
Give to AgEcon Search

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their
employer(s) is intended or implied.

https://shorturl.at/nIvhR
mailto:aesearch@umn.edu
http://ageconsearch.umn.edu/

The Stata Journal

Editors

H. Joseph Newton

Department of Statistics

Texas A&M University

College Station, Texas

editors@stata-journal.com

Nicholas J. Cox

Department of Geography

Durham University

Durham, UK

editors@stata-journal.com

Associate Editors

Christopher F. Baum, Boston College

Nathaniel Beck, New York University

Rino Bellocco, Karolinska Institutet, Sweden, and

University of Milano-Bicocca, Italy

Maarten L. Buis, WZB, Germany

A. Colin Cameron, University of California–Davis

Mario A. Cleves, University of Arkansas for

Medical Sciences

William D. Dupont, Vanderbilt University

Philip Ender, University of California–Los Angeles

David Epstein, Columbia University

Allan Gregory, Queen’s University

James Hardin, University of South Carolina

Ben Jann, University of Bern, Switzerland

Stephen Jenkins, London School of Economics and

Political Science

Ulrich Kohler, University of Potsdam, Germany

Frauke Kreuter, Univ. of Maryland–College Park

Peter A. Lachenbruch, Oregon State University

Jens Lauritsen, Odense University Hospital

Stanley Lemeshow, Ohio State University

J. Scott Long, Indiana University

Roger Newson, Imperial College, London

Austin Nichols, Urban Institute, Washington DC

Marcello Pagano, Harvard School of Public Health

Sophia Rabe-Hesketh, Univ. of California–Berkeley

J. Patrick Royston, MRC Clinical Trials Unit,

London

Philip Ryan, University of Adelaide

Mark E. Schaffer, Heriot-Watt Univ., Edinburgh

Jeroen Weesie, Utrecht University

Nicholas J. G. Winter, University of Virginia

Jeffrey Wooldridge, Michigan State University

Stata Press Editorial Manager

Lisa Gilmore

Stata Press Copy Editors

David Culwell and Deirdre Skaggs

The Stata Journal publishes reviewed papers together with shorter notes or comments, regular columns, book

reviews, and other material of interest to Stata users. Examples of the types of papers include 1) expository

papers that link the use of Stata commands or programs to associated principles, such as those that will serve

as tutorials for users first encountering a new field of statistics or a major new technique; 2) papers that go

“beyond the Stata manual” in explaining key features or uses of Stata that are of interest to intermediate

or advanced users of Stata; 3) papers that discuss new commands or Stata programs of interest either to

a wide spectrum of users (e.g., in data management or graphics) or to some large segment of Stata users

(e.g., in survey statistics, survival analysis, panel analysis, or limited dependent variable modeling); 4) papers

analyzing the statistical properties of new or existing estimators and tests in Stata; 5) papers that could

be of interest or usefulness to researchers, especially in fields that are of practical importance but are not

often included in texts or other journals, such as the use of Stata in managing datasets, especially large

datasets, with advice from hard-won experience; and 6) papers of interest to those who teach, including Stata

with topics such as extended examples of techniques and interpretation of results, simulations of statistical

concepts, and overviews of subject areas.

The Stata Journal is indexed and abstracted by CompuMath Citation Index, Current Contents/Social and Behav-

ioral Sciences, RePEc: Research Papers in Economics, Science Citation Index Expanded (also known as SciSearch,

Scopus, and Social Sciences Citation Index.

For more information on the Stata Journal, including information for authors, see the webpage

http://www.stata-journal.com

http://www.stata-journal.com

Subscriptions are available from StataCorp, 4905 Lakeway Drive, College Station, Texas 77845, telephone

979-696-4600 or 800-STATA-PC, fax 979-696-4601, or online at

http://www.stata.com/bookstore/sj.html

Subscription rates listed below include both a printed and an electronic copy unless otherwise mentioned.

U.S. and Canada Elsewhere

1-year subscription $ 79 1-year subscription $115

2-year subscription $155 2-year subscription $225

3-year subscription $225 3-year subscription $329

3-year subscription (electronic only) $210 3-year subscription (electronic only) $210

1-year student subscription $ 48 1-year student subscription $ 79

1-year university library subscription $ 99 1-year university library subscription $135

2-year university library subscription $195 2-year university library subscription $265

3-year university library subscription $289 3-year university library subscription $395

1-year institutional subscription $225 1-year institutional subscription $259

2-year institutional subscription $445 2-year institutional subscription $510

3-year institutional subscription $650 3-year institutional subscription $750

Back issues of the Stata Journal may be ordered online at

http://www.stata.com/bookstore/sjj.html

Individual articles three or more years old may be accessed online without charge. More recent articles may

be ordered online.

http://www.stata-journal.com/archives.html

The Stata Journal is published quarterly by the Stata Press, College Station, Texas, USA.

Address changes should be sent to the Stata Journal, StataCorp, 4905 Lakeway Drive, College Station, TX

77845, USA, or emailed to sj@stata.com.

®

Copyright c© 2012 by StataCorp LP

Copyright Statement: The Stata Journal and the contents of the supporting files (programs, datasets, and

help files) are copyright c© by StataCorp LP. The contents of the supporting files (programs, datasets, and

help files) may be copied or reproduced by any means whatsoever, in whole or in part, as long as any copy

or reproduction includes attribution to both (1) the author and (2) the Stata Journal.

The articles appearing in the Stata Journal may be copied or reproduced as printed copies, in whole or in part,

as long as any copy or reproduction includes attribution to both (1) the author and (2) the Stata Journal.

Written permission must be obtained from StataCorp if you wish to make electronic copies of the insertions.

This precludes placing electronic copies of the Stata Journal, in whole or in part, on publicly accessible websites,

fileservers, or other locations where the copy may be accessed by anyone other than the subscriber.

Users of any of the software, ideas, data, or other materials published in the Stata Journal or the supporting

files understand that such use is made without warranty of any kind, by either the Stata Journal, the author,

or StataCorp. In particular, there is no warranty of fitness of purpose or merchantability, nor for special,

incidental, or consequential damages such as loss of profits. The purpose of the Stata Journal is to promote

free communication among Stata users.

The Stata Journal (ISSN 1536-867X) is a publication of Stata Press. Stata, , Stata Press, Mata, ,

and NetCourse are registered trademarks of StataCorp LP.

http://www.stata.com/bookstore/sj.html
http://www.stata.com/bookstore/sjj.html
http://www.stata-journal.com/archives.html

The Stata Journal (2012)
12, Number 4, pp. 748–758

Speaking Stata: Matrices as look-up tables

Nicholas J. Cox
Department of Geography

Durham University
Durham City, UK

n.j.cox@durham.ac.uk

Abstract. Matrices in Stata can serve as look-up tables. Because Stata will accept
references to matrix elements within many commands, most notably generate

and replace, users can access and use values from a table in either vector or full
matrix form. Examples are given for entry of small datasets, recoding of categorical
variables, and quantile-based or similar binning of counted or measured variables.
In the last case, the device grants easy exploration of the consequences of different
binning conventions and the instability of bin allocation.

Keywords: pr0054, matrices, vectors, data entry, recoding, quantiles, binning,
look-up tables

1 Introduction

To many new users, and even to many more experienced users, the main data model
of Stata no doubt seems uncompromisingly simple and severe. You may have precisely
one dataset, a rectangular block of observations and variables, in memory at a time.
Compared with, say, the engaging generosity of spreadsheets—put what you want where
you want it, subject only to some size limitations—that standard appears Spartan. As
usual, first appearances can be deceptive. Detailed acquaintance shows that Stata’s
facility for combining datasets, by use of append, merge, and other commands, imparts
greater flexibility than is initially evident. Further, Stata offers a variety of facilities for
storing both metadata, such as variable and value labels, and the results (numerical,
textual, graphical) of various commands.

In this column, I focus on yet another extension of the main data model. Stata offers
two ways of handling matrices (and, in the case of Mata, other data structures, too)
within Stata sessions: its own matrix language and Mata as an embedded programming
language. This column focuses on the use of Stata matrices as look-up tables, with a
few asides on Mata. Various little techniques offer some ways of working with small
data tables auxiliary to the main dataset. In each case, there are alternatives, but in
each case the simplicity and generality of the approach can be refreshingly different and
appealing. The approach is not intended to be systematic or comprehensive; the scope
for using matrices in any mathematical or statistical language is, in practice, limitless.
At most, the intent is to provoke interest in, and use of, a device that is sometimes
overlooked.

c© 2012 StataCorp LP pr0054

N. J. Cox 749

Mata is now a much richer and deeper language than Stata’s matrix language, and
the difference will only get greater. A theme underlying this column is that nevertheless
there remains much scope for applying the latter. That is particularly important for
users who lack the time or inclination to start learning Mata. Although no user-written
program is used here, note that various user-written programs have been written to go
with Stata’s matrix language (Weesie 1997; Cox 1999, 2000).

2 A prime example, and entering small datasets generally

Consider first Stata matrices as a way to input small datasets by hand. There are several
ways to do that, the choice being largely a matter of taste or convenience. You could
use input or the Data Editor edit command, the latter either directly or by copying
and pasting from some other application. Here is the matrix way exemplified, assuming
no data are currently in memory.

. matrix mydata = (2,3,5,7,11,13,17,19,23,29)´

. set obs `=rowsof(mydata)´
obs was 0, now 10

. generate myvar = mydata[_n, 1]

. list, sep(0)

myvar

1. 2
2. 3
3. 5
4. 7
5. 11
6. 13
7. 17
8. 19
9. 23
10. 29

The matrix here is first typed as a row vector. That is what the commas imply; in
this example they join scalars columnwise. That row vector is promptly transposed to
a column vector with the prime operator ’. The mode of entry in the example is partly
a personal quirk, because I prefer to use commas rather than the backslashes that join
rows, but more importantly it shows some technique. You may use whichever style of
entry you prefer, because at most a keystroke is needed to transpose.

The set obs command just given condenses two commands in one. We could in
this example count the number of values directly and type set obs 10. We can also
insist that Stata do the counting. The single command set obs ‘=rowsof(mydata)’

combines the two steps

. local n = rowsof(mydata)

. set obs `n´

750 Speaking Stata

and indeed cuts out any need to create and use that local macro. Its name makes clear
that rowsof() is a function that counts rows of matrices. We just entered a column
vector, which to Stata is just a special case of a matrix. That is not surprising, although
a quirk of Stata’s matrix language is that you must always specify a column subscript
1 when referring to elements of a column vector. Similarly, you must always specify a
row subscript 1 when referring to elements of a row vector. (Mata, in contrast, happily
indulges single subscripts for referring to vectors.)

It is evident, if only from the list results that follow, that the generate command
copies the values just entered to a new variable. Precisely how this works is key. As
always, the principle is that Stata calculates the values of a new variable observation
by observation, so generate necessarily loops automatically over observations. In this
example, the observation number n will vary from 1 to 10. (The set obs command
was needed beforehand to make that so.) So the expression mydata[n, 1] is evaluated
in turn as mydata[1, 1], mydata[2, 1], and so forth, and the result is copied across—
element by element, observation by observation—to the new variable.

The principle of such data input using a matrix extends easily to small datasets
with a few variables, not just one. In developing and testing a program to calculate
people’s ages and other differences between daily dates, I needed a sandpit of sample
dates to play in. (The solution to that problem is a little more complicated than just
subtraction, given the occurrence of leap years; that is why I was writing a program to
do this.)

. clear

. matrix values = (28,19,28,29,29\3,11,2,2,7\1952,1952,2011,2012,2012)

. set obs `=colsof(values)´
obs was 0, now 5

. generate bdate = mdy(values[2, _n], values[1, _n], values[3, _n])

. format %td bdate

. list

bdate

1. 28mar1952
2. 19nov1952
3. 28feb2011
4. 29feb2012
5. 29jul2012

Here the columns define observations, rather than the rows defined in the first ex-
ample. No matter: we just use colsof() instead of rowsof() and switch subscripts.
An earlier version of the code segment just given was not quite so slick (earlier versions
rarely are). I originally defined separate variables for month, day, and year, and fed
the three variables to the function mdy(); then I realized that the function could work
directly on the elements of the matrix.

N. J. Cox 751

If you are familiar with the svmat command, you will know that this command offers
an alternative method for putting a Stata matrix into variables. Please bear with me,
because the approach here has applications and extensions that make it more widely
useful.

3 Some recoding examples

Let’s revisit a standard problem, recoding a categorical variable that is not suitably
coded for a particular purpose. Although nothing in Stata makes it compulsory, we will
assume a preference for codes that are consecutive integers, most obviously 1 and above,
but possibly a shifted sequence such as −2, −1, 0, 1, 2. Unless the codes have some
inherent meaning (in which case is the variable really categorical?), using consecutive
integers causes no problems, while other codings can look untidy. For the most part, the
codings should be hidden below value labels. However, there are contexts, most notably
twoway graphs, where irregular integer sequences will be all too evident. Henceforth
in this section, “integer sequence” will be short-hand for an increasing sequence of
consecutive integers.

Stata’s auto.dta includes a well-defined ordinal or graded variable, repair record
rep78, but there are few observations of cars with grades 1 and 2. That is good news
for car owners. But for some statistical purposes, we would think, say, of collapsing 1
and 2 into one category and renumbering to ensure a tidy order.

. sysuse auto, clear
(1978 Automobile Data)

. tabulate rep78

Repair
Record 1978 Freq. Percent Cum.

1 2 2.90 2.90
2 8 11.59 14.49
3 30 43.48 57.97
4 18 26.09 84.06
5 11 15.94 100.00

Total 69 100.00

A matrix approach to solve this problem requires only a vector of new codes. This
example is especially easy, because the existing codes run 1 to 5, and so they can be
implicit as column or row indexes. The mapping 1 to 1, 2 to 1, 3 to 2, 4 to 3, 5 to
4 is concisely defined as, say, a row vector that we can use in a one-line generate

statement. (Where I say index, some people say subscript, given the common use of
subscript notation in matrix algebra to refer to matrix elements.)

. matrix newcodes = 1,1,2,3,4

. generate rep78_2 = newcodes[1, rep78]
(5 missing values generated)

752 Speaking Stata

Let’s take that more slowly and emphasize details that are crucial for full under-
standing.

1. We put a matrix-like expression on the right-hand side of the generate command,
but Stata will evaluate it observation by observation. That is, Stata will attempt
to interpret the expression as referring to a matrix element. (Conversely, offering
an entire matrix to generate will fail, even if exceptionally the matrix is 1× 1, a
scalar dressed up as a matrix.)

2. It is immaterial that newcodes is a 1×5 vector and that rep78 and other variables
in the dataset have 74 observations. The data entry examples in the previous
section had the same number of rows or columns as there were to be observations.
Such equality was entirely natural in that context, but it is not essential here.

3. It so happens that there are missing values in rep78, but that is taken care of
without a need on our part for evasive or corrective actions. So long as a matrix
exists, it is quite legal to refer to an element of that matrix that does not exist,
because the row or column index is outside the range; or even to refer to one that
cannot exist because the expression supplied for the index evaluates to zero, or a
negative value, or missing. It is just that the result returned by such a reference
will be missing.

4. Whenever rep78 is equal to 1, the element used is newcodes[1,1], and similarly
for other values of rep78. The values of rep78 in auto.dta run 3 3 . (missing)
4 3 (first five) through to 4 5 4 4 5 (last five). It is as if you are asking Stata
to construct a vector of the same length as the dataset using those columns of
the vector. The order of the chosen elements is what you say it is: repetitions,
omissions, and impossible indexes (as just explained) are all fine. Stata will do
that element by element. The “as if” here is, however, the essence of the Mata
approach to the same question.

We can check with the groups command (Cox 2003b) whether values align one-
to-one as they should. (Download the latest version of groups by using ssc install

groups, replace.)

. groups rep78*

rep78 rep78_2 Freq. Percent

1 1 2 2.90
2 1 8 11.59
3 2 30 43.48
4 3 18 26.09
5 4 11 15.94

This approach has its downside, too. We would still need to take care of any value
labels, which a command such as recode is willing to organize for us. Further, the
technique at its simplest (as it is here) depends on the values being consecutive integers

N. J. Cox 753

from 1 and above. What if the problem were the other way around so that we wanted
to map, say, 2, 3, 5, 7, 11 to 1, 2, 3, 4, 5? We could set up a vector by typing

. matrix newcodes = 0,1,2,0,3,0,4,0,0,0,5

The idea used here is that the 2nd, 3rd, 5th, 7th, and 11th elements of newcodes
give the new values of a variable, so we can map oldvar to newvar with the code

generate newvar = newcodes[1, oldvar]

It does not matter what goes in the other elements of newcodes. As long as oldvar is
never any value other than 2, 3, 5, 7, or 11, those elements will never be used and could
be anything legal; here 0 was used.

That said, this solution is now too tricky to be a serious proposal. It is tricky even for
this example and does not extend well to more complicated examples. It will not work
at all with recoding zero or negative integers, because they cannot be row or column
indexes.

The look-up table approach is easily workable for more general problems so long as
we are willing to loop over possibilities. In this column, modest familiarity is presumed
with loops in Stata. If you need a tutorial, see a previous column (Cox 2002).

We will take this in two steps. First, if you want a mapping to integers in sequence,
you can do something like this:

generate newvar = .
matrix oldcodes = 2,3,5,7,11
forvalues i = 1/`=colsof(oldcodes)´ {

replace newvar = `i´ if oldvar == oldcodes[1, `i´]
}

A little thought or experiment makes it clear that this is quite general, at least for
one-to-one mappings. (In practice, you might want to add some quietly prefixes to
suppress return messages.)

1. The values of oldcodes do not need to be in order. It is thus easy to reorder the
categories of a variable.

2. The loop is from 1 to the number of columns in the row vector, or the number of
rows if we entered a column vector. The result of this code is that the values of the
new variable are the same integer sequence, 1 and above. But any other integer
sequence can be obtained by adding or subtracting a constant, either within the
loop or after it.

3. The variable newvar is born missing and will remain so if oldvar takes any value
other than those specified. This will usually be what is wanted.

4. The code is its own concise documentation. We could use matrix list to leave
a clear record of what we did. An audit trail is always important but especially
so for data manipulations.

754 Speaking Stata

For more arbitrary mappings, there is a fall-back device that is only a little more
complicated.

generate newvar = .
matrix codes = [2,3,5,7,11\1,1,2,3,4]
forvalues i = 1/`=colsof(codes)´ {

replace newvar = codes[2, `i´] if oldvar == codes[1, `i´]
}

Looked at differently, this technique is another solution to the problem of looping over
parallel lists (Cox 2003a). You can store the lists in a matrix and then loop over the
row or column index with forvalues.

The point of these examples is not to persuade you to change how you recode cate-
gorical variables. If you do that a lot, you are likely to be familiar with recode, which
in a strong sense is optimized for the purpose. recode has added bells and whistles
for handling complications and auxiliary tasks; it is likely to be especially appealing
for interactive use. The point is just to give concrete examples of other ways to do it.
Programmers will note that the approach here will often be easy to automate.

4 Quantile examples, and binning generally

Another standard problem is cutting the range of a variable into categories according
to the values of certain quantiles, whether the variable’s own quantiles or quantiles
supplied from somewhere else. For example, if you have lower quartile, median, and
upper quartile (25%, 50%, and 75% quantiles or percentiles), then you can code a new
variable that is 1, 2, 3, or 4 according to whether values lie below the lower quartile
(1) through to whether they lie above the upper quartile (4). Note here that three
boundaries give rise to four classes or bins; the upper limit of the top class is just the
maximum observed value, and the lower limit of the bottom class is just the minimum
observed value. So for k bins, we seek just k − 1 “internal” boundaries.

Quantile-based bins can provide simple frameworks for analysis that are easy to
understand and easy to explain to others, including lay audiences. The last may help
to explain the widespread use of such an idea in looking at the performance of firms
in economics and business. Commonly, such bins span equal intervals on a cumulative
probability scale, so in principle, the number of values falling into each should be the
same. The example of median and quartiles is a case in point.

Indeed, we can imagine any kind of subdivision according to disjoint intervals, which
need not be formally defined anywhere by quantiles. Classifications like this are common
in all quantitative fields. Often they may be criticized because the cutoffs concerned
are arbitrary or the classification is an unnecessary coarsening of data. In practice,
there may be standard schemes beyond researchers’ control that are firmly entrenched,
regardless of their merits. Classifications of net income by tax brackets or of body mass
index according to implicit degrees and kinds of risk are two of many examples.

N. J. Cox 755

In this section, I will maintain a focus on quantiles. It will be easy to see how the
ideas extend to any set of bins defined by their boundaries.

Stata has a bundle of related commands in this area, including pctile, pctile,
and xtile. Let’s start with xtile and look at the age variable in nlswork.dta that
may be downloaded from StataCorp’s website. This dataset includes data on 28,510
women from the U.S. National Longitudinal Survey.

. webuse nlswork, clear
(National Longitudinal Survey. Young Women 14-26 years of age in 1968)

As is standard, age is reported in years. Applying tabulate to age reveals a very
uneven distribution of ages from 14 to 46 within the dataset, with a mode at 24 years of
1,636 women. There is just one woman aged 15, two women aged 46, and three women
aged 14. Although the ages can be used in many analyses precisely as recorded, this is
clearly also a situation in which researchers might seek a categorization with bins that
are equally populated. Choosing 10 bins, we can get such a categorization with the
following command:

. xtile q_age = age, nquantiles(10)

Perhaps surprisingly, xtile does not display the quantiles it uses, nor does it leave
them even temporarily in memory once it is done. However, the associated command
pctile can be used for this purpose.

. _pctile age, nquantiles(10)

. return list

scalars:
r(r1) = 21
r(r2) = 23
r(r3) = 24
r(r4) = 26
r(r5) = 28
r(r6) = 31
r(r7) = 33
r(r8) = 36
r(r9) = 38

Recall that the number of quantiles determined is one fewer than the number of bins.
Such r-class results will be overwritten by the next r-class command, so if we want to
keep an eye on them, we should put them somewhere safer. A vector is one such place.
The matrix command understands about r() results, so we can type

. matrix q = r(r1), r(r2), r(r3), r(r4), r(r5), r(r6), r(r7), r(r8), r(r9)

In a large dataset, a variable containing only integer values will in practice be likely to
have quantiles that are also integers. In a smaller dataset, it will be more common that
the quantiles reported are interpolated values with fractional parts. This consideration
brings to the fore the question of what xtile does when confronted with ties. A
tabulation of q age shows that frequencies are far from equal:

756 Speaking Stata

. tabulate q_age

10
quantiles

of age Freq. Percent Cum.

1 4,122 14.46 14.46
2 3,062 10.74 25.20
3 1,636 5.74 30.94
4 2,980 10.45 41.39
5 2,567 9.00 50.39
6 3,614 12.68 63.07
7 2,357 8.27 71.34
8 3,543 12.43 83.76
9 1,824 6.40 90.16
10 2,805 9.84 100.00

Total 28,510 100.00

Researchers are often surprised at such inequality, but when ties are common, it is
very likely. To spell out a rule that is used, it is vital that identical values are treated
identically. The manual entry on xtile (see [D] pctile) makes it clear that its rule at
boundaries is that upper limits are inclusive. So for example, bin 1 is all values less than
or equal to the first quantile (decile, in this case). We should test our understanding by
trying to reproduce that.

. generate q_age2 = 10 if age < .
(24 missing values generated)

. forvalues i = 9(-1)1 {
2. quietly replace q_age2 = `i´ if age <= q[1, `i´]
3. }

A detail to note: We need to watch for missing values. Given the Stata rule that
numeric missing is treated as larger than any nonmissing value, that also applies to any
of the quantiles. If you want an exercise, you might like to work out code for classifying
ages from the bottom upward, not the top downward as here.

We need to check that the two variables are identical:

. assert q_age == q_age2

No news is good news. Silence implies consent: the two variables are identical. But can
we do better than xtile without cheating? The largest single class is the lowest; if we
were to use the convention < rather than ≤, we should be able to reduce that frequency,
but how will that convention work elsewhere? xtile does not offer this option, but we
can implement the rule for ourselves by repeating the code for q age2 but with a new
variable name and a new operator inside the loop:

N. J. Cox 757

. generate q_age3 = 10 if age < .
(24 missing values generated)

. forvalues i = 9(-1)1 {
2. quietly replace q_age3 = `i´ if age < q[1, `i´]
3. }

. tabulate q_age3

q_age3 Freq. Percent Cum.

1 2,805 9.84 9.84
2 2,775 9.73 19.57
3 1,604 5.63 25.20
4 3,202 11.23 36.43
5 2,731 9.58 46.01
6 3,662 12.84 58.85
7 2,314 8.12 66.97
8 3,677 12.90 79.87
9 2,067 7.25 87.12
10 3,673 12.88 100.00

Total 28,510 100.00

. count if q_age != q_age3
11647

About 41% of values changed bin when we changed the convention about what to do
when values tie with boundaries! Can either binning be said to be better?

A criterion for the equality of the bin numbers is the standard deviation of the bin
frequencies. One way to get those for the two binned variables is to push the frequencies
into a matrix, push the matrix into a variable, and then fire up summarize as usual.
That is a little quick and dirty, but it works. (There naturally are other ways to do it,
notably by doing more in Mata.)

. quietly tabulate q_age, matcell(freq)

. quietly tabulate q_age3, matcell(freq3)

. generate freq = freq[_n,1]
(28524 missing values generated)

. generate freq3 = freq3[_n,1]
(28524 missing values generated)

. summarize freq*

Variable Obs Mean Std. Dev. Min Max

freq 10 2851 788.4865 1636 4122
freq3 10 2851 716.4114 1604 3677

By this criterion, the second binning has improved the degree of inequality.

This little exercise has shown two things, one positive and one negative. Positively,
once we have values stored in a matrix as a look-up table, there is plenty of scope
to do something different with basic Stata commands. Negatively, we have seen how
capricious binning can be, given only a change of convention at boundaries. One clear
implication is to report carefully the rule for binning so that other researchers can repeat
your results.

758 Speaking Stata

5 Conclusion

Matrices in Stata can serve as look-up tables. You can first store and then access key
values from a table in either vector or full matrix form.

The underlying principle is that Stata will accept references to matrix elements
within many commands, most notably generate and replace. We have seen examples
of how this can be exploited for entry of small datasets, recoding of categorical variables,
and quantile-based or similar binning of counted or measured variables. In the last case,
the device grants easy exploration of the consequences of different binning conventions
and the instability of bin allocation.

6 Acknowledgments

William Gould and Vince Wiggins helped underline how general the idea of look-up
tables is.

7 References
Cox, N. J. 1999. dm69: Further new matrix commands. Stata Technical Bulletin 50: 5–

9. Reprinted in Stata Technical Bulletin Reprints, vol. 9, pp. 28–34. College Station,
TX: Stata Press.

———. 2000. dm79: Yet more new matrix commands. Stata Technical Bulletin 56: 4–8.
Reprinted in Stata Technical Bulletin Reprints, vol. 10, pp. 17–23. College Station,
TX: Stata Press.

———. 2002. Speaking Stata: How to face lists with fortitude. Stata Journal 2: 202–
222.

———. 2003a. Speaking Stata: Problems with lists. Stata Journal 3: 185–202.

———. 2003b. Speaking Stata: Problems with tables, Part I. Stata Journal 3: 309–324.

Weesie, J. 1997. dm49: Some new matrix commands. Stata Technical Bulletin 39: 17–
20. Reprinted in Stata Technical Bulletin Reprints, vol. 7, pp. 43–48. College Station,
TX: Stata Press.

About the author

Nicholas Cox is a statistically minded geographer at Durham University. He contributes talks,
postings, FAQs, and programs to the Stata user community. He has also coauthored 15 com-
mands in official Stata. He wrote several inserts in the Stata Technical Bulletin and is an editor
of the Stata Journal.

