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Abstract. Simulation studies are essential for understanding and evaluating both
current and new statistical models. When simulating survival times, one often
assumes an exponential or Weibull distribution for the baseline hazard function,
with survival times generated using the method of Bender, Augustin, and Blettner
(2005, Statistics in Medicine 24: 1713–1723). Assuming a constant or monotonic
hazard can be considered too simplistic and can lack biological plausibility in
many situations. We describe a new user-written command, survsim, which al-
lows the user to simulate survival times from two-component parametric mixture
models, providing much more flexibility in the underlying hazard. Standard para-
metric distributions can also be used, including the exponential, Weibull, and
Gompertz. Furthermore, survival times can be simulated from the all-cause dis-
tribution of cause-specific hazards for competing risks by using the method of
Beyersmann et al. (2009, Statistics in Medicine 24: 956–971). A multinomial dis-
tribution is used to create the event indicator, whereby the probability of expe-
riencing each event at a simulated time t is the cause-specific hazard divided by
the all-cause hazard evaluated at time t. Baseline covariates can be included in all
scenarios. We also describe the extension to incorporate nonproportional hazards
in standard parametric and competing-risks scenarios.

Keywords: st0275, survsim, simulation, survival analysis, mixture models, com-
peting risks

1 Introduction

Simulation studies are commonly used to evaluate the performance of both current and
newly developed statistical models (Burton et al. 2006). Within the survival analysis
field, either the exponential distribution, which assumes a constant underlying hazard
function, or a Weibull distribution, which assumes a monotonically increasing or de-

c© 2012 StataCorp LP st0275
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creasing hazard, is used and implemented with the methods of Bender, Augustin, and
Blettner (2005). These choices can be considered too simplistic and can lack biological
plausibility to accurately reflect many real-world datasets. For example, in the analysis
of cancer survival data, a turning point is often observed in the hazard function. Fur-
thermore, despite the Cox model (Cox 1972) being the most commonly used method of
survival analysis, it is not possible to simulate from a semiparametric model.

A class of finite mixture models has been proposed to increase the flexibility of fully
parametric survival models (McLachlan and McGiffin 1994). We describe the survsim

command, which uses a special case of these models to simulate survival data from
two-component parametric mixture distributions, incorporating much more flexibility
in the underlying hazard function. Survival times can also be simulated from standard
parametric models, including the exponential, Weibull, and Gompertz. Furthermore,
survival times can be simulated from the all-cause distribution of cause-specific hazards
for competing risks under the method of Beyersmann et al. (2009). A multinomial
distribution is used to create the event indicator, whereby the probability of experiencing
each event at a simulated time t is the cause-specific hazard divided by the all-cause
hazard evaluated at time t. Baseline covariates can be included in all scenarios. We also
describe the extension to incorporate nonproportional hazards in standard parametric
and competing-risks scenarios.

2 Simulating survival times

2.1 Two-component parametric mixture distribution

We begin by defining the survival function of the two-component Weibull mixture, with
λ1, λ2, γ1, γ2 > 0 and 0 ≤ p ≤ 1

S0(t) = p exp(−λ1t
γ1) + (1 − p) exp(−λ2t

γ2) (1)

where {λ1, λ2} and {γ1, γ2} are scale and shape parameters, respectively. p represents
the mixing parameter. Transforming to the cumulative hazard scale, we get

H0(t) = − log {p exp(−λ1t
γ1) + (1 − p) exp(−λ2t

γ2)}

Differentiating with respect to t, we obtain the baseline hazard function:

h0(t) =
λ1γ1t

γ1−1p exp(−λ1t
γ1) + λ2γ2t

γ2−1(1 − p) exp(−λ2t
γ2)

p exp(−λ1tγ1) + (1 − p) exp(−λ2tγ2)

Proportional hazards can then be simply incorporated by

h(t) =
λ1γ1t

γ1−1p exp(−λ1t
γ1) + λ2γ2t

γ2−1(1 − p) exp(−λ2t
γ2)

p exp(−λ1tγ1) + (1 − p) exp(−λ2tγ2)
exp(xβ) (2)

where x is a vector of covariates and β is the corresponding vector of regression coeffi-
cients. Transforming back to the survival scale gives

S(t) = S0(t)
exp(xβ)
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With the method of Bender, Augustin, and Blettner (2005), we use the relationship
between the survival function and the cumulative distribution function, whereby

S(t) = 1 − F (t), where F ∼ U(0, 1) (3)

We then make n draws from F ∼ U(0, 1), substituting each into (3) and solving for t.
Under most standard parametric models, we can directly solve for t, but under a mixture
model, we must use root-finding techniques such as Newton–Raphson iterations to solve
for t and hence generate the survival times. Figure 1 displays a variety of complex hazard
functions that can be simulated from the mixture model.
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Figure 1. Complex hazard functions that can be simulated from the two-component
Weibull mixture

The complex hazard functions displayed in figure 1 will allow the user to better
reflect those observed in many real datasets.

2.2 Simulating competing-risks data

The Newton–Raphson approach to simulating survival times can also be applied to the
competing-risks setting. For a general introduction to competing risks, we refer the
reader to Putter, Fiocco, and Geskus (2007). Under the method of Beyersmann et al.
(2009), survival times can be generated from the all-cause distribution of K cause-
specific hazard functions. We define the kth cause-specific hazard function to be

hk(t) = h0k(t) exp (xkβk)
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whereby each cause-specific baseline hazard h0k(t) can be the exponential, Weibull, or
Gompertz parametric distribution. Separate baseline covariates, xk, can be included in
each cause-specific hazard function with corresponding regression coefficients βk. The
all-cause hazard is therefore

hall(t) =

K∑

k=1

hk(t)

Once the survival times are generated, a multinomial distribution is used to create the
event indicator, whereby the probability of experiencing event k at a simulated time t is
the cause-specific hazard of event k divided by the all-cause hazard evaluated at time t.

2.3 Time-dependent effects

It is also desirable to incorporate time-dependent effects when assessing survival meth-
ods. Time-dependent effects may occur, for example, when a treatment effect diminishes
with time. Incorporating them can be done quite simply under the standard paramet-
ric models. Under an exponential or Weibull model, covariates can be interacted with
log time. This enables us to use the method of Bender, Augustin, and Blettner (2005)
because we can directly solve for t. Similarly, under a Gompertz distribution, covari-
ates can be interacted with time. This can also be implemented for each cause-specific
hazard under a competing-risks model. We discuss the extension to incorporating time-
dependent effects in the mixture models in section 5.

2.4 Censoring

When undertaking simulation studies, one often assumes that the censoring distribution
is uniform or follows an exponential distribution. The same procedures described above
can also be used to generate a censoring distribution to better reflect those seen in
observed datasets. The censoring indicator can then be constructed from the minimum
of a simulated survival time and a simulated censoring time.

3 The survsim command

3.1 Syntax

survsim newvar1
[
newvar2

] [
, n(#) lambdas(numlist) gammas(numlist)

distribution(exponential | weibull | gompertz) covariates(varname #
[
#

...
]
...) tde(varname #

[
# ...

]
...) mixture pmix(#) cr ncr(#)

centol(#) showdiff
]

newvar1 specifies the new variable name to contain the generated survival times. new-

var2 is required when generating competing-risks data to create the status indicator.



678 Simulating complex survival data

3.2 Options

n(#) specifies the number of survival times to generate. The default is the number of
observations in the current dataset.

lambdas(numlist) defines the scale parameters in the exponential, Weibull, and Gom-
pertz distributions. The number of values required depends on the model choice.
The default is one number corresponding to a standard parametric distribution. Un-
der a mixture model, two values are required. Under a competing-risks (cr) model,
the number of values is defined by ncr().

gammas(numlist) defines the shape parameters of the Weibull or Gompertz parametric
distributions. The number of entries must be equal to that of lambdas().

distribution(exponential | weibull | gompertz) specifies the parametric survival dis-
tribution to use. The default is distribution(weibull).

covariates(varname #
[
# ...

]
...) defines baseline covariates to be included in

the linear predictor of the survival model, along with the value of the corresponding
coefficient. For example, a treatment variable coded 0/1 can be included, with a
log hazard-ratio of 0.5, by covariates(treat 0.5). The variable treat must be in
the dataset before survsim is run. If cr is used with ncr(4), then a value for each
covariate must be input for each competing risk, for example, covariates(treat
0.5 -0.2 0.1 0.25).

tde(varname #
[
# ...

]
...) creates nonproportional hazards by interacting co-

variates with log time under a Weibull or exponential model or with time under a
Gompertz model. This option is not available under a mixture model. Values should
be entered, for example, as tde(trt 0.5).

mixture specifies that survival times be simulated from a two-component mixture
model. lambdas() and gammas() must be of length 2.

pmix(#) defines the value of the mixture parameter. The default is pmix(0.5).

cr specifies that survival times be simulated from the all-cause distribution of ncr()
cause-specific hazards.

ncr(#) defines the number of competing risks, that is, the number of cause-specific
hazards. lambdas() and gammas() must be of the length defined by ncr().

centol(#) specifies the tolerance of the Newton–Raphson scheme. The default is
centol(0.0001).

showdiff shows the maximum difference in estimates between iterations of the Newton–
Raphson scheme. This can be used to monitor convergence.
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4 Example use of survsim

We illustrate the use of survsim through some simple simulation studies.

4.1 Standard parametric survival model

The first example illustrates a somewhat standard simulation study. We simulate sur-
vival times from a baseline Weibull distribution with an increasing hazard function.
We can incorporate a constant treatment effect by first generating a binary treatment
group indicator and defining a log hazard-ratio of −0.5, that is, a hazard ratio of 0.607,
indicating a beneficial treatment effect reducing the event rate by 39.3%. We set the
seed for reproducibility and conduct 1,000 replicates, analyzing bias and coverage of the
treatment effect estimate. We apply a maximum follow-up time of five years.

. set seed 6765327

. program simstudy1, rclass
1. clear
2. set obs 1000
3. generate trt = rbinomial(1,0.5)
4. survsim stime, distribution(weibull) lambdas(0.1) gammas(1.5)

> covariates(trt -0.5)
5. generate died = stime <= 5
6. replace stime = 5 if died == 0
7. stset stime, failure(died = 1)
8. streg trt, distribution(weibull) nohr
9. return scalar loghr = _b[trt]
10. return scalar seloghr = _se[trt]
11. end

. simulate loghr = r(loghr) seloghr = r(seloghr), reps(1000) nodots nolegend:
> simstudy1

. /* Bias */

. generate bias = loghr - (-0.5)

. summarize bias, meanonly

. display r(mean)
-.00340769

. /* Coverage */

. generate cov = (loghr + invnorm(0.975)*seloghr>-0.5 & loghr -
> invnorm(0.975)*seloghr<-0.5)

. tabulate cov

cov Freq. Percent Cum.

0 50 5.00 5.00
1 950 95.00 100.00

Total 1,000 100.00

We observe a minimal bias in the estimates of the log hazard-ratio of −0.003 and a
coverage of 95%.
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4.2 Two-component parametric survival model

Now consider the German breast cancer dataset available by typing webuse brcancer.
This dataset consists of 686 patients, randomized with 246 to receive hormonal therapy
and 440 to receive a placebo. The outcome is recurrence-free survival, of which 299
patients experienced the event of interest. We first fit a Weibull survival model inves-
tigating the effect of hormonal therapy, and we obtain the fitted survival function. We
then compare this with a two-component Weibull–Weibull mixture model [described in
equations (1) to (2)] by using the stmix command available from the Statistical Soft-
ware Components archive (Crowther and Lambert 2011). Figure 2 displays the fitted
values from both models.

. webuse brcancer, clear
(German breast cancer data)

. stset rectime, failure(censrec) scale(365.25)

failure event: censrec != 0 & censrec < .
obs. time interval: (0, rectime]
exit on or before: failure

t for analysis: time/365.25

686 total obs.
0 exclusions

686 obs. remaining, representing
299 failures in single record/single failure data

2111.978 total analysis time at risk, at risk from t = 0
earliest observed entry t = 0

last observed exit t = 7.279945

. sts generate kmsurv = s, by(hormon)

. streg hormon, distribution(weibull) nolog noheader

failure _d: censrec
analysis time _t: rectime/365.25

_t Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

hormon .6748666 .0842414 -3.15 0.002 .528403 .8619273
_cons .1113439 .0121783 -20.07 0.000 .0898599 .1379644

/ln_p .250997 .0496958 5.05 0.000 .1535949 .348399

p 1.285306 .0638744 1.166018 1.416798
1/p .7780247 .0386646 .7058172 .8576193

. predict surv_w, surv
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. stmix hormon, distribution(weibweib) nolog
Obtaining initial values:

Fitting full model:

Mixture Weibull-Weibull proportional hazards regression

Log likelihood = -843.05585 Number of obs = 686

Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

xb
hormon .6917148 .0864138 -2.95 0.003 .5414883 .8836192
_cons 1 (omitted)

logit_p_mix
_cons .9787895 .290526 3.37 0.001 .4093689 1.54821

ln_lambda1
_cons -3.721406 .7223363 -5.15 0.000 -5.13716 -2.305653

ln_gamma1
_cons .626371 .189829 3.30 0.001 .2543129 .9984291

ln_lambda2
_cons -1.14564 .1566929 -7.31 0.000 -1.452753 -.838528

ln_gamma2
_cons .9187288 .1159475 7.92 0.000 .6914759 1.145982

. predict surv_ww, survival
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Figure 2. Comparison of predicted survival curves

It is evident from figure 2 that the two-component Weibull mixture model provides
a better fit to the observed data. However, although they are useful indicators of im-
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proved fit, plots of fitted values overlaid on Kaplan–Meier curves should be interpreted
with caution. Quite often, we observe sparse data in the tails, and in such scenarios,
fitted values should not be overinterpreted. The majority of the data in this example
occurs in the first four years of follow-up, where the fitted values appear to fit well in
the two-component mixture model as compared with the Weibull model. This motivat-
ing example illustrates a setting where a more complex underlying hazard function is
more biologically plausible than a standard parametric model. We can investigate the
performance of the two-component mixture model through simulation by using param-
eter estimates obtained from the stmix output. For comparison, we also fit a standard
Weibull survival model.

. local loghr = [xb][hormon]

. local l1 = exp([ln_lambda1][_cons])

. local g1 = exp([ln_gamma1][_cons])

. local l2 = exp([ln_lambda2][_cons])

. local g2 = exp([ln_gamma2][_cons])

. local pmix = invlogit([logit_p_mix][_cons])

. set seed 878764

. program simstudy2, rclass
1. syntax [ , PMIX(real 0.5) L1(real 0.1) L2(real 0.1) G1(real 1)

> G2(real 1) loghr(real 1)]
2. clear
3. set obs 1000
4. generate trt = rbinomial(1,0.5)
5. survsim stime, mixture distribution(weibull) lambdas(`l1´ `l2´)

> gammas(`g1´ `g2´) pmix(`pmix´) covariates(trt `loghr´)
6. generate died = stime <= 5
7. replace stime = 5 if died == 0
8. stset stime, failure(died = 1)
9. streg trt, distribution(weibull) nohr
10. return scalar trt_w = _b[trt]
11. return scalar setrt_w = _se[trt]
12. cap constraint drop _all
13. stmix trt, distribution(weibweib)
14. return scalar trt_ww = [xb][trt]
15. return scalar setrt_ww = [xb]_se[trt]
16. end

. simulate trt_w = r(trt_w) setrt_w = r(setrt_w) trt_ww = r(trt_ww)
> setrt_ww = r(setrt_ww), reps(500): simstudy2, pmix(`pmix´) l1(`l1´) l2(`l2´)
> g1(`g1´) g2(`g2´) loghr(`loghr´)

(output omitted )

. /* Bias */

. generate bias_trt_w = trt_w - (`loghr´)

. generate bias_trt_ww = trt_ww - (`loghr´)

. summarize bias*

Variable Obs Mean Std. Dev. Min Max

bias_trt_w 500 -.0121194 .0931462 -.255441 .2476663
bias_trt_ww 500 -.0023753 .0908162 -.242304 .2496307

We observe very small levels of bias under both the Weibull and the two-component
mixture model of −0.012 and −0.002, respectively.
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4.3 Time-dependent effects

We now illustrate the incorporation of a time-dependent effect. This can be done by
using a standard Weibull survival model that illustrates a diminishing treatment effect,
as follows. The true model is defined as

h(t) = λγtγ−1 exp {βXi + φXi × log(t)} (4)

We simulate one dataset and fit a flexible parametric survival model (see Royston
and Parmar [2002] and Royston and Lambert [2011]), allowing for a time-dependent
hazard ratio for the effect of treatment. Flexible parametric models are fit on the
log cumulative-hazard scale by using restricted cubic splines. Figure 3 displays the
predicted time-dependent hazard ratio. For comparison, we also show the estimate of
the time-independent hazard ratio.

. set seed 6765327

. clear

. set obs 10000
obs was 0, now 10000

. generate trt = rbinomial(1,0.5)

. survsim stime, distribution(weibull) lambdas(0.1) gammas(1.5)
> covariates(trt -0.5) tde(trt 0.15)

. generate died = stime <= 5

. replace stime = 5 if died == 0
(3869 real changes made)

. stset stime, failure(died = 1)

failure event: died == 1
obs. time interval: (0, stime]
exit on or before: failure

10000 total obs.
0 exclusions

10000 obs. remaining, representing
6131 failures in single record/single failure data

35805.85 total analysis time at risk, at risk from t = 0
earliest observed entry t = 0

last observed exit t = 5

. stpm2 trt, scale(h) df(3) tvc(trt) dftvc(1) nolog

Log likelihood = -11350.047 Number of obs = 10000

Coef. Std. Err. z P>|z| [95% Conf. Interval]

xb
trt -.4418441 .0287258 -15.38 0.000 -.4981456 -.3855427

_rcs1 1.031265 .0173282 59.51 0.000 .9973024 1.065228
_rcs2 -.0162161 .0133391 -1.22 0.224 -.0423603 .0099282
_rcs3 -.0024802 .0054753 -0.45 0.651 -.0132117 .0082513

_rcs_trt1 .0866731 .0256407 3.38 0.001 .0364183 .1369279
_cons -.6103966 .0183731 -33.22 0.000 -.6464072 -.5743859

. predict hr, hrnumer(trt 1) ci
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Figure 3. Time-dependent hazard ratio

In this example, we have simulated a time-dependent effect on the hazard scale and
have fit a model estimating a time-dependent effect on the cumulative hazard scale.
This simulation study could be extended to investigate any biases that arise when the
modeling scale differs from that of the data-generating process.

4.4 Competing risks

Finally, we demonstrate the simulation of competing-risks data under a cause-specific
hazards model. We define two cause-specific hazards using Weibull-distributed baseline
hazard functions, the first with an increasing hazard and the second with a decreas-
ing one. We specify a competing-risks setting by using the cr and ncr() options.
Cause-specific Weibull survival models are then fit to illustrate the method. Censoring
is applied after 15 years. Using stcompet (Coviello and Boggess 2004), we show the
predicted cumulative incidence function for each cause in figure 4.
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. set seed 6765327

. clear

. set obs 10000
obs was 0, now 10000

. generate trt = rbinomial(1,0.5)

. survsim stime event, distribution(weibull) cr ncr(2) lambdas(0.1 0.1)
> gammas(1.5 0.5) covariates(trt -0.5 0.5)

. replace event = 0 if stime>15
(78 real changes made)

. stset stime, failure(event==1)

failure event: event == 1
obs. time interval: (0, stime]
exit on or before: failure

(output omitted )

. streg trt, distribution(weibull) nohr nolog noheader

failure _d: event == 1
analysis time _t: stime

_t Coef. Std. Err. z P>|z| [95% Conf. Interval]

trt -.5146497 .0234288 -21.97 0.000 -.5605694 -.46873
_cons -2.25095 .0274368 -82.04 0.000 -2.304725 -2.197175

/ln_p .3841366 .0087728 43.79 0.000 .3669421 .401331

p 1.468346 .0128815 1.443314 1.493812
1/p .6810384 .0059746 .6694285 .6928497

. stcompet ci1 = ci, compet1(2) by(trt)

. stset stime, failure(event==2)

failure event: event == 2
obs. time interval: (0, stime]
exit on or before: failure

(output omitted )

. streg trt, distribution(weibull) nohr nolog noheader

failure _d: event == 2
analysis time _t: stime

_t Coef. Std. Err. z P>|z| [95% Conf. Interval]

trt .4793291 .0424895 11.28 0.000 .3960512 .562607
_cons -2.270358 .0357084 -63.58 0.000 -2.340345 -2.200371

/ln_p -.7248368 .0188308 -38.49 0.000 -.7617446 -.6879291

p .4844036 .0091217 .4668513 .5026159
1/p 2.064394 .0388742 1.989591 2.14201

. stcompet ci2 = ci, compet1(1) by(trt)
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Figure 4. Cumulative incidence

Figure 4 displays the beneficial treatment effect simulated for cause 1 and the detri-
mental treatment effect simulated for cause 2. The number of competing risks is not
limited in survsim, and each cause-specific hazard can be extended to include time-
dependent effects.

5 Conclusion

We described a flexible tool to simulate a variety of complex survival data. We hope
it will be useful not only to generate more realistic and biologically plausible survival
data but also to better assess statistical models and improve understanding of the data-
generating processes underlying survival models.

Extension to incorporate time-dependent effects within the mixture model frame-
work requires numerical integration to evaluate the cumulative hazard. This draws
parallels with the simulation of joint longitudinal and survival data, which is currently
under development. Future work also includes the addition of cure proportions and
frailty distributions.
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