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Abstract. In this article, we consider the situation that arises when a survey
data producer has collected data from a sample with a complex design (possibly
featuring stratification of the population, cluster sampling, and unequal proba-
bilities of selection) and for various reasons only provides secondary analysts of
those survey data with a final survey weight for each respondent and “average”
design effects for survey estimates computed from the data. In general, these “av-
erage” design effects, presumably computed by the data producer in a way that
fully accounts for all the complex sampling features, already incorporate possible
increases in sampling variance due to the use of the survey weights in estimation.
The secondary analyst of the survey data—who uses the provided information
to compute weighted estimates; computes design-based standard errors reflecting
variance in the weights (by using Taylor series linearization, for example); and
inflates the estimated variances using the “average” design effects provided—is
applying a “double” adjustment to the standard errors for the effect of weighting
on the variance estimates, leading to overly conservative inferences. We propose a
simple method to prevent this problem and provide a Stata program for applying
appropriate adjustments to variance estimates in this situation. We illustrate two
applications of the method with survey data from the Monitoring the Future study
and conclude with suggested directions for future research in this area.

Keywords: st0277, deft2corr, survey design effects, survey weights, average design
effects

1 Background

Standard practice in the design-based analysis of complex sample survey data requires
data analysts to identify variables containing final survey weights, possibly compensat-
ing for unequal probabilities of selection, nonresponse adjustments, and poststratifica-
tion adjustments. Data analysts must also identify 1) variables identifying first-stage
sampling error strata and first-stage sampling error computation units (“ultimate clus-
ters”) or 2) variables containing replicate survey weights, enabling the use of replicated
variance estimation procedures (Heeringa, West, and Berglund 2010, chap. 4). In both
cases, the final survey weights enable computation of unbiased estimates of descriptive
parameters and regression parameters in finite populations. In the former case, one esti-
mates the sampling variance of a parameter estimate by using a first-order Taylor series

c© 2012 StataCorp LP st0277
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approximation—approximating the parameter estimate as a linear function of weighted
sample totals and then computing the variance of this approximation. This is known as
Taylor series linearization (TSL). This variance estimation method introduces a slight
positive bias in variance estimates and slightly conservative inferences about the pop-
ulation of interest; see Wolter (2007) for more details. Replicated variance estimation
methods, such as jackknife repeated replication (JRR) and balanced repeated replication
(BRR), are also possible when these design codes are available. In the latter case, when
only the final survey weight and replicate survey weights are available, JRR and BRR

can be used to estimate variances. Asymptotically, TSL, JRR, and BRR converge to very
similar variance estimates for most parameter estimates (Rao and Wu 1985).

Stata software provides data analysts with several easy-to-use tools implementing
these analysis procedures, including svyset (for identifying complex design features)
and svydescribe (for simple descriptive analyses of the identified design features).
Stata also allows analysts to insert the svy modifier before a wide variety of de-
scriptive (for example, mean) and model-based (for example, regress) commands to
implement appropriate design-based analyses. Unfortunately, not all public-use sur-
vey datasets contain all the necessary variables enabling the alternative variance es-
timation procedures. Stratum and sampling error computation unit codes are often
excluded from public-use survey datasets to maintain respondent confidentiality and
limit disclosure risk (Lu and Sitter 2008). Some datasets may also exclude replicate
weights, providing data analysts with only the final survey weight (for example, see
Inter-University Consortium for Political and Social Research [2008]). In this case, the
data producer needs to provide the data user with design effects for a wide variety of
key parameters (for example, see Johnston et al. [2011, 532–552]), which the data user
can then use to adjust variance estimates and associated confidence intervals, correctly
accounting for complex sampling features (for example, see Thomas, Heck, and Bauer
[2005]).

In general, following the notation used by Park et al. (2003), the design effect for a

given parameter estimate θ̂ is defined as follows:

Deft2
(
θ̂
)

=
Var(θ̂)CD

Var(θ̂′)SRSWR

= Deft2strat × Deft2clust × Deft2weights (1)

In (1), θ̂′ refers to an estimate of the parameter ignoring the weights and assuming
simple random sampling with replacement (SRSWR). This form of the design effect is
also sometimes referred to as a misspecification effect, or meft, and is intended to capture
the effects of complex sampling features on variance estimators used in analysis (Skinner

1989). The total design effect Deft2(θ̂), which is estimated in practice, accounts for the
multiplicative change in the variance of an estimate under SRSWR due to complex sample
design (CD) features. These include without-replacement selection, stratified cluster
sampling (generally resulting in an increase in the variance due to cluster sampling,
that is, Deft2clust > 1, and a decrease in the variance due to stratified sampling, that is,
Deft2strat < 1), and the use of weights in estimation (generally resulting in an increase in
the variance, that is, Deft2weights > 1; see Heeringa, West, and Berglund [2010, sec. 2.5]).
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Previous work has shown that the total design effect for an estimated mean is an
approximate function of complex interactions between the various sample design fea-
tures, the relationship of the variable of interest with the sampling weights, and the
distribution of the variable of interest (Park and Lee 2004). For practical purposes, we
write the total design effect in (1) as the simple product of three separate design effects
due to each complex sampling feature, as suggested by Park et al. (2003). Importantly,
this result only holds if the survey variable of interest and the survey weights are inde-
pendent (Park and Lee 2004). Under this assumption, if a data producer only provides
a data user with a final survey weight and average total design effects, the data user
can compute weighted estimates and linearized variance estimates based on the weights
(introducing Deft2weights) and then further adjust the estimated variances to incorporate
additional design effects due to stratified cluster sampling.

Because total design effects include effects on the variance due to all the elements
of complex sampling (weighting, stratification, and cluster sampling), one does not
want to “doubly adjust” for the effects of weighting if a linearized variance estimator
incorporating the weights has already been used. For example, suppose that a data
producer provides the public with a survey weight in a data file, possibly incorporat-
ing compensations for unequal probability of selection, differential nonresponse, and
poststratification. The data producer also provides the data user with average design
effects for many estimates of interest, several of which suggest that Deft2(θ̂) = 2.0.
Importantly, this average design effect of 2.0 already includes multiplicative increases
in the variance due to weighting (as computed by the data producer), as shown in (1).
The data user then computes weighted estimates and linearized variance estimates for
those weighted estimates (which incorporate increases in variance due to variability in
the weights). The data user proceeds to multiply the estimated variance by the average
design effect of 2.0 (which already includes the increase in variance due to weighting),
as instructed by the data producer. The net result is an unnecessary inflation of the
variance of the estimate and overly conservative inferences.

A simple adjustment procedure based on the approximation in (1) can be used if the
data user is provided only with a final survey weight and an average total design effect
for a number of key statistics. After estimating a parameter and using TSL to estimate
the variance of the parameter estimate, one can estimate the design effect due to the
use of weights (which we denote as Deft2weights) by using the estat effects command
in Stata (the meff option, which is more inline with our definition of the design effect,
and the deff option, which is the default, will tend to produce similar results; see
Skinner [1989, sec. 2.2] for more discussion of these differences). The average design

effect provided by the data producer (Deft2) can then be divided by the design effect
due to weighting to “extract” the approximate portion of the overall average design
effect due to stratified cluster sampling:

Deft2

Deft2weights

≈ Deft2strat × Deft2clust
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This extracted portion of the overall design effect can then be used to adjust esti-
mated variances and corresponding test statistics and confidence intervals. If degrees of
freedom based on the complex sample are also provided by the data producer, these can
be incorporated into the adjustments as well. If not, large-sample critical values based
on the standard normal distribution can be used to compute p-values for standard test
statistics and to construct confidence intervals.

The following Stata ado-file defines a simple command that takes five inputs: 1) a
weighted parameter estimate; 2) the linearized estimate of the standard error; 3) an
average design effect; 4) a design effect due to weighting; and 5) an indicator of whether
exponentiated forms of parameter estimates are desired. The ado-file enables this type
of design effect adjustment.

program define deft2corr
di ""
if `5´ == 1 {

di "Exponentiated Estimate: " exp(`1´)
di "95% CI LL: " exp(`1´ - 1.96*`2´*(sqrt(`3´)/sqrt(`4´)))
di "95% CI LL: " exp(`1´ + 1.96*`2´*(sqrt(`3´)/sqrt(`4´)))

}
if `5´ == 0 {

di "Estimate: " `1´
di "95% CI LL: " `1´ - 1.96*`2´*(sqrt(`3´)/sqrt(`4´))
di "95% CI LL: " `1´ + 1.96*`2´*(sqrt(`3´)/sqrt(`4´))

}
di "Z statistic: " `1´ / (`2´*(sqrt(`3´)/sqrt(`4´)))
if `1´ / (`2´*(sqrt(`3´)/sqrt(`4´))) > 0 di "p-value: " 2*(1-

normal(`1´ / (`2´*(sqrt(`3´)/sqrt(`4´)))))
if `1´ / (`2´*(sqrt(`3´)/sqrt(`4´))) <= 0 di "p-value: "

2*(normal(`1´ / (`2´*(sqrt(`3´)/sqrt(`4´)))))
end

We illustrate the use of the deft2corr command by analyzing data from the Moni-
toring the Future (MTF) study (2007–2009).

2 Illustration

Nonmedical use of prescription opioids is a growing public health problem in the United
States. Previous research focusing on young adults has found that more than 1 in every
10 lifetime nonmedical users of prescription opioids report intranasal administration
(snorting) (McCabe et al. 2007). Furthermore, approximately 67% of intranasal users
screened positive for drug abuse in the past year compared with approximately 6% of
nonusers and 26% of nonmedical users who reported oral administration only. The use
of prescription opioids via intranasal and nonoral routes of administration is a danger-
ous behavior that has been linked to a number of adverse consequences (Jewers et al.
2005; Watson et al. 2004; Yewell et al. 2002). Additionally, the rate of delivery of a
drug to the brain directly correlates to the abuse potential of the drug, and intranasal
administration, along with other nonoral routes of administration, delivers a drug to the
brain at a much faster rate than oral administration (Kollins 2003; Roset et al. 2001).
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In this example, we analyze survey data from the MTF study (2007–2009) and focus
on two research objectives for 12th grade students in the United States. The first ob-
jective is to estimate the proportion of nonmedical users of prescription opioids among
high school seniors (modal age 18) using intranasal administration. The second objec-
tive is to use logistic regression modeling to estimate differences in the odds of intranasal
administration between nonmedical users only, nonmedical users who began using non-
medically prior to medical use, and nonmedical users who began using medically before
nonmedical use (adjusting for race and ethnicity, year, geographic region of the school,
and metropolitan statistical area). The MTF study provides data users only with a final
survey weight (the variable V5; Inter-University Consortium for Political and Social Re-
search [2008]) and includes appendices of total design effects for a variety of estimates,
enabling the computation of average total design effects (Johnston et al. 2011, app. C).
For this illustration, we use an average MTF total design effect of 2.0 (Johnston et al.
2011).

Prior to running the analyses, we examined the critical assumption underlying the
result for the total design effect in (1) and found that the correlation of the survey weight
variable (V5) and the nasal administration indicator (V1615) was negligible (r = 0.01,
p = 0.82). The following Stata commands implement the analyses and illustrate the use
of the deft2corr command:

* Set up survey weight and linearized variance estimation (default).
svyset [pweight = V5]

* Estimate the proportion of nonmedical users (subpop) using nasal
* admin (V1615).
svy, subpop(if usehistory == 3 | usehistory == 4 | usehistory == 5): prop V1615

* Request DEFT2 due to weighting (only).
estat effects

* Apply deft2corr, inputting the estimate, linearized standard error, average
* total DEFT2, and DEFT2 component due to weights.
deft2corr 0.3627 0.0257 2 1.3528 0

* Fit logistic regression model for odds of nasal admin.
svy, subpop(if usehistory == 3 | usehistory == 4 | usehistory == 5): ///
logit V1615 ib3.usehistory i.V1151 i.V1 i.V13 i.V17

* Request DEFT2 estimates due to weighting (only).
estat effects

* Apply deft2corr for each parameter estimate, requesting
* exponentiated estimates (adjusted odds ratios).
deft2corr 1.7938 0.5310 2 1.4987 1
deft2corr 2.0390 0.5172 2 1.5098 1

Table 1 presents results from running the commands above (columns 2 and 5), along
with the resulting 95% confidence intervals when only using the weights without any
adjustment for stratification and clustering (column 3) and the resulting 95% confidence
intervals when applying the average total design effect on top of the linearized standard
error already incorporating the weights (the “double adjustment”, column 4).
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Table 1. Comparisons of design-based 95% confidence intervals for selected parameters
using alternative design effect adjustments (source: MTF 2007–2009)

95% confidence intervals:
Parameter Weighted Without With “double With correct

estimate adjustment for adjustment” adjustment
stratification for
and clustering weighting

Proportion:
Nasal
administration 0.3627 [0.3124, 0.4130] [0.2915, 0.4339] [0.3015, 0.4239]

AOR: NMPM
versus MPNM 6.0120 [2.1230, 17.0245]** [1.3798, 26.1973]* [1.8067, 20.0071]**

AOR: NMO
versus MPNM 7.6826 [2.7874, 21.1746]*** [1.8320, 32.2206]** [2.3923, 24.6734]***

Notes: AOR = Adjusted odds ratio.
NMPM = Nonmedical use prior to medical use.
MPNM = Medical use prior to nonmedical use.
NMO = Nonmedical use only.
t test of null hypothesis that regression parameter is equal to 0: *** p < 0.001, ** p < 0.01, * p < 0.05.

An estimated 36.27% of nonmedical users of prescription opioids in the 12th grade
(modal age 18) during 2007–2009 administered the opioids intranasally. Nonmedical
users who used nonmedically prior to any medical use and nonmedical users only (with
no medical use ever) had 6.01 and 7.68 times greater odds of intranasal administration
than nonmedical users who used medically first, holding the other covariates fixed.

The results in table 1 show how the correct design effect adjustment (last column)
produces 95% confidence intervals for the parameters of interest with lower and up-
per limits that lie between the overly conservative limits computed using the “double”
adjustment for the effect of weighting and the overly liberal limits computed without
adjusting for the effects of stratification and clustering. In the cases of the two adjusted
odds ratios, the level of significance actually varies depending on the adjustment used.
This suggests that the overly conservative “double” adjustment could impact tests of
significance in other cases and contexts.

Notably, the average total design effect provided by a data producer (2.0 in this
case) is essentially arbitrary and can have a big impact on inferences. For this reason,
when using these adjustment methods, data users must obtain an appropriate average
total design effect for the subpopulation and the estimates in which they are interested.
We acknowledge that more complex types of corrections may be needed if the provided
survey weights are informative or strongly related to the survey variables of interest.
Future research on this scenario needs to consider whether the results of Park and Lee
(2004) can be applied to enable data users who are only provided with survey weights
and average design effects to correctly compute estimated standard errors that fully
reflect all the complex features of a given sample design.
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