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Abstract. Funnel plots are currently advocated to investigate the presence of
publication bias (and other possible sources of bias) in meta-analysis. A previously
described augmentation to the funnel plot—to aid its interpretation in assessing
publication biases—is the addition of statistical contours indicating regions where
studies would have to be for a given level of significance, as implemented in the
Stata package confunnel by Palmer et al. (2008, Stata Journal 8: 242–254).

In this article, we describe the implementation of a new range of overlay aug-
mentations to the funnel plot, many described in detail recently by Langan et al.
(2012, Journal of Clinical Epidemiology 65: 511–519). The purpose of these over-
lays is to display the potential impact a new study would have on an existing
meta-analysis, providing an indication of the robustness of the meta-analysis to
the addition of new evidence. Thus these overlays extend the use of the funnel
plot beyond assessments of publication biases. Two main graphical displays are
described: 1) statistical significance contours, which define regions of the funnel
plot where a new study would have to be located to change the statistical signifi-
cance of the meta-analysis; and 2) heterogeneity contours, which show how a new
study would affect the extent of heterogeneity in a given meta-analysis.

We present the extfunnel command, which implements the methods of Langan
et al. (2012, Journal of Clinical Epidemiology 65: 511–519), and, furthermore,
we extend the graphical displays to illustrate the impact a new study has on
lower and upper confidence interval values and the confidence interval width of
the pooled meta-analytic result. We also describe overlays for the impact of a
future study on user-defined limits of clinical equivalence. We implement inverse-
variance weighted methods by using both explicit formulas for contour lines and a
simulation approach optimized in Mata.

Keywords: gr0054, extfunnel, funnel plots, meta-analysis, graphs
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1 Introduction

The funnel plot is now a standard graphical tool for the investigation of publication
biases and the extent of heterogeneity in meta-analyses. In its simplest form, a funnel
plot is simply an x–y scatterplot of the individual study estimates versus some measure
of estimate precision and study sample size. Asymmetry in such a plot can be an
indication that publication bias is present.

An extensive set of Stata tools has been developed to facilitate the generation of
funnel plots; for example, metafunnel and metabias produce funnel plot displays with
various augmentations, such as a line for the pooled effect size. For more details about
these commands, see Sterne and Harbord (2004); for further general guidance on the
use of graphical tools in meta-analyses, see Anzures-Cabrera and Higgins (2010). An
example of a funnel plot of trials of treatment for antidepressant versus placebo is
presented in figure 1 (see Moreno et al. [2009] for further details). Here the plot is
highly asymmetric, which is indicative of possible publication bias.

. use antid

. metafunnel ES seES, noline xtitle("Standardized Effect Size")
> ytitle("Standard Error")

note: default data input format (theta, se_theta) assumed

.1
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−.5 0 .5 1
Standardized Effect Size

Funnel plot

Figure 1. Funnel plot of new-generation antidepressant versus placebo for depression

A recent augmentation to the funnel plot by Peters et al. (2008) is the inclusion
of statistical contours indicating regions in which studies would have to be for a given
level of statistical significance. This feature is intended to aid the assessment of whether
funnel plot asymmetry is likely due to publication biases or other causes. This has also
been implemented in Stata as the confunnel command by Palmer et al. (2008).
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In this article, we present a range of further graphical overlays for the funnel plot,
illustrating the potential impact a new study may have when added to an existing
meta-analysis. These overlays are similar to the contours for aiding the assessment
of publication bias (the previous contours focus on the significance of individual stud-
ies, whereas the contours presented here focus on inferences relating to meta-analysis).
However, they have a very different purpose that expands the uses of the funnel plot and
is broadly applicable across meta-analyses of intervention trials, studies on the accuracy
of diagnostic tests, etiological observational studies, etc. The overlays include statistical
significance contours, which highlight regions where a new study would have to lie to
change the statistical significance of the summary estimate of the present meta-analysis,
and heterogeneity contours, which show how a new study would affect the heterogene-
ity of the meta-analysis. A full description of these overlays, their algebraic derivations
(where possible), and applications are available in Langan et al. (2012).

We then extend the displays of Langan et al. (2012) to illustrate how a new study
would affect the lower or upper confidence interval and the confidence interval width
of the pooled meta-analytic estimate. We also show how these may be of particular
interest with regard to diagnostic tests. Furthermore, we adapt the approach to develop
a graphical display to assess the impact of a future study on user-defined limits of clinical
equivalence described, for example, in Sutton et al. (2007).

The methodology is summarized in section 2, followed by a description of the com-
mand syntax in section 3. The use of extfunnel is shown in examples in section 4,
with some additional features described in section 5. We conclude with a discussion in
section 5.

2 Methodology

2.1 Statistical significance contours

When a study is added to an existing meta-analysis, it is interesting to investigate how
this new study affects the statistical significance and direction of the pooled estimate
and serves as an indication of the robustness of the original meta-analysis. By choosing
plausible ranges for the new study’s effect size and associated standard error, we can
add each combination to the meta-analysis, which is subsequently re-meta-analyzed,
and finally record the statistical significance of the new pooled estimate. By plotting
the new study’s effect size and standard error, color coded by the now updated meta-
analysis’ statistical significance, we obtain contour regions illustrating the robustness of
the meta-analysis. We describe and illustrate the approach under fixed- and random-
effects models using the inverse-variance weighted method.

Fixed effect

Under a fixed-effects model, explicit formulas for the contours can be derived based on
the inverse-variance method. For further details, see Langan et al. (2012).
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Random effect

Under a random-effects model, each new effect estimate and standard error spanning
the entire range of the funnel plot must be combined with the original meta-analysis
and analyzed separately to calculate the statistical significance level and direction of the
updated pooled estimate. This is because explicit contour lines cannot be derived under
a random-effects model. The computational issues of this are discussed in section 3.3.

2.2 Heterogeneity contours

A further addition to the standard funnel plot is the overlay of heterogeneity contours.
These contours serve to illustrate how the between-study heterogeneity would be affected
by the addition of a new study. This can be illustrated using either the between-study
variance τ2 or the I2 statistic.

2.3 Alternative targets of inference

Because of the well-documented limitations of focusing exclusively on p-values, one can
take an approach to inference that focuses more on effect-size estimation. For example,
the impact of a new study on the lower or upper limits of the confidence interval of the
pooled meta-analytic effect size may be of interest. For instance, in a diagnostic study
where accuracy estimation rather than differences between tests is of primary concern,
we may be interested in the effect a new study would have on the lower bound of the
meta-analytic 95% confidence interval for sensitivity. Similarly, the confidence interval
width may be of interest, and how a new study would affect the precision of the pooled
estimate can be considered.

2.4 Limits of clinical equivalence

An approach to inference that aims to combine clinical information with statistical
information is the use of user-specified limits of clinical equivalence. Within these
limits, the two interventions are considered equivalent. Although defining the limits is
of course subjective, external information can be obtained to inform the defined limits.
Eight distinct scenarios are described in figure 2, detailing the characteristics of the
confidence interval in relation to the limits of clinical equivalence and providing the
subsequent interpretation. Further discussion on the limits of clinical equivalence can
be found in Parmar, Ungerleider, and Simon (1996) and Sutton et al. (2007).
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Figure 2. Limits of clinical equivalence (image adapted from Sutton et al. [2007])

3 The extfunnel command

3.1 Syntax

extfunnel varname1 varname2
[
if
] [

in
] [

, fixedi randomi cpoints(#)

null(#) isquared(numlist) tausquared(numlist) measure(lci | uci | ciwidth)
loe(numlist) loeline newstudycontrol(#) newstudytreatment(#) or rr

xrange(numlist) yrange(numlist) sumd sumdposition(#) prediction

nonullline nopooledline noshading noscatter nometan

label(
[
namevar=namevar

]
,
[
yearvar=yearvar

]
) eform

scheme(grayscale | color) addplot(string) level(#) twoway options
]

The first variable, varname1, must correspond to the effect estimates assumed to be nor-
mally distributed (for example, log odds-ratios) with varname2, the associated standard
errors of the effect estimates. extfunnel requires metan to be installed.

3.2 Options

fixedi specifies a fixed-effects model by using the inverse-variance method. This is the
default.
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randomi specifies a random-effects model by using the method of DerSimonian and
Laird, with the estimate of heterogeneity being taken from the inverse-variance fixed-
effects model.

cpoints(#) specifies the number of points to evaluate either the shaded statistical
significance contours or the heterogeneity contours. The default numbers for fixed-
and random-effects meta-analyses are 3500 and 100, respectively. When a random
meta-analysis is invoked, the maximum number of contour points is 500. A larger
number of cpoints() results in a smoother graph but takes longer to compute (see
section 3.3 for more details).

null(#) is the value of the null hypothesis for the effect estimate. The default is
null(0). This is the value that lci, uci, or ciwidth is compared with when
measure() is specified. If lci or uci is specified, the value of null() is compared
with the lower or upper confidence interval value, respectively, of the updated meta-
analyses and is color coded depending on whether the updated estimate is less than or
greater than the null(). If ciwidth is specified, then the width confidence interval
of the updated meta-analyses is compared with the value defined by null().

isquared(numlist) specifies the values that define the I2 contours. numlist must be of
maximum length 5 and should have elements in the range 0–100.

tausquared(numlist) specifies the values that define the between-study variance (τ2)
contours. numlist must be a vector of maximum length 5 and should have elements
in the range 0–infinity.

measure(lci | uci | ciwidth) defines the target of inference, which can be one of lci,
uci, or ciwidth.

loe(numlist) defines the limits of clinical equivalence. The default legend assumes a
beneficial and detrimental effect in specific directions. The legend can be relabeled
using legend(order(1 "text1" 2 "text2" ...)). For further details, see Sutton
et al. (2007).

loeline displays the limits of clinical equivalence.

newstudycontrol(#) defines the number of patients in the control arm of a new trial.
newstudycontrol() and newstudytreatment() (explained next) defined together
produce a statistical significance contour graph, whereby each possible permutation
of results is calculated and analyzed within the appropriate meta-analysis model.
Odds ratios and risk ratios are supported.

newstudytreatment(#) defines the number of patients in the treatment arm of a new
trial.

or specifies to use log odds-ratios. This is the default; alternatively, rr can be specified
for risk ratios. or is valid only when newstudycontrol() and newstudytreatment()

are specified.
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rr specifies to use log risk-ratios. rr is valid only when newstudycontrol() and
newstudytreatment() are specified.

xrange(numlist) defines the range of effect estimates used to create the shaded contours.

yrange(numlist) defines the range of standard errors used to create the shaded contours.

sumd displays the summary diamond.

sumdposition(#) defines the vertical coordinate where the summary diamond should
be placed. The default is sumdposition(0).

prediction displays a prediction interval for a new trial based on the current meta-
analysis. The y-axis position is defined by sumdposition().

nonullline suppresses the display of the vertical line of no effect.

nopooledline suppresses the display of the vertical line at the pooled effect estimate.

noshading suppresses the display of shaded regions.

noscatter suppresses the display of the scatter of original study effects.

nometan suppresses the display of original meta-analysis results using metan.

label(
[
namevar=namevar

]
,
[
yearvar=yearvar

]
) labels the variable by its name, year,

or both. This is a metan option. Either option or both options may be left blank.
For the table display, the overall length of the label is restricted to 20 characters.

eform exponentiates the x-axis labels (valid only when the input variables are log trans-
formed, for example, log odds-ratios or log risk-ratios).

scheme(grayscale | color) specifies the color scheme of the graph. The default is
scheme(grayscale). scheme(color) can be useful to distinguish areas when loe()

is specified.

addplot(string) allows additional twoway plots to be overlayed on the extfunnel plot.

level(#) specifies the confidence level, as a percentage, for confidence intervals. The
default is level(95).

twoway options; see [G-3] twoway options.
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3.3 Computational details

As discussed in section 2.1, the inverse-variance weighted method, when applied in a
random-effects setting, results in no closed-form expression to calculate the boundary
contours between regions of statistical significance for the updated meta-analysis. Using
either the default range of the x and y axes or the ranges entered in xrange() and
yrange(), each x and y range is split at n points, where n is defined by cpoints().
So for example, cpoints(500) would result in 500 × 500 = 250,000 individual meta-
analyses being conducted, with each having its statistical significance calculated. Sets
of four adjacent points are then analyzed for the same statistical significance and are
color coded into three categories (Sig. effect < NULL, Nonsig. effect, Sig. effect

> NULL).

Conducting 250,000 meta-analyses will be computationally intensive. For example, if
metan was used and specified method randomi, with the nograph and notable options,
it would take approximately 24 hours on an Intel Core 2 Duo 3.0 GHz desktop computer
to execute the metan command and analyze the pooled estimate and confidence interval.
For this reason, the inverse-variance weighted method has been implemented in Mata,
whereby all n × n random-effects meta-analyses are conducted simultaneously. When
n = 500, this reduces computation time to approximately 90 seconds (60 seconds of
which involves building the twoway graph). Furthermore, attempting to plot thousands
of individual twoway area graphs on the same graph would cause an overflow of Stata’s
string limits; therefore the data are prepared row by row into areas of the same statistical
significance.

This implementation is also used to create the fixed and random contour graphs
when the target of inference is lci, uci, ciwidth, or the limits of clinical equivalence
(although closed-form expressions may be obtainable in some contexts). Note that
extfunnel can be quite memory intensive.

4 Example uses of extfunnel

In this section, we detail some features of extfunnel.

4.1 Statistical significance contours

Fixed effect

Figure 3 shows a forest plot from a fixed-effects meta-analysis of four trials investigating
the change in Epworth score for an oral appliance versus continuous positive airways
pressure for treating obstructive sleep apnea. For further details, see Lim et al. (2006).
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. use epworth

. metan ES seES, fixedi notable texts(220) xlabel(-6, -4, -2, 2, 0, 2, 4, 6)
> xtitle("Effect Size")

Overall  (I−squared = 72.5%, p = 0.012)

1

Study

3

ID

4

2

0.55 (−0.29, 1.38)

0.00 (−1.11, 1.11)

−0.40 (−2.24, 1.44)

ES (95% CI)

0.90 (−1.71, 3.51)

4.00 (1.73, 6.27)

100.00

56.09

%

20.38

Weight

10.13

13.40

0.55 (−0.29, 1.38)

0.00 (−1.11, 1.11)

−0.40 (−2.24, 1.44)

ES (95% CI)

0.90 (−1.71, 3.51)

4.00 (1.73, 6.27)

100.00

56.09

%

20.38

Weight

10.13

13.40

  0−6 −4 −2 20 2 4 6

Effect Size

Figure 3. Forest plot of an oral appliance versus continuous positive airways pressure
with outcome in the Epworth score

A nonstatistically significant (at the 5% level) summary effect estimate of 0.55 (95%
CI; [−0.29, 1.38]) was found. By default, extfunnel displays the results from a metan

call on the original meta-analysis. This can be suppressed by specifying the nometan

option.



614 Graphical augmentations to the funnel plot

. use epworth

. extfunnel ES seES
Original meta-analysis results:

Study | ES [95% Conf. Interval] % Weight
---------------------+---------------------------------------------------
1 | 0.000 -1.109 1.109 56.09
2 | 4.000 1.730 6.270 13.40
3 | -0.400 -2.240 1.440 20.38
4 | 0.900 -1.711 3.511 10.13
---------------------+---------------------------------------------------
I-V pooled ES | 0.546 -0.285 1.376 100.00
---------------------+---------------------------------------------------

Heterogeneity chi-squared = 10.91 (d.f. = 3) p = 0.012
I-squared (variation in ES attributable to heterogeneity) = 72.5%

Test of ES=0 : z= 1.29 p = 0.198

Building graph:
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Effect Estimate

Nonsig. effect (5% level) Sig. effect > NULL (5% level)

Sig. effect < NULL (5% level) Null effect

Pooled effect Study effects

Contours for impact of a new study

Figure 4. extfunnel plot of an oral appliance versus continuous positive airways pres-
sure with outcome in the Epworth score

Using all the default options in this way produces figure 4, which presents contours
for areas in which a new study would have to lie for the pooled result to be significant
at the 5% level. Regions for significant effects in both directions are present on this
plot. It is clear that the existing meta-analysis may not be robust to the impact of
a new study. Given that one of the four studies lies in the region where a new study
would have to be to change the summary estimate in favor of the continuous positive
airways pressure, it is certainly plausible that a new study could alter the conclusion of
the existing meta-analysis.
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Random effect

Figure 5 illustrates a meta-analysis of Sanchi versus control for the treatment of ischemic
stroke. For further details, see Chen et al. (2008). The log risk-ratios and associated
standard errors are combined with a random-effects meta-analysis model. To illustrate
the pixel-by-pixel approach, we compare extfunnel calls with the default cpoints(100)
and the maximum cpoints(500). Figure 5 illustrates the improved smoothness of the
contours when the maximum cpoints() is used. The user-written grc1leg is used to
combine the two extfunnel graphs.

. use sanchi

. quietly extfunnel ES seES, randomi xlabel(0.1 0.25 0.5 1 2)
> name(graph1, replace) eform title("100 intervals")

. quietly extfunnel ES seES, randomi cpoints(500) xlabel(0.1 0.25 0.5 1 2)
> eform name(graph2, replace) title("500 intervals")

. grc1leg graph1 graph2
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Sig. effect < NULL (5% level) Null effect

Pooled effect Study effects

Figure 5. Sanchi versus control for acute ischemic stroke with outcome as proportion of
patients with no neurological improvement

Under a random-effects model, the pooled estimate obtained from the original meta-
analysis was 0.327 (95% CI; [0.153, 0.699]), with a between-study variance estimate of
heterogeneity, τ2 = 0.187. The original meta-analysis shows a statistically significant
reduction in the proportion of patients in the treatment group who had no improvement.
From figure 5, it is clear all studies lie in the region of statistical significance with a
beneficial treatment effect, which itself dominates the graph area; therefore, the meta-
analysis could be considered relatively robust to the addition of a single new trial.
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4.2 Heterogeneity contours

We detail example plots where we investigate the effect a new study has on estimates
of heterogeneity. Heterogeneity statistics include the between-study variance, τ2, and
the I2 statistic. We again use the dataset from Chen et al. (2008) investigating Sanchi
versus control for acute ischemic stroke.

τ2 contours

Use of the tausquared() option can create a contour plot illustrating the effect a new
study would have on τ2. In figure 6, the current estimate of τ2 = 0.187 is shown,
illustrating the current level of heterogeneity in the original meta-analysis. The other
contour lines represent combinations of effect estimates and standard errors that would
be required in the new study to alter the estimate of τ2 to each particular value. Up
to five distinct contour values of τ2 can be plotted. In figure 6, we display the sum-
mary diamond and a 95% prediction interval (the interval that the underlying effect
is estimated to lie within 95% of the time based on the existing meta-analysis) using
the sumd and prediction options, but we suppress the display of the shaded statistical
significance contours by invoking the noshading option.

. use sanchi

. program drop _all

. extfunnel ES seES, tausquared(0.04 0.1 0.187 0.4 0.5) yrange(0 1.5) noshading
> nometan prediction sumd sumdposition(0.2)

Building graph:
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Figure 6. τ2 heterogeneity contours; Sanchi versus control for acute ischemic stroke
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If a new study lies within the region defined by the contours at τ2 = 0.187, then the
estimate of τ2 would be reduced. Similarly, if a new study lies outside the region, then
τ2 would be increased. If the new study lies on a contour defined by τ2 = 0.5, then τ2

would be increased to 0.5 on inclusion of the new study. Mental interpolation between
contours can provide a guide to the effect a new study would have on the estimate of τ2.
The prediction interval indicates the likely range of effect sizes (but ignores sampling
error) for a new study and thus indicates which region of the plot is most relevant.

Similarly, the effect on the estimates of the I2 statistic can be investigated using
isquared(). A comparison of the τ2 and I2 contours, including additional examples,
can be found in Langan et al. (2012).

4.3 Confidence intervals

Let us now investigate the robustness of the sensitivity of a diagnostic test. The data
used in this example come from Geersing et al. (2009), who conducted a meta-analysis
examining point-of-care D-dimer tests for detecting venous thromboembolism—more
specifically, seven studies evaluating the Clearview Simplify D-dimer test. Analyzing
sensitivity (an assessment of specificity could also be conducted using exactly the same
approach) under a fixed-effects model produced a pooled sensitivity of 0.853 (95% CI;
[0.817, 0.883]). We can investigate the effect of a new study on the lower confidence
interval by specifying measure(lci) and null(1.495), where invlogit(1.495) = 0.817.
Analyses are conducted and plotted on the logit scale.
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. use simplify

. extfunnel logitsens se_logitsens, fixedi measure(lci) null(1.495) nometan
> xlabel(1 2 3) yrange(0 1) cpoints(500) sumd sumdposition(0.9)
> xtitle("logit(Sensitivity)")

Building graph:
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Figure 7. Target of inference—lower confidence interval

From figure 7, we can see where a new study’s effect size and standard error would
have to lie either to increase or to decrease the lower confidence interval. Similar plots
can be produced when the upper confidence interval is of interest or when the confidence
interval width is investigated.

4.4 Limits of clinical equivalence

We now illustrate how, through the use of the limits of clinical equivalence, extfunnel
can graphically display a range of scenarios (described in figure 2) for the updated meta-
analysis. We illustrate the method using the Epworth score dataset once more, defining
the limits of clinical equivalence to be (−0.25, 0.25).



M. J. Crowther, D. Langan, and A. J. Sutton 619

. use epworth

. extfunnel ES seES, fixedi loe(-0.25 0.25) nometan sumd sumdposition(1.6)
> yrange(0 2) nopooledline loeline cpoints(400)

Building graph:
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Figure 8. Limits of equivalence

In figure 8, the funnel plot is divided into the eight distinct regions defined in the
legend (following the descriptions in figure 2). Here all existing studies lie in either
scenario 1 (CI crosses the line of no effect and both limits of equivalence) or scenario 3
(CI lies to the right of the line of no effect but does cross the equivalence line). Given
the large proportion of the plot around the pooled estimate that represents scenario 1,
changing inferences with one further new study is unlikely unless it is very large (precise)
or has an extreme effect size. Note that figure 4 can be considered a special case of
figure 8 because figure 8 subdivides further the regions defined in figure 4. We recover
figure 4 by grouping areas of the graph where the effect is greater than the null and
is statistically significant (areas 3, 5, and 8); by grouping areas where the effect is
nonstatistically significant (areas 1 and 6); and by grouping areas where the effect is
less than the null and is statistically significant (areas 2, 4, and 7).
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5 Additional feature

If the measure of interest is an odds ratio or rate ratio, then the effect of a new
study with an explicit sample size can be investigated directly through invoking the
newstudytreatment() and newstudycontrol() options. For example, if 100 patients
are in both treatment and control arms, we can directly calculate all possible combina-
tions of 2 × 2 cell counts, combining each unique new study estimate with the original
meta-analysis to produce a graph such as figure 9. This process can be computationally
intensive, because it has not been optimized in Mata but relies on metan. We use a
meta-analysis from a Cochrane review investigating the use of antibiotics versus control
to treat the common cold, where the outcome is the alleviation of symptoms within
seven days. More details can be found in Arroll and Kenealy (2002). A fixed-effects
meta-analysis of the existing studies had a nonstatistically significant pooled odds ratio
of 0.796 (95% CI; [0.587, 1.080]).

. use colddata

. extfunnel logor selogor, fixedi newstudycontrol(100) newstudytreatment(100)
> nometan eform xlabel(0.01 0.2 1 5 100)

Building graph:
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Figure 9. All possible results from the addition of a new study with 100 patients in each
arm

Figure 9 shows the possible results, under a fixed-effects model, of combining a trial
of size 200 with the original meta-analysis. Given that two of the original studies lie
in a region of statistical significance showing a beneficial treatment effect, the original
meta-analysis could be considered to be lacking robustness to the influence of a new
trial.
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6 Discussion

We have presented and described the extfunnel command, which provides a variety of
graphical means of establishing the robustness of a meta-analysis to the inclusion of a
new study. The simulation approach implemented in Mata has optimized the re-meta-
analyses, providing an efficient and powerful tool encompassing a variety of scenarios.

We envisage that meta-analysts, trialists, and editors of portfolios of systematic
reviews will find this display useful when reporting their meta-analyses, designing new
studies, and prioritizing updates of existing meta-analyses, respectively (Langan et al.
2012).

The limitations of the approach include no accounting for change in the statistical
model. We assume that the original meta-analysis is analyzed with the same fixed or
random framework as the updated meta-analysis. Furthermore, only inverse-variance
weighted methods are available because, for example, the Mantel–Haenszel approach
is prohibitive: it takes into account all cell frequencies in a study’s 2 × 2 contingency
table, which cannot be displayed on a two-dimensional graph. Finally, the plots only
consider the inclusion of one further study; an approach that could display the impact
of multiple studies would be welcomed.
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