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Abstract. We present motivation and new Stata commands for modeling count
data. While the focus of this article is on modeling data with underdispersion, the
new command for fitting generalized Poisson regression models is also suitable as
an alternative to negative binomial regression for overdispersed data.

Keywords: st0279, gpoisson, Poisson, count data, overdispersion, underdispersion

1 Introduction

We compare the effectiveness of regression models when dealing with underdispersed
count data, and we introduce supporting Stata programs. Poisson regression analysis
is widely used to model response variables comprising count data. The Poisson model
assumes equidispersion, that is, that the mean and variance are equal. In practice,
equidispersion is rarely reflected in data. In most situations, the variance exceeds the
mean. This occurrence of extra-Poisson variation is known as overdispersion (see, for
example, Dean [1992]). In situations for which the variance is smaller than the mean,
data are characterized as underdispersed. Modeling underdispersed count data using in-
appropriate models can lead to overestimated standard errors and misleading inference.
While there exist various approaches such as negative binomial distributions and other
mixtures of Poisson (Yang et al)2007) for modeling overdispersed count data, there are
few models for underdispersed count data.

Winkelmann and Zimmermann (1994) proposed a generalized event count model
that is appropriate for both overdispersed and underdispersed count data. Consul and
Jain (1973) discussed the generalized Poisson (GP) distribution, which can also accom-
modate both overdispersed and underdispersed count data. The properties of the GP
distribution are discussed in Consul (1989), Lerner, Lone, and Rao (1997), and Tuenter

© 2012 StataCorp LP st0279
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(2000). Application of the GP regression model has been illustrated in Wang and Famoye
(1997) for household fertility data and Cui, Kim, and Zhu (2006) for mapping quanti-
tative trait loci.

Herein, we illustrate how to model underdispersed count data using the Poisson,
the GP, and the quasi-Poisson (QP) regression models. This article is organized as
follows. In section 2, we review appropriate count-data regression models. In section 3,
Stata syntax is presented for the new command. A graphical illustration and real-world
data example are contained in section 4, followed by a simulation study in section 5.
Finally, a summary and conclusions are presented in section 6. Software, enhanced from
Hardin and Hilbe (2012), was developed to fit GP models.

2 The models

For a random variable Y;, we have a response vector Y = (Y1,...,Y,,)?, where n is the
sample size and Y; and Y; are independent and identically distributed for any i # j.

2.1 Poisson model

The most commonly used regression model for count data is the Poisson regression
model, where covariates are included in the model via an invertible link function de-
scribing the relationship of the linear predictor x;3 = 7; to the expected value of the

responses 6;:
f(ylaal): . 1 7yi:051727"'7 02>0
i)
The expected outcome in terms of the inverse of the log link function is given by 6; =
exp(x;), where x; is a covariate vector and [ is a vector of regression parameters to

be estimated.

2.2 GP model

For equidispersed or for possibly overdispersed or underdispersed count data Y, we

may consider a regression model based on the GP distribution. This model assumes the

response variable Y; has probability mass function (PMF)

0;(0; + 5%)%*16*91’*5%
yi!

where 6; > 0 and max(—1,—#6;/4) < § < 1. The mean and variance of the GP random

variable Y; are given by

f(y7,9,,5): 5 yi:O,1,2,...

, Var (V) = (1fi5)3 _ (1_15)2E<m=¢E<m

Mi:E(}/i):li_ld

The term ¢ = 1/(1 — §)? plays the role of a dispersion factor. Clearly, when § = 0,
there is equidispersion, and the GP distribution reduces to the usual Poisson distribution
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with parameter ;. Further, when § > 0, we have overdispersion in the model; when

6 < 0, we have underdispersion. In the current discussion, we are concerned with
underdispersion, § < 0.

The associated log likelihood (£) for the GP model is given by
L = > L0:0y:)=> WL(6; ;)
i=1 i=1
= Z {Inb; + (y; — 1) In(0; + dy;) — (6; + 0y;) — Iny;!}
i=1

Consul and Famoye (1992) and Consul (1989) illustrated that covariates can be in-
troduced into a regression model via the relationship

0, P
1 d = . .
Og 1 _6 ;xl7ﬁ7

where x;, is the ith observation of the rth covariate, p is the number of covariates in
the model, and (3, is the rth regression parameter.

2.3 QP model

Lastly, we consider the QP regression model for possibly overdispersed or underdispersed
count data Y. QP regression models are framed as generalized linear models. For the
Poisson regression model, the expectation of Y; is equal to the mean of the distribution,
E(Y;) = 60,. In generalized linear models terminology, the variance is equal to 6;/4.
When fitting a Poisson model, 6 = 1. However, the variance of Y; for the QP regression
model is Var(Y;) = 06;, where ¢ is assumed to be unknown. This generalization implies
a quasi-likelihood (Wedderburn [1974). Hence, we assume for this QP model that Y; ~
QP(0;,9).

3 The gpoisson command

3.1 Syntax

The basic syntax of gpoisson is equivalent to that of the poisson command (see
[R] poisson):

gpoisson depvar [indepvars] [zf] [m] [weight] [, noconstant
exposure (varname_e) offset(varname-o) constraints (constraints)

collinear vce(uvcetype) level(#) irr nocnsreport display_options

mazimize_options coeflegend]

After gpoisson estimation, gpoisson postestimation is available. Dialog boxes
(see [R] db) are available for gpoisson and predict after gpoisson.
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4 Example

In this section, we first present a graphical illustration of the Poisson and GP distribu-
tions. In the graphs, we juxtapose the distributions when equivalent and when there is
significant underdispersion. Such a presentation illustrates the heavier tails of the Pois-
son distribution, which then leads to the discoveries of a substantial simulation study
in section

Second, we present a real-world data example using information collected on U.S.
firms. These data are notable for exhibiting moderate underdispersion and for having
relatively few zero outcomes.

4.1 A graphical comparison of Poisson and GP

To illustrate the difference in distributions used for calculating probabilities and likeli-
hoods, we present below two graphs of the GP and Poisson PMFs. In each bar graph, the
means are the same. The top figure is for § = 0.0, which means that the distributions
are the same. As |d] increases, the two distributions become more distinct. The bottom
figure is for § = —0.3. In that bar graph, one can see that the Poisson PMF is not as
peaked and has thicker tails.

Delta = (0)
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Thus, as § differs from zero, so does the GP distribution differ from the Poisson. In
the subsequent section, we investigate coverage probabilities and power affected by the
differences in distributions.
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4.2 A real-world data analysis example

Of 126 U.S. firms that were targets of tender offers, Jaggia and Thosar (1993) studied
the determinants of the number of bids received. Using relationships outlined by the
authors, we model the number of bids received (over a 52-week period following the
initial bid) as a function of defensive actions of the firm in these terms: whether there
were defensive actions (lawsuits) from the firm’s management, leglrest; whether the
firm is under any real restructuring, realrest; whether the firm proposed a change
in ownership, finrest; whether the firm invited a friendly third-party bid, whtknght;
the bid premium (bid price divided by the price 14 days before the bid was issued),
bidprem; the percentage of stock held by institutions, insthold; the size (book value
of assets) of the firm measured in billions of dollars, size; the square of the size of the
firm, sizesq; and whether the Department of Justice intervened, regulatn.

The results of fitting a GP model to the outcomes are given by

. use jaggia
. generate sizesq = size*size

. gpoisson numbids leglrest realrest finrest whtknght bidprem insthold size
> sizesq regulatn, irr nolog

Generalized Poisson regression Number of obs = 126
LR chi2(9) = 39.90

Dispersion = -.1812696 Prob > chi2 = 0.0000
Log likelihood = -181.12051 Pseudo R2 = 0.0992
numbids IRR Std. Err. z P>|z| [95% Conf. Interval]
leglrest 1.281231 .163009 1.95 0.051 .9984595 1.644086
realrest .8556441 .1395632 -0.96 0.339 .6215192 1.177963
finrest 1.157229 .2034714 0.83 0.406 .8198899 1.633364
whtknght 1.717354 .2377103 3.91  0.000 1.309301 2.252581
bidprem .4588859 .1492794 -2.39 0.017 .2425503 .8681757
insthold .6673574 .2434747 -1.11  0.268 .3264459 1.364287
size 1.208949 .0610227 3.76  0.000 1.095072 1.334667

sizesq .991915 .0026968 -2.99 0.003 .9866436 .9972147
regulatn .99856279 .133861 -0.01 0.991 .7678025 1.298586
_cons 2.877161 1.329555 2.29 0.022 1.163104 7.117215
/atanhdelta -.1832951 .0640189 -.3087699  -.0578203
delta -.1812696 .0619154 -.2993176  -.0577559
Likelihood-ratio test of delta=0: chi2(1) = 7.66 Prob>=chi2 = 0.0028

where /atanhdelta refers to the inverse hyperbolic tangent function of § shown below:

1 1
/atanhdelta = tanh™'(§) = 3 In (11_2)

The coefficient was surprisingly positive (associated incidence-rate ratio [IRR] sur-
prisingly greater than 1) on the indicator of whether the firm had filed lawsuits in
defense of the initial bid. That is, those firms who had filed lawsuits to protect against
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the initial bid received additional bids at 1.28 times the rate of those firms who did
not file lawsuits against the initial bid; this result is marginally significant because the
associated p-value is 0.051. The invitation to a friendly bidder to participate leads to a
rate of subsequent bids that is 1.7 times the rate of accumulated bids of those firms who
do not invite a friendly bidder. The size of the firm also matters, where results indicate
that the rate of bids increases at first but then decreases as the firm gets larger. As
expected, the rate of bids decreased as the bid premium increased (IRR = 0.46). Finally,
there is evidence of significant underdispersion.

5 Simulation study

We compare the coverage probabilities and power when data are underdispersed for
Poisson, GP, and QP regression models. The model used in our simulations was

0;
log p; = log (1 — 5) =0.5—-0.2527 — 0.2525 + Ox3 (1)

where we synthesize x; from a Bernoulli(0.5) distribution, x5 from a Bernoulli(0.6)
distribution, and x3 from a Bernoulli(0.4) distribution. However, only z; and x5 are
used in the generation of the linear predictor (effectively assuming a zero coefficient for
x3). For each covariate coefficient in (1), the coverage probabilities of the confidence
intervals were computed. Therefore, the proportion of time that the intervals contain

the true parameter estimates was calculated using the Poisson, GP, and QP regression
models.

Samples of size n = 30,40, 50, 60, 70, 80, 90, 100, 1000 were generated for a series of
dispersion parameter values. Simulation results for each size are based on 10,000 replica-
tions for each situation. Coverage probability results are summarized in tables[1a, [1b,
and [Icj power for covariate significance is summarized in table [2. When modeling
underdispersed count data, the GP and QP models have greater power to determine
significance of the covariates than does the Poisson regression model. Furthermore, the
GP regression model is the most effective model (of the three models considered) in
establishing the significance of covariates over a wide range of underdispersion. In the
case of equidispersion (§ = 0), all models performed well, with the GP model having
slightly elevated type I error rates over the QP model.
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Table la. Coverage probabilities (10,000 replications) for the true parameter estimates
[from (1)] using the Poisson, GP, and QP regression models; 6 = 0 indicates equidisper-
sion, d < 0 indicates underdispersion. Values in table are percentages.

Dispersion parameter (§)
n  Model T; 0.0 -01 -02 -03 -04

30 Poisson x7 95.21 97.30 98.09 99.11 99.42
ro 9538 96.98 98.15 99.11 99.28

rz 9521 97.14 97.98 98.91 99.51

GP r1  92.11 9249 91.70 92.17 92.36

ro 91.83 92.02 91.53 92.09 91.93

r3 9233 9246 91.83 91.68 92.63

QP 1 94.09 94.51 94.02 94.31 94.48

ro 9418 94.04 93.92 94.30 94.15

r3 94.35 94.44 93.78 93.83 94.39

40 Poisson x7 94.98 97.10 98.18 99.03 99.37
ro 94.84 96.80 98.08 98.81 99.51

r3 9528 96.57 98.08 98.84 99.39

GP r1 9292 93.01 92.67 92.64 92.65

ro 9271 92.65 92.75 92.74 93.00

r3 93.22 9247 92.70 92.81 92.37

QP 1 94.37 94.38 94.26 94.43 94.26
ro 9428 94.10 94.10 94.35 94.54

r3 94.80 93.88 94.41 94.29 94.47

50 Poisson xy 94.87 96.58 98.12 98.87 99.37
ro 9456 96.97 98.03 98.84 99.44

r3 95.03 96.99 98.38 99.10 99.46

GP r1 93.02 9297 93.51 93.12 92.76
ro 92.86 93.23 93.19 93.26 93.38

r3 93.30 93.45 93.54 93.60 93.15

QP 1 94.25 94.07 94.61 94.49 94.08
ro 94.00 94.38 94.51 94.31 94.80

r3 94.39 9451 94.79 94.70 94.54
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Table 1b. Coverage probabilities (10,000 replications) for the true parameter estimates
[from (1)] using the Poisson, GP, and QP regression models; 6 = 0 indicates equidisper-
sion, d < 0 indicates underdispersion. Values in table are percentages.

Model

Li

Dispersion parameter (§)

0.0

—0.1

-0.2

-0.3

—-04

60

70

80

Poisson

GP

QP

Poisson

GP

QP

Poisson

GP

QP

(a1
T2
T3
Z1
X2
r3
(a1
)
T3
T
o)
r3
x1
€2
T3
Z1
T2
T3
T
€2
T3
€
T2
T3
Z1
T2
€3

95.12
95.25
94.95
93.53
93.92
93.46
94.68
94.71
94.51
94.96
95.31
95.10
94.07
94.15
93.91
94.76
94.89
94.66
95.15
94.89
95.22
94.20
94.07
94.19
94.92
94.68
94.83

96.83
96.72
97.02
93.46
93.18
93.79
94.65
94.01
94.76
97.13
96.86
96.85
94.06
93.78
93.86
94.81
94.67
94.64
97.28
97.00
96.97
94.16
94.18
94.21
95.09
94.92
94.83

98.00
98.04
98.13
93.05
93.35
93.21
94.21
94.44
94.23
98.21
97.95
98.01
93.86
93.19
93.44
94.94
94.01
94.34
98.16
98.07
98.11
94.01
93.57
93.82
94.89
94.49
94.62

98.88
98.83
98.82
93.45
93.15
93.33
94.63
94.31
94.58
98.99
99.01
99.10
93.65
93.85
94.08
94.36
94.79
94.78
99.00
98.89
98.99
94.04
93.89
93.94
94.90
94.63
94.54

99.29
99.38
99.41
93.58
93.54
93.14
94.42
94.30
94.25
99.39
99.40
99.46
93.82
93.66
93.67
94.50
94.93
94.94
99.46
99.21
99.41
93.66
93.47
93.44
94.50
94.35
94.30
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Table 1c. Coverage probabilities (10,000 replications) for the true parameter estimates
[from (1)] using the Poisson, GP, and QP regression models; 6 = 0 indicates equidisper-
sion, d < 0 indicates underdispersion. Values in table are percentages.

Dispersion parameter (9)
n Model ZT; 0.0 -01 -02 -03 -04

90 Poisson z; 9533 97.10 97.92 98.74 99.37
T2 9545 96.77 98.11 99.00 99.40

3 95.11 9691 98.18 98.98 99.54

GP 1 9436 94.08 93.77 94.12 94.44

o 9432 9393 94.11 94.10 94.03

r3 9438 9424 94.01 93.94 94.06

QP 1 9483 9481 9444 94.73 95.10

T2 9498 9452 94.55 94.70 94.62

3 9491 9480 94.77 94.70 94.85

100 Poisson 7 95.02 96.99 98.08 98.77 99.36
zo 9495 96.68 98.03 98.86 99.37

r3 95.00 9731 9827 99.00 99.30

GP 1 93.98 9434 94.20 94.08 94.18

T2 9420 94.02 94.18 94.07 94.31

3 94.29 9457 94.18 94.21 94.09

QP 1 9451 94.84 9470 94.75 94.76

r2 9472 9451 94.80 94.81 95.01

T3 94.82 9521 95.01 95.01 94.83

1000 Poisson z; 9546 96.71 97.91 98.94 99.30
T2 9521 96.99 98.23 98.88 99.39

3 95.08 96.97 98.13 98.81 99.52

GP r1 9533 9499 94.74 9498 94.83

T2 9499 95.11 94.69 94.87 95.02

3 95.04 9499 95.14 9499 95.04

QP 1 9539 95.05 94.87 94.97 94.75

2 95.07 95.15 94.68 95.20 94.98

x3  95.07 95.04 9518 94.98 95.20
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Table 2. Power (from 10,000 replications) in determining significance of covariates
[E(Y) ~ exp(4 + Bxy — 0.2529 + 0x3), where z1 ~ Uniform(0.5)] when coefficients are
assessed using Poisson, GP, and QP regression models. Values in table are percentages.

Model
n B coef. Poisson GP QP
30 0.00 0.94 7.66 5.83
0.02 1.87  10.87 8.65
0.04 5.52  20.22 16.81
0.06 12.31  33.77  29.15
0.08 23.06  50.02  45.01
0.10 38.81 66.51  61.67
0.12 54.90 79.85  75.62
0.14 72.14  89.94  87.18
0.16 84.62 9545  94.17
0.18 92.53  98.16 97.44
0.20 96.59  99.19  98.95
0.22 98.47  99.73  99.62
0.24 99.59  99.92  99.89
60 0.00 1.06 6.37 5.75
0.02 3.27 12,59  11.18
0.04 11.15  29.31  27.13
0.06 28.95 54.35  51.68
0.08 54.55  77.27  75.04
0.10 77.28 9224  91.31
0.12 9145 97.89  97.56
0.14 97.37  99.44  99.37
0.16 99.47  99.94  99.93
0.18 99.93  99.97  99.97
0.20 99.99 100.00 100.00
0.22 100.00 100.00 100.00
0.24 100.00 100.00 100.00
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6 Discussion and conclusions

In this article, we introduced a supporting Stata program and illustrated the effec-
tiveness of three Poisson regression models (Poisson, GP, and QP) when dealing with
underdispersed count data. Underdispersion is a less explored occurrence in modeling
count data. Underdispersion can lead to overestimated standard errors and misleading
conclusions if handled inappropriately. We simulated underdispersed count data and
compared inferences from three Poisson regression models by using synthesized covari-
ates and different equidispersion and underdispersion parameters.
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