(), 
spre(), spost(), klc%(), k2c%(), k3c%(), kls%(), k2s%(), k3s% ( )) 

NEXT aptime% 
NEXT cropnum% 
CALL GetMachData(machfile$, machine()) 

' CALL ChooseMachinery(machnum%, machine(),mt%, mp%, ms%, me%, mr%, mf%) 
CALL AutoChooseMach(mt%, mp%, ms%, me%, mr%, mf%) 
IF quit% = true% THEN END 

' Allocate dynamic arrays: 

' Arrays for GetStateErrors 
REDIM epswO(nfields%, wnum%), epswl(nfields%, wnum%), epsw2(nfields%, 

wnum%) 
REDIM epsseed(nfields%, wnum%), epsyld(nfields%, wnum%), 

epscgrow(cnum%) 
REDIM epswgrow(wnum%) 

' Arrays for GetBetaStateErrors 
REDIM betacgro(cnum%), betawgro(wnum%), betawO(nfields%, wnum%, 3) 
REDIM betawl(nfields%, wnum%, 3), betaw2(nfields%, wnum%, 2) 

' Arrays for GetYear 
REDIM flddays(weeksmax%), rain(weeksmax%), germtot(wmax%), 

randnum(ranyears%) 
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' Arrays for CalibrateGerm 
REDIM w0germ(nfields%, wnum%), wlgerm(nfields%, wnum%), 

w2germ(nfields%, wnum%) 

' Arrays for FieldWeedGerm 
REDIM s0wf(fldsmax%, wnum%), swlost(nfields%, wnum%) 
REDIM grmlflag%(nfields%) 

' Arrays for DiskField .. 
REDIM diskflag%(nfields%) 

' Arrays for WeedGrowth 
REDIM weed.Ht(nfields%, wnum%) 

' Arrays for PRETrt 
REDIM d2wf(nfields%, wnum%) 

' Arrays for POSTTrt 
REDIM infeas%(nfields%), d3wf(nfields%, wnum%) 

' Arrays for PostWEEDSIM 
REDIM dropostc%(h3c%), droposts%(h3s%) 

' Arrays for Main program 
REDIM cost(nfields%), newcost(nfields%), maxhrs(weeksmax%), 

sw(nfields%, wnum%) 
REDIM load(nfields%), newload(nfields%), yldpct(nfields%), 

endflag%(nfields%) 
REDIM postrec%(nfields%), cyield(nfields%), netrev(nfields%) 

'Arrays for Summaries 
REDIM csweed(wnum%), ccweed(wnum%), csseed(wnum%), ccseed(wnum%) 
REDIM cswst(wnum%), ccwst(wnum%), cssst(wnum%), ccsst(wnum%) 

'********************* 
'* Execution Section * 
'********************* 
'timeO = TIMER 
INPUT "Name of state data output file: ", stateout$ 
INPUT "Name of summary statistics output file: ", scenout$ 
FOR ry% = 1 TO ranyears% 

randnum(ry%) = RND 
NEXT ry% 
'CALL UserWeedSeeds(nfields%, wnum%,weedfile()) 
'CALL GetSeedData(nfields%, wnum%, seedfile$, sOwf()) 



'****************** 
'* Scenarios loop * 
'****************** 
FOR lamseeds% = 25 TO 250 STEP 225 
FOR decrule% = 1 TO 2 
FOR gam% = 0 TO 1 
IF decrule% = 2 THEN 

gam% = 1 
theta = 0 
ELSE 
theta 

END IF 
-.OS* gam% 
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CALL InitializeScenario(wnum%, sumst(), farmstnr, farmstsd, cswst(), 
ccwst(), cssst(), ccsst(), urpOOOl#, uraOOOl#, uraOOl#) 

'************************ 
'* State of nature loop * 
'************************ 
newscen% = true% 
FOR state% = 1 TO nstates% 

CALL AutoWeedSeeds(nfields%, wnum%, lamseeds%, sOwf()) 
CALL InitializeState(wnum%, farmnr, sum(), csweed(), ccweed(), 

csseed(), ccseed()) 
I ************************** 
' * Yearly activities loop * 
I ************************** 

FOR yr% = 1 TO nyears% 
CALL GetYear(yearfile$, year, flddays(), rain(), crop(), germtot ( ), 

randnum(), newscen%) 
CALL GetStateErrors(nfields%, wnum%, newscen%, epsfile$, epsilon , 

epswO(), epswl(), epsw2(), epsseed(), epsyld(), epscgrow(), 
epswgrow()) 

CALL GetStateBetaErrors(nfields%, wnum%, newscen%, betafile$, 
betaeps, betacgro(), betawgro(), betawO(), betawl(), betaw2()) 

CALL InitializeYear(nfields%, wnum%, fld(), crop(), sw(), sOwf() , 
diskflag%(), infeas%(), endflag%(), wk%, t%, yr%, grmlflag%(), 
load(), OTsum, maxCwk%, dropostc%(), droposts%(), h3c%, h3s%) 

'CALL PrintinitWeedSeeds(nfields%, wnum%, state%, yr%, weedparm() , 
sOwf ()) 

CALL CalibrateGerm(nfields%, wnum%, weedparm(), sOwf(), wOgerm(), 
wlgerm(), w2germ(), epswO(), epswl(), epsw2(), germtot(), 
betawO(), betawl(), betaw2()) 

'PRINT 
'PRINT "Pre-season recommendations are:" 
'PRINT 

-------------------------------------------------------------------- --" 
'PRINT "Field Crop 
E(NR)" 

'PRINT 

Rotation PRE/PP! Trt. Time POST Trt. 

"------------------------------ -------------------------------------- --" 



- - ---~ 
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FOR f% = 1 TO nf ields% 
cropnum% = fld(f%).cropid 
SELECT CASE cropnum% 

CASE 1 
IF fld(f%).rotation = 1 THEN 

CALL WEEDSIM(f%, wnum%, hlc%, h2c%, h3c%, mf%, ms%, mr%, 
mp%, t%, r, sOwf(), fld(), cropnum%, crop(), weedparm(), 
klc%(), k2c%(), k3c%(), cppi(), cpre(), cpost(), 
machine(), compmax%, compparm(), theta, nyears%, 
netpost(), hls%, h2s%, h3s%, kls%(), k2s%(), k3s%(), 
sppi(), spre(), spost(), decrule%) 

ELSE 
CALL WEEDSIM(f%, wnum%, hlc%, h2c%, h3c%, mf%, ms%, mr%, 

mp%, t%, r, sOwf(), fld(), cropnum%, crop(), weedparm(), 
klc%(), k2c%(), k3c%(), cppi(), cpre(), cpost(), 
machine(), compmax%, compparm(), theta, nyears%, 
netpost(), hlc%, h2c%, h3c%, klc%(), k2c%(), k3c%(), 
cppi(), cpre(), cpost(), decrule%) 

END IF 
CASE 2 

CALL WEEDSIM(f%, wnum%, hls%, h2s%, h3s%, mf%, ms%, mr%, mp%, 
t%, r, sOwf(), fld(), cropnum%, crop(), weedparm(), kls%(), 
k2s%(), k3s%(), sppi(), spre(), spost(), machine(), 
compmax%, compparm(), theta, nyears%, netpost(), hlc%, h2c%, 
h3c%, klc%(), k2c%(), k3c%(), cppi(), cpre(), cpost(), 
decrule%) 

END SELECT 
'CALL PrintRecoms(f%, cropname$, fld(), topnet) 
postrec%(f%) = fld(f%).postcode 

NEXT f % 
'PRINT 

"----------------------------------------------------------------------" 
'PRINT "Press any key to continue." 
'resume$ = INPUT$(1) 
'els 
************************** 
* Weekly activities loop * 
************************** 
FOR wk% = 1 TO nweeks% 

hrs = overtime 
overtime = 0 
maxhrs(wk%) = hrsday * tractors% * flddays(wk%) 
FOR f% = 1 TO nf ields% 

newcost(f%) = 0 
newload(f%) = 0 
FOR w% = 1 TO wnum% 

swlost(f%, w%) = 0 
NEXT w% 

NEXT f % 

---- - ~ ... -- - ---- - ~ - - -- - - --

I 
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FOR f% = 1 TO nf ields% 
IF hrs >= maxhrs(wk%) THEN 

overtime = hrs - maxhrs(wk%) 
EXIT FOR 

END IF 
preflag% = false% 
IF (grmlflag%(f%) = false%) THEN CALL FieldWeedGerm(f%, 

nfields%, wnum% , swlost(), grmlflag%(), wOgerm(), wlgerm( )) 
IF (fld(f%).preApTim - 1 AND fld(f%).ppiweek = 0) AND hrs< 

maxhrs(wk%) THEN CALL PPITrt(f%, nfields%, wk%, fld(), 
newcost(), newload(), hrs, maxhrs(wk%), machine(), ms%, mf% , 
preflag%) 

IF (fld(f%).preApTim <> 1 AND diskflag%(f%) =false%) AND hrs < 
maxhrs(wk%) THEN CALL DiskField(f%, mf%, diskflag%(), fld () , 
machine(), newcost(), hrs) 

IF (fld(f%).plweek = 0 AND hrs< maxhrs(wk%)) AND 
(diskflag%(f%) =true% OR fld(f%).ppiweek > 0) THEN CALL 
PlantCrop(f%, wk%, fld(), maxCwk%, minSwk%, newcost(), hrs, 
maxhrs(wk%), machine(), mp%, crop(), sw(), weedparm(), 
wnum%) 

IF (fld(f%).preApTim = 2 AND fld(f%).preweek = 0) AND hrs< 
maxhrs(wk%) THEN CALL PreTrt(f%, nfields%, wk%, fld(), 
newcost(), newload(), hrs, maxhrs(wk%), machine(), ms%, 
preflag%) 

IF (preflag% = true%) THEN CALL PRESurv(f%, nfields%, wnum%, 
fld(), kmax%, killparm(), wlgerm(), d2wf(), rain()) 

NEXT f % 

FOR f% = 1 TO nf ields% 
IF hrs >= maxhrs(wk%) THEN 

overtime = hrs - maxhrs(wk%) 
EXIT FOR 

END IF 
IF fld(f%).postweek = 0 THEN 

CALL CropGrowth(f%, wk%, crop(), fld(), epscgrow(), 
betacgro()) 

CALL WeedGrowth(f%, wk%, wnum%, weedparm(), fld(), weedHt() , 
epswgrow(), betawgro()) 

cropnum% = fld(f%).cropid 
costnow = fld(f%).cost + newcost(f%) 

RevisedPost: 
SELECT CASE cropnum% 

CASE 1 
'CALL ModifyHerbArray(h3c%, f%, fld(), cpost() , kmax%, 

wnum%, killparm(), crop(), k3c%(), dropcode%) 
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IF fld(f%).rotation = 1 THEN 
CALL PostWEEDSIM(f%, wnum%, h3c%, mf%, ms% , mr%, mp%, t%, 

r, sOwf(), sw(), d2wf(), fld(), cropnum%, crop(), 
weedparm(), k3c%(), cpost(), machine(), compmax%, 
compparm(), costnow, theta , nyears%, netpost(), hls %, 
h2s%, h3s%, kls%(), k2s%(), k3s%(), sppi() , spre() , 
spost(), decrule%, dropcode%, dropostc%()) 

ELSE 
CALL PostWEEDSIM(f%, wnum%, h3c%, mf%, ms%, mr%, mp%, t% , 

r, sOwf(), sw(), d2wf(), fld(), cropnum%, crop(), 
weedparm(), k3c%(), cpost(), machine(), compmax%, 
compparm(), costnow, theta, nyears%, netpost(), hlc %1 

h2c%, h3c%, klc%(), k2c%(), k3c%(), cppi(), cpre() , 
cpost(), decrule%, dropcode%, dropostc%()) 

END IF 
CASE 2 

'CALL ModifyHerbArray(h3s%, f%, fld(), spost(), kmax% , 
wnum%, killparm(), crop(), k3s%(), dropcode%) 

CALL PostWEEDSIM(f%, wnum%, h3s%, mf%, ms%, mr%, mp%, t %, 
r, sOwf(), sw(), d2wf(), fld(), cropnum%, crop(), 
weedparm(), k3s%(), spost(), machine(), compmax%, 
compparm(), costnow, theta, nyears%, netpost(), hlc%, 
h2c%, h3c%, klc%(), k2c%(), k3c%(), cppi(), cpre() , 
cpost(), decrule%, dropcode%, droposts%()) 

END SELECT 
infeas%(f%) = false% 
IF (fld(f%).postweek = 0) AND hrs< maxhrs(wk%) THEN CALL 

PostTrt(f%, nfields%, wnwn%, wk%, fld(), kmax%, 
killparm(), weedHt(), newcost(), newload(), hrs, 
maxhrs(wk%), machine(), ms%, mr%, infeas%(), endflag%() , 
d2wf(), d3wf(), sw(), swlost(), w2germ()) 

IF infeas%(f%) = true% THEN 
dropcode% = fld(f%) . postcode 
GOTO RevisedPost: 

END IF 
END IF 

NEXT f % 

******************************************* 
* Weekly accumulation & update of states * 
******************************************* 
endyear% = true% 
FOR f% = 1 TO nf ields% 

IF endflag%(f%) = false% THEN endyear% = false% 
fld(f%).cost = fld(f%).cost + newcost(f%) 
load(f%) = load(f%) + newload(f%) 
FOR w% = 1 TO wnum% 

sw(f%, w%) = sw(f%, w%) - swlost(f%, w%) 
NEXT w% 
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NEXT f% 
'OTsum = OTsum + overtime 
IF endyear% = true% THEN EXIT FOR 

NEXT wk% 

******************************************** 
* Yearly accumulation and update of states * 
******************************************** 
FOR f% = 1 TO nf ields% 

FOR w% = 1 TO wnum% 
sw(f%, w%) = sw(f%, w%) - weedparm(w%).s3mortpn * (1 -

germtot(w%)) * s0wf(f%, w%) 
IF sw(f%, w%) < 0 THEN sw(f%, w%) = 0 
s0wf(f%, w%) = sw(f%, w%) + weedparm(w%).wlpropag * .2 * 

(d3wf(f%, w%) - w2germ(f%, w%)) + weedparm(w%).w2propag * 
w2germ(f%, w%) + epsseed(f%, w%) 

IF s0wf(f%, w%) < 0 THEN s0wf(f%, w%) = 0 
d3wff(w%) = d3wf(f%, w%) 

NEXT w% 
maxyld = crop(fld(f%).cropid).maxyld 
fld(f%).ywf = maxyld * (1 - ypen(fld(f%).cropid, maxyld, 

fld(f%).plweek)) 
cyield(f%) = yield2(wnum%, fld(f%).ywf, fld(f%).cropid, compmax%, 

compparm(), crop(), d3wff()) + epsyld(f%, fld(f%).cropid) 
IF fld(f%).postcode = 10 AND fld(f%).cropid = 1 THEN cyield(f%) = 

cyield(f%) * .985 
IF cyield(f%) < 0 THEN cyield(f%) = 0 
yldpct(f%) = 100 * (cyield(f%) / maxyld) 
netrev(f%) = ((crop(fld(f%).cropid).price * cyield(f%) -

crop(fld(f%).cropid).vc) * fld(f%).fsize - fld(f%).cost) / (1 + 
r) A t% 

fld(f%).prevCrop = fld(f%).cropid 

NEXT f % 
'CALL PrintResults(yr%, nfields%, wnum%, weedparm(), sOwf(), 

netrev(), load(), yldpct(), OTsum) 
CALL SummaryAnnual(wnum%, nfields%, fld(), crop(), netrev(), load(), 

yldpct(), d3wf(), sOwf(), csweed(), ccweed(), csseed(), ccseed(), 
farmnr, sum()) 

NEXT yr% 
CALL SummaryState(wnum%, nyears%, r, sum(), farmnr, csweed(), 

ccweed(), csseed(), ccseed(), sumst(), farmstnr, farmstsd, cswst(), 
ccwst(), cssst(), ccsst(), urpOOOl#, uraOOOl#, uraOOl#, stateout$) 

NEXT state% 
CALL SummaryScenario(scenout$, decrule%, theta, lamseeds%, wnum%, 

nstates%, sumst(), farmstnr, farmstsd, cswst(), ccwst(), cssst(), 
ccsst(), urpOOOl#, uraOOOl#, uraOOl#) 



NEXT gam% 
NEXT decrule% 
NEXT lamseeds% 

'timel = TIMER 
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'minutes% = INT((timel - timeO) / 60) 
PRINT 
PRINT 
'PRINT "Execution time: "; 
'PRINT minutes%; 
'PRINT" minutes." 
endj ob$ = TIME$ 
PRINT "Simulation complete at " 
PRINT endj ob$ 
SCREEN 0 
COLOR 7, 0, 0 
END 

Chkerror : 
ON ERROR GOTO 0 

REM $STATIC 
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SUB AutoChooseMach (mt%, mp%, ms%, me%, mr%, mf%) 
'Last update: 04-27-91 

'*********************************************************************** 
'* AutoChooseMach * 
'* Pre-sets machinery selections. * 
'* * 
'* Parameters passed to (and returned from) AutoChooseMach are: * 
'* mt% Tractor machinery code selected * 
'* 1=100 hp * 
'* 2=120 hp * 
'* 3=160 hp * 
'* mp% Planter machinery code selected * 
'* 4=6 row, 30" planter * 
'* 5=8 row, 30" planter * 
'* ms% Sprayer machinery code selected * 
'* 6=30 foot * 
'* me% Cultivator machinery code selected * 
'* 7=6 row, 30" cultivator * 
'* 8=8 row, 30" cultivator * 
'* mr% Rotary hoe machinery code selected * 
'* 9~16 foot rotary hoe * 
'* mf% Field cultivator machinery code selec te* 
'* 10~18 foot field cultivator * 
'* 11=28 foot field cultivator * 
'* 12-30 foot springtooth harrow * 
'*********************************************************************** 

mt% = 1 
mp% = 5 
ms% = 6 
me% = 8 
mr% = 9 
mf% = 11 
END SUB 
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SUB AutoDataFiles (cropparm$, parmfile$, compfile$, herbfile$, 
killfile$, fdayfile$, machfile$, seedfile$, epsfile$, yearfile$, 
betafile$) 

Last update: 06-10-91 
'*********************************************************************** 
'* AutoDataFiles * 
'* Subprogram AutoDataFiles supplies the names of text files * 
'* containing data used by the main module. * 
'* * 
'* Arguments returned by AutoDataFiles are : * 
'* cropparm$ String variable with name of crop parameter * 
'* file * 
'* parmfile$ 
'* 
'* comp file$ 
'* 
'* herb file$ 
'* 
'* killfile$ 
'* 
'* f dayf ile$ 
'* 
'* machfile$ 
'* 
'* epsfile$ 
'* 
'* yearf ile$ 
'* betafile$ 
'* 

String variable with name of weed parameter * 
file * 
String variable with name of weed-crop com- * 
petition parameter file * 
String variable with name of weed treatment * 
file * 
String variable with name of weed treatment * 
efficacy file * 
String variable with name of field days * 
datafile (omitted for stochastic sim.) * 
String variable with name of machinery * 
parameter file * 
String variable with name of additive error s * 
file * 
String variable with name of year data fil e * 
String variable with name of coefficient * 
errors file * 

'*********************************************************************** 

cropparm$ = "crop2.dat" 
parmfile$ = "weedS.dat" 
compfile$ = "comp2 . dat" 
'herbfile$ = "herb.dat" 
INPUT "Please type name of treatment file: ", herbfile$ 
killfile$ = "kill. dat" 
'fdayfile$ = "fdayl990.dat" 
machfile$ = "machine2.dat" 
'seedfile$ = "seedl990.dat" 
INPUT "Name of state-of-nature additive errors input file: " , epsfile$ 
INPUT "Name of state-of-nature random coefficients input file: " 

betafile$ · 
INPUT "Name of yearly data input file: ", yearfile$ 
'betafile$ = "d:betarv.rnd" 
'epsfile$ = "d:statl080.rnd" 
'yearfile$ = "d:inpt7490.rnd" 
END SUB 
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SUB AutoParameters (fld() AS ftype, cropmax%, crop() AS cropfile, 
nyears%, r, hrsday, tractors%, nfields%, theta, maxCwk%, minSwk%, 
decrule%, nweeks%, nstates%) 

Last update: 05/02/91 
'*********************************************************************** 
'* AutoParameters * 
'* Subprogram UserParameters automatically specifies typical agronomic * 
'* and economic parameters . It also prints a summary to the screen. * 
'* It is used primarily for testing the model and making repeated runs.* 
'* * 
'* Parameters passed to AutoParameters are: * 
'* fld() Record array of field characteristics * 
'* crop() Record array of crop parameters * 
'* cropmax% Total number of crops in model * 
'* Default parameter values returned are: * 
'* crop Id 
'* nweeks% 
'* nyears% 
'* nstates% 
'* crop(c%).price 
'* crop(c%).maxyld 
'* 
'* crop(c%) . vc 
'* r 
'* hrs day 
'* tractors% 
'* nfields% 
'* theta 
'* 
'* 
'* fld(f%). fsize 
'* fld(f%).prevCrop 
'* fld(f%).rotation 
'* 
'* maxCwk% 
'* minSwk% 
'* decrule% 
'* 
'* 
'* 
'* 

Crop identification code: l=corn, 2=soy* 
Number of weeks in weed control season * 
Number of years to model * 
Number of random states of nature * 
Expected price of crop c% 
Maximum expected crop yield with no 
weeds and optimal planting date 
Variable cost/acre apart from weed 
Discount rate on future income 
Hours per day worked per tractor 
Number of tractors 
Number of fields in farm 
Proportion by which weed treatment 
threshold net revenue to exceed no 
control net revenue level. 
Field size of field f% 

* 
* 
* 

tr t .* 

* 
* 
* 
* 
* 
* 
* 
* 

Previous crop in field f% * 
Pref erred crop rotation * 

1 = Corn-soy, 2 = Continuous corn * 
Last week for planting corn * 
Earliest week for planting soybean * 
Decision rule for weed control infor - * 
mat ion * 

1 = Current year info. only * 
2 = Current year & expectations of * 

next * 
'*********************************************************************** 
nyears% = 6 
nweeks% = 11 
nstates% = 20 
r = .04 
hrsday = 10 
tractors% = 2 
f size% - 80 
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PRINT "Total farm acreage (divisible by "; 
PRINT USING "##"; fsize%; 
INPUT "-acre fields): ", acreage% 
nfields% = acreage% \ fsize% 
'INPUT "How many years would you like to model? ", nyears% 
'PRINT 
'PRINT "The WFARM base case includes two rotations: continuous corn and 

a corn-soy" 
'PRINT "rotation. To include both in the analysis, choose a multiple of 

3 fields." 
'PRINT 
'INPUT "Number of 40-acre fields: ". nfields% 
'PRINT 
'PRINT "The weed control decision rule used depends upon the time 

horizon chosen:" 
'PRINT " 'l' for a 1-year (myopic) horizon, or" 
'PRINT " '2' for a 2-year horizon" 
'INPUT "Please type your choice: ". decrule% 
'CLS 
'INPUT "Proportion (theta) by which N.R. should exceed no treatment 

N . R. : " , the ta 
REDIM fld(nfields%) AS ftype 
maxCwk% = 6 
minSwk% = 3 
FOR c% = 1 TO cropmax% 

SELECT CASE c% 
CASE 1 

crop(c%).price = 2.15 
crop(c%).expMaxY = 108 
crop(c%).vc - 126.15 

CASE 2 
crop(c%).price = 5.65 
crop(c%).expMaxY = 39 
crop(c%).vc = 62.7 

END SELECT 
NEXT c% 
FOR f% = 1 TO nf ields% 

fld(f%).fsize = fsize% 
rotat% = f% MOD 3 
SELECT CASE rotat% 

CASE 1, 2 
fld(f%).rotation = 1 

CASE 0 
fld(f%).rotation = 2 

END SELECT 
rot%= fld(f%).rotation 
SELECT CASE rot% 

CASE 1 
fld(f%).prevCrop 1 + (rotat% MOD 2) 

-----~-~------~-~- ----==-~~-=----""--------,._- ,--! 



CASE 2 
fld(f%).prevCrop = 1 

END SELECT 
NEXT f% 
'PRINT 
'PRINT 

200 

'PRINT "This model examines the economics of weed control in two 
rotations:" 

'PRINT " 
'PRINT II 

'PRINT 
'FOR c% = 1 TO cropmax% 

1. Corn-soybean rotation." 
2 . Continuous corn" 

PRINT "Expected price of"; 
PRINT RTRIM$(crop(c%).cname); 
PRINT" is:"; TAB(Sl); 
PRINT USING"$$###.##"; crop(c%).price; 
PRINT" /bushel." 

'NEXT c% 
'FOR c% = 1 TO cropmax% 

PRINT "Expected maximum weed-free yield of "; 
PRINT RTRIM$(crop(c%).cname); 
PRINT " is: "; TAB(56); 
PRINT USING"###"; crop(c%).maxyld; 
PRINT " bu/acre . " 

'NEXT c% 
'FOR c% = 1 TO cropmax% 

PRINT "Average variable crop costs for "; 
PRINT RTRIM$(crop(c%).cname); 
PRINT" amount to:"; TAB(Sl); 
PRINT USING"$$###.##"; crop(c%).vc; 
PRINT" /acre." 

'NEXT c% 
'PRINT "Discount rate is assumed to be: "; TAB(56); 
'PRINT USING"###"; 100 * r; 
'PRINT II %" 
'PRINT 
'PRINT "The decision rule is based upon a "· 
'SELECT CASE decrule% 

CASE 1 
PRINT "l"; 

CASE 2 
PRINT "2"; 

'END SELECT 
'PRINT "-year time horizon." 
'PRINT 
'PRINT "Press any key to continue." 
'resume$ = INPUT$(1) 
'CLS 
END SUB 
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SUB AutoWeedSeeds (nfields%, wnum%, lamseeds%, sOwf()) 
Last update: 04-25-91 

'*********************************************************************** 
'* AutoWeedSeeds * 
'* Subprogram AutoWeedSeeds generates an initial weed seed density * 
'* per square meter for each weed sp[ecies in each field. Relative * 
'*proportions from Forcella 1985-86 study at Morris, MN. * 

'* * 
'* Parameters passed to AutoWeedSeeds are: * 
'* nfields% Number of fields on farm * 
'* wnum% Number of weeds in model * 
'* lamseeds% Number of lambsquarters seeds chosen * 
'* * 
'*Arguments returned by AutoWeedSeeds are: * 
'* s0wf(f%,w%) Array of weed seed densities in each f i eld 
'*********************************************************************** 

'PRINT 
'PRINT "Base case numbers of weed seeds in the soil are proportional to 

the number" 
'PRINT "of common lambsquarters seeds." 
'INPUT "Please type the initial seed density/m2 of common lambsquarte rs: 

", lam 
'PRINT 
fox = 7 * lamseeds% 
pig = 2 * lamseeds% 
FOR f% = 1 TO nfields% 

mult% = 1 
+ INT((f% - 1) / 2) 

FOR w% = 1 TO wnum% 
IF w% = 1 THEN 

s0wf(f%, w%) = mult% * fox 
ELSEIF w% = 2 THEN 

s0wf(f%, w%) = mult% * lamseeds% 
ELSEIF w% = 3 THEN 

s0wf(f%, w%) = mult% *pig 
ELSE 

PRINT "Too many weed species for AutoWeedSeeds subprogram." 
END IF 

NEXT w% 
NEXT f % 
END SUB 
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SUB CalibrateGerm (nfields%, wnum%, wf() AS wfile, sOwf(), wOgerm(), 
wlgerm(), w2germ(), epswO(), epswl(), epsw2(), germtot(), betawO(), 
betawl(), betaw2()) 

Last update: 06-07-91 

'*********************************************************************** 
'* CalibrateGerm * 
'* This sub-program calculates germination levels from total germi-
'* nation rates, seed counts, proportions of germination by stage of the 
'* season, and calibration equation coefficients relating germination to 
'*seed numbers. First expected germination densities are calculated * 
'* from predicted germination rates, initial seed counts and calibration 
'*equations. Then (possibly) heteroscedastic errors are added to * 
'*create stochastic weed densities. * 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 

The sub-program accepts the following parameters: 
* 
* 
* nf ields% Number of fields 

wnum% 
wf (w) 
sOwf(f ,w) 
epswX(f ,w) 

germtot() 
betawX(f ,w,b) 

Number of weed species * 
Array of weed parameters * 
Array of weed seed densities by field * 
Array of weed germination error terms * 
for germination stage X (0,1,2) * 
Total germination for year (from GetYear 
Array of weed germination coef. errors * 
for germination stage X * 

'* * 
'* The sub-program calculates the following values: * 
'* EwOgerm(f ,w) Array of expected pre-plant weed * 
'* densities * 
'* Ewlgerm(f ,w) Array of expected post-plant weed * 
'* densities * 
'* Ew2germ(f ,w) Array of expected post-cult. weed * 
'* densities * 
'* sigwO(f ,w) Array of pre-plant weed std. errors * 
'* sigwl(f ,w) Array of post-plant weed std. errors * 
'* sigw2(f ,w) Array of post-cult weed std. errors * 
'*For Forcella eqn., sigwl(f ,l) is logarithmic eqn, so exponential * 
'* transform is made. * 
'* * 
'* The sub-program returns the following values: * 
'* wOgerm(f ,w) Array of pre-plant weed densities * 
'* wlgerm(f ,w) Array of post-plant weed densities * 
'* w2germ(f ,w) Array of post-cult. weed densities * 
'*********************************************************************** 

REDIM Ew0germ(nfields%, wnum%), Ewlgerm(nfields%, wnum%), 
Ew2germ(nfields%, wnum%) 

REDIM sigw0(nfields%, wnum%), sigwl(nfields%, wnum%), sigw2(nfields%, 
wnum%) 

FOR f% = 1 TO nf ields% 
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FOR w% = 1 TO wnum% 
Ew0germ(f%, w%) = (germtot(w%) * wf(w%).s0propn * s0wf(f%, w%)) + 

((wf(w%).w0int + betawO(f%, w%, 1)) + (wf(w%).w0s + betawO(f% , w%, 
2)) * s0wf(f%, w%) + (wf(w%).w0s2 + betawO(f%, w%, 3)) * s0wf(f%, 
w%) " 2) 

Ewlgerm(f%, w%) = (germtot(w%) * wf(w%).slpropn * s0wf(f%, w%)) + 
((wf(w%).wlint + betawl(f%, w%, 1)) + (wf(w%).wls + betawl(f%, w%, 
2)) * s0wf(f%, w%) + (wf(w%).wls2 + betawl(f%, w%, 3)) * s0wf(f%, 
w%) " 2) 

Ew2germ(f%, w%) = (germtot(w%) * wf(w%).s2propn * s0wf(f%, w%)) + 
((wf(w%).w2int + betaw2(f%, w%, 1)) + (wf(w%).w2s + betaw2(f%, w%, 
2)) * s0wf(f%, w%)) 

sigwO(f%, w%) = EXP(wf(w%).sig0int + wf(w%).sig0s * s0wf(f%, w%) + 
wf(w%).sig0s2 * s0wf(f%, w%) "2) 

sigwl(f%, w%) = EXP(wf(w%).siglint + wf(w%).sigls * s0wf(f%, w%) + 
wf(w%).sigls2 * s0wf(f%, w%) "2) 

sigw2(f%, w%) = EXP(wf(w%).sig2int + wf(w%).sig2s * s0wf(f%, w%) + 
wf(w%).sig2s2 * s0wf(f%, w%) "2) 

w0germ(f%, w%) = Ew0germ(f%, w%) + epswO(f%, w%) * sigwO(f%, w%) 
wlgerm(f%, w%) = Ewlgerm(f%, w%) + epswl(f%, w%) * sigwl(f%, w%) 
w2germ(f%, w%) = Ew2germ(f%, w%) + epsw2(f%, w%) * sigw2(f%, w%) 
IF w0germ(f%, w%) < 0 THEN w0germ(f%, w%) = 0 
IF wlgerm(f%, w%) < 0 THEN wlgerm(f%, w%) = 0 
IF w2germ(f%, w%) < 0 THEN w2germ(f%, w%) = 0 

NEXT w% 
PRINT 

NEXT f% 
END SUB 
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SUB ChooseCrop (f%, fld() AS ftype, maxCwk%, wk%) 
Last update: 12-05-90 

'*********************************************************************** 
'* ChooseCrop * 
'* Subprogram ChooseCrop chooses the crop to plant in a given field * 
'*based upon the preferred rotation (continuous corn or corn-soy), * 
'* the previous crop, and current date. For a corn-soy rotation, the * 
'* rotation crop is chosen unless that would be corn and the last * 
'* planting date for corn is past. For continuous corn, corn is planted 
'* unless the last planting date for corn is past, in which case soy * 
'* is planted. * 
'* * 
'* Parameters passed to ChooseCrop are: * 
'* fld() Array of field info (including previous * 
'* crop) * 
'* maxCwk% Last feasible week for planting corn * 
'* wk% Current week * 
'* f % Current field nwnber * 
'* * 
'*Value returned by the subprogram is: * 
'* fld(f%).cropid Crop to plant in field f% * 
'*********************************************************************** 

prevCrop% = fld(f%).prevCrop 
rot%= fld(f%).rotation 
SELECT CASE rot% 

CASE 1: 'Corn-soy rotation 
SELECT CASE prevCrop% 

CASE 1 
fld(f%).cropid = 2 

CASE 2 
IF wk% <= maxCwk% THEN 

fld(f%).cropid = 1 
ELSE 

fld(f%).cropid = 2 
END IF 

CASE ELSE 
PRINT "Error in .fld(). prevCrop array from ChooseCrop sub." 

END SELECT 
CASE 2: 'Continuous corn 

IF wk% <= maxCwk% THEN 
fld(f%).cropid = 1 

ELSE 
fld(f%).cropid = 2 

END IF 
END SELECT 
END SUB 

- - --

' 
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SUB CropGrowth (f%, wk%, crop() AS cropfile, fld() AS ftype, epscgrow(), 
betacgro ()) 

Last update 06-06-91 
'*********************************************************************** 
'* CropGrowth * 
'* This subprogram "grows" the crop in each field as a function of the* 
'*number of days since planting (dap%). * 
'* 
'* Parameters passed to CropGrowth are: 
'* f% Current field number 
'* 
'* 
'* 
'* 
'* 
'* 

wk% 
crop() 
fld() 
epscgrow(c) 
betacgro(c) 

Current week number 
Record file of crop parameters ( " ) 
Record file of field parameters 
Array of crop growth errors 
Array of growth coefficient errors 

* 
* 
* 
* 
* 
* 
* 
* 
* '* Arguments returned by CropGrowth are: * 

'* fld(f%).cropHt Height (inches) of crop growing in field 
'* f% * 
'*********************************************************************** 
dap% =(wk% - fld(f%).plweek) * 7 
IF dap% > 0 THEN 

sigmagro = crop(fld(f%).cropld).sigcint + sigcdap2 * dap% A 2 
fld(f%).cropHt = (crop(fld(f%).cropld).growrate + 

betacgro(fld(f%).cropld)) * dap% A 2 + sigmagro * 
epscgrow(fld(f%).cropld) 

END IF 
END SUB 

SUB DiskField (f%, mf%, diskflag%(), fld() AS ftype, mach() AS mfile , 
newcost(), hrs) 

Last update: 01-06-91 
'*********************************************************************** 
'* DiskField * 
'* Subprogram DiskField disks conventional tillage fields that have * 
'* not been disked during PPI herbicide application. * 
'* f% Current field * 
'* mf % 
'* fld() 
'* mach() 
'* Arguments returned by 
'* diskflag%(f%) 
'* hrs 

Field cultivator code * 
Record array of field data * 
Record array of machinery data * 

DiskField are: * 
Flag for completion of disk operation 
Current number of hours worked in week 

* 
* 

'* newcost() Array of new costs * 
'*********************************************************************** 
newcost(f%) = newcost(f%) + mach(mf%).CostAc 
hrs= hrs+ fld(f%).fsize / mach(mf%).AcHr 
diskflag%(f%) = true% 
END SUB 
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SUB Field~eedGerm (f%, nfields%, wnum.%, swlost(), grmlflag%(), wOgerm(), 
wlgerm()) 

Last update: 04/18/91 
'********************************************************************** 
'* FieldWeedGerm * 
'* This subprogram calculates weed seedling germination as a function * 
'* of seeds from previous season. * 
'* * 
'* Parameters passed to subprogram WeedGerm are: * 
'* f % Current field * 
'* nfields% Number of fields * 
'* wnum% Number of weed species * 
'* s0wf(f%,w%) Array of initial seedbank densities for* 
'* species w% (seeds/m2) in field f% * 
'* w0germ(f%,w%) Array of pre-plant weed densities * 
'* wlgerm(f%,w%) Array of post-plant weed densities * 
'* * 
'* Variables returned by subprogram WeedGerm are: * 
'* ' dlwf(f%,w%) Array of germinating weed densities * 
'* after crop planting (but before POST * 
'* trt.) in field f% * 
'* swlost(f%,w%) Array of seed numbers lost to germina- * 
'* tion prior to PRE treatment in field f%* 
'* grmlflag%(f%) Array of flags signaling completion of * 
'* pre-plant weed germination * 
'********************************************************************** 

FOR w% = 1 TO wnum% 
'dlwf(f%, w%) = weed(w%).slgerm * (1 - weed(w%).s0germ) * s0wf(f%, w%) 
'd0wf(f%, w%) = weed(w%).s0germ * s0wf(f%, w%) 

swlost(f%, w%) = w0germ(f%, w%) + wlgerm(f%, w%) 
NEXT w% 
grmlflag%(f%) = true% 
END SUB 



- . - --
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SUB GetCropParm (cropparm$, cropdata AS cropfile, crop() AS cropfile) 
Last update: 04/28/91 

'*********************************************************************** 
'* GetCropParm * 
'* Subprogram GetCropParm reads the names of crops to be included in the 
'*model, along with related parameters. * 
'* 
'* Parameter passed 
'* cropparm$ 
'* cropdata 
'* crop() 
'* 

to GetWeedParm is: 
Name of the crop parameter file 
Record form for crop parameter file 
Record array for crop parameter file 

* 
* 
* 
* 
* 
* 

'* The crop() records returned by GetWeedParm include * 
'* cropld(c%) Crop identification code * 
'* cname$(c%) Crop common names * 
'* growrate(c%) Quadratic growth rate (function of days* 
'* after planting, DAP) * 
'* sigcint Standard error equation intercept * 
'* sigcdap2 Std. error eqn. coef. on DAP * 
'* a(c%) Maximum percent yield loss as weed * 
'* density approaches infinity * 
'* seedPric(c%) Crop seed price * 
'* seedRate(c%) Crop seeding rate * 
'*********************************************************************** 

SHARED cnum% 
Filenuml = FREEFILE 
c% = 0 
OPEN cropparm$ FOR INPUT AS #Filenuml 
DO UNTIL EOF(Filenuml) 

c% = c% + 1 
INPUT #Filenuml, cropdata.cropid, cropdata.cname, cropdata.growrate, 

cropdata.sigcint, cropdata.sigcdap2, cropdata.a, cropdata.seedRate, 
cropdata.seedPric 

crop(c%) = cropdata 
LOOP 
CLOSE #Filenuml 
cnum% = c% 
END SUB 

-
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SUB GetHerbData (cropnum%, aptime%, herbfile$, herb AS hfile, herbtemp ( ) 
AS hfile) 

Last update: 02/05/91 
'*********************************************************************** 
'* GetHerbData * 
'*This subprogram reads a file of weed treatment costs & rates, and * 
'* selects the records required for a particular crop and application * 
'* time. Herbicide treatment data comes from "Cultural and Chemical * 
'*Weed Control in Field Crops" (Minn. Extension Service). * 
'* * 
'* Parameters passed to 
'* cropnum% 
'* aptime% 
'* 

GetHerbData are: 
Crop code 
Application time code (l=PPI,2=PRE, 
3=POST) 

* 
* 
* 
* 

'* 
'* 
'* 

herb file$ 
herb 
herbtemp() 

Name of weed treatment rate & price fi l e 
Treatment record form * 
Treatment record array * 

'* 
'* The herbtemp() 
'* crop Id 
'* aptimeid 
'* herbid 
'* hname 
'* unitCost 
'* minrate 
'* maxrate 
'* avrate 

records returned by GetHerbData include: 
Crop code 
Application time code 
Treatment code 
Treatment name 
Treatment cost 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

'* droptrt 

Minimum application rate 
Maximum application rate 
Average application rate 
0/1 indicator for whether 
be dropped (1) or not (0) 

treatment to * 
'* * 
'*********************************************************************** 

Filenuml = FREEFILE 
SHARED htemp% 

OPEN herbf ile$ FOR INPUT AS #Filenuml 
i% = 0 
DO UNTIL EOF(Filenuml) 

INPUT #Filenuml, herb.cropid, herb.aptimeid, herb.herbid, 
herb.hname, herb.unitCost, herb.minrate, herb.maxrate , 
herb.droptrt 

herb.avrate = (herb.minrate + herb .maxrate) / 2 
IF cropnum% = herb . cropid AND aptime% = herb.aptimeid THEN 
. i% = i% + 1 

herbtemp(i%) = herb 
END IF 

LOOP 
htemp% = i% 
CLOSE #Filenuml 

END SUB 
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SUB GetKillData2 (killfile$, eff AS kfile, efftemp() AS kfile, 
killparm() AS kfile, kmax%) 

Last update: 02/12/91 
'*********************************************************************** 
'* GetKillData2 * 
'*This subprogram reads a file of weed treatment efficacy ratings. * 
'* Herbicide treatment data come from "Cultural and Chemical Weed * 
'*Control in Field Crops" (Minn. Extension Service). * 
'* * 
'* Parameters passed 
'* killfile$ 
'* eff 
'* efftemp() 
'* killparm() 
'* krnax% 

to GetKillData2 are: 
Name of treatment efficacy file 
Treatment record form 
Treatment record array 
Treatment record array 
Maximum number of treatments 

* 
* 
* 
* 
* 
* 

'* * 
'* The efftemp() record array returned by GetKillData2 contains: * 
'* aptimeld Application time code * 
'* herbld Treatment code * 
'* weedld Weed code * 
'* effic Treatment efficacy rating * 
'* maxWdHt Maximum weed height for rated efficacy * 
'* maxCrnHt Maximum corn height for safe use on corn 
'* maxSoyHt Maximum soybean height for safe use * 
'*********************************************************************** 

Filenuml = FREEFILE 
OPEN killfile$ FOR INPUT AS #Filenuml 
i% = 0 
DO UNTIL EOF(Filenuml) 

i% = i% + 1 
INPUT #Filenuml, eff .aptimeld, eff .herbid, eff .weedid, eff .effic, 

eff .maxWdHt, eff.maxCrnHt, eff .maxSoyHt 
efftemp(i%) = eff 

LOOP 
CLOSE #Filenuml 
kmax% = i% 
REDIM killparm(krnax%) AS kfile 
FOR i% = 1 TO krnax% 

killparm(i%) = efftemp(i%) 
NEXT 1% 
ERASE ef ftemp 

END SUB 
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SUB GetMachData (machfile$, machtemp() AS mfile) 
Last update: 11/02/90 

'*********************************************************************** 
'* GetMachData * 
'* This subprogram reads a data file on farm machinery available in the* 
'* model. * 
'* 
'* Parameters read in by GetMachData are: 
'* machfile$ Name of farm machinery data file. 
'* machtemp() Indexed record file for data. 

* 
* 
* 
* 

'* * 
'* Variables returned by GetMachData (as machtemp() records) are: * 
'* machcode Machinery code (see AutoChooseMach) * 
'* machname Name of piece of machinery * 
'* AcHr Acres per hour covered (speed). * 
'* CostAc Cost per acre (dollars/acre). * 
'*********************************************************************** 

SHARED machnum% 
Filenuml = FREEFILE 
OPEN machfile$ FOR INPUT AS #Filenuml 
i% = 0 
DO WHILE NOT EOF(Filenuml) 

i% = i% + 1 
INPUT #Filenuml, machtemp(i%).machcode, machtemp(i%).machname, 

machtemp(i%).AcHr, machtemp(i%).CostAc 
LOOP 
machnum% = i% 
CLOSE #Filenuml 
END SUB 

- -- - -- - -- - - -

-~-- --- -- ~ - ~- _____ -- - -



211 

SUB GetStateBetaErrors (nfields%, wnum%, newscen%, betafile$, betaeps AS 
bfile, betacgro(), betawgro(), betawO(), betawl(), betaw2()) STATIC 

Last update: 06-07-91 
'*********************************************************************** 
'* , GetStateBetaErrors * 
'* Subprogram GetStateErrors reads correlated random errors corres- * 
'* ponding to equations in the model, from an input data file. * 
'* 
'* Parameters passed to 
'* nfields% 
'* wnum% 

GetStateBetaErrors are: 
Number of fields on farm 
Number of weeds in model 

* 
* 
* 
* 

'* newscen% New scenario flag * 
'* statenum% Number of states of nature * 
'* betafile$ File containing synthetic error terms * 
'* betaeps Record array of synthetic eror terms * 
'* * 
'* Arguments returned by GetStateBetaErrors are: * 
'* betawO(f ,w,b) Array of pre-plant weed emergence coef. * 

errors by field, weed and coefficient (b)* 
Array of post-plant weed emergence coef. * 
errors by field, weed and coefficient (b)* 
NB: betawl(f%,2,2) is coef on quadratic * 

'* 
'* betawl(f ,w,b) 
'* 
'* 
'* term. * 
'* betaw2(f ,w,b) Array of post-cult. weed emergence coef. * 
'* errors by field, weed and coefficient (b)* 
'* betacgro(c) Array of crop growth coef. errors * 
'* betawgro(w) Array of weed growth coef. errors * 
'*********************************************************************** 

Filenuml = FREEFILE 
OPEN betafile$ FOR RANDOM AS #Filenuml LEN = LEN(betaeps) 
statenum% = LOF(Filenuml) \ LEN(betaeps) 
IF betstate% >= statenum% THEN newscen% = true% 
IF newscen% = true% THEN 

betstate% = 0 
newscen% = false% 

END IF 
FOR f% = 1 TO nf ields% 

betstate% = betstate% + 1 

----- -~· 

GET #Filenuml, betstate%, betaeps 
betaw0(f%, 1, 1) = betaeps.betawOlO 
betawO(f%, 1, 2) = betaeps.betawOll 
betaw0(f%, 1, 3) = betaeps.betaw012 
betawO(f%, 2, 1) = betaeps.betaw020 
betawO(f%, 2, 2) = betaeps.betaw021 
betawO(f%, 2, 3) = betaeps.betaw022 
betawO(f%, 3, 1) = 0 
betaw0(f%, 3, 2) = 0 
betawO(f%, 3, 3) = 0 

- - -
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betawl(f%, 1, 1) = betaeps.betawllO 
betawl(f%, 1, 2) = betaeps.betawlll 
betawl(f%, 1, 3) = 0 
betawl(f%, 2, 1) = betaeps.betawl20 
betawl(f%, 2, 2) = 0 
betawl(f%, 2, 3) = betaeps.betawl22 
betawl(f%, 3, 1) = betaeps.betawl30 
betawl(f%, 3, 2) = betaeps.betawl31 
betawl(f%, 3, 3) = 0 
betaw2(f%, 1, 1) = betaeps.betaw210 
betaw2(f%, 1, 2) = betaeps.betaw211 
betaw2(f%, 2, 1) = betaeps.betaw220 
betaw2(f%, 2, 2) = betaeps.betaw221 
betaw2(f%, 3' 1) = betaeps.betaw230 
betaw2(f%, 3, 2) = betaeps.betaw231 
betacgro(l) = betaeps.betagroc 
betacgro(2) = betaeps.betagros 
betawgro(l) = betaeps.betagrol 
betawgro(2) = betaeps.betagro2 
betawgro(3) - betaeps.betagro3 

NEXT f% 
CLOSE #Filenuml 

END SUB 
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SUB GetStateErrors (nfields%, wnum%, newscen%, epsfile$, epsilon AS 
efile, epswO(), epswl(), epsw2(), epsseed(), epsyld(), epscgrow(), 
epswgrow()) STATIC 

Last update: 04-29-91 
'*********************************************************************** 
'* GetStateErrors * 
'* Subprogram GetStateErrors reads correlated random errors corres- * 
'* ponding to equations in the model, from an input data file. * 
'* 
'* Parameters passed to GetStateErrors are: 
'* nfields% Number of fields on farm 
'* wnum% Number of weeds in model 
'* 
'* 
'* 
'* 

statenum% 
newscen% 
epsfile$ 
epsilon 

Number of states of nature 
New scenario flag 
File containing synthetic 
Record array of synthetic 

error terms 
eror terms 

* 
* 
* 
* 
* 
* 
* 
* 

'* * 
'* Arguments returned by GetStateErrors are: * 
'* epswO(f ,w) Array of pre-plant weed emergence errors * 
'* epswl(f ,w) Array of post-plant weed emergence errors* 
'* epsw2(f ,w) Array of post-cult. weed emergence errors* 
'* epsseed(f ,w) Array of weed seed production errors * 
'* epsyld(f ,c) Array of crop yield errors * 
'* epscgrow(c) Array of crop growth errors * 
'* epswgrow(w) Array of weed growth errors * 
'*********************************************************************** 

Filenuml = FREEFILE 
OPEN epsfile$ FOR RANDOM AS #Filenuml LEN = LEN(epsilon) 
statenum% = LOF(Filenuml) \ LEN(epsilon) 
IF errstate% >= statenum% THEN newscen% = true% 
IF newscen% = true% THEN 

errstate% = 0 
newscen% = false% 

END IF 
FOR f% = 1 TO nf ields% 

errstate% = errstate% + 1 
GET #Filenuml , errstate%, epsilon 
epswO(f%, 1) = epsilon.epswOl 
epsw0(f%, 2) = epsilon.epsw02 
epsw0(f%, 3) = 0 
epswl(f%, 1) = epsilon.epswll 
epswl(f%, 2) = epsilon.epswl2 
epswl(f%, 3) = epsilon.epswl3 
epsw2(f%, 1) = epsilon.epsw21 
epsw2(f%, 2) = epsilon.epsw22 
epsw2(f%, 3) = epsilon.epsw23 
epsseed(f%, 1) = epsilon.epsseedl 
epsseed(f%, 2) = epsilon.epsseed2 
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epsseed(f%, 3) = epsilon.epsseed3 
epsyld(f%, 1) = epsilon.epsyldc 
epsyld(f%, 2) = epsilon.epsylds 
epscgrow(l) = epsilon.epsgrowc 
epscgrow(2) = epsilon.epsgrows 
epswgrow(l) = epsilon.epsgrowl 
epswgrow(2) = epsilon.epsgrow2 
epswgrow(3) = epsilon.epsgrow3 

NEXT f % 
CLOSE #Filenuml 
'resume$ = INPUT$(1) 
END SUB 

SUB GetWeedCompData (compfile$, comptemp() AS cfile) 
' Last update: 11/02/90 
'*********************************************************************** 
'* GetWeedCompData * 
'* This subprogram reads a file of weed-crop competition indices. * 
'* Herbicide treatment data come from "Cultural and Chemical Weed * 
'*Control in Field Crops" (Minn. Extension Service). * 
'* 
'* Parameters passed to GetWeedCompData are: 
'* compfile$ Name of weed competition file 
'* comptemp() Competition record array 
'* 
'* The efftemp() array returned by GetWeedCompData contains: 
'* cropid Crop code 
'* weedid Weed code 

* 
* 
* 
* 
* 
* 
* 
* 

'* i Competition index * 
'*********************************************************************** 

SHARED compmax% 
Filenuml = FREEFILE 
OPEN compf ile$ FOR INPUT AS #Filenuml 
i% = 0 
DO UNTIL EOF(Filenuml) 

i% = i% + 1 
INPUT #Filenuml, comptemp(i%).cropid, comptemp(i%).weedid, 

comptemp(i%).i 
LOOP 
compmax% = i% 
CLOSE #Filenuml 
END SUB 
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SUB GetWeedParm3 (wnum%, parmfile$, wf AS wfile, weedparm() AS wfile ) 
Last update : 04/28/91 

'*********************************************************************** 
'* GetWeedParm3 * 
'* Subprogram GetWeedParm3 reads the names of weeds to be included i n * 
'* the model, along with related parameters. * 
'* 
'* Parameter passed to 
'* parmf ile$ 
'* wf 
'* weedparm() 
'* 

GetWeedParm3 is: 
* 
* 

Name of the weed parameter file * 
Record form for weed parameter file * 
Record array for weed parameters * 

* 
'* Values returned by GetWeedParm3 are: * 
'* wnum% Number of weeds * 
'* Weedparm() record array i ncludes * 
'* weedld(w) Weed identification code * 
'* wname$(w) Array of weed species common names * 
'* avgerm(w) Average total weed germination (based * 
'* on Forcella model w/Lamberton GDD dat a)* 
'* sOpropn(w) Array of pre-planting weed germ. propns* 
'* slpropn Array of post-plant weed germ. propns. * 
'* s2propn Array of post-cult. weed germ. propns. * 
'* s3mortpn Array of weed seed death as propn of * 
'* combined seed death and carryover * 
'* wlpropag Array of viable seeds produced per post* 
'* plant weed * 
'* w2propag Array of viable seeds produced per post* 
'* cultivation weed * 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 

wXint 

wXs 

wXs2 

sigXint 

sigXs 

sigXs2 

s3mortpn 

sigwint 
sigwdap2 

- -

Array of germination calibration eqn . * 
intercept terms for season stage X * 
(0,1,2) * 
Array of germination calibration eqn . * 
seed coefs. for season stage X (0,1, 2) * 
Array of germination calibration eqn . * 
squared seed coefs.in season stage X * 
(0,1,2) * 
Array of germ. calib. std. error eqn . * 
intercept terms for season stage X * 
(0,1,2) * 
Array of germ. calib. std. error eqn . * 
seed coefs. for season stage X (0,1, 2 ) * 
Array of germ. calib. std. error eqn . * 
squared seed coefs.in season stage X * 
(0,1,2) * 
Array of proportion of non-germinated * 
seeds that die * 
Intercept for std. error of weed growth* 
Days after plantingA2 coef. in std.er ror 
of weed growth equation. * 

- - -- ---
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'*********************************************************************** 

Filenuml = FREEFILE 
i% = 0 
OPEN parmf ile$ FOR INPUT AS #Filenuml 
DO UNTIL EOF(Filenuml) 

i% == i% + 1 
INPUT #Filenuml, wf .weedld, wf.wname, wf .avgerm, wf .sOpropn, 

wf .slpropn, wf .s2propn, wf .s3mortpn, wf .wlpropag, wf .w2propag, 
wf .growrate, wf .wOint, wf.wOs, wf .w0s2, wf .wlint, wf .wls, wf .wls2, 
wf .w2int, wf.w2s, wf .sigOint, wf .sigOs, wf .sig0s2, wf .siglint, 
wf .sigls, wf .sigls2, wf .sig2int, wf.sig2s, wf .sig2s2, wf.sigwint, 
wf. s igwdap2 

weedparm(i%) = wf 
LOOP 
wnum% = i% 
CLOSE #Filenuml 
END SUB 

SUB GetYear (yearfile$, yr AS yfile, flddays(), rain(), crop() AS 
cropfile, germtot(), randnum(), newscen%) STATIC 

Last update: 05-17-91 
'*********************************************************************** 
'* GetYear * 
'* Subprogram GetYear reads annual state of nature data from an * 
'* input file. * 
'* * 
'* Parameters passed to GetYear are: * 
'* yearnum% Number of years * 
'* epsfile$ File containing synthetic error terms * 
'* newscen% New scenario flag * 
'* randnum() Array of [0,1] random numbers * 
'* * 
'* Arguments returned by GetYear are: * 
'* yr Record array of year data uniform randomly 
'* selected. * 
'* flddays(wk%) Weekly workable field days from 4/19 * 
'* (llwks) in current year * 
'* rain(wk%) Weekly precipitation from 4/19 (11 weeks)* 
'* crop(c%).maxyld Maximum yield for year * 
'* germtot(w%) Total weed germination for current year * 
'*********************************************************************** 

IF newscen% = true% THEN 
ry% = 0 
newscen% = false% 

END IF 



ry% = ry% + 1 
Filenuml = FREEFILE 
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OPEN yearfile$ FOR RANDOM AS #Filenuml LEN = LEN(yr) 
yearnum% = LOF(Filenuml) \ LEN(yr) 
y% = INT(randnum(ry%) * yearnum%) + 1 
GET #Filenuml, y%, yr 

CLOSE #Filenuml 
flddays(l) = yr.fdl 
flddays(2) = yr.fd2 
flddays(3) = yr.fd3 
flddays(4) = yr.fd4 
flddays(S) = yr.fdS 
flddays(6) = yr.fd6 
flddays(7) = yr.fd7 
flddays(8) = yr.fd8 
flddays(9) = yr.fd9 
flddays(lO) = yr.fdlO 
flddays(ll) = yr.fdll 
rain(l) = yr.rainl 
rain(2) = yr.rain2 
rain(3) = yr.rain3 
rain(4) = yr.rain4 
rain(S) =yr.rains 
rain(6) = yr.rain6 
rain(7) = yr.rain7 
rain(8) = yr.rain8 
rain(9) = yr.rain9 
rain(lO) = yr.rainlO 
rain(ll) = yr . rainll 
crop(l).maxyld = yr.cymax 
crop(2).maxyld = yr.symax 
germtot(l) = yr.foxgerm 
germtot(2) = yr.lamgerm 
germtot(3) = yr.piggerm 

END SUB 
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SUB InitializeScenario (wnum%, sumst() AS stype, farmstnr, farmstsd, 
cswst(), ccwst(), cssst(), ccsst(), urpOOOl#, uraOOOl#, uraOOl#) 

Last update: 05-03-91 
'*********************************************************************** 
'* InitializeScenario * 
'* This subprogram initializes end-state summary values for each new * 
'* scenario. 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 

Parameters passed to 
sumst() 
farmstnr 
farmstsd 
urpOOOl# 
uraOOOl# 
uraOOl# 
cssst(w),ccsst(w) 

cswst(w),ccwst(w) 

* 
* 

InitializeScenario are: * 
Record array of end-state summary stats. * 
Cumulative end-state mean farm income * 
Cumulative end-state mean income st. dev. * 
Utility of risk preferrer with r(x)=-.0001 * 
Utility of risk averter with r(x)=.0001 * 
Utility of risk averter with r(x)=.001 * 
Cum end-state mean seeds at harvest in CS, * 
CC rotations * 
Cum end-state mean weeds at harvest in CS, * 
CC rotations * 

' *********************************************************************** 

REDIM sumst(3) AS stype 
REDIM cswst(wnum%), ccwst(wnum%), cssst(wnum%), ccsst(wnum%) 
f armstnr = 0 
farmstsd = 0 
urpOOOl# = 0 
uraOOOl# = 0 
uraOOl# = 0 
END SUB 
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SUB InitializeYear (nfields%, wnum%, fld() AS ftype, crop() AS cropfile, 
sw(), sOwf(), diskflag%(), infeas%(), endflag%(), wk%, t%, yr%, 
grmlflag%(), load(), OTsum, maxCwk%, dropostc%(), droposts%(), h3c% , 
h3s%) 

Last update: 04-27-91 
'*********************************************************************** 
'* Initialize Year * 
'* Subprogram InitializeYear sets initial values for cost, seedbank,* 
'* and computational flags for eachy iteration of the Year loop. * 
'* * 
'* Parameters passed to InitializeYear are: * 
'* nfields% Number of fields on farm * 
'* wnum% Number of weeds in model * 
'* fld() Record array of field data * 
'* crop() Record array of crop data * 
'* sw(f%,w%) Array of current seedbank values by field , * 
'* weed * 
'* s0wf(f%,w%) Array of initial seedbank values * 
'* infeas%() Array of POST infeasibility indicators * 
'* diskflag%(f) Array of flags for completion of disking * 
'* endflag%() Array of flags indicating end of field * 
'* activities * 
'* wk% Current week * 
'* t% Time setting for present value calculations* 
'* yr% Current year * 
'* grmlflag%() Flag for completion of FieldWeedGerm * 
'* subprogram * 
'* load() Array for cumulative herbicide load on field 
'* OTsum Total hours overtime worked during season * 
'* maxCwk% Last weed for corn planting * 
'* dropostc%() Array of infeasible POST trt. flags for corn 
'* droposts%() Array of infeasible POST trt. flags for * 
'* soybean * 
'* h3c% Number of POST corn trts. * 
'* h3s% Number of POST soybean trts. * 
'*********************************************************************** 

wk% = 0 
t% = yr% - 1 
OTsum = 0 

FOR f% = 1 TO nf ields% 
CALL ChooseCrop(f%, fld(), maxCwk%, wk%) 
fld(f%).hflag = 0 
fld(f%).cost = 0 
fld(f%).cropHt = 0 
fld(f%).ppiweek = 0 
fld(f%).plweek = 0 
fld(f%).preweek = 0 



fld(f%).postweek = 0 
fld(f%).precost = 0 
fld(f%).postcost = 0 
fld(f%).precode = 0 
fld(f%).postcode = 0 
fld(f%).preApTim = 0 
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fld(f%).ywf = crop(fld(f%).cropld).maxyld 
diskflag%(f%) = false% 
infeas%(f%) = false% 
endflag%(f%) = false% 
grmlflag%(f%) = false% 
load(f%) = 0 
FOR w% = 1 TO wnum% 

sw(f%, w%) = s0wf(f%, w%) 
NEXT w% 

NEXT f % 
FOR de% = 1 TO h3c% 

dropostc%(dc%) = false% 
NEXT de% 
FOR ds% = 1 TO h3s% 

droposts%(ds%) = false% 
NEXT ds% 
END SUB 

SUB InitializeState (wnum%, farmnr, sum() AS stype, csweed(), ccweed(), 
csseed(), ccseed()) 

Last update: 05-05-91 
'*********************************************************************** 
'* InitializeState * 
'* This subprogram initializes cumulative variables for a new state of* 
'*nature. 
'* 
'* Parameters passed to 
'* f armnr 
'* cXseed(w) 
'* cXweed(w) 
'* sum(s).nr 
'* 
'* sum(s).sdnr 
'* 
'* sum(s).load 

InitializeState are: 

* 
* 
* 

Cumulative discounted farm net revenue * 
Cum seeds at harvest in CS and CC rotations* 
Cum weeds at harvest in CS and CC rotations* 
Mean net revenue from 1. Corn in CS rotatn.* 
2. Soy in CS rot., and 3. Corn in CC rot. * 
St.dev. net rev. from 1. Corn in CS rotatn.* 
2. Soy in CS rot., and 3. Corn in CC rot. * 
Mean herb. load from 1. Corn in CS rotatn.* 

'* 2. Soy in CS rot., and 3. Corn in CC rot. * 
'* sum(s).ypct Mean yield pct. from 1. Corn in CS rotatn.* 
'* 2. Soy in CS rot., and 3. Corn in CC rot. * 
'*********************************************************************** 
REDIM sum(3) AS stype 
REDIM csweed(wnum%), ccweed(wnum%), csseed(wnum%), ccseed(wnum%) 
f armnr = 0 
END SUB 
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SUB MakeHerbArray (cropnum%, aptime%, herbfile$, herb AS hfile, kmax%, 
wnum%, eff() AS kfile, crop() AS cropfile, cppi() AS hfile, cpre() 
AS hfile, cpost() AS hfile, sppi() AS hfile, spre() AS hfile, 
spost() AS hfile, klc%(), k2c%(), k3c%(), kls%(), k2s%(), k3s%()) 

Last update: 02-05-91 
'*********************************************************************** 
' * MakeHerbArray * 
' * For each crop and weed control application time in the model, * 
' * Subprogram MakeHerbArray creates 1) arrays of feasible weed control * 
' * treatments and 2) arrays of corresponding efficacy ratings. To * 
'* identify feasible treatments, it chains to Subprogram GetHerbData * 
'* and then allows treatments to be dropped by chaining to Subprogram * 
'* UserDropTrts2. For the feasible treatments so identified, it chains* 
'* to MakeKillArray to construct an array of treatment efficacies. * 

'* * 
'* Parameters passed to MakeHerbArray are: * 
'* cropnum% Crop identification code (corn or soy) * 
' * aptime% Application time code (PPI, PRE, POST) * 
' * herbfile$ Weed treatment file name * 
'* herb Record form for weed treatments * 
'* herbtemp() Temporary record array for weed treatment* 
'* parameters * 
' * krnax% Number of records in weed treatment effi-* 
'* cacy array (from GetKillData2) * 
'* wnum% Number of weed species * 
' * eff() Record array of weed trt. efficacy data * 

'* * 
'* Arguments returned by MakeKillArray are: * 
'* hlc%, h2c%, h3c% Number of weed treatments (PPI,PRE,POST):* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 

hls%, h2s%, h3s% 

k%() 
klc%(),k2c%(),k3c%() 
kls%(),k2s%(),k3s%() 
cppi(),cpre(),cpost() 

corn * 
Number of weed treatments (PPI,PRE,POST):* 
soy 
Temporary array 
Efficacy arrays 
Efficacy arrays 
Treatment record 
for corn 

* 
of efficacy data * 
(PPI,PRE,POST) for corn * 
(PPI,PRE,POST) for soybean 
arrays (PPI,PRE,POST) * 

* 
'* sppi(),spre(),spost() Treatment record arrays (PPI,PRE,POST) * 
'* for soy * 
'*********************************************************************** 

SHARED hlc%, h2c%, h3c%, hls%, h2s%, h3s%, htemp% 
REDIM herbtemp(lO) AS hfile 
SELECT CASE cropnum% 

CASE 1 
SELECT CASE aptime% 

CASE 1 
CALL GetHerbData(ctopnum%, aptime%, herbfile$, herb, herbtemp()) 
REDIM klc%(wnum%, htemp%), k%(wnum%, htemp%) 
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REDIM cppi(htemp%) AS hfile 
' CALL UserDropTrts2(aptime%, htemp%, herbtemp(), cropnum%, 

crop()) 
CALL MakeKillArray(kmax%, aptime%, htemp%, wnum%, eff(), 

herbtemp(), k%()) 
hlc% = htemp% 
FOR i% = 1 TO hlc% 

cppi(i%) = herbtemp(i%) 
FOR w% = 1 TO wnum% 

klc%(w%, i%) = k%(w%, i%) 
NEXT w% 

NEXT i% 
CASE 2 

CALL GetHerbData(cropnum%, aptime%, herbfile$, herb, herbtemp () ) 
REDIM cpre(htemp%) AS hfile 
REDIM k2c%(wnum%, htemp%), k%(wnum%, htemp%) 

' CALL UserDropTrts2(aptime%, htemp%, herbtemp(), cropnum%, 
crop()) 

CALL MakeKillArray(kmax%, aptime%, htemp%, wnum%, eff(), 
herbtemp(), k%()) 

h2c% = htemp% 
FOR i% = 1 TO h2c% 

cpre(i%) = herbtemp(i%) 
FOR w% = 1 TO wnum% 

k2c%(w%, i%) = k%(w%, i%) 
NEXT w% 

NEXT i% 
CASE 3 

CALL GetHerbData(cropnum%, aptime%, herbfile$, herb, herbtemp ( )) 
REDIM cpost(htemp%) AS hfile 
REDIM k3c%(wnum%, htemp%), k%(wnum%, htemp%) 

CALL UserDropTrts2(aptime%, htemp%, herbtemp(), cropnum%, 
crop()) 

CALL MakeKillArray(kmax%, aptime%, htemp%, wnum%, eff(), 
herbtemp(), k%()) 

h3c% = htemp% 
FOR i% = 1 TO h3c% 

cpost(i%) = herbtemp(i%) 
FOR w% = 1 TO wnum% 

k3c%(w%, i%) = k%(w%, i%) 
NEXT w% 

NEXT i% 
END SELECT 

CASE 2 
SELECT CASE aptime% 

CASE 1 
CALL GetHerbData(cropnum%, aptime%, herbfile$, herb, herbtemp ( )) 
REDIM sppi(htemp%) AS hfile 
REDIM kls%(wnum%, htemp%), k%(wnum%, htemp%) 
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' CALL UserDropTrts2(aptime%, htemp%, herbtemp(), cropnum%, 
crop()) 

CALL MakeKillArray(kmax%, aptime%, htemp%, wnum%, eff(), 
herbtemp(), k%()) 

hls% = htemp% 
FOR i% - 1 TO hls% 

sppi(i%) = herbtemp(i%) 
FOR w% = 1 TO wnum% 

kls%(w%, i%) = k%(w%, i%) 
NEXT w% 

NEXT i% 
CASE 2 

CALL GetHerbData(cropnum%, aptime%, herbfile$, herb, herbtemp()) 
REDIM spre(htemp%) AS hfile 
REDIM k2s%(wnum%, htemp%), k%(wnum%, htemp%) 

' CALL UserDropTrts2(aptime%, htemp%, herbtemp(), cropnum%, 
crop()) 

CALL MakeKillArray(kmax%, aptime%, htemp%, wnum%, eff(), 
herbternp(), k%()) 

h2s% = hternp% 
FOR i% = 1 TO h2s% 

spre(i%) = herbtemp(i%) 
FOR w% = 1 TO wnum% 

k2s%(w%, i%) = k%(w%, i%) 
NEXT w% 

NEXT i% 
CASE 3 

CALL GetHerbData(cropnum%, aptirne%, herbfile$, herb, herbternp()) 
REDIM spost(hternp%) AS hfile 
REDIM k3s%(wnum%, hternp%), k%(wnum%, hternp%) 

CALL UserDropTrts2(aptirne%, hternp%, herbternp(), cropnum%, 
crop()) 

CALL MakeKillArray(kmax%, aptirne%, htemp%, wnum%, eff(), 
herbternp(), k%()) 

h3s% = htemp% 
FOR i% = 1 TO h3s% 

spost(i%) = herbtemp(i%) 
FOR w% = 1 TO wnum% 

k3s%(w%, i%) = k%(w%, i%) 
NEXT w% 

NEXT i% 
END SELECT 

END SELECT 
END SUB 
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SUB MakeKillArray (kmax%, aptime%, h%, wnum%, eff() AS kfile, herb() AS 
hf ile, k% ()) 

Last update: 02/05/91 
'*********************************************************************** 
'* MakeKillArray * 
'* Subprogram MakeKillArray creates an array of weed treatment efficacy 
'* ratings corresponding to the weed control treatments selected by * 
'* subprograms GetHerbData and UserDropTrts2. For those treatments that 
'* correspond to crop and application time parameters of MakeHerbArray,* 
'* it creates an efficacy array using data from GetKillData2. For * 
'* treatments dropped in UserDropTrts2, it sets the efficacy rating at 0 
'* * 
'* Parameters passed to the subprogram are: * 
'* kmax% Number of efficacy ratings in array eff()* 
'* aptime% Application time code * 
'* h% Number of treatments in array herb() * 
'* wnum% Number of weed species in model * 
'* eff() Array of efficacy ratings (killfile$) * 
'* herb() Array of suitable treatments for this * 
'* crop and application time * 
'* * 
'*Values returned by this subprogram are: * 
'* k%(w%,i%) Array of efficacy ratings for this crop * 
'* and application time (for permitted trts.) 
'* giving efficacy of trt. i% on weed w%. * 
'*********************************************************************** 

FOR i% = 1 TO h% 
FOR j% = 1 TO kmax% 

IF herb(i%).herbid = eff(j%).herbid AND aptime% 
THEN 
droptrt% = herb(i%).droptrt 
SELECT CASE droptrt% 

CASE 0 
FOR w% = 1 TO wnum% 

IF eff(j%).weedld 
NEXT w% 

CASE 1 
FOR w% = 1 TO wnum% 

IF eff(j%).weedid 
k%(w%, i%) = 0 

END IF 
NEXT w% 

END SELECT 
END IF 

NEXT j % 
NEXT i% 
END SUB 

w% THEN k%(w%, i%) 

w% THEN 

ef f (j % ) . aptimeid 

eff (j % ) . effic 
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SUB PlantCrop (f%, wk%, fld() AS ftype, maxCwk%, minSwk%, newcost(), 
hrs, maxhrs, machine() AS mfile, mp%, crop() AS cropfile, sw(), weed() 
AS wfile, wnum%) 

Last update: 05-02-91 
'*********************************************************************** 
'* PlantCrop * 
'* Subprogram PlantCrop determines whether a field can be planted, * 
'* based upon whether the time of the season is appropriate for planting 
'* If it is too early for soybeans, then the field is skipped until the* 
'* next week. If it is too late for corn, then the crop choice must be* 
'* changed by calling ChooseCrop. * 
'* 
'* Parameters passed to PlantCrop are: 

* 
* 
* '* f% Current field number 

'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 

wk% 
fld() 
maxCwk% 
minSwk% 
newcost() 
hrs 
machine() 
mp% 
crop() 

Current weed code * 
Array of field information * 
Last week for planting corn * 
First week for planting soybean * 
Array of current week costs * 
Current week cumulative hours works * 
Array of machinery parameters * 
Planter machinery code * 
Record array including crop seed price * 
& planting rate * 

* 
'*Value returned is: * 
'* fld(f%).plweek Planting week for field f% * 
'*********************************************************************** 
ChangeCrop: 
cropld% = fld(f%).cropid 
SELECT CASE cropid% 

CASE 1 
IF (wk% <= maxCwk%) THEN 

fld(f%).plweek =wk% 
newcost(f%) = newcost(f%) + ((machine(mp%).CostAc + 

crop(cropid%).seedRate * crop(cropid%).seedPric) * 
fld(f%).fsize) 

hrs= hrs+ fld(f%).fsize / machine(mp%).AcHr 
ELSE 

CALL ChooseCrop(f%, fld(), maxCwk%, wk%) 
GOTO ChangeCrop: 

END IF 
CASE 2 

IF (wk% >= minSwk%) THEN 
fld(f%).plweek =wk% 
newcost(f%) = newcost(f%) + ((machine(mp%).CostAc + 

crop(cropid%).seedRate * crop(cropid%).seedPric) * 
fld(f%).fsize) 

hrs= hrs+ fld(f%).fsize / machine(mp%).AcHr 
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SUB PostTrt (f%, nfields%, wnum%, wk%, fld() AS ftype, k.max%, eff() AS 
kfile, weedHt(), newcost(), newload(), hrs, maxhrs, machine() AS 
mfile, ms%, mr%, infeas%(), endflag%(), d2wf(), d3wf(), sw(), 
swlost(), w2germ()) 

Last update: 04-28-91 
'*********************************************************************** 
'* POSTTrt * 
'* Subprogram POSTTrt evaluates the recommended post-emergent weed * 
'* treatment in light of weed growth since crop planting. It executes * 
'* an appropriate POST treatment and calculates associated costs and * 
'* labor use. It also calculates seed germination in the period * 
'* following POST treatment. It returns csots, labor use, the week of * 
'* POST treatment, and resulting weed densities & seed losses to * 
'* germination to the main program. POST treatment may not occur less * 
'* than 2 weeks after PRE/PPI. * 
'* * 
'* Parameters passed to POSTTrt are: * 

* 
* 
* 

'* f% Field number 
'* nfields% Number of fields 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 

wnum% 
wk% 
fld() 
k.max% 
weedHt() 
eff() 
newcost() 
new load() 
hrs 
machine() 
ms% 
mr% 
weed() 
d2wf(f%,w%) 

sw(f%,w%) 
w2germ(w) 

'* Arguments returned are: 
'* fld(f%).postweek 
'* 
'* d3wf(f%,w%) 
'* 
'* 
'* 
'* swlost(f%,w%) 
'* infeas%(f%) 
'* 
'* 

Number of weeds in model 
Current weed code * 
Record array of field information * 
Number of records in efficacy file * 
Array of weed heights by species * 
Record array of weed control efficacy * 
Array of current week costs * 
Array of current week herbicide loads * 
Current week cumulative hours works * 
Record array of machinery parameters * 
Sprayer machinery code * 
Rotary hoe machinery code * 
Record array of weed parameters * 
Array of weed seedling densities per m2* 
after PRE/PPI treatment * 
Current seedbank for weed w% in field f% 
Post-cult. weed densities (CalibrateGerm 

* 
* 

Post-emergent weed control week for * 
field f% * 
Array of weed seedling density at * 
harvest after PRE/PPI and POST treat - * 
ments. Assumes cultivation kills * 
inter-row 80% of d2wf(). * 
Seedbank losses to emergence, by species 
Array of flags for infeasible * 
recommended POST treatments (O=not * 
infeasible) * 

'********************************************************************** 
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IF (fld(f%).plweek = 0) THEN EXIT SUB 
IF (fld(f%).postcode <> 10) THEN 

IF (wk% - fld(f%).preweek) < 2 OR (wk% - fld(f%).plweek) < 2 THEN EXIT 
SUB 

ELSEIF (wk% - fld(f%).plweek < 1) THEN EXIT SUB 
END IF 
IF fld(f%).postcode <> 0 THEN 

cropnum% = fld(f%).cropid 
count% = 0 
FOR k% = 1 TO kmax% 

IF (eff(k%).aptimeid = 3 AND eff(k%).herbid = fld(f%).postcode) THEN 
FOR w% = 1 TO wnum% 

IF eff(k%).weedid = w% THEN 
SELECT CASE cropnum% 

CASE 1 
IF (fld(f%).cropHt > eff(k%).maxCrnHt OR weedHt(f%, w%) > 

eff(k%).maxWdHt) THEN infeas%(f%) =true% 
CASE 2 

IF (fld(f%).cropHt > eff(k%).maxSoyHt OR weedHt(f%, w%) > 
eff(k%).maxWdHt) THEN infeas%(f%) =true% 

END SELECT 
IF infeas%(f%) = true% THEN EXIT SUB 

d3wf(f%, w%) = surv(eff(k%).effic) * d2wf(f%, w%) + 
weed(w%).s2germ * sw(f%, w%) 

d3wf(f%, w%) = d2wf(f%, w%) * surv(eff(k%).effic) + w2germ(f%, 
w%) 

swlost(f%, w%) = swlost(f%, w%) + weed(w%).s2germ * sw(f%, 
w%) 

swlost(f%, w%) = swlost(f%, w%) + w2germ(f%, w%) 
count% = count% + 1 

END IF 
NEXT w% 

END IF 
IF count% = wnum% THEN EXIT FOR 

NEXT k% 
IF fld(f%).postcode = 10 THEN 

equip% = mr% 
ELSE 
equip% = ms% 

END IF 
n~wcost(f%) = newcost(f%) + ((machine(equip%).CostAc + 

fld(f%).postcost) * fld(f%).fsize) 
newload(f%) = fld(f%).postload 
hrs= hrs+ fld(f%).fsize / machine(equip%).AcHr 

ELSE 
FOR w% = 1 TO wnum% 

d3wf(f%, w%) = d2wf(f%, w%) + weed(w%).s2germ * sw(f%, w%) 
d3wf(f%, w%) = d2wf(f%, w%) + w2germ(f%, w%) 
swlost(f%, w%) = swlost(f%, w%) + weed(w%).s2germ * sw(f%, w%) 
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swlost(f%, w%) swlost(f%, w%) + w2germ(f%, w%) 
NEXT w% 

END IF 
fld(f%).postweek =wk% 
endflag%(f%) - true% 
END SUB 
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SUB PostWEEDSIM (f%, wnum%, h3%, mf%, ms%, mr%, mp%, t%, r, sOwf(), 
sw(), d2wf(), fld() AS ftype, cropnum%, crop() AS cropfile, weed() AS 
wfile, k3%(), postherb() AS hfile, mach() AS mfile, compmax%, comp() 
AS cfile, costnow, theta, nyears%, netpost(), hln%, h2n%, h3n%, 
kln%(), k2n%(), k3n%(), ppinext() AS hfile, prenext() AS hfile, 
postnext() AS hfile, decrule%, dropcode%, dropost%()) STATIC 

Last update: 05/05/91 
'********************************************************************** 
'* PostWEEDSIM * 
'* Subprogram PostWEEDSIM recommends the net-revenue-maximizing weed * 
'* treatment POST strategy for the current year, ignoring * 
'* future ramifications of current action. * 

'* * 
'* Parameters passed to PostWEEDSIM are: * 
'* f% Field number * 
'* wnum% Number of weed species * 
'* nyears% Number of years in model * 
'* hl% Number of PPI treatments (set at 1) * 
'* h2% Number of PRE treatments (set at 1) * 
'* h3% Number of POST treatments * 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 

mf% , ms%, mr%, mp% 

t% 
r 
s0wf (w%) 

sw(f ,w) 
fld() 
cropnum% 
crop() 
weed() 
kl%(),k2%(),k3%() 

postherb() 
ppinext() 
prenext() 
postnext() 
mach() 
compmax% 

comp() 

costnow 
theta 

d2wf () 
dlw() , d2w() 
drop code% 

Field cultivator, sprayer, rotary hoe, * 
and planter machinery codes * 
Year * 
Discount rate * 
Array of initial seedbank densities in* 
this field * 
Array of seed densities in actual fld * 
Record array of field data * 
Crop code for current field * 
Record array of crop parameters * 
Record array of weed parameters * 
Arrays of efficacy ratings (PPI,PRE, * 
POST) * 
Record array of POST treatment params 
Record array of PPI next yr trt params 
Record array of PRE next yr trt params 
Record array of POST next yr trt params 
Record array of machinery parameters * 
Number of observations in competition * 
array * 
Record array of weed-crop competition * 
data * 
Current cost 
Proportion by which weed treatment 
threshold net revenue to exceed no 
control net revenue level. 

* 
* 
* 

Arrays for actual current weed den. * 
Arrays of emerged weed densities in f l d 
Code for infeasible recom'd POST trt. * 
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'* dropost% (j) Array of infeasible POST treatments * 
'* * 
'* Arguments revised by PostWEEDSIM are: * 
'* fld(f%).postcode Recommended POST treatment code * 
'* fld(f%).postname Recommended POST treatment name * 
'* fld(f%).postcost Cost per acre of recommended POST trt.* 
'* fld(f%).postload Quantity of active chem. ingredient/ac* 
'********************************************************************** 

cropnum% = fld(f%).cropld 
hl% = 1 
hl2n% = hln% + h2n% - 1 

REDIM precode%(hl%), preAvRat(hl%) 
REDIM s0w(wnum%), slw(wnum%), s2w(wnum%), w2(wnum%) 
REDIM dlw(wnum%), d2w(wnum%, hl%), precost(hl%) 
REDIM d3w(wnum%, hl%, h3%), d3wij(wnum%), s3w(wnum%), postcost(hl%, h3%) 
REDIM s0wl(wnum%, hl%, h3%) 
REDIM yldpost(hl%, h3%) 
REDIM netpost(hl%, h3%), netpostO(hl%, h3%) 
REDIM netpostl(hl%, h3%, hl2n%, h3n%) 

FOR w% = 1 TO wnum% 
s0w(w%) = s0wf(f%, w%) 
s2w(w%) = sw(f%, w%) 
w2(w%) = (weed(w%).avgerm * weed(w%).s2propn * s0wf(f%, w%)) + 

(weed(w%).w2int + weed(w%).w2s * s0wf(f%, w%)) 
NEXT w% 
FOR i% = 1 TO hl% 

precost(i%) = costnow 
precode%(i%) = fld(f%).precode 
preAvRat(i%) = fld(f%).preload 
FOR w% = 1 TO wnum% 

d2w(w%, i%) = d2wf(f%, w%) 
NEXT w% 

NEXT i% 
CALL WSPostReviseTrt(cropnum%, wnum%, hl%, h3%, 

crop(fld(f%).cropld).expMaxY, fld(f%).rotation, k3%(), d2w(), sOw(), 
s2w(), weed(), crop(), precode%(), preAvRat(), postherb(), compmax%, 
comp(), mach(ms%).CostAc, fld(f%).fsize, d3w(), d3wij(), s3w(), 
yldpost(), postcost(), w2(), dropcode%, dropost%()) 

CALL WSSeedBank(wnum%, hl%, h3%, d3w(), s3w(), weed(), sOwl(), w2()) 
CALL WSPostRev(hl%, h3%, crop(cropnum%).price, yldpost(), postcost(), 

precost(), t%, r, fld(f%).fsize, crop(cropnum%).vc, netpost()) 
IF (t% + 1) < nyears% AND decrule% = 2 THEN 

' Foresighted decision rule (2-year horizon) 
FOR i% = 1 TO hl% 

FOR j% = 1 TO h3% 
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netpostO(i%, j%) = netpost(i%, j%) 
NEXT j% 

NEXT i% 
REDIM precode%(hl2n%), preAvRat(hl2n%) 
REDIM d2w(wnum%, hl2n%), precost(h12n%) 
REDIM d3w(wnum%, h12n%, h3n%), postcost(h12n%, h3n%) 
REDIM yldpost(h12n%, h3n%), netpost(h12n%, h3n%) 
REDIM netpostl(hl%, h3%, hl2n%, h3n%) 
IF fld(f%).rotation = 1 THEN 

nextcrop% = 1 + cropnum% MOD 2 
plcost = crop(nextcrop%).seedRate * crop(nextcrop%).seedPric + 

mach(mp%).CostAc 
CALL WSNextYear(f%, wnum%, nextcrop%, compmax%, hln%, h2n%, hl2n%, 

h3n%, t%, r, mf%, ms%, mr%, mp%, kln%(), k2n%(), k3n%(), fld(), 
weed(), mach(), comp(), crop(), ppinext(), prenext(), postnext(), 
sOw(), sOwl(), slw(), s2w(), s3w(), dlw(), d2w(), d3w(), 
yldpost(), precost(), netpostO(), netpostl(), plcost, theta, 
netpost(), postcost(), precode%(), preAvRat(), hl%, h3%) 

CALL WSTopRev(hl%, h3%, h12n%, h3n%, theta, netpostl(), kimax%, 
kjmax%, topnet) 

ELSE 
nextcrop% = cropnum% 
plcost = crop(nextcrop%).seedRate * crop(nextcrop%).seedPric + 

mach(mp%).CostAc 
CALL WSNextYear(f%, wnum%, nextcrop%, compmax%, hln%, h2n%, hl2n%, 

h3n%, t%, r, mf%, ms%, mr%, mp%, kln%(), k2n%(), k3n%(), fld(), 
weed(), roach(), comp(), crop(), ppinext(), prenext(), postnext(), 
sOw(), sOwl(), slw(), s2w(), s3w(), dlw(), d2w(), d3w(), 
yldpost(), precost(), netpostO(), netpostl(), plcost, theta, 
netpost(), postcost(), precode%(), preAvRat(), hl%, h3%) 

CALL WSTopRev(hl%, h3%, hl2n%, h3n%, theta, netpostl(), kimax%, 
kjmax%, topnet) 

END IF 
topnet = topnet / 2 

' Myopic decision rule 
ELSE 

CALL WSTopRevMyopic(hl%, h3%, netpost(), theta, kimax%, kjmax%, 
topnet) 

END IF 

fld(f%).postname 
fld(f%).postcode 
fld(f%).postcost 
fld(f%).postload 

END SUB 

postherb(kjmax%).hname 
postherb(kjmax%).herbid 
postherb(kjmax%).unitCost * postherb(kjmax%).avrate 
postherb(kjmax%).avrate 
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SUB PPITrt (f%, nfields%, wk%, fld() AS ftype, newcost(), newload(), 
hrs, maxhrs, machine() AS mfile, ms%, mf%, preflag%) 

Last update: 01-05-91 
'*********************************************************************** 
'* 
'* 
'* Parameters passed to PPITrt 
'* f % 
'* nfields% 
'* wk% 
'* fld() 
'* newcost() 
'* hrs 
'* maxhrs 
'* machine() 
'* ms% 
'* mf % 
'* 
'*Value returned is: 
'* fld(f%).ppiweek 
'* 

PPITrt * 

* 
are: * 
Current field number * 
Number of fields * 
Current weed code * 
Record array of field information * 
Array of current week costs * 
Current week cumulative hours works * 
Number of workable hours in week * 
Record array of machinery parameters * 
Sprayer machinery code * 
Field cultivator machinery code * 

* 
* Pre-plant incorporated weed trt. week * 

for field f% * 
'* preflag% Flag for completion of PPI/PRE trt. * 
'*********************************************************************** 

IF (fld(f%).preApTim <> 1) OR (fld(f%).ppiweek <> 0) THEN EXIT SUB 

IF fld(f%).precode <> 0 THEN 
newcost(f%) = newcost(f%) + ((machine(ms%).CostAc + 

machine(mf%).CostAc + fld(f%).precost) * fld(f%).fsize) 
newload(f%) = fld(f%).preload 
hrs= hrs+ (fld(f%).fsize / machine(mf%).AcHr) + (fld(f%).fsize / 

machine(ms%).AcHr) 
ELSE 

newcost(f%) = newcost(f%) + machine(mf%).CostAc * fld(f%).fsize 
hrs= hrs+ fld(f%).fsize / machine(mf%).AcHr 

END IF 
fld(f%).ppiweek =wk% 
preflag% = true% 

END SUB 
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SUB PRESurv (f%, nfields%, wnum%, fld() AS ftype, krnax%, eff() AS kfile, 
wlgerm(), d2wf(), rain()) 

Last Update: 04-22-91 
'*********************************************************************** 
'* PRESurv * 
'* Subprogram PRESurv returns the density of surviving weeds after * 
'* implementation of the PPI or PRE weed control treatment. If less * 
'* than 0.5 inches of rain falls within a week after PRE treatment, then* 
'*herbicide treatment fails. * 
'* * '* Parameters passed to PRESurv are: * 
'* f% Current field * 
'* nfields% Number of fields on farm * 
'* wnum% Number of weeds in model * 
'* fld() Record array of field data * 
'* rain(wk) Array of weekly cumulative precipitation * 
'* krnax% Total number of records in efficacy file * 
'* eff() Record array of efficacy ratings by crop,* 
'* weed * 
'* 
'* 
'* 
'* 

wlgerm(f%,w%) Array of weed seedling densities per m2 * 
germinating after planting * 

rain() Current year rain (from GetYear) * 

* '* Arguments returned by PRESurv are: * 
'* d2wf(f%,w%) Array of weed densities surviving PPI * 
'* or PRE weed control treatment * 
'*********************************************************************** 

count% = 0 
IF fld(f%).preApTim = 2 AND rain(fld(f%).preweek + 1) < .5 THEN 

FOR w% = 1 TO wnum% 
d2wf(f%, w%) = wlgerm(f%, w%) 

NEXT w% 
EXIT SUB 

END IF 
FOR k% = 1 TO krnax% 

IF (fld(f%).precode = eff(k%).herbid AND fld(f%).preApTim 
eff(k%).aptimeid) THEN 
FOR w% = 1 TO wnum% 

IF eff(k%).weedid = w% THEN 
d2wf(f%, w%) = surv(eff(k%).effic) * wlgerm(f%, w%) 
count% = count% + 1 

END IF 
NEXT w% 

END IF 
IF count% 

NEXT k% 

END SUB 

wnum% THEN EXIT FOR 
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SUB PreTrt (f%, nfields%, wk%, fld() AS ftype, newcost(), newload(), 
hrs, maxhrs, machine() AS mfile, ms%, preflag%) 

Last update: 01-05-91 
'*********************************************************************** 
'* PRETrt * 
'* Subprogram PRETrt executes the recommended PRE treatment and * 
'* calculates associated costs and labor use. It returns these and the* 
'* week of PRE treatment to the main program. * 

'* * 
'* * 
'* Parameters passed to PRETrt are: * 
'* f% Current field * 
'* nfields% Number of fields * 
'* wk% Current weed code * 
'* fld() Record array of field information * 
'* newcost() Array of current week costs * 
'* newload() Array of current weed herb. load * 
'* hrs Current week cumulative hours works * 
'* machine() Record array of machinery parameters * 
'* ms% Sprayer machinery code * 
'* * 
'* Arguments returned are: 
'* fld(f%).preweek 
'* 

* 
Pre-emergent weed control trt. week for* 
field f% * 

'* preflag% Flag for completion of PPI/PRE trt. * 
'*********************************************************************** 

IF (fld(f%).preApTim <> 2) OR (fld(f%).plweek = 0) THEN EXIT SUB 
fld(f%).preweek =wk% 
IF fld(f%).precode <> 0 THEN 

newcost(f%) = newcost(f%) + ((machine(ms%).CostAc + fld(f%).precost) * 
fld(f%).fsize) 

newload(f%) = fld(f%).preload 
hrs= hrs+ fld(f%).fsize / machine(ms%).AcHr 

END IF 
preflag% = true% 

END SUB 
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SUB PrintinitWeedSeeds (nfields%, wnum%, state%, yr%, weedparm() AS 
wfile, sOwf ()) 

Last update: 04-25-91 
'*********************************************************************** 
'* PrintinitWeedSeeds * 
'* Subprogram PrintinitWeedSeeds prints weed seed density data * 
'* at the beginning of the current simulation year. * 
'* * 
'* Parameters passed to PrintinitWeedSeeds are: * 
'* nfields% Number of fields on farm * 
'* wnum% Number of weed species in model * 
'* state% Current state of nature * 
'* yr% Current year * 
'* weedparm() Record array of weed parameters * 
'* sOwf() Array of initial weed seed densities * 
'*********************************************************************** 

PRINT 
PRINT "Initial weed seed counts for State "; 
PRINT USING"##"; state%; 
PRINT " and Year "; 
PRINT USING "#"; yr% 
PRINT 
"- - - - - - - - - - -- - - - - - - - -- - - - -- - - ---- - - - - -- - - -- - -- --- -- - - - - - --- - - - - - - - - - - - -" 
PRINT II 

PRINT "Field II• 

' FOR w% = 1 TO wnum% 

Seedbank (seeds/m2)" 

PRINT weedparm(w%).wname; 
PRINT II 

NEXT w% 
PRINT 

II• 

' 

"----------------------------------------------------------------------" 
FOR f% = 1 TO nf ields% 

PRINT USING 11 ### 11 ; f%; 
PRINT II "; 

FOR w% = 1 TO wnum% 
PRINT II "; 

PRINT USING 11 //#////////## 11 ; s0wf(f%, w%); 
PRINT II 

NEXT w% 
PRINT 

NEXT f % 
PRINT 

II• 

' 

"----------------------------------------------------------------------11 
END SUB 
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SUB PrintRecoms (f%, cropname$, fld() AS ftype, topnet) 
Last update: 02-13-91 

'*********************************************************************** 
'* PrintRecoms * 
'* This subprogram prints weed control recommendations. 
'*Variables input to the subprogram are: 
'* f% Current field 

* 
* 
* '* cropname$ Name of current field crop * 

'* fld() Record array of field data * 
'* topnet Expected net revenue by following recoms. * 
'*********************************************************************** 

PRINT USING "###"; f%; 
PRINT II II• 

' PRINT cropname$; 
PRINT II "; 

rot%= fld(f%).rotation 
SELECT CASE rot% 

CASE 1 
PRINT "CS 

CASE 2 
PRINT "CC 

END SELECT 
PRINT II "; 

II• 

' 
II• 

' 

PRINT fld(f%).prename; 
preApTim% = fld(f%).preApTim 
SELECT CASE preApTim% 

CASE 1 
IF fld(f%).precode <> 0 THEN 

PRINT "PPI "· 
ELSE 

PRINT II 

END IF 
CASE 2 

PRINT "PRE 
END SELECT 

II• 

' 

II• 

' 

PRINT fld(f%).postname; 
PRINT II II; 
PRINT USING "######.##"; topnet 

END SUB 
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SUB ScreenHeader2 
Last update: 12/29/90 

'*********************************************************************** 
'* ScreenHeader2 * 
'* Subprogram ScreenHeader writes introductory remarks to the screen. * 
'*********************************************************************** 

PRINT 
PRINT 
PRINT 
PRINT II 

PRINT II 

PRINT II 

PRINT II 

PRINT II 

PRINT II 

PRINT II 

PRINT II 

************* 
* WFARM * 
************* 

by Scott M. Swinton 
Department of Agricultural and Applied Economics 

University of Minnesota, St. Paul, MN 55108 

II 

II 

II 

II 

II 

II 

II 

II 

PRINT "WFARM generates a weed control strategy for corn and corn-soybean 
rotations " 

PRINT "that maximizes the farmer's expected wealth. Recommendations for 
each " 

PRINT "year are based upon the decision rule elected. One rule makes 
recommendations" 

PRINT "based upon current year information only, the other rule 
incorporates expec- " 

PRINT "tations about next year's likely weed infestation. Results are 
for the whole " 

PRINT "farm, and account for field time limitations. This version is 
stochastic. " 

PRINT II 

II 

PRINT "Press any key to continue." 
'resume$ = INPUT$(1) 
CLS 
END SUB 
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SUB SummaryAnnual (wnum%, nfields%, fld() AS ftype, crop() AS cropfile, 
netrev(), load(), yldpct(), d3wf(), sOwf(), csweed(), ccweed(), 
csseed(), ccseed(), farmnr, sum() AS stype) 

Last update: 05-05-91 
'*********************************************************************** 
'* SwnmaryAnnual * 
'* This subprogram summarizes annual net revenue and herbicide load * 
'* results by crop and rotation, as well as for the whole farm. * 
'* 
'* Parameters passed to 
'* wnum% 
'* nfields% 
'* fld() 
'* crop() 
'* netrev() 
'* load() 
'* yldpct() 
'* d3wf () 
'* sOwf () 
'* farmnet 
'* net(l) 
'* net(3) 
'* net(2) 
'* lod(l) 
'* lod(3) 
'* lod(2) 
'* net(s) 
'* 
'* lod(s) 
'* 
'* ypct(s) 
'* 
'* num%(s) 
'* 
'* f armnr 
'* cssd(w),ccsd(w) 
'* cswd(w),ccwd(w) 
'* cXseed(w) 
'* 
'* cXweed(w) 
'* 
'* sum(s).nr 
'* 
'* sum( s) . sdnr 
'* 
'* sum(s).load 
'* 
'* sum(s).ypct 
'* 

SummaryAnnual are: 
Number of weed species 
Number of fields 

* 
* 
* 
* 

Record array for field characteristics * 
Record array of crop characteristics * 
Array of net revenue by field * 
Array of chemical loads by field * 
Array of percent max yield realized * 
Array of end-season weed densities * 
Array of end-season weed seed densities * 
Farm net income for year * 
Corn net income from CS rotation for year * 
Corn net income from CC rotation for year * 
Soybean net income from CS rotation for yr.* 
Mean herbicide load on corn in CS rotation * 
Mean herbicide load on corn in CC rotation * 
Mean herbicide load on soybean in CS rotatn* 
Cumulative net income from 1. Corn in CS rot 
2. Soy in CS rot., and 3. Corn in CC rot. * 
Cumulative herb. load from 1. Corn in CS rot 
2. Soy in CS rot., and 3. Corn in CC rot . * 
Cumulative yield pct. from 1. Corn in CS * 
rot., 2. Soy in CS rot., and 3. Corn in CC * 
Cumulative number fields in 1. Corn in CS * 
2. Soy in CS rot., and 3. Corn in CC rot. * 
Cumulative farm net income * 
Final seeds at harvest in CS and CC rotatns* 
Cum weeds at harvest in CS and CC rotations* 
Average cumulative ending seed density by * 
rotation (CS, CC) * 
Average cumulative ending weed density by * 
rotation (CS, CC) * 
Mean net revenue from 1. Corn in CS rotatn.* 
2. Soy in CS rot., and 3. Corn in CC rot. * 
St.dev. net rev. from 1. Corn in CS rotatn.* 
2. Soy in CS rot., and 3. Corn in CC rot. * 
Mean herb. load from 1. Corn in CS rotatn.* 
2. Soy in CS rot., and 3. Corn in CC rot. * 
Mean yield pct. from 1. Corn in CS rotatn.* 
2. Soy in CS rot., and 3. Corn in CC rot. * 
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'*********************************************************************** 
REDIM cssd(wnum%), ccsd(wnum%), cswd(wnum%), ccwd(wnum%) 
REDIM net(3), lod(3), ypct(3), num%(3) 
f armnet = 0 
FOR f% = 1 TO nf ields% 

cropnum% = fld(f%).cropid 
farmnet = farmnet + netrev(f%) 
IF fld(f%).rotation = 1 THEN 

FOR w% = 1 TO wnum% 
cswd(w%) = cswd(w%) + d3wf(f%, w%) 
cssd(w%) = cssd(w%) + s0wf(f%, w%) 

NEXT w% 
SELECT CASE cropnum% 

CASE 1 
net(l) = net(l) + netrev(f%) 
lod(l) = lod(l) + load(f%) 
ypct(l) = ypct(l) + yldpct(f%) 
num%(1) - num%(1) + 1 

CASE 2 
net(2) = net(2) + netrev(f%) 
lod(2) = lod(2) + load(f%) 
ypct(2) = ypct(2) + yldpct(f%) 
num%(2) = num%(2) + 1 

END SELECT 
ELSE 

FOR w% = 1 TO wnum% 
ccwd(w%) = ccwd(w%) + d3wf(f%, w%) 
ccsd(w%) = ccsd(w%) + s0wf(f%, w%) 

NEXT w% 
net(3) = net(3) + netrev(f%) 
lod(3) = lod(3) + load(f%) 
ypct(3) = ypct(3) + yldpct(f%) 
num%(3) = num%(3) + 1 

END IF 
NEXT f% 
f armnr = f armnr + farmnet 
FOR s% = 1 TO 3 

sum(s%).nr = sum(s%).nr + net(s%) 
sum(s%).sdnr = 0 
sum(s%).load = sum(s%).load + lod(s%) / num%(s%) 
sum(s%).ypct = sum(s%).ypct + ypct(s%) / num%(s%) 

NEXT s% 
FOR w% = 1 TO wnum% 

csweed(w%) 
ccweed(w%) 
csseed(w%) 
ccseed(w%) 

NEXT w% 
END SUB 

csweed(w%) + cswd(w%) / (num%(1) + num%(2)) 
ccweed(w%) + ccwd(w%) / num%(3) 
cssd(w%) / (nwn%(1) + num%(2)) 
ccsd(w%) / num%(3) 
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SUB SummaryScenario (scenout$, decrule%, theta, lamseeds%, wnum%, 
nstates%, sumst() AS stype, farmstnr, farmstsd, cswst(), ccwst(), 
cssst(), ccsst(), urpOOOl#, uraOOOl#, uraOOl#) 

Last update: 05-20-91 
'*********************************************************************** 
'* SummaryScenario * 
'* This subprogram summarizes end-state revenue, herbicide load, yield* 
'* percent, and weed & seed density results by crop and rotation, 
'* well as for the whole farm. 

as * 
* 

'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 

Parameters passed to 
scenout$ 
decrule% 
theta 
lamseeds% 
wnum% 
nstates% 
sumst() 
farmstnr 
farmstsd 
urpOOOl# 
uraOOOl# 
uraOOl# 
cepOOOl 

'* ceaOOOl 
'* 
'* ceaOOl 
'* 
'* cssst(w),ccsst(w) 
'* 
'* cswst(w),ccwst(w) 

SummaryScenario are: 
Name of scenario output file 
Decision rule 
Caution coefficient 
Lambsquarters initial seed density 
Number of weed species 
Number of states 

* 
* 
* 
* 
* 
* 
* 
* 

Record array of end-state summary stats. * 
Cumulative end-state mean farm income * 
Cumulative end-state mean income st. dev. * 
Utility of risk preferrer with r(x)=-.0001 * 
Utility of risk averter with r(x)~.0001 * 
Utility of risk averter with r(x)=.001 * 
Certainty equivalent mean ann NPV for * 
r(x)=-.0001 * 
Certainty equivalent mean ann NPV for * 
r(x)=.0001 * 
Certainty equivalent mean ann NPV for * 
r(x)=.001 * 
Cum end-state mean seeds at harvest in CS * 
and CC rotations * 
Cum end-state mean weeds at harvest in CS * 

'* ---- -- ----------and CC rnt-.::it-i nnc: * 
'*********************************************************************** 

FOR s% = 1 TO 3 
sumst(s%).nr = 
sumst(s%).sdnr 
sumst(s%).sdnr 
sumst(s%).load 
sumst(s%).ypct 

NEXT s% 

sumst(s%).nr / nstates% 
sumst(s%).sdnr / nstates% 
sumst(s%).sdnr A .5 
sumst(s%).load / nstates% 
sumst(s%).ypct / nstates% 

farmstnr = farmstnr / nstates% 
farmstsd = farmstsd / nstates% - farmstnr A 2 
farmstsd = farmstsd A .5 

- sumst(s%).nr A 2 

cepOOOl = (-LOG(urpOOOl# / nstates%)) / -.0001 
ceaOOOl = (-LOG(-uraOOOl# / nstates%)) / .0001 
ceaOOl = (-LOG(-uraOOl# / nstates%)) / .001 
FOR w% = 1 TO wnum% 



cswst(w%) 
ccwst(w%) 
cssst(w%) 
ccsst(w%) 

NEXT w% 

cswst(w%) / nstates% 
ccwst(w%) / nstates% 
cssst(w%) / nstates% 
ccsst(w%) / nstates% 

Filenuml = FREEFILE 
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OPEN scenout$ FOR APPEND AS #Filenuml 
WRITE #Filenuml, decrule%, theta, lamseeds%, farmstnr, farmstsd, 

cepOOOl, ceaOOOl, ceaOOl, sumst(3).nr, sumst(3).sdnr, sumst(3).load, 
sumst(3).ypct, sumst(l).nr, sumst(l).sdnr, sumst(l).load, 
sumst(l).ypct, sumst(2).nr, sumst(2).sdnr, sumst(2).load, 
sumst(2) . ypct, cswst(l), ccwst(l), cssst(l), ccsst(l), cswst(2), 
ccwst(2), cssst(2), ccsst(2), cswst(3), ccwst(3), cssst(3), ccsst ( 3) 

CLOSE #Filenuml 

END SUB 
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SUB SummaryState (wnum%, nyears%, r, sum() AS stype, farmnr, csweed() , 
ccweed(), csseed(), ccseed(), sumst() AS stype, farmstnr, farmstsd, 
cswst(), ccwst(), cssst(), ccsst(), urpOOOl#, uraOOOl#, uraOOl#, 
stateout$) 

Last update: 05-20-91 
'*********************************************************************** 
'* SummaryState * 
'* This subprogram summarizes annual net revenue and herbicide load * 
'* results by crop and rotation, as well as for the whole farm. * 
'* 
'* Parameters passed to SummaryState are: 
'* wnum% Number of weed species 

* 
* 
* 

'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 

nyears% Number of years * 
r 
sum() 
f armnr 
cXseed(w) 

cXweed(w) 

Discount rate * 
Record array of annual summary stats. * 
Cumulative annual farm net income * 
Average cumulative ending seed density by * 
rotation (CS, CC) * 
Average cumulative ending weed density by * 
rotation (CS, CC) * 

'* * 
'* Values returned by SummaryState are: * 
'* sumst() Record array of end-state summary stats. * 
'* farmstnr Cumulative end-state mean farm income * 
'* farmstsd Cumulative end-state mean income st. dev. * 
'* urpOOOl# Utility of risk preferrer with r(x)=-.0001 * 
'* uraOOOl# Utility of risk averter with r(x)=.0001 * 
'* uraOOl# Utility of risk averter with r(x)=.001 * 
'* cssst(w),ccsst(w) Cum end-state mean seeds at harvest in CS&* 
'* CC rotations * 
'* cswst(w),ccwst(w) Mean end-state weeds at harvest in CS and * 
'* CC rotations * 
'* stateout$ Name of summary state data output file * 
'*********************************************************************** 

FOR s% = 1 TO 3 
sum(s%).nr = sum(s%).nr * r / (1 - (1 + r) A -nyears%) 
sumst(s%).nr = sumst(s%).nr + sum(s%).nr 
sumst(s%).sdnr = sumst(s%).sdnr + sum(s%).nr A 2 
sumst(s%).load = sumst(s%).load + sum(s%).load / nyears% 
sumst(s%).ypct = sumst(s%).ypct + sum(s%).ypct / nyears% 

NEXT s% 
farmnr = farmnr * r / (1 - (1 + r) A -nyears%) 
farmstnr = farmstnr + farmnr 
farmstsd = farmstsd + farmnr A 2 
urpOOOl# = EXP(.0001 * farmnr) + urpOOOl# 
uraOOOl# = -EXP(-.0001 * farmnr) + uraOOOl# 
uraOOl# = -EXP(-.001 * farmnr) + uraOOl# 
FOR w% = 1 TO wnum% 



cswst(w%) 
ccwst(w%) 
cssst(w%) 
ccsst(w%) 

NEXT w% 
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cswst(w%) + csweed(w%) / nyears% 
ccwst(w%) + ccweed(w%) / nyears% 
cssst(w%) + csseed(w%) 
ccsst(w%) + ccseed(w%) 

Filenum4 ~ FREEFILE 
OPEN stateout$ FOR APPEND AS #Filenum4 
WRITE #Filenum4, sum(l).nr, sum(l).load / nyears%, sum(l).ypct / 

nyears%, sum(2).nr, sum(2).load / nyears%, sum(2).ypct / nyears%, 
sum(3).nr, sum(3).load / nyears%, sum(3).ypct / nyears%, csweed(l) / 
nyears%, ccweed(l) / nyears%, csseed(l), ccseed(l), csweed(2) / 
nyears%, ccweed(2) / nyears%, csseed(2), ccseed(2), csweed(3) / 
nyears%, ccweed(3) / nyears%, csseed(3), ccseed(3) 

CLOSE #Filenum4 
END SUB 

FUNCTION surv (x%) 
Last update: 4/27/91 

'********************************************************************** 
'* surv * 
'* This function transforms WEEDIR weed control values for corn into * 
'*weed survival rates (0,.1, .3, .5, .7, .9) (Kidder et al., Durgan et al) 
'* * 
'* Parameter passed to function surv is: * 
'* x% WEEDIR efficacy rating (0,1,2,3,4 or 5) 
'* * 
'* Value returned by function surv is: * 
'* surv Proportion of weeds surviving treatment 
'********************************************************************** 

IF x% <> 0 THEN 
surv = 1 - .2 * x% + .1 

ELSE 
surv = 1 

END IF 
END FUNCTION 
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SUB WeedGrowth (f%, wk%, wnum%, weed() AS wfile, fld() AS ftype, 
weed.Ht(), epswgrow(), betawgro()) 

Last update 06-06-91 
'*********************************************************************** 
'* WeedGrowth * 
'* This subprogram "grows" the weeds in each field as a function of * 
'* the number of days since preplant-incorporated (PPI) or pre-emergent* 
'* (PRE) weed control. * 
'* * 
'* Parameters passed to WeedGrowth are: 
'* f% Current field number 
'* 
'* 
'* 
'* 
'* 
'* 
'* 

wk% 
wnurn% 
weed() 
fld() 
epswgrow(w) 
betawgro(w) 

Current week number 
Number of weeds in the model 
Record array of weed parameters 
Record array of field data 
Array of additive error terms 
Array of coef . error terms 

* 
* 
* 
* 
* 
* 
* 
* 
* 

'* Arguments returned by WeedGrowth are: * 
'* weed.Ht(f%,w%) Array of weed heights (inches) in each * 
'* field * 
'*********************************************************************** 

IF fld(f%).precode <> 0 THEN 
IF fld(f%).preApTim = 1 THEN 

dap% =(wk% - fld(f%).plweek) * 7 
ELSEIF fld(f%).preApTim = 2 THEN 

dap% =(wk% - fld(f%).preweek) * 7 
END IF 

ELSE 
dap% 

END IF 
(wk% - fld(f%).plweek) * 7 

IF dap% > 0 THEN 
FOR w% = 1 TO wnum% 

IF fld(f%).cropid = 2 THEN 
sigwdgro = weed(w%).sigwint + weed(w%).sigwdap2 * dap% A 2 
IF sigwdgro < 0 THEN sigwdgro = 0 
ELSE 
sigwdgro = 1 

END IF 
weed.Ht(f%, w%) = (weed(w%).growrate + betawgro(w%)) * dap% A 2 + 

sigwdgro * epswgrow(w%) 
NEXT w% 

END IF 

END SUB 
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SUB WEEDSIM (f% , wnum%, hl%, h2%, h3%, mf%, ms%, mr%, mp%, t%, r, 
sOwf(), fld() AS ftype, cropnum%, crop() AS cropfile, weed() AS wfi l e, 
kl%(), k2%(), k3%(), ppiherb() AS hfile, preherb() AS hfile, 
postherb() AS hfile, mach() AS mfile, compmax%, comp() AS cfile, 
theta, nyears%, netpost(), hln%, h2n%, h3n%, kln%(), k2n%(), k3n%() , 
ppinext() AS hfile, prenext() AS hfile, postnext() AS hfile, decrule %) 
STATIC 

Last update: 05/05/91 
'*********************************************************************** 
'* WEEDSIM * 
'* Subprogram WEEDSIM recommends the net-revenue-maximizing weed * 
'* treatment strategy pair (PRE,POST) for the current year, ignoring * 
'* future ramifications of current action. * 
'* * 
'* Parameters passed to WEEDSIM are: * 
'* f% Field number * 
'* wnum% Number of weed species * 
'* nyears% Number of years modeled * 
'* hl% Number of PPI treatments * 
'* h2% Number of PRE treatments * 
'* h3% Number of POST treatments * 
'* hln% Number of PPI treatments (next year) * 
'* h2n% Number of PRE treatments (next year) * 
'* h3n% Number of POST treatments (next year) * 
'* mf%, ms%, mr%, mp% Field cultivator, sprayer, rotary hoe , * 
'* and planter machinery codes * 
'* decrule% Decision rule code * 
'* ywf Weed-free yield * 
'* t% Year * 
'* r Discount rate * 
'* s0wf(w%) Array of initial seedbank densities i n * 
'* this field * 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 

fld() 
cropnum% 
crop() 
weed() 
kl%(),k2%(),k3%() 

kln%(),k2n%(),k3n%() 

ppiherb() 
preherb() 
postherb() 
ppinext() 
prenext() 
postnext() 
mach() 
compmax% 
comp() 

Record array of field data * 
Crop code for current field * 
Record array of crop parameters * 
Record array of weed parameters * 
Arrays of efficacy ratings (PPI,PRE, * 
POST) * 
Arrays of efficacy ratings (PPI,PRE, * 
POST) (for next year) * 
Record array of PPI treatment paramete rs 
Record array of PRE treatment paramete rs 
Record array of POST treatment params . * 
Record array of PPI next yr trt params * 
Record array of PRE next yr trt params * 
Record array of POST next yr trt params* 
Record array of machinery parameters * 
Number of obs. in competition array * 
Record array of weed-crop competition * 



'* 
'* 
'* 
'* 
'* 
'* 
'* 

theta 

dlw() , d2w() 

netpost() 
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data 
Proportion by which weed treatment 
threshold net revenue to exceed no 
control net revenue level. 
Arrays of emerged weed densities in 
field 
Array of expected net returns 

* 
* 
* 
* 
* 
* 
* 

'* * 
'* Arguments returned by WEEDSIM are: * 
'* fld(f%).precode Recommended PPI/PRE treatment code * 
'* fld(f%).preApTim Recommended PPI or PRE application t i me* 
'* fld(f%).prename Recommended PPI or PRE treatment name * 
'* fld(f%).precost Cost per acre of recommended PPI/PRE t rt 
'* fld(f%).preload Quantity of active chem. ingredient/ac * 
'* fld(f%).postcode Recommended POST treatment code * 
'* fld(f%).postname Recommended POST treatment name * 
'* fld(f%).postcost Cost per acre of recommended POST trt . * 
'* fld(f%).postload Quantity of active chem. ingredient/ac * 
'*********************************************************************** 

SHARED topnet 
hl2% = hl% + h2% - 1 
hl2n% = hln% + h2n% - 1 
REDIM precode%(hl2%), preAvRat(hl2%) 
REDIM s0w(wnum%), slw(wnum%), s2w(wnum%), dlw(wnum%) 
REDIM wO(wnum%), wl(wnum%), w2(wnum%) 
REDIM d2w(wnum%, hl2%), precost(hl2%) 
REDIM d3w(wnum%, hl2%, h3%), d3wij(wnum%), s3w(wnum%), postcost(hl2% , 

h3%) 
REDIM s0wl(wnum%, hl2%, h3%), yldpost(hl2%, h3%), netpost(hl2%, h3%) 
FOR w% = 1 TO wnum% 

s0w(w%) = s0wf(f%, w%) 
w0(w%) = (weed(w%).avgerm * weed(w%).s0propn * s0wf(f%, w%)) + 

(weed(w%).w0int + weed(w%).w0s * s0wf(f%, w%) + weed(w%).w0s2 * 
s0wf(f%, w%) A 2) 

wl(w%) = (weed(w%).avgerm * weed(w%).slpropn * s0wf(f%, w%)) + 
(weed(w%).wlint + weed(w%).wls * s0wf(f%, w%) + weed(w%).wls2 * 
s0wf(f%, w%) A 2) 

w2(w%) = (weed(w%).avgerm * weed(w%).s2propn * s0wf(f%, w%)) + 
(weed(w%).w2int + weed(w%).w2s * s0wf(f%, w%)) 

NEXT w% 
plcost = crop(cropnum%).seedRate * crop(cropnum%) . seedPric + 

mach(mp%).CostAc 
CALL WSWeedGerm(wnum%, weed(), sOw(), slw(), s2w(), dlw(), wO(), wl() ) 
CALL WSPreTrt(wnum%, hl%, h2%, mf%, ms%, kl%(), k2%(), dlw(), 

fld(f%).ywf, ppiherb(), preherb(), mach(), fld(f%).fsize, plcost, 
hl2%, d2w(), precost(), precode%(), preAvRat()) 

CALL WSPostTrt(cropnum%, wnum%, hl2%, h3%, crop(fld(f%).cropld).expMaxY, 
fld(f%).rotation, k3%(), d2w(), sOw(), s2w(), weed(), crop(), 
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precode%(), preAvRat(), postherb(), compmax%, comp(), mach(), ms%, 
mr%, fld(f%).fsize, d3w(), d3wij(), s3w(), yldpost(), postcost(), 
w2()) 

CALL WSSeedBank(wnum%, hl2%, h3%, d3w(), s3w(), weed(), sOwl(), w2() ) 
CALL WSPostRev(hl2%, h3%, crop(cropnum%).price, yldpost(), postcost( ) , 

precost(), t%, r, fld(f%).fsize, crop(cropnum%).vc, netpost()) 
IF (t% + 1) < nyears% AND decrule% = 2 THEN 
' Foresighted decision rule (2-year horizon) 

REDIM netpostO(hl2%, h3%), netpostl(hl2%, h3%, h12n%, h3n%) 
FOR i% = 1 TO hl2% 

FOR j% = 1 TO h3% 
netpostO(i%, j%) = netpost(i%, j%) 

NEXT j % 
NEXT i% 
REDIM precode%(hl2n%), preAvRat(hl2n%) 
REDIM d2w(wnum%, hl2n%), precost(hl2n%) 
REDIM d3w(wnum%, hl2n%, h3n%), postcost(hl2n%, h3n%) 
REDIM yldpost(hl2n%, h3n%), netpost(hl2n%, h3n%) 
IF fld(f%).rotation = 1 THEN 

nextcrop% = 1 + cropnum% MOD 2 
plcost = crop(nextcrop%).seedRate * crop(nextcrop%).seedPric + 

mach(mp%).CostAc 
CALL WSNextYear(f%, wnum%, nextcrop%, compmax%, hln%, h2n%, hl2n%, 

h3n%, t%, r, mf%, ms%, mr%, mp%, kln%(), k2n%(), k3n%(), fld() , 
weed(), mach(), comp(), crop(), ppinext(), prenext(), postnext ( ), 
sOw(), sOwl(), slw(), s2w(), s3w(), dlw(), d2w(), d3w(), 
yldpost(), precost(), netpostO(), netpostl(), plcost, theta, 
netpost(), postcost(), precode%(), preAvRat(), hl2%, h3%) 

CALL WSTopRev(hl2%, h3%, hl2n%, h3n%, theta, netpostl(), kimax%, 
kjmax%, topnet) 

ELSE 
nextcrop% = cropnum% 
plcost = crop(nextcrop%).seedRate * crop(nextcrop%).seedPric + 

mach(mp%).CostAc 
CALL WSNextYear(f%, wnum% , nextcrop%, compmax%, hl%, h2%, hl2%, h 3%, 

t%, r, mf%, ms%, mr%, mp%, kl%(), k2%(), k3%(), fld(), weed(), 
mach(), comp(), crop(), ppiherb(), preherb(), postherb(), sOw( ) , 
sOwl(), slw(), s2w(), s3w(), dlw(), d2w(), d3w(), yldpost(), 
precost(), netpostO(), netpostl(), plcost, theta, netpost(), 
postcost(), precode%(), preAvRat(), hl2%, h3%) 

CALL WSTopRev(hl2%, h3%, hl2%, h3%, theta, netpostl(), kimax%, 
kjmax%, topnet) 

END IF 
topnet = topnet / 2 

'Myopic decision rule 
ELSE 

CALL WSTopRevMyopic(hl2%, h3%, netpost(), theta, kimax%, kjmax%, 
topnet) 

END IF 



SELECT CASE kimax% 
CASE IS <= hl% 

fld(f%).preApTim = 1 
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fld(f%).prename = ppiherb(kimax%).hname 
fld(f%).precode = ppiherb(kimax%).herbid 
fld(f%).precost = ppiherb(kimax%).unitCost * ppiherb(kimax%).avrate 
fld(f%).preload = ppiherb(kimax%).avrate 

CASE IS > hl% 
fld(f%).preApTim = 2 
fld(f%).prename = preherb(kimax% - hl% + l).hname 
fld(f%).precode = preherb(kimax% - hl% + l).herbid 
fld(f%).precost = preherb(kimax% - hl% + l).unitCost * 

preherb(kimax% - hl% + l).avrate 
fld(f%).preload = preherb(kimax% - hl% + l).avrate 

END SELECT 
fld(f%).postname = postherb(kjmax%).hname 
fld(f%).postcode = postherb(kjmax%).herbid 
fld(f%).postcost = postherb(kjmax%).unitCost * postherb(kjmax%) . avrate 
fld(f%).postload = postherb(kjmax%).avrate 

END SUB 
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SUB WSNextYear (f%, wnum%, cropnum%, compmax%, hl%, h2%, hl2%, h3%, t%, 
r, mf%, ms%, mr%, mp%, kl%(), k2%(), k3%(), fld() AS ftype, weed() AS 
wfile, mach() AS mfile, comp() AS cfile, crop() AS cropfile, ppiherb() 
AS hfile, preherb() AS hfile, postherb() AS hfile, sOw(), sOwl(), 
slw(), s2w(), s3w(), dlw(), d2w(), d3w(), yldpost(), precost(), 
netpostO(), netpostl(), plcost, theta, netpost(), postcost(), 
precode%(), preAvRat(), hl2o%, h3o%) STATIC 

Last update: 05/01/91 
'*********************************************************************** 
'* WSNextYear * 
'* For each weed treatment strategy pair (PRE,POST) in the current year, 
'* subprogram WSNextYear calcuates discounted net returns to each * 
'* possible strategy pair in the next crop season. * 
'* 
'* Parameters passed to WSNextYear are: 

* 
* 
* '* f% Current field number 

'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 

cropnum% 
wnum% 
compmax% 
hl% 
h2% 
hl2% 
h3% 
h12o% 
h3o% 
s0wl%(w%,i%,j%) 

ywf 
t% 
r 
mf%, ms%, mr%, mp% 

mach() 
crop() 
comp() 
weed() 
s0w(),slw(),s2w(),s3w() 
s0germ(w%) 
slgerm(w%) 
s2germ(w%) 
fld() 
cropnum% 
kl%(),k2%(),k3%() 
ppiherb() 
preherb() 
postherb() 
compmax% 
theta 

Current field crop number * 
Number of weed species * 
Maximum number of obs. in weed comp file 
Number of PPI treatments (next year) * 
Number of PRE treatments (next year) * 
Number of PPI +PRE trts. (next year) * 
Number of POST treatments (next year) * 
Number of PPI/PRE treatments (this year) 
Number of POST treatments (this year) * 
Array of seedbank outcomes from current* 
year by PRE & POST treatment * 
Weed-free yield * 
Year * 
Discount rate * 
Field cultivator, sprayer, rotary hoe, * 
and planter machinery codes * 
Record array of machinery data * 
Record array of crop data * 
Record array of weed competition data * 
Record array of weed parameters * 
Arrays of seedbank densities * 
Array of pre-plant germination rates * 
Array of germ. rates before POST trt. * 
Array of germ. rates after POST trt. * 
Record array of field data * 
Crop code for current field * 
Arrays of effic. ratings (PPI,PRE,POST)* 
Record array of PPI treatment parameters 
Record array of PRE treatment parameters 
Record array of POST treatment params. * 
Number of obs. in competition array * 
Proportion by which weed treatment * 
threshold net revenue to exceed no * 



'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 

dlw(),d2w(),d3w() 
precost() 
precode%() 
preAvRat() 
postcost() 
plcost 
yldpost() 
netpostO() 
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control net revenue level. * 
Arrays of emerged weed densities * 
Array of costs before POST trt. * 
Array of PPI/PRE codes * 
Array of average herbicide rates * 
Array of costs from POST trt. * 
Cost of planting * 
Array of expected yields * 
Array of expected net returns (cur. yr)* 

'* * 
'* Arguments output by WSNextYear are: * 
'* netpostl(i,j,k,l) Array of discounted net returns * 
'* resulting from all combinations of * 
'* treatments over two years. * 
'*********************************************************************** 
REDIM s0wtemp(wnum%), d3wij(wnum%) 
REDIM Ew0(wnum%), Ewl(wnum%), Ew2(wnum%) 
tt% = t% + 1 
FOR i% = 1 TO hl2o% 

FOR j% = 1 TO h3o% 
FOR w% = 1 TO wnum% 

s0wtemp(w%) = s0wl(w%, i%, j%) 
Ew0(w%) = (weed(w%).avgerm * weed(w%).s0propn * s0wtemp(w%)) + 

(weed(w%).w0int + weed(w%).w0s * s0wtemp(w%) + weed(w%).w0s2 * 
s0wtemp(w%) A 2) 

Ewl(w%) = (weed(w%).avgerm * weed(w%).slpropn * s0wtemp(w%)) + 
(weed(w%).wlint + weed(w%).wls * s0wtemp(w%) + weed(w%).wls2 * 
s0wtemp(w%) A 2) 

Ew2(w%) = (weed(w%).avgerm * weed(w%).s2propn * s0wtemp(w%)) + 
(weed(w%).w2int + weed(w%).w2s * s0wtemp(w%)) 

NEXT w% 
maxyld = crop(cropnum%).expMaxY 
rot%= fld(f%).rotation 
fsize% = fld(f%).fsize 
CALL WSWeedGerm(wnum%, weed(), sOwtemp(), slw(), s2w(), dlw(), 

EwO(), Ewl()) 
CALL WSPreTrt(wnum%, hl%, h2%, mf%, ms%, kl%(), k2%(), dlw(), 

fld(f%).ywf, ppiherb(), preherb(), mach(), fld(f%).fsize, plcost, 
hl2%, d2w(), precost(), precode%(), preAvRat()) 

CALL WSPostTrt(cropnum%, wnum%, hl2%, h3%, maxyld, rot%, k3%(), 
d2w(), sOw(), s2w(), weed(), crop(), precode%(), preAvRat(), 
postherb(), compmax%, comp(), mach(), ms%, mr%, fsize%, d3w(), 
d3wij(), s3w(), yldpost(), postcost(), Ew2()) 

CALL WSPostRev(hl2%, h3%, crop(cropnum%).price, yldpost(), 
postcost(), precost(), tt%, r, fld(f%).fsize, crop(cropnum%).vc, 
netpost()) 

FOR k% = 1 TO hl2% 
FOR 1% = 1 TO h3% 

netpostl(i%, j%, k%, 1%) netpostO(i%, j%) + netpost(k%, 1%) 



NEXT 1% 
NEXT k% 

NEXT j % 
NEXT i% 
END SUB 
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SUB WSPostRev (hl2%, h3%, p, yldpost(), postcost(), precost(), t%, r, 
fldSize%, vc, netpost()) 

Last update: 02/05/91 
'********************************************************************** 
'* WSPostRev * 
'* This subprogram calculates the present value of net revenue by 
'* treatment pair after POST treatment. 
'* 

* 
* 
* 

'* Parameters passed to subprogram PostRev are: * 
'* hl2% Number of PPI/PRE treatments * 
'* h3% Number of POST treatments * 
'* p Price of crop * 
'* yldpost(i,j) Array of expected prdn. after POST trt* 
'* postcost(i,j) Array of POST treatment costs * 
'* precost(i) Array of PRE treatment costs * 
'* t% Year * 
'* 
'* 
'* 
'* 
'* 

r 
fldSize% 
vc 

Discount rate 
Field size 
Variable cost/acre for crop (net of 
weed trt) 

* 
* 
* 
* 
* 

'* Variables returned by subprogram PostRev are: * 
'* netpost(i,j) Present value of net revenue by trt pair 
'********************************************************************** 

FOR i% = 1 TO hl2% 
FOR j% = 1 TO h3% 

netpost(i%, j%) = ((p * yldpost(i%, j%) - vc) * fldSize% -
(postcost(i%, j%) + precost(i%))) / (1 + r) A t% 

'PRINT i%, j%, netpost(i%, j%) 
NEXT j% 

NEXT i% 
'resume$ 
END SUB 

INPUT$(1) 
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SUB WSPostReviseTrt (cropnum%, wnum%, hl%, h3%, ywf, rot%, k3%(), d2w(), 
sOw(), s2w(), weedparm() AS wfile, crop() AS cropfile, precode%(), 
preAvRat(), postherb() AS hfile, compmax%, compparm() AS cfile, 
sprayCst, fldSize%, d3w(), d3wij(), s3w(), yldpost(), postcost(), 
w2(), dropcode%, dropost%()) 

Last update: 04/29/91 
'*********************************************************************** 
'* WSPostReviseTrt * 
'* This subprogram calculates density of surviving weeds, adds late * 
'* germinating weeds, estimates crop yields, and updates the weed * 
'* seedbank after POST-emergent treatment. If atrazine (code 103) * 
'* PRE and POST rate will exceed 3 lbs/acre, yield is set at zero (in * 
'*order to exclude illegal use of atrazine). * 

'* * 
'* Parameters passed 
'* cropnum% 
'* wnum% 
'* hl%=1 
'* h3% 
'* k3%(w%,j%) 
'* 
'* w2(w%,i%) 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 

s0w(w%) 
s2w(w%) 
weedparm() 
compparm() 
comp max% 
crop() 
ywf 
rot% 
sprayCst 
fldSize% 
precode%() 
preAvRat() 
postherb () 
drop code% 
dropost%(j) 

to WSPostReviseTrt are: 
Code of current field crop 
Number of weed species 
Number of PPI/PRE treatments 
Number of POST treatments 

* 
* 
* 
* 
* 

Array of POST efficacy ratings by weed * 
species and treatment * 
Array of emerged weed seedlings by PRE * 
treatment * 
Array of initial weed seedbank densitie* 
Array of seedbank densities after PRE * 
Array of weed germination, death params* 
Array of competition parameters * 
Number of records in compparm() * 
Record array of crop data * 
Expected weed-free yield * 
Rotation * 
Cost of spraying * 
Field size * 
PPI/PRE treatment codes array * 
PPI/PRE treatment avg. rates array * 
POST treatment parameter array * 
Code for infeasible recommended POST trt 
Array of infeasible POST treatments * 

'* * 
'* Variables returned by WSPostReviseTrt are: * 
'* d3w(w%,i%,j%) Array of weed densities at harvest by * 
'* PRE and POST treatments. Assumes cult.* 
'* kills 80% of d2w(). * 
'* s3w(w%) Array of weed seed densities at harvest* 
'* yldpost(i%,j%) Array of expected field crop production* 
'* by PRE & POST treatments * 
'* postcost(j%) Array of POST treatment costs * 
'*********************************************************************** 



FOR i% = 1 TO hl% 
FOR j% = 1 TO h3% 
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IF dropcode% = postherb(j%).herbid THEN 
dropost%(j%) = true% 
dropcode% = -1 

END IF 
FOR wl% = 1 TO wnum% 

IF dropost%(j%) = true% THEN 
kill3% = -9 
ELSE 
kill3% k3%(wl%, j%) 

END IF 

d3w(wl%, i%, j%) = surv(k3%(wl%, j%)) * d2w(wl%, i%) + 
weedparm(wl%).s2germ * s2w(wl%) 

d3w(wl%, i%, j%) = surv(kill3%) * d2w(wl%, i%) + w2(wl%) 
d3wij(wl%) = d3w(wl%, i%, j%) 

NEXT wl% 
yldpost(i%, j%) = yield2(wnum%, ywf, cropnum%, compmax%, compparm(), 

crop(), d3wij()) 
IF (precode%(i%) = 103 AND postherb(j%).herbid = 103 AND 

(preAvRat(i%) + postherb(j%).avrate > 3)) THEN yldpost(i%, j%) = 0 
IF (rot%= 1) AND (precode%(i%) = 103 OR postherb(j%).herbid = 103) 

THEN yldpost(i%, j%) = 0 
IF postherb(j%).herbid = 0 THEN 

appcost = 0 
ELSE 
appcost 

END IF 
sprayCst 

postcost(i%, j%) = (postherb(j%).unitCost * postherb(j%).avrate + 
appcost) * fldSize% 

NEXT j% 
NEXT i% 

FOR w% = 1 TO wnum% 
s3w(w%) = (1 - weedparm(w%).s2germ) * s2w(w%) - weedparm(w%).s3death 

* s0w(w%) 
s3w(w%) = s2w(w%) - w2(w%) - weedparm(w%).s3mortpn * (1 -

weedparm(w%).avgerm) * s0w(w%) 
NEXT w% 
END SUB 
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SUB WSPostTrt (cropnum%, wnum%, hl2%, h3%, ywf, rot%, k3%(), d2w(), 
sOw(), s2w(), weedparm() AS wfile, crop() AS cropfile, precode%(), 
preAvRat(), postherb() AS hfile, compmax%, compparm() AS cfile, mach() 
AS mfile, ms%, mr%, fldSize%, d3w(), d3wij(), s3w(), yldpost(), 
postcost(), w2()) STATIC 

Last update 04/22/91 
'*********************************************************************** 
'* WSPostTrt 
'* This subprogram calculates density of surviving weeds, adds late 
'* germinating weeds, estimates crop yields, and updates the weed 
'* seedbank after POST-emergent treatment. If atrazine (code 103) 

* 
* 
* 
* 
* 
* 
* 

'* PRE and POST rate will exceed 3 lbs/acre, yield is set at zero (in 
'*order to exclude illegal use of atrazine). 
'* 
'* Parameters passed to WSPostTrt are: * 
'* cropnum% Code for current field crop * 
'* wnum% Number of weed species * 
'* hl2% Number of PPI/PRE treatments * 
'* h3% Number of POST treatments * 
'* compmax% Number of records in compparm() * 
'* ms%,mr% Sprayer and rotary hoe machine codes * 
'* fldSize% Field size * 
'* k3%(w%,j%) Array of POST efficacy ratings by weed* 
'* species and treatment * 
'* d2w(w%,i%) Array of emerged weed seedlings by PRE* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 

w2(w) 
s0w(w%) 
s2w(w%) 
weedparm() 
compparm() 
crop() 
mach() 
ywf 
rot% 
precode%() 
preAvRat() 
postherb() 

treatment * 
Expected post-cult weed emergence * 
Array of initial weed seedbank densitie* 
Array of seedbank densities after PRE * 
Array of weed germination, death params* 
Array of competition parameters * 
Record array of crop data * 
Record array of machinery data * 
Expected weed-free yield * 
Rotation * 
PPI/PRE treatment codes array * 
PPI/PRE treatment avg. rates array * 
POST treatment parameter array * 

* 
'* Variables returned by WSPostTrt are: * 
'* d3w(w%,i%,j%) Array of weed densities at harvest by * 
'* PRE and POST treatments. Assumes cult.* 
'* kills 80% of d2w(). * 
'* s3w(w%) Array of weed seed densities at harvest* 
'* yldpost(i%,j%) Array of expected field crop production* 
'* by PRE & POST treatments * 
'* postcost(j%) Array of POST treatment costs * 
'*********************************************************************** 



REDIM seedmort(wnum%) 

FOR i% = 1 TO hl2% 
FOR j% = 1 TO h3% 

FOR wl% = 1 TO wnum% 
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d3w(wl%, i%, j%) = surv(k3%(wl%, j%)) * d2w(wl%, i%) + 
weedparm(wl%).s2germ * s2w(wl%) 

d3w(wl%, i%, j%) = surv(k3%(wl%, j%)) * d2w(wl%, i%) + w2(wl%) 
d3wij(wl%) = d3w(wl%, i%, j%) 

NEXT wl% 
yldpost(i%, j%) = yield2(wnum%, ywf, cropnum%, compmax%, compparm( ), 

crop(), d3wij()) 
IF (precode%(i%) = 103 AND postherb(j%).herbid = 103 AND 

(preAvRat(i%) + postherb(j%).avrate > 3)) THEN yldpost(i%, j%) = 0 
IF (rot%= 1) AND (precode%(i%) = 103 OR postherb(j%).herbid = 103) 

THEN yldpost(i%, j%) = 0 
IF postherb(j%).herbid = 0 THEN 

appcost = 0 
ELSEIF postherb(j%).herbid - 10 THEN 

appcost = mach(mr%).CostAc 
IF cropnum% = 1 THEN yldpost(i%, j%) = .985 * yldpost(i%, j%) 
'NB: This 1.5% yield loss corresponds to stand loss of 2-5% 

(Gunsolus) 
ELSE 
appcost = mach(ms%).CostAc 

END IF 
postcost(i%, j%) = (postherb(j%).unitCost * postherb(j%).avrate + 

appcost) * fldSize% 
'PRINT USING "######"; i%; j%; d3w(l, i%, j%); yldpost(i%, j%); 

postcost(i%, j%) 
NEXT j% 

NEXT i% 
'resume$ INPUT$(1) 

FOR w% = 1 TO wnum% 
s3w(w%) = (1 - weedparm(w%).s2germ) * s2w(w%) - weedparm(w%).s3death 

* s0w(w%) 
s3w(w%) = s2w(w%) - w2(w%) - weedparm(w%).s3mortpn * (1 -

weedparm(w%).avgerm) * s0w(w%) 
NEXT w% 
END SUB 
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SUB WSPreTrt (wnum%, hl%, h2%, mf%, ms%, kl%(), k2%(), dlw(), ywf, 
ppiherb() AS hfile, preherb() AS hfile, mach() AS mfile, fldSize%, 
plcost, hl2%, d2w(), precost(), precode%(), preAvRat()) 

Last update: 02/05/91 
'*********************************************************************** 
'* WSPreTrt * 
'* This subprogram calculates density of surviving weeds and corres- * 
'* ponding yields after PRE-emergent treatment. * 
'* * 
'* Parameters passed to subprogram WSPreTrt are: * 
'* wnum% Number of weed species in model * 
'* hl% Number of PPI treatments * 
'* h2% Number of PRE treatments * 
'* hl2% Number of PPI + PRE treatments (-1) * 
'* mf% User-designated field cultivator code * 
'* ms% User-designated spray rig machinery code 
'* kl%(w%,g%) Array of PPI efficacy ratings * 
'* k2%(w%,i%) Array of PRE efficacy ratings for contrl 
'* i% on weed species w% * 
'* dlw(w%) Array of weed densities prior to PRE trt 
'* ywf Weed-free yield for this field * 
'* ppiherb() Record array of PPI trt. costs, rates * 
'* preherb() Record array of PRE trt. costs, rates * 
'* fldSize% Field size (acres) * 
'* mach() Array of machinery names, costs, rates * 
'* plcost Cost of planting crop * 
'* fldSize% Field size * 
'* * 
'* Variables returned by subprogram WSPreTrt are: * 
'* d2w(w%,i%) Array of emerged weed densities * 
'* precost(i%) Array of total PRE treatment costs * 
'* preAvRat(i%) Array of PRE/PPI average rates * 
'* precode%(i) Array of PRE/PPI treatment codes * 
'*********************************************************************** 
FOR g% = 1 TO hl% 

FOR w% = 1 TO wnum% 
d2w(w%, g%) = surv(kl%(w%, g%)) * dlw(w%) 

NEXT w% 
IF ppiherb(g%).herbld = 0 THEN 

appcost = mach(mf%).CostAc 
ELSE 
appcost 

END IF 
(mach(mf%).CostAc + rnach(ms%).CostAc) 

precost(g%) = (ppiherb(g%).unitCost * ppiherb(g%).avrate + appcost + 
plcost) * fldSize% 

precode%(g%) = ppiherb(g%).herbld 
preAvRat(g%) = ppiherb(g%).avrate 

NEXT g% 
j% = hl% 



258 

FOR i% = 1 TO h2% 
IF preherb(i%).herbld = 0 THEN GOTO DropNoControl: 
j% = j% + 1 
FOR w% = 1 TO wnum% 

d2w(w%, j%) = surv(k2%(w%, i%)) * dlw(w%) 
NEXT w% 
appcost = (mach(mf%).CostAc + mach(ms%).CostAc) 
precost(j%) = (preherb(i%).unitCost * preherb(i%).avrate + appcost + 

plcost) * fldSize% 
precode%(j%) = preherb(i%).herbld 
preAvRat(j%) = preherb(i%).avrate 

DropNoControl: 
NEXT i% 
END SUB 
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SUB WSSeedBank (wnum%, hl2%, h3%, d3w(), s3w(), weed() AS wfile, sOwl(), 
w2()) 

Last update: 05-02-91 
'*********************************************************************** 
'* WSSeedBank * 
'* This subprogram calculates the post-harvest weed seed bank for each* 
'* species. 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 

Parameters passed to subprogram WSSeedBank are: 
wnum% Number of weed species 
hl2% Number of PPI/PRE treatments 
h3% Number of POST treatments 
d3w(w%,i%,j%) 

s3w(w) 
w2(w) 
weed(w%).wlpropag 

Array of weed densities at harvest for each 
PRE/PPI and POST treatment. 
Post-cult weed seed density 
Post-cult weed germination 
Mean seeds per mature post-plant weed 
NB: 80% post-plant weeds assumed killed by 
cultivation 

weed(w%).w2propag Mean seeds per mature post-cult. weed 
experr(w) Array of expected values for error term 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

'* Variables returned by subprogram WSSeedBank are: * 
'* s0wl(w%,i%,j%) Array of expected seed bank densities post- * 
'* harvest, by weed species and PPI/PRE and POST* 
'*********************************************************************** 
REDIM experr(wnum%) 
experr(l) = 407 
experr(2) = 95 
experr(3) = 198 
FOR i% = 1 TO hl2% 

FOR j% = 1 TO h3% 
FOR w% = 1 TO wnum% 

s0wl(w%, i%, j%) = s3w(w%) + weed(w%).wlpropag * .2 * (d3w(w%, i%, 
j%) - w2(w%)) + weed(w%).w2propag * w2(w%) + experr(w%) 

IF s0wl(w%, i%, j%) < 0 THEN s0wl(w%, i%, j%) = 0 
NEXT w% 

NEXT j% 
NEXT i% 
END SUB 
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SUB WSTopRev (hl2o%, h3o%, hl2%, h3%, theta, netpostl(), kimax%, kjmax%, 
topnet) 

Last update: 02/12/91 
'*********************************************************************** 
'* WSTopRev * 
'* This subprogram identifies the strategy with the highest net revenue* 
'* exceeding the B/C threshold. * 
'* * 
'* Parameters passed to subprogram WSTopRev are: * 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 

hl2% 
h3% 
hl2o% 
h3o% 
netpostl(i,j,m,n) 
theta 

Number of PPI/PRE treatments (year 0) * 
Number of POST treatments (year 0) * 
Number of PPI/PRE treatments (year 1) * 
Number of POST treatments (year 1) * 
Array of net revenues from 2-yrs strats* 
Proportion by which weed treatment * 
threshold net revenue to exceed no * 
control net revenue level. * 

* 
'* Variables returned by subprogram WSTopRev are: * 
'* topnet Highest net revenue of 2-yrs strategies* 
'* kimax% PRE trt. no. earning highest net revenue 
'* kjmax% POST trt. no. earning highest net rev. * 
'*********************************************************************** 

topnet = (1 + theta) * netpostl(l, 1, 1, 1) 
kimax% = 1 
kjmax% = 1 
FOR i% = 1 TO hl2o% 

FOR j% = 1 TO h3o% 
FOR m% = 1 TO hl2% 

FOR n% = 1 TO h3% 
IF netpostl(i%, j%, m%, n%) > topnet THEN 

topnet = netpostl(i%, j%, m%, n%) 
kimax% = i% 
kjmax% = j% 

END IF 
NEXT n% 

NEXT m% 
NEXT j % 

NEXT i% 
ERASE netpostl 
END SUB 
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SUB WSTopRevMyopic (hl2%, h3%, netpost(), theta, kimax%, kjmax%, topnet) 
Last update: 04/21/91 

'*********************************************************************** 
'* WSTopRevMyopic * 
'* This subprogram identifies the strategy with the highest net revenue* 
'* exceeding the B/C threshold among myopic 1-year strategies. * 
'* * 
'* Parameters passed to subprogram WSTopRevMyopic are: 
'* hl2% Number of PPI/PRE treatments 
'* h3% Number of POST treatments 

* 
* 
* 

'* 
'* 
'* 
'* 
'* 

netpost(i,j) 
theta 

Array of net revenues from 1-yr strats.* 
Proportion by which weed treatment * 
threshold net revenue to exceed no * 
control net revenue level. * 

* 
'* Variables returned by subprogram WSTopRevMyopic are: * 
'* topnet Highest net revenue of 2-yrs strategies* 
'* kimax% PRE trt. no. earning highest net revenue 
'* kjmax% POST trt. no. earning highest net rev. * 
'*********************************************************************** 

topnet = (1 + theta) * netpost(l, 1) 
kimax% = 1 
kjmax% = 1 
FOR i% = 1 TO hl2% 

FOR j% = 1 TO h3% 
IF (netpost(i%, j%) > topnet) THEN 

topnet = netpost(i%, j%) 
kimax% = i% 
kjmax% = j% 

END IF 
NEXT j% 

NEXT i% 
END SUB 
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SUB WSWeedGerm (wnum%, weed() AS wfile, sOw(), slw(), s2w(), dlw(), 
wO(), wl()) 

Last update: 04/19/91 
'*********************************************************************** 
'* WSWeedGerm * 
'* This subprogram calculates weed seedling germination as a function * 
'* of seeds from previous season. * 
'* * 
'* Parameters passed to subprogram WeedGerm are: * 
'* wnum% 
'* s0w(w%) 
'* 
'* weed(w%).s0germ 
'* weed(w%).slgerm 
'* 
'* w0(w%) 
'* wl(w%) 
'* 

Number of weed species * 
Array of initial seedbank densities for* 
species w% (seeds/m2) * 
Array of pre-plant germination props. * 
Array of germination proportions at PRE* 
treatment * 
Array of pre-plant germ. densities * 
Array of post-plant germ. densities * 

* 
'* Variables returned by subprogram WeedGerm are: * 
'* 
'* 
'* 
'* 
'* 
'* 

slw(w%) 

dlw(w%) 

s2w(w%) 

Array of seedbank densities for species* 
w% at planting * 
Array of emerged weed densities prior to 
PRE treatment * 
Array of seedbank densities prior to PRE 
treatment * 

'********************************************************************** 

FOR w% = 1 
slw(w%) 
dlw(w%) 

slw(w%) 
dlw(w%) 
s2w(w%) 

NEXT w% 

TO wnum% 
= (1 - weed(w%).s0germ) * s0w(w%) 
= weed(w%).slgerm * slw(w%) 

s0w(w%) - w0(w%) 
wl(w%) 
(slw(w%) - dlw(w%)) 

swlost(f%, w%) = w0germ(f%, w%) + wlgerm(f%, w%) 
END SUB 
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FUNCTION yield2 (wnum%, ywf, cropnum%, compmax%, comp() AS cfile, crop() 
AS cropfile, d()) 

Last update: 12/16/90 
'*********************************************************************** 
I* yield2 * 
'* This function calculates expected yield based upon weed density. * 

'* * 
'* The yield equation is from Cousens' hyperbolic model with individual* 
'*weed species. At weed densities approaching zero, percent yield loss 
'*is given by comp().i for species w% in crop c%. Maximum percent yld* 
'*loss density of all weeds approaches infinity is crop().a. * 
'* 
'* Parameters passed to function yield are: 
'* wnum% Number of weed species 
'* ywf Expected weed-free yield 
,~ cropnum% Crop code 
'* compmax% Number of observations in competition 

array 
comp () Record array of weed-crop competition 

parameters, including comp().i 

* 
* 
* 
* 
* 
* 
* 
* 
* 

'* 
'* 
'* 
'* 
'* 
'* 
'* 
'* 

crop() Record array of crop parameters, incl . * 
crop().a, maximum percent yield loss * 

d(w%) 
from weed competition 
Array of weed densities/m2 

* 
* 
* 

'* The value returned by function yield is: * 
'* yield2 Expected crop yield * 
'*********************************************************************** 

a%= crop(cropnum%).a 
idsum = 0 
FOR c% = 1 TO compmax% 

cropid% = comp(c%).cropid 
IF cropid% = cropnum% THEN 

w% = comp(c%).weedid 
id= comp(c%).i * d(w%) 
idsum = idsum + id 

END IF 
NEXT c% 
yield2 = ywf * (1 - idsum / (100 * (1 + idsum / a%))) 
END FUNCTION 
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FUNCTION ypen (cropid%, ywf, plwk%) 
' Last update: 05-02-91 
'*********************************************************************** 
'* ycpen * 
'* Function ypen() calculates a crop yield penalty due to late 
'* planting. Value returned by ycpen is the proportion of potential 
'* yield lost. 
'* 
'* Parameters passed to ypen are: 
'* cropid% Crop identification code 
'* ywf Maximum weed-free yield 
'* plwk% Planting week 

* 
* 
* 
* 
* 
* 
* 
* 

'* * 
'*Data for yield penalty functions from: J.L. Gunsolus, "Mechanical and 
'*Cultural Weed Control in Corn and Soybeans," Am. J. Alt. Ag. * 
'* 5(1990): 114-119. * 
'*********************************************************************** 

plday% = 112 + plwk% * 7 
SELECT CASE cropld% 
CASE 1 

SELECT CASE plday% 
CASE IS <= 120 

ypen = 0 
CASE 121 TO 130 

ypen = .07 
CASE 131 TO 145 

ypen = .13 
CASE IS >= 146 

ypen = .24 
END SELECT 

CASE 2 
SELECT CASE plday% 

CASE IS <= 135 
ypen = 0 

CASE 136 TO 145 
ypen = .03 

CASE 145 TO 156 
ypen = .09 

CASE 157 TO 166 
ypen = .18 

CASE 167 TO 176 
ypen = .3 

CASE IS >= 176 
ypen = .43 

END SELECT 
END SELECT 
END FUNCTION 
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