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Abstract. Simulation of realistic censored survival times is challenging. Most
research studies use highly simplified models, such as the exponential, that do not
adequately reflect the patterns of time to event and censoring seen in real datasets.
In this article, I present a general method of simulating such data based on flexible
parametric survival models (Royston and Parmar, 2002, Statistics in Medicine 21:
2175–2197). A key component of the approach is modeling not only the time
to event but also the time to censoring. I illustrate the methods in data from
clinical trials and from a prognostic study. I also describe a new Stata program,
stsurvsim, that does the necessary calculations.

Keywords: st0274, stsurvsim, survival analysis, Monte Carlo simulation, flexible
parametric survival models, time to event, time to censoring, clinical trials

1 Introduction

Simulation of censored time-to-event data is often required when investigating the prop-
erties of some procedure. In my experience, such simulations have featured in many
research articles and PhD projects over the years. Mostly, presumably for simplicity,
researchers reach for the exponential distribution to simulate times to event (henceforth
“survival times”, even though the event may be other than death). In some cases, the
censoring distribution may also be represented by an exponential distribution, and the
censored survival time may be computed as the minimum of the survival time and time
to censoring.

Most real survival distributions do not resemble an exponential. In cancer, for
example, we typically find that the hazard function peaks fairly soon after diagnosis
and initial treatment of the disease and then declines gradually thereafter. Such a
hazard function is neither a constant nor a monotonic function of time. Probably the
second most popular distribution, the Weibull, has a monotonic hazard function, so it
too is not a good choice for realistic simulation.

Why does it matter whether the simulated survival distribution is realistic? For
example, simulations using a model that tends to produce extreme survival times might
adversely affect the performance of some new method of analysis but be so unlikely to
occur in practice that it leads to unsound conclusions. In addition, getting the censoring
fraction and pattern right could be important in some studies.

c© 2012 StataCorp LP st0274



640 Tools to simulate realistic censored survival-time distributions

In this article, I describe an approach to simulation based on creating pseudorandom
samples from Royston–Parmar distributions (Royston and Parmar 2002; Royston and
Lambert 2011). The defining characteristic of a Royston–Parmar distribution is that its
baseline distribution function is modeled as a restricted cubic spline (RCS) function of
log survival-time. Because spline functions are extremely flexible, the variety of available
Royston–Parmar distributions is effectively limitless. One can also simulate the time to
censoring as a Royston–Parmar distribution, making it possible to replicate censored
survival-time distributions closely similar to that of a given real dataset.

2 Royston–Parmar models and software: A brief sum-
mary

2.1 Description

Let S (t;x) be the survival function of interest and x be a vector of covariates. We wish
to simulate samples from a distribution with survival function S (t;x), but we do not
necessarily know (or wish to assume a priori) the form of S (t;x).

Suppose we write a broad class of models for t|x as follows

g {S (t;x)} = g {S0 (t)} + β′x (1)

where S0 (t) = S (t;0) is the baseline survival function and g (·) is some monotonic link
function. The covariate effects in (1) are proportional on the scale of the link function,
g (·).

Suppose we further write

g {S0 (t)} = s (ln t) (2)

where s (·) is an RCS function of log time. Equations (1) and (2) together define a basic
Royston–Parmar model class.

Royston and Parmar (2002) described the model classes generated by three link
functions: ln {− ln S (t)}, ln [{1 − S (t)}/S (t)], and Φ−1 {1 − S (t)}, where Φ−1 (·) is
the inverse normal distribution function (invnormal() in Stata). These give rise to
proportional hazards, proportional odds, and probit models, respectively. The simplest
cases are where s (·) is a linear function of ln t; then the distribution of t|x is Weibull,
loglogistic, or lognormal, respectively, for the three link functions.

The RCS function s (ln t) has some number k of interior knots and two boundary
knots. A “knot” is a join-point between two cubic polynomials on the time axis. The
“restriction” in RCS refers to constraints that make the first and second derivatives
continuous at the knots and force the spline function to be linear in its argument beyond
the boundary knots. An RCS with k knots has k +1 degrees of freedom (d.f.), excluding
the intercept. One of these d.f. is associated with a linear function of the argument,
while the others are associated with the so-called spline basis functions.
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We can write

s (ln t) = γ0 + γ1 ln t + γ2v1 (ln t) + · · · + γk+1vk (ln t)

where ln t and v1 (·) , . . . , vk (·) are the spline basis functions. Mathematical details of
the basis functions are provided on pages 70–71, 97, and 102 of Royston and Lambert
(2011), and a numerical example is given on pages 109–110.

The preferred software for fitting Royston–Parmar models is stpm2 (Lambert and
Royston 2009). The stpm2 package can be downloaded from the Statistical Software
Components archive by using the Stata command ssc install stpm2. The linear
predictor for a Royston–Parmar model fit by stpm2 is s (ln t) + β′x; the γ and β pa-
rameters are part of a single “equation” and are estimated by maximum likelihood. A
detail worth noting is that by default, stpm2 orthogonalizes the basis functions so that
their means are 0, their standard deviations are 1, and their correlations are 0. This
linear transformation enhances numerical stability when fitting the model. The stpm2

package includes a documented routine called rcsgen, which creates restricted cubic
spline basis functions. We use rcsgen in this article.

Royston–Parmar models may be extended to include time-dependent effects of co-
variates; that is, the regression coefficients for a covariate may change over time. In
this article, I do not consider time-dependent effects in a general way, and they are
not supported by stsurvsim. There is one exception, where I model a time-dependent
binary treatment effect in a clinical trial. This is done by simulating data for each arm
independently. The use of Weibull distributions with a different shape parameter in
each arm leads to nonproportional hazards.

2.2 Model selection

As discussed by Royston and Lambert (2011, 18–19), choosing an appropriate model
for the survival data amounts to choosing an appropriate complexity (number of d.f.)
for the RCS function representing the baseline distribution function. A simple way to
do this is to choose the d.f. that minimizes a recognized information measure such as
the Akaike’s information criterion or the Bayesian information criterion (BIC). These
statistics amount to penalized likelihoods. The BIC depends on sample size and is more
stringent than the Akaike’s information criterion, which has a fixed penalty independent
of sample size. The BIC therefore tends to choose less complex RCS functions. For
simulation purposes, the choice of d.f. is not absolutely critical, but underfitting is not
advisable. Choosing the d.f. that approximately minimizes the BIC is a reasonable
strategy in the present context.
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3 Stata command stsurvsim

3.1 Syntax

stsurvsim newvar
[
if
] [

in
] [

, beta(item
[
item . . .

]
) bknots(numlist)

knots(numlist) knscale(string) rmatrix(matrix name) scale(scale name)
]

Weights are not allowed. Note that stsurvsim requires stpm2 to be installed. stpm2

can be downloaded from the Statistical Software Components archive (see [R] ssc).

3.2 Description

stsurvsim creates in newvar a simulated sample of uncensored survival times from the
baseline distribution function of a Royston–Parmar flexible parametric survival model,
implemented by stpm2. Covariate effects may optionally be included.

stsurvsim can be used in two different modes. If any of the options beta(),
bknots(), knots(), or scale() are supplied, then they must all be supplied as well
as possibly rmatrix(). If, however, a linear model is fit (no spline terms), knots and
boundary knots are not required, and only beta() and scale() must be supplied.
stsurvsim uses their information to define the model from which to simulate. Oth-
erwise, none of these options are provided, and stsurvsim uses information from the
most recent fit of stpm2.

When the beta coefficients for the spline basis functions relate to orthogonalized
basis functions, you must supply an R-matrix in the rmatrix() option (see Technical

note). stsurvsim has no way of checking whether an R-matrix is needed; it is up to
you to provide it if necessary.

3.3 Options

beta(item
[
item . . .

]
) specifies the regression coefficients for the spline basis functions

and also for any covariates that may be required. The syntax of item is name[=]#
(where name is the name of a covariate), rcs# (where # is 1, 2, . . . correspond-
ing to the spline basis functions in the model), or cons (for the intercept term).
For example: beta( rcs1=2.751 rcs2=0.229 cons=-2.079). If beta() is not
specified, the regression coefficients are picked up from the most recent fit of stpm2.

bknots(numlist) specifies the two boundary knots for the spline function on the scale of
time or, if the knscale(log) option is used, log time. If bknots() is not specified,
the boundary knots are picked up from the most recent fit of stpm2.

knots(numlist) specifies interior knots for the spline function on the scale of time or, if
the knscale(log) option is used, log time. If knots() is not specified, the interior
knots are picked up from the most recent fit of stpm2.
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knscale(string) determines the scale of the knots supplied in bknots() and knots().
If knscale() is not specified, knots are given in units of time. If knscale(log)

is specified, knots are provided in units of log time. The default is knscale(""),
meaning knots in units of time.

rmatrix(matrix name) supplies the matrix used to orthogonalize the spline basis func-
tions. If the noorthog option of stpm2 was not used when fitting the original model,
orthogonalization is done by default. It is then essential to save the R-matrix after
running stpm2 and supply it to stsurvsim as rmatrix(matrix name). stpm2 stores
the R-matrix in e(R bh).

scale(scale name) specifies the scale on which the Royston–Parmar model was fit.
Valid scale names are hazard, odds, and normal. The scale(theta) option of
stpm2 is not supported. If scale() is not specified, the scale is picked up from the
most recent fit of stpm2.

3.4 Technical note

If a Royston–Parmar model is fit by stpm2, the spline basis functions, created in vari-
ables called rcs1, rcs2, etc., are orthogonalized by default. A linear transformation
that does this (an R-matrix) is stored by stpm2 in e(R bh). To obtain correct simu-
lations, you need to store this matrix after running stpm2 and supply it to stsurvsim

in the rmatrix(matrix name) option. Failure to do this will produce incorrect simula-
tions.

You can avoid the bother of the R-matrix by specifying the noorthog option when
running stpm2. The rmatrix() option of stsurvsim is then unnecessary.

4 Example 1: Simulating survival data to resemble a

given dataset

Suppose we wish to generate simulated samples of censored survival-time data that are
similar in distribution to a given dataset. We use the German breast cancer dataset,
available in Stata through webuse brcancer, as an example.

For this to work, we need to approximate the time-to-event and the time-to-censoring
distributions separately. First, we stset recurrence-free survival time in units of years
(on average, 365.24 days). We then fit a Royston–Parmar model with scale hazard and
a spline basis of 2 d.f.
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. webuse brcancer
(German breast cancer data)

. stset rectime, failure(censrec) scale(365.24)

failure event: censrec != 0 & censrec < .
obs. time interval: (0, rectime]
exit on or before: failure

t for analysis: time/365.24

686 total obs.
0 exclusions

686 obs. remaining, representing
299 failures in single record/single failure data

2112.036 total analysis time at risk, at risk from t = 0
earliest observed entry t = 0

last observed exit t = 7.280145

We fit the desired stpm2 model. We apply the noorthog option to avoid orthogo-
nalization of the spline basis functions:

. stpm2, df(2) scale(hazard) noorthog

Iteration 0: log likelihood = -676.96512
Iteration 1: log likelihood = -676.24956
Iteration 2: log likelihood = -676.24812
Iteration 3: log likelihood = -676.24812

Log likelihood = -676.24812 Number of obs = 686

Coef. Std. Err. z P>|z| [95% Conf. Interval]

xb
_rcs1 2.751215 .2602665 10.57 0.000 2.241102 3.261328
_rcs2 .2291809 .0360612 6.36 0.000 .1585022 .2998595
_cons -2.079276 .1021607 -20.35 0.000 -2.279507 -1.879045

We now display the additional information we need: knots stored in ‘e(bhknots)’

and boundary knots in ‘e(boundary knots)’:

. display "`e(bhknots)´"
1.768700062381288

. display "`e(boundary_knots)´"

.1971306421738497 6.724345909577711

By default, the interior knots are placed at certain predetermined centiles of the
uncensored survival-time distribution. The model has 2 d.f. and just one knot. Refer-
encing the df() option in help stpm2 reveals that the knot is placed at the 50th centile
of the uncensored survival times:

. centile _t if _d==1, centile(50)

Binom. Interp.
Variable Obs Percentile Centile [95% Conf. Interval]

_t 299 50 1.7687 1.574642 2.003994
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The boundary knots are placed at the minimum and maximum event times:

. summarize _t if _d==1

Variable Obs Mean Std. Dev. Min Max

_t 299 2.184224 1.370769 .1971307 6.724346

We now have the information we need to simulate the uncensored times to event.
We drop all those unnecessary decimal places:

. stsurvsim t_uncens, bknots(0.197 6.724) knots(1.769) scale(hazard)
> beta(_rcs1=2.751 _rcs2=0.229 _cons=-2.079)
[4 iterations performed]

The program informs us that four iterations were required. The algorithm in stsurvsim

inverts the spline function to convert centiles back to the survival-time scale, which is
an iterative process. Four iterations is typical and is very fast. The program fails with
an error message if the maximum allowed number of 100 iterations is reached. This may
well happen if you have fit a model in stpm2 without specifying noorthog, and then
you attempt to use the estimated parameter estimates to simulate.

We have seen all the details of how to simulate survival times in this example. In
fact, because we just fit a model with stpm2 and we are using the same model to generate
the simulations, we could simply have typed

stpm2, df(2) scale(hazard) noorthog
stsurvsim t_uncens

In other words, you can use stsurvsim without options to get a similar result.

We now turn to simulating the censoring time distribution, for which we use a slightly
more complex spline model with 3 d.f. The process is simple because all we need to do
is reverse the censoring indicator, fit the stpm2 model, and simulate:

replace _d = 1 - _d
stpm2, df(3) scale(hazard) noorthog
stsurvsim t_cens

Finally, we construct the simulated time to event and censoring indicator for the cen-
sored survival-time distribution:

generate t = min(t_uncens, t_cens)
generate byte d = cond(t_cens < t_uncens, 0, 1)

We are now ready to stset the dataset with t and d and to do whatever work we had
in mind with the simulated distribution.
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Figures 1(a) and 1(b) demonstrate that stpm2 has achieved an excellent fit to the
distribution of recurrence-free survival and of time to censoring, respectively.

Informally, figure 1(c) shows that the simulated distribution of censored time to
event matches the original very well. More formally, we find that the BIC values with
d.f. = 1, 2, 3, 4, 5 for the censrec failure event are 1410.8, 1369.6, 1372.3, 1375.2, and
1381.0, respectively. This confirms that df(2) is a good choice. For the time-to-
censoring outcome, the BIC has a clear minimum at df(3) (values not shown).
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stpm2 approx.

(a) Time to event
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(b) Time to censoring
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Figure 1. German breast cancer data. (a) Kaplan–Meier and stpm 2 d.f. fit to the
survival function. (b) Kaplan–Meier and stpm 3 d.f. fit to the survival function for time
to censoring. (c) Kaplan–Meier curves for the original sample and that simulated by
stsurvsim.

5 Example 2: Simulating from published survival curves

The Iressa Pan-Asia Study (IPASS) (Mok et al. 2009), a randomized controlled trial in
lung cancer, evoked some methodological comment in the letters section of the New

England Journal of Medicine following its publication in 2009. The letters from four
sets of correspondents and the authors’ response may be found in the New England

Journal of Medicine 361: 2485–2487 (2009). Panel A of figure 2 in the original article
showed Kaplan–Meier curves for overall survival in the two treatment groups, exhibiting
a treatment effect that was clearly nonproportional on the hazard scale (the survival
curves crossed). A hazard ratio of 0.73 was reported. Correspondents subsequently
complained about the inappropriateness of summarizing the treatment effect as a single
hazard ratio when the hazard ratio is clearly varying over time.
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As part of an analysis demonstrating the use of restricted mean survival time as an
alternative outcome measure when the proportional hazards assumption is untenable,
Royston and Parmar (2011) extracted survival values from figure 2 in Mok et al. (2009)
and simulated data from the survival-time distributions in the two trial arms. They did
this by fitting a Weibull distribution in each arm, which they accomplished by regressing
the log cumulative hazard linearly on the log survival-time. The location and slope of
the linear regressions gave rough estimates of the scale and shape parameters of the two
Weibull distributions.

Table 1 gives the estimates of S (t) that Royston and Parmar (2011) read in manually
off the graph.

Table 1. Survival data extracted from panel A of figure 2 in Mok et al. (2009)

Control arm Experimental arm
(carboplatin–paclitaxel) (gefitinib)

t S (t) t S (t) t S (t) t S (t)

1 0.97 11 0.08 1 0.93 11 0.30
2 0.88 12 0.06 2 0.76 12 0.25
3 0.77 13 0.04 3 0.66 13 0.21
4 0.74 14 0.03 4 0.60 14 0.17
5 0.66 15 0.025 5 0.55 15 0.16
6 0.48 16 0.02 6 0.48 16 0.16
7 0.31 17 0.015 7 0.42 17 0.12
8 0.25 18 0.01 8 0.40 18 0.09
9 0.15 19 0.01 9 0.34 19 0.07
10 0.11 20 0.01 10 0.32 20 0.05

We adopted a similar approach to fitting, but instead of linear functions, we worked
with spline functions of log time with 2 d.f. in each treatment group:

generate lnt = ln(t)
generate byte trt = (_n > 20)
rcsgen lnt, gen(_rcs) df(2)
display "`r(knots)´"

This gave two spline basis functions, rcs1 and rcs2, with boundary knots at 0
and 2.996 log months and one interior knot at 2.350 log months. We next regressed the
log cumulative hazard in each treatment group on the basis functions to estimate the
coefficients needed by stsurvsim:

generate lnH = ln(-ln(s))
regress lnH _rcs1 _rcs2 if trt == 0
regress lnH _rcs1 _rcs2 if trt == 1
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Using the estimated regression coefficients from these models, we simulated the survival-
time distribution in each group separately and combined the results into a single vari-
able. There were 1,217 patients in the original trial, 608 in the control arm, and 609 in
the experimental arm. We suggest that to make the simulated values reproducible, you
set the random-number seed before running stsurvsim:

drop _all
set obs 1217
set seed 111 /* arbitrary value */
generate byte trt = (_n > 608)
stsurvsim t0, scale(hazard) knscale(log) bknots(0 2.996) knots(2.35) ///

beta(_rcs1=1.92 _rcs2=0.095 _cons=-3.52)
stsurvsim t1, scale(hazard) knscale(log) bknots(0 2.996) knots(2.35) ///

beta(_rcs1=1.18 _rcs2=0.046 _cons=-2.37)
generate t = cond(trt==0, t0, t1)
drop t0 t1

Finally, we stset the data, truncating the survival time at 22 months, the final
point shown in the original Kaplan–Meier graph:

generate byte d = 1
stset t, failure(d) exit(time 22)

Figure 2 shows the Kaplan–Meier plot for one resulting simulated dataset.
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Figure 2. Simulated data resembling the IPASS trial in lung cancer

The pattern is qualitatively similar to the original. The survival curves cross at
about 5–6 months.



P. Royston 649

6 Including covariates in the simulation

Including the effects of covariates on the simulated survival times is straightforward.
Unlike the spline basis functions, the covariates must already exist in the data, so if
they are to be generated by some additional simulation step, that process obviously
needs to be completed before simulating the survival times. All that is required is to
include in the beta() option for stsurvsim items of the form varname=#, where # is
the regression coefficient for the desired effect of varname on the baseline distribution
function. For example, if trt was a binary treatment variable with a log hazard-ratio
of −0.3, we would include trt=-0.3 in the beta() option and specify scale(hazard).

Alternatively, we can simply fit a Royston–Parmar model including the covariates of
interest by using stpm2 and then run stsurvsim without options to generate simulations
under the model, automatically including covariate effects.

As illustrated in example 1, the procedure can be applied with the censoring indicator
reversed to generate realistic censoring patterns. If necessary, covariates that influence
the censoring distribution can be included in the Royston–Parmar model.

7 Example 3: Multivariable modeling

Our final example is a little more complex. Again using the German breast can-
cer data, we simulate censored survival times from Sauerbrei and Royston’s (1999)
model III, a prognostic model. The variables, their fractional polynomial transfor-
mations, and the estimated regression coefficients from a Cox model are given in table 4
of Sauerbrei and Royston (1999). As in example 1, we simulate the censoring time
distribution and the time to event, the main outcome of interest being recurrence-free
survival time.

A simple aim of the simulation is to assess the stability of the model by esti-
mating the selection fraction of each potentially influential covariate in the dataset.
Sauerbrei and Royston (1999) did this by taking a large number of bootstrap samples
of the dataset, running the mfp command on each sample to select a model, and count-
ing the number of times each covariate appeared in the model after applying mfp’s
backward-elimination selection procedure. We repeat the process with 200 replications,
the only difference being that we simulate the survival times from model III rather
than by bootstrap resampling. However, we still apply the bootstrap to resample the
covariates.

Sauerbrei and Schumacher (1992) recommend a minimum of 200 bootstrap samples
for a stability analysis. For the purpose of the present demonstration, we create 200
datasets containing the simulated times to event. We first get the parameters for sim-
ulating the times to censoring:
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replace _d = 1 - _d
stpm2, df(3) scale(h) noorthog
local knots `e(bhknots)´
local bknots `e(boundary_knots)´
local rcs1 = [xb]_b[_rcs1]
local rcs2 = [xb]_b[_rcs2]
local rcs3 = [xb]_b[_rcs3]
local cons = [xb]_b[_cons]
local beta _rcs1=`rcs1´ _rcs2=`rcs2´ _rcs3=`rcs3´ _cons=`cons´
replace _d = 1 - _d

Next we fit model III by using stpm2 and create the 200 datasets in 200 temporary
files. The bsample command creates a bootstrap sample. The time-to-event variable
t uncens is created through the parameters that stpm2 leaves behind:

webuse brcancer, clear
stset rectime, failure(censrec) scale(365.24)
fracgen x1 -2 -0.5
fracgen x6 0.5
stpm2 x1_1 x1_2 x4a x5e x6_1 hormon, df(2) scale(hazard)
local reps 200
forvalues j = 1/`reps´ {

preserve
bsample
tempfile f`j´
stsurvsim t_cens, bknots(`bknots´) knots(`knots´) beta(`beta´) scale(hazard)
stsurvsim t_uncens
generate t = min(t_cens, t_uncens)
generate byte d = cond(t_cens < t_uncens, 0, 1)
stset t d
drop x4 x1_1 x1_2 x6_1 t_cens _rcs* _d_rcs* t_uncens t d
save `f`j´´
restore

}

We append the files together to produce a single file, indexing the replicates by a
variable called simind:

use `f1´, replace
generate int simind = 1
forvalues j = 2 / `reps´ {

append using `f`j´´
replace simind = `j´ if missing(simind)
erase `"`f`j´´"´

}
save mfpsim, replace

Finally, we run the user-written command mfpboot (Royston and Sauerbrei 2009)
to apply mfp to the simulation replicates and record which variables are selected as well
as their fractional polynomial transformations, if any:

use mfpsim, clear
mfpboot, select(0.05, hormon:1) clear outfile(mfpbootsim) replace seed(101) ///

simid(simind): stcox x1 x2 x3 x4a x4b x5e x6 x7 hormon
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A nominal significance level of 5% was used in the backward-elimination procedure,
as indicated by the select(0.05) option. All models included hormonal treatment
(hormon). The results are stored in mfpbootsim.dta. We can now count the selec-
tion fractions for the potential covariates. These are compared in table 2 with the
corresponding results in table 6 of Sauerbrei and Royston (1999).

Table 2. Simulation-with-bootstrap and bootstrap-only results for prognostic modeling
of the German breast cancer data

Variable Description Selection % FP1 or linear %
Sim. Boot.∗ Sim. Boot.∗

x1 age 90 94 9 15
x2 menopausal status 10 18 – –
x3 tumor size 7 43 5 38
x4a tumor grade dummy 1 71 59 – –
x4b tumor grade dummy 2 7 9 – –
x5e transformed nodes 100 100 99 100
x6 progesterone receptors 100 99 95 92
x7 estrogen receptors 5 13 2 2

∗ Bootstrap-only results from table 6 of Sauerbrei and Royston (1999)

The selection fractions for x1, x2, x4a, x4b, x5e, x6, and x7 are broadly similar
between the simulation and bootstrap studies (although x4a is selected more often in
the simulation study).

Note that the selection fraction of the uninfluential variables x3, x4b, and x7 in the
simulation study is close to the nominal 5%. The selection fraction of the uninfluential
variable x2 is 10%, which is above the nominal 5%. The reason is that x2 is highly
correlated with the influential variable x1. As a result, x2 may be selected incorrectly
in preference to x1 in some replications.

The striking difference between the simulation and bootstrap results is for x3 (tumor
size). This variable was selected in nearly half of the bootstrap replications but in only
7% of simulations. There is a clear indication that x3 should be included in a “final”
model for the original data. Presumably, it was not selected more often because of a
lack of power.

The simulation-with-bootstrap study is a nice sensitivity analysis of the bootstrap-
only study under circumstances in which we know the true model. It helps us to judge
which variables really are important. A strong case emerges from the bootstrap-only
study for the prognostic importance of tumor size. This is in keeping with results from
other, larger medical studies.
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8 Further notes on stsurvsim

8.1 Use of the rmatrix() option

We have seen in examples how to use stsurvsim. As described above, its options are
bknots(), knots(), knscale(), beta(), scale(), and rmatrix(). These options are
only needed when we are providing the required values ourselves rather than relying on
stpm2 to supply them.

The only option we have not illustrated is rmatrix(). Here is an example, an
alternative to the first example in which we now omit the noorthog option of stpm2.
Because the spline basis functions are (by default) being orthogonalized, we need to
store the R-matrix and use it when generating the simulated data.

stpm2, df(2) scale(hazard)
matrix R = e(R_bh)
stsurvsim t_uncens, bknots(0.197 6.724) knots(1.769) scale(hazard) ///

beta(_rcs1=1.447 _rcs2=0.418 _cons=-1.284) rmatrix(R)

Notice that because of orthogonalization, the regression coefficients for the spline basis
functions have completely changed.

If we use stsurvsim without arguments after running stpm2, the R-matrix is handled
automatically. The following would work correctly:

stpm2, df(2) scale(hazard)
stsurvsim t_uncens

stsurvsim also simulates survival times in the df(1) case. This amounts to simulat-
ing Weibull, loglogistic, or lognormal distributions for the three scale() cases (hazard,
odds, and normal, respectively). The bknots() and knots() options are not needed.

8.2 Simulating samples of different sizes

In real-life simulations, we invariably wish to choose the sample size ourselves. You can
start with an empty workspace and set the sample size to any desired number if you
use stsurvsim and provide parameter values in the options beta(), etc. After you fit
a model with stpm2, however, stsurvsim without options produces a simulated sample
with the same number of observations as the “parent” dataset. This is unlikely to be
what is wanted.

A way around the problem that retains the convenience of not specifying the pa-
rameter values explicitly is as follows:

1. Choose the desired sample size, say, n. Let the number of observations in the
current dataset be N 6= n.

2. Fit the required stpm2 model.
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3. Place the data in random order by using runiform() to create a variable contain-
ing random numbers and sorting on it.

4. If n ≤ N , then drop observations n + 1, . . . , N .

5. If n > N , then use Stata’s expand m command to expand the data the requisite
number m > 1 of times, namely, m = 1 + int{(N − 1) /n}. There are now mN
observations. Create a new variable containing random numbers and sort on it.
Drop observations N + 1, . . . ,mN .

6. Run stsurvsim without arguments. Finished.

9 Conclusion

I hope stsurvsim will set a new standard in simulating realistic censored survival data
in Stata and will thereby be found useful in many research projects in survival analysis.
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