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Abstract. When the mortality among a cancer patient group returns to the same
level as in the general population, that is, when the patients no longer experi-
ence excess mortality, the patients still alive are considered “statistically cured”.
Cure models can be used to estimate the cure proportion as well as the survival
function of the “uncured”. One limitation of parametric cure models is that the
functional form of the survival of the uncured has to be specified. It can some-
times be hard to find a survival function flexible enough to fit the observed data,
for example, when there is high excess hazard within a few months from diagno-
sis, which is common among older age groups. This has led to the exclusion of
older age groups in population-based cancer studies using cure models. Here we
use flexible parametric survival models that incorporate cure as a special case to
estimate the cure proportion and the survival of the uncured. Flexible parametric
survival models use splines to model the underlying hazard function; therefore, no
parametric distribution has to be specified. We have updated the stpm2 command
for flexible parametric models to enable cure modeling.

Keywords: st0165 1, stpm2, stpm2 postestimation, cure models, flexible paramet-
ric survival model, relative survival, survival analysis

1 Introduction

Patient survival, the time from diagnosis to death, is the most important single measure
of cancer patient care (the diagnosis and treatment of cancer). Cancer patient survival

c© 2012 StataCorp LP st0165 1



624 Flexible parametric survival models for cure modeling

is often measured using five-year relative survival, an estimate of net survival, that is,
the proportion of patients who would still be alive five years after diagnosis if the cancer
(and anything directly or indirectly related to the cancer) was the only possible cause
of death (Dickman and Adami 2006). Relative survival is estimated as the observed
survival divided by the expected survival and can be interpreted as net survival under
the assumption that the cancer patients would have the same expected survival as the
general population if they had not had cancer. Because cancer patient survival has
improved for many cancer types, and many patients are cured of their disease, it is also
important to find the proportion of patients that are cured of their cancer.

For most cancers, the relative survival will reach a plateau some years after diagnosis,
indicating that the mortality among the patients still alive is the same as expected in
the general population. This point is called the cure point, and the patients still alive
are considered “statistically cured”. De Angelis et al. (1997), Verdecchia et al. (1998),
Yu et al. (2004), and Lambert et al. (2007b) have proposed cure models for population-
based cancer studies that can be used to estimate the proportion of cancer patients
statistically cured.

There are two user-written Stata commands for cure modeling within a relative sur-
vival setting: strsmix and strsnmix. These commands can be used to fit mixture and
nonmixture cure models, respectively. These models are parametric cure models. The
models give estimates of the cure proportion as well as the survival of those “uncured”.
These measures are of interest to patients, clinicians, and policy makers and can give
valuable insights into temporal trends in cancer patient survival. One limitation of
parametric cure models is that the functional form of the survival of the uncured has
to be specified. It can sometimes be difficult to fit survival functions flexible enough to
capture high excess hazard within a few months from diagnosis, which is common among
older age groups. This has led to the exclusion of older age groups in population-based
cancer studies using cure models (Lambert et al. 2007a). In our experience, the current
models can also give biased estimates, or fail to converge, when the cure proportion is
high (for example, 80% and above).

This problem can be avoided by using flexible parametric survival models to esti-
mate the cure proportion and the survival of the uncured in a population-based setting.
Flexible parametric survival models were first introduced by Royston (2001) and Roys-
ton and Parmar (2002) and extended to relative survival by Nelson et al. (2007) and
Lambert and Royston (2009). The models use splines to fit the underlying distribution
and can therefore more easily capture the shape. The stpm2 command can be used to
fit flexible parametric models for both cause-specific and relative survival, and it has
now been updated to incorporate the flexible parametric cure model for relative survival
as described by Andersson et al. (2011).
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2 Model specifications

2.1 Relative survival and excess mortality

The method of choice for studying cancer patient survival in a population-based setting
is relative survival, R(t) (Dickman and Adami 2006). Relative survival is the observed
(all-cause) survival, S(t), among the cancer patients divided by the expected survival,
S∗(t), in a hypothetical group in the general population that is comparable to the
cancer patients with respect to age, sex, calendar year, and possible other covariates.
An advantage of relative survival is that it does not rely on classification of cause of
death, which is known to be poorly reported (Begg and Schrag 2002). In the relative
survival model, the overall survival can be written as

S(t) = S∗(t)R(t)

The hazard analogue of relative survival is the excess hazard rate. The overall hazard,
h(t), among the patients is the sum of two components: the expected hazard, h∗(t),
and the excess hazard, λ(t), associated with a diagnosis of the cancer.

h(t) = h∗(t) + λ(t) (1)

Both S∗(t) and h∗(t) are assumed known and are usually obtained from routine data
sources (for example, national or regional life tables).

2.2 Flexible parametric survival model

The flexible parametric survival model (Nelson et al. 2007; Lambert and Royston 2009)
for relative survival is fit on the log cumulative-excess-hazard scale by using restricted
cubic splines to estimate the baseline cumulative excess hazard. By integrating (1), we
get

H(t) = H∗(t) + Λ(t)

where H(t) is the overall cumulative hazard, H∗(t) is the expected cumulative hazard,
and Λ(t) is the cumulative excess hazard. We model the cumulative excess hazard on
the log scale by using restricted cubic splines:

ln {Λ(t)} = ln {− ln R(t)} = γ00 + γ01v1(x) + γ02v2(x) + · · · + γ0K−1vK−1(x) (2)

where x = ln(t), K is the number of knots, v1(x) = x, and for j = 2, . . . ,K − 1, the jth
basis function is defined as

vj(x) = (x − kj)
3
+ − λj(x − kmin)3+ − (1 − λj)(x − kmax)

3
+

where u+ = u if u > 0 and u+ = 0 if u ≤ 0, kmin is the position of the first knot, kmax

the position of the last knot, and λj = (kmax − kj)/(kmax − kmin).

Introducing covariates, z, into (2) gives

ln {Λ(t; z)} = ln {− ln R(t; z)}
= γ00 + γ01v1(x) + γ02v2(x) + · · · + γ0K−1vK−1(x) + βT z
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This is a proportional excess-hazards model. Nonproportional excess-hazards models,
that is, models with time-dependent covariate effects, can be modeled by including
interactions between covariates and splines for time

ln {Λ(t; z)} = s(x;γ0) + βT z +
D∑

i=1

s(x;γi)zi

where s(x;γ0) is the spline function for the baseline log cumulative excess hazard as
expressed in (2), D is the number of time-dependent covariate effects, and s(x;γi) is
the spline function for the ith time-dependent effect.

2.3 Parametric cure models for relative survival

For most cancers, the mortality in the patient group will, after some years from diag-
nosis, return to the same level as in the general population; that is, λ(t) in (1) is equal
to 0 after some point. This point is called the cure point, and the patients still alive
are considered statistically cured. This is a population definition of “cured” and does
not necessarily imply that all patients are medically cured. Statistical cure is a useful
method of measuring long-time survival in population-based cancer studies.

One of the most often used cure models in population-based cancer studies is the mix-
ture cure model (Verdecchia et al. 1998; De Angelis et al. 1997; Lambert et al. 2007b).
When one incorporates relative survival, the overall survival function from the mixture
cure model can be written as

S(t) = S∗(t) {π + (1 − π)Su(t)}

It assumes that a proportion, π, of the patients will be cured (will not experience excess
mortality), while the remainder, 1−π, are uncured. Su(t) is the cancer-specific survival
function for the uncured and is estimated by the model along with the cure proportion.
A parametric distribution for Su(t) has to be chosen, and a Weibull distribution is often
used (De Angelis et al. 1997; Verdecchia et al. 1998; Lambert et al. 2007a,b).

Another parametric cure model used in population-based cancer studies is the non-
mixture cure model (Lambert et al. 2007b), which fits an asymptote for the survival
function at the cure proportion. The survival function for the nonmixture model can
be written as

S(t) = S∗(t)πFZ(t)

where FZ(t) is a cumulative distribution function, generally chosen to be 1 − SZ(t),
where SZ(t) is a standard parametric survival function. As for the mixture model, a
Weibull distribution is often used. Thus the relative survival function has an asymptote
at the cure fraction, π. The nonmixture model can be written as a mixture model:

S(t) = S∗(t)

{
π + (1 − π)

(
πFZ(t) − π

1 − π

)}
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This enables estimation of both the cure proportion and the survival of the uncured. In
modeling, both the cure proportion and the parameters in Su(t) or FZ(t) can be allowed
to vary by covariates.

2.4 Flexible parametric cure models

When cure is reached, the excess-hazard rate is 0, and the cumulative excess hazard will
be constant after this time. By forcing the log cumulative excess hazard in the flexible
parametric survival model not only to be linear but also to have zero slope after the
last knot, we can estimate the cure proportion. We do this by calculating the spline
variables backward (that is, treating the knots in reverse order) and then by restricting
the parameter for the linear spline variable to 0 (γ01 = 0). The spline basis functions,
vj(x), are then defined as

vj(x) = (kK−j+1 − x)3+ − λj(kmax − x)3+ − (1 − λj)(kmin − x)3+

for j = 2, . . . ,K − 1, and λj = (kK−j+1 − kmin)/(kmax − kmin). The relative survival
function from the flexible parametric survival model, with splines calculated backward
and with restriction for the linear spline variable, is defined as

R(t) = exp [− exp {γ00 + γ02v2(x) + · · · + γ0K−1vK−1(x)}]

which can be written as

R(t) = πexp{γ02v2(x)+···+γ0K−1vK−1(x)}

where π = exp {− exp(γ00)}. This is a special case of a nonmixture cure model:
the cure proportion is π = exp {− exp(γ00)}; the distribution function is FZ(t) =
exp {γ02v2(x) + · · · + γ0K−1vK−1(x)}.

When one includes covariates,

R(t; z) =

exp

[
− exp(γ00 + βT z) exp

{
γ02v2(x) + · · · + γ0K−1vK−1(x) +

D∑

i=1

s(x;γi)zi

}]
(3)

the constant parameters, γ00 and β, are used to model the cure proportion, and the
time-dependent parameters are used to model the distribution function FZ(t). The
constraint of a zero effect for the linear spline term has to be incorporated for each
spline function that we model.

All spline variables take the value 0 from the point of the last knot, which means
that in (3), the constant parameter, γ00, is the log cumulative excess hazard at and
beyond the last knot for the reference group and can therefore be used to predict cure.
It is usually preferred to orthogonalize the spline variables, which results in them not
being 0 from the point of the last knot. Because of this, cure cannot be predicted by a
direct transformation of the constant parameters. Therefore, we have chosen to center



628 Flexible parametric survival models for cure modeling

the orthogonalized spline variables around the value they take at the last knot, which
enables direct predictions of cure from the constant parameters. The survival of the
uncured can be predicted in the flexible parametric cure model in the same way as the
survival of the uncured is predicted in the nonmixture cure model. The median survival
time of the uncured is predicted using a Newton–Raphson algorithm in a way similar
to that of Lambert et al. (2010).

The mixture and nonmixture cure models are sometimes used in situations when cure
is not reached within the available follow-up time of the data. This can be done because
the models fit an asymptote for the relative survival function. However, estimates of
cure can be very sensitive to the parametric distribution chosen. We do not recommend
extrapolation in this way when using the flexible parametric cure model, because the
point of cure is chosen through the location of the last knot. Even though the position
of the last knot can be outside the data, the relative survival should be assumed to
flatten within the available follow-up time.

In contrast to the mixture and nonmixture cure model, it is possible to informally
test the assumption of a cure proportion for the flexible parametric cure model. The
reason is that it is a restricted standard flexible parametric survival model. But these
tests should be interpreted with some caution because the comparison is based on the
fit over the whole time-scale and not just toward the end where the cure proportion is
estimated. By comparing the fit of different flexible parametric cure models where the
last knot is placed at different time points, one might evaluate where cure is a reasonable
assumption and, from that, get an estimate of the time of cure. Even though this is a
quantity of high clinical interest, we do not encourage its estimation from the flexible
parametric cure model, because comparison between different models mostly relies on
differences at the beginning of the time-scale, where most of the data are.

3 stpm2 command for cure modeling

The stpm2 command has been updated to enable flexible parametric cure modeling.
Only the new options and postestimation commands are discussed here.

3.1 Options

cure is used when fitting cure models. It forces the cumulative hazard to be constant
after the last knot. When the df() option is used together with the cure option,
the internal knots are placed evenly according to centiles of the distribution of the
uncensored log survival-times except one, which is placed at the 95th centile. Alter-
native knot locations can be selected using the knots() option. Cure models can
only be used when modeling on the log cumulative-hazard scale (scale(hazard)).
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3.2 Postestimation

cure predicts the cure proportion after fitting a cure model.

uncured can be used after fitting a cure model. It can be used with the survival,
hazard, and centile() options to base predictions for the uncured group.

startunc(#) sets the starting value for the Newton–Raphson algorithm for estimating
a centile of the survival time distribution of the uncured; the default is the 12.5th
centile of the observed follow-up times.

4 Example

To illustrate the stpm2 command, we use data for 33,874 females aged 50 and over
and who were diagnosed with ovarian cancer in England and Wales. The data were
obtained from the public-use dataset of all England and Wales cancer registrations be-
tween 1 January 1981 and 31 December 1990, with follow-up until 31 December 1995
(Coleman et al. 1999a,b). Background mortality rates were obtained from England and
Wales national mortality statistics by age, geographical region, period of diagnosis, and
deprivation group (Coleman et al. 1999b). The covariates investigated here are depri-
vation and age at diagnosis. Deprivation is defined in terms of the area-based Carstairs
score and divided into five deprivation categories ranging from the least deprived (af-
fluent) to the most deprived quantile in the population. Age is split into four groups:
50–59, 60–69, 70–79, and 80 and over. This dataset has previously been used to illus-
trate the strsmix and strsnmix commands for fitting mixture and nonmixture cure
models (Lambert 2007).

4.1 Estimation in one sample

Below are the commands and output from fitting the flexible parametric cure model
with stpm2 to the 50–59 age group.

. use ovary_cancer
(Ch31 Adult Ovary 183)

. stset survtime, fail(dead) id(ident)

id: ident
failure event: dead != 0 & dead < .

obs. time interval: (survtime[_n-1], survtime]
exit on or before: failure

33874 total obs.
0 exclusions

33874 obs. remaining, representing
33874 subjects
28685 failures in single failure-per-subject data

88539.89 total analysis time at risk, at risk from t = 0
earliest observed entry t = 0

last observed exit t = 14.992
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. stpm2 if cage==1, scale(hazard) df(5) bhazard(rate) cure

Iteration 0: log likelihood = -15014.763
Iteration 1: log likelihood = -14993.781
Iteration 2: log likelihood = -14993.715
Iteration 3: log likelihood = -14993.715

Log likelihood = -14993.715 Number of obs = 8905

Coef. Std. Err. z P>|z| [95% Conf. Interval]

xb
_rcs1 1.103296 .0153149 72.04 0.000 1.073279 1.133312
_rcs2 -.20017 .0087823 -22.79 0.000 -.217383 -.1829571
_rcs3 -.0465856 .0059093 -7.88 0.000 -.0581676 -.0350035
_rcs4 -.0019929 .0044742 -0.45 0.656 -.0107622 .0067764
_rcs5 0 (omitted)
_cons -.7336044 .0145752 -50.33 0.000 -.7621714 -.7050375

The data are stset with the variable survtime for the survival time (in years) and
the variable dead as the event indicator. The bhazard() option in the stpm2 command
invokes relative survival models, and the rate variable holds the expected mortality
rate (hazard) at the time of death. This was obtained from Coleman et al. (1999b) and
has previously been merged into the dataset. The scale(hazard) option fits a model
on the log cumulative-hazard scale, which is the only scale that works for modeling cure
within stpm2. The df(5) option specifies that 5 degrees of freedom are to be used for
the restricted cubic spline function, which will place knots at the minimum, maximum,
25th, 50th, 75th, and 95th centiles of the distribution of uncensored survival times.

From the output, we can see that the last spline parameter is omitted. This is
the restriction that imposes a constant log cumulative excess hazard after the last
knot and therefore a cure point. The constant parameter is the log cumulative ex-
cess hazard at and beyond the last knot and can therefore be used to predict cure as
exp{− exp(0.247)} = 0.278. Using the predict command after fitting a flexible para-
metric cure model can also provide predictions of the cure proportion as well as the
excess-hazard function and the relative survival function for both the sample as a whole
and the uncured group. Predictions of the survival time for a given centile of the survival
function for the uncured group can also be estimated. The predictions are conditional
on any covariates and evaluated at each observed survival time ( t). It is also possible
to do out-of-sample predictions by using the timevar() and at() options to specify a
covariate pattern and time variable for which to make predictions.

. predict rs_all, survival

. predict rs_uncured, survival uncured

. predict cure1, cure
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Confidence intervals can be obtained for the various predictions by adding the ci op-
tion to the predict command. The standard errors are calculated by using predictnl,
which uses the delta method. The standard errors for relative survival and cure pro-
portions are obtained on the log(-log) scale (that is, the log cumulative-excess-hazard
scale); standard errors for the excess hazard are obtained on the log excess-hazard scale.
Figure 1 shows the predicted relative survival for the group as a whole, the predicted
relative survival for the uncured, and the predicted cure proportion as a horizontal line.
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Figure 1. Estimated relative survival

4.2 Modeling the cure proportion

It is often of interest to model the cure proportion; here we include age and deprivation
group in the model. Below are the commands and output from fitting a proportional
excess-hazards model with cure.
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. stpm2 cage2-cage4 dep2-dep5, scale(hazard) df(5) bhazard(rate) cure

(output omitted )

Iteration 3: log likelihood = -43496.839

Log likelihood = -43496.839 Number of obs = 33874

Coef. Std. Err. z P>|z| [95% Conf. Interval]

xb
cage2 .2638381 .0169397 15.58 0.000 .2306368 .2970393
cage3 .5890439 .0176086 33.45 0.000 .5545316 .6235562
cage4 .9285795 .0219185 42.37 0.000 .8856199 .971539
dep2 .0318505 .0194612 1.64 0.102 -.0062928 .0699938
dep3 .0715027 .0194931 3.67 0.000 .0332968 .1097085
dep4 .0870953 .0198751 4.38 0.000 .0481409 .1260498
dep5 .1294347 .0215438 6.01 0.000 .0872095 .1716598
_rcs1 1.185378 .007485 158.37 0.000 1.170708 1.200048
_rcs2 -.0990392 .004468 -22.17 0.000 -.1077963 -.0902822
_rcs3 .0291592 .0031332 9.31 0.000 .0230182 .0353001
_rcs4 .0390248 .0024252 16.09 0.000 .0342714 .0437781
_rcs5 0 (omitted)
_cons -1.111016 .0182878 -60.75 0.000 -1.14686 -1.075173

The estimates for age and deprivation groups are log excess-hazard ratios, so the
excess hazard for the oldest age group is exp(0.929) = 2.53 times higher than the excess
hazard for the youngest group. The flexible parametric cure model is a special case
of a nonmixture cure model; the excess-hazard ratios from this model are very similar
to those from a nonmixture cure model with a log(-log) link (Lambert 2007). The
parameter estimates are also transformations of cure. For example, the cure proportion
for the youngest age group in the least deprived group is exp{− exp(0.087)} = 0.34 and
for the oldest age group in the least deprived group is exp{− exp(0.087+0.929)} = 0.063.

Nonproportional hazards are common in population-based cancer studies and can
be modeled by including interactions between covariates and splines for time. To let
the effects of covariates in the flexible parametric cure model vary by time is equivalent
to modeling the parameters in the parametric distribution used in a nonmixture cure
model. It has been shown for nonmixture cure models where a Weibull distribution is
used that modeling of both Weibull parameters can be crucial (Lambert et al. 2007b).
Similarly, we believe that time-dependent effects should usually be included in the flex-
ible parametric cure model for most cancers. Below are the commands and output from
fitting the flexible parametric cure model with time-dependent effects for both age and
deprivation group.
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. stpm2 cage2-cage4 dep2-dep5, scale(hazard) df(5) knscale(time) bhazard(rate)
> cure tvc(cage2-cage4 dep2-dep5) dftvc(3)

(output omitted )

Iteration 4: log likelihood = -42861.054

Log likelihood = -42861.054 Number of obs = 33874

Coef. Std. Err. z P>|z| [95% Conf. Interval]

xb
cage2 .4198831 .0233391 17.99 0.000 .3741394 .4656268
cage3 .8343296 .0230064 36.27 0.000 .7892379 .8794213
cage4 1.174375 .0263022 44.65 0.000 1.122824 1.225926
dep2 .0414502 .0227631 1.82 0.069 -.0031646 .086065
dep3 .0999266 .0225892 4.42 0.000 .0556526 .1442007
dep4 .1353842 .0228843 5.92 0.000 .0905318 .1802365
dep5 .195961 .0244765 8.01 0.000 .147988 .2439341

_rcs1 1.446098 .0276676 52.27 0.000 1.39187 1.500325
_rcs2 -.235717 .0142901 -16.50 0.000 -.2637252 -.2077089
_rcs3 -.0690412 .0073471 -9.40 0.000 -.0834411 -.0546412
_rcs4 .0020715 .0031142 0.67 0.506 -.0040323 .0081752
_rcs5 0 (omitted)

_rcs_cage21 -.1472517 .0275937 -5.34 0.000 -.2013344 -.093169
_rcs_cage22 .098554 .0144949 6.80 0.000 .0701445 .1269635
_rcs_cage23 0 (omitted)
_rcs_cage31 -.2566918 .0265035 -9.69 0.000 -.3086376 -.2047459
_rcs_cage32 .2333217 .0141668 16.47 0.000 .2055552 .2610881
_rcs_cage33 0 (omitted)
_rcs_cage41 -.3920616 .027467 -14.27 0.000 -.445896 -.3382273
_rcs_cage42 .329778 .0154273 21.38 0.000 .2995411 .3600148
_rcs_cage43 0 (omitted)
_rcs_dep21 -.0124399 .0244274 -0.51 0.611 -.0603167 .0354369
_rcs_dep22 .0043985 .014359 0.31 0.759 -.0237447 .0325416
_rcs_dep23 0 (omitted)
_rcs_dep31 -.0430759 .0238987 -1.80 0.071 -.0899164 .0037647
_rcs_dep32 .0186057 .0140738 1.32 0.186 -.0089784 .0461898
_rcs_dep33 0 (omitted)
_rcs_dep41 -.0631187 .0240329 -2.63 0.009 -.1102222 -.0160151
_rcs_dep42 .0471661 .0141666 3.33 0.001 .0194001 .0749321
_rcs_dep43 0 (omitted)
_rcs_dep51 -.0962763 .0251416 -3.83 0.000 -.1455529 -.0469997
_rcs_dep52 .0697525 .0150006 4.65 0.000 .0403518 .0991532
_rcs_dep53 0 (omitted)

_cons -1.353309 .0238595 -56.72 0.000 -1.400073 -1.306546

The estimates for age and deprivation groups in the table above are harder to in-
terpret: they are no longer log excess-hazard ratios, but they are still transformations
of cure. Below are the predicted cure proportions and median survival times of the
uncured for each calendar period and deprivation group.
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. predict cure, cure ci

. predict med_survunc, centile(50) uncured ci

. by cage caquint, sort: generate first= _n == 1

. tabdisp cage caquint if first, cellvar(cure med_survunc) format(%5.3fc)

GB quintile Carstairs score
Age Group leastdep 2 3 4 mostdep

50-59 0.772 0.764 0.752 0.744 0.730

60-69 0.675 0.664 0.648 0.637 0.620

70-79 0.551 0.538 0.518 0.506 0.485

80+ 0.433 0.418 0.397 0.384 0.362

The results look similar to results from a corresponding nonmixture cure model (see
Lambert [2007]), but there is a tendency of lower estimated cure proportions for the
oldest age group, where we know that the nonmixture cure model can overestimate cure.

4.3 Sensitivity to knot placement

The flexible parametric survival model has been shown to be robust to the number
and location of the knots (Nelson et al. 2007; Lambert and Royston 2009). To evaluate
the sensitivity to the location of the knots for the flexible parametric cure model, we
compared the predicted survival and cure proportion from the flexible parametric cure
model with different knot positions and numbers of knots using the age group 70–79.
The fit of the cure model is fairly robust to the number and location of the knots
(figure 2).

For a standard stpm2 model, the default positions for the knots are distributed
evenly according to centiles of the uncensored event times. When the default knot
positions from a standard stpm2 are used, all knots except the last one are placed
within the first few years from diagnosis because most of the events happen early on
and cure (where the survival reaches a plateau) seems slightly overestimated. Cure is
also slightly overestimated when the last knot is placed at the 95th centile of death times.
The number of knots seems to have little impact on the estimated relative survival.

Overall, the flexible parametric cure model seems to give a good fit, so long as knots
are placed over the whole follow-up period and the last knot is positioned at the last
observed death time or possibly later. When the cure option is used with the stpm2

command, the default knot positions are according to centiles of the uncensored event
times except for one knot, which is placed at the 95th centile.



T. M.-L. Andersson and P. C. Lambert 635

0.2

0.4

0.6

0.8

1.0

R
e
la

ti
v
e
 s

u
rv

iv
a
l

0 5 10 15
Years from diagnosis

Knots at centiles:

0, 20, 40, 60, 80, 100. (Cure prop. 60.1%)

0, 25, 50, 75, 95, 100. (Cure prop. 59.9%)

0, 35, 65, 80, 95, 100. (Cure prop. 59.8%)

0, 35, 65, 75, 85, 95. (Cure prop. 60.4%)

0, 100 and year 3, 6, 9, 12. (Cure prop. 59.7%)

0, 25, 50, 75, 95 and year 12. (Cure prop. 59.9%)

0.2

0.4

0.6

0.8

1.0

R
e
la

ti
v
e
 s

u
rv

iv
a
l

0 5 10 15
Years from diagnosis

Knots at centiles:

0, 50, 95, 100. (Cure prop. 59.9%)

0, 33, 67, 95, 100. (Cure prop. 59.8%)

0, 25, 50, 75, 95, 100. (Cure prop. 59.9%)

0, 20, 40, 60, 80, 95, 100. (Cure prop. 59.9%)

0, 17, 33, 50, 67, 83, 95, 100. (Cure prop. 59.9%)

0, 14, 29, 43, 57, 71, 86, 95, 100. (Cure prop. 59.9%)

Figure 2. Predicted relative survival from flexible parametric cure models with different
knot locations and numbers of knots

4.4 Comparison of flexible parametric cure model and nonmixture
cure model

It has been shown that the mixture and nonmixture cure models can give biased es-
timates of cure for older age groups because of a very high excess hazard within the
first months after diagnosis that is not captured by the parametric distributions often
used. Lambert (2007) has suggested alternative approaches, one using a mixture of
Weibull distributions and one splitting the time-scale in two parts and estimating the
excess hazard separately in the two intervals. These approaches have some limitations:
the split-time model needs a subjectively chosen cutpoint and leads to a noncontinu-
ous excess-hazard function, and there are sometimes problems with convergence for the
mixture of Weibull distributions. The flexible parametric cure model can in a less com-
plicated way overcome the problem with the standard parametric cure models because
the splines can more easily capture the underlying shape of the survival distribution.
This is illustrated here using the ovarian cancer data restricted to the oldest age group
(80 years and older at diagnosis), with no modeling of covariates.
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Figure 3 shows the predicted relative survival from the Weibull nonmixture cure
model and the flexible parametric cure model along with empirical life-table estimates
of relative survival. As with other cure models, the flexible parametric cure model
will give an estimate of the cure proportion even when cure is not reasonable. It is
therefore important to always compare results from cure models with empirical estimates
of relative survival and to make sure that there seems to be a proportion of patients
who are cured. This is not a specific drawback for the flexible parametric cure model
but for cure models in general. Figure 3 shows that the Weibull nonmixture cure model
seems to overestimate cure and underestimate survival for the first two years of follow-
up. The flexible parametric cure model follows the life-table estimates more closely and
gives a lower, less biased estimate of cure. There is still discrepancy between the flexible
parametric cure model and the life-table estimates toward the end of follow-up, but the
data are sparse, and an even better fit could be achieved by adding an extra knot.
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Figure 3. Predicted relative survival from the flexible parametric cure model and Weibull
nonmixture cure model, along with life-table estimates of relative survival

5 Conclusion

Cure models within the framework of flexible parametric survival models enable cure
modeling when standard models are not flexible enough. The stpm2 command for fitting
flexible parametric survival models has been updated to incorporate this extension.
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