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Abstract. We consider estimation of a linear regression model using data where
some covariate values are missing but imputations are available to fill in the miss-
ing values. This situation generates a tradeoff between bias and precision when
estimating the regression parameters of interest. Using only the subsample of
complete observations does not cause bias but may imply a substantial loss of
precision because the complete cases may be too few. On the other hand, filling
in the missing values with imputations may cause bias. We provide the new Stata
command gmi, which handles such tradeoff by using either model reduction or
Bayesian model averaging techniques in the context of the generalized missing-
indicator approach recently proposed by Dardanoni, Modica, and Peracchi (2011,
Journal of Econometrics 162: 362–368). If multiple imputations are available, gmi
can also be combined with the built-in Stata prefix mi estimate to account for
extra variability due to imputation. We illustrate the use of gmi with an empirical
application in the health domain, where item nonresponse is substantial.

Keywords: st0273, gmi, missing covariates, imputation, bias–precision tradeoff,
model reduction, model averaging

1 Introduction

In applied regression analysis, the values of some covariates are often missing for some
observations. We focus on the case when the outcome of interest is always observed,
and the missing-data mechanism satisfies a conditional independence assumption that
we will make precise in section 2. This case has been studied extensively, starting with
the seminal work of Little (1992). Our novel contribution is to consider the situation
when imputations are available for the missing covariate values. This situation is be-
coming quite common because public data files increasingly include imputations of key
variables affected by missing-data problems. Specialized software for carrying out impu-
tations directly, such as the mi suite of commands in Stata, is also becoming increasingly
available.

c© 2012 StataCorp LP st0273



576 Generalized missing-indicator approach

One approach to this problem—complete-case analysis—drops all observations with
missing covariate values, thus ignoring the imputations altogether. An alternative ap-
proach uses all the observations without distinguishing between observed and imputed
values. We call this the “filling-in approach” because the missing values are simply
filled in with the imputations. A variant of this approach—the so-called simple missing-
indicator approach—adds a set of indicators to the covariates for the different patterns
of missing data.

From the viewpoint of inference about the regression parameter of interest, the
availability of imputations generates a tradeoff between bias and precision: the complete
cases are often too few, so precision is lost, but just filling in the missing values with the
imputations may lead to bias (Jones 1996). In this article, we present a Stata command
that handles the tradeoff by implementing the “generalized missing-indicator approach”
proposed by Dardanoni, Modica, and Peracchi (2011), henceforth DMP. Their approach
exploits the fact that complete-case analysis and the filling-in approach correspond to
using two extreme versions of the same model. Complete-case analysis corresponds to
using a “grand model” that includes two subsets of regressors: 1) the focus regressors
consisting of the observed or imputed covariates; and 2) a set of auxiliary regressors
consisting of the missing-data indicators (as in the simple missing-indicator approach)
and their interactions with the covariates. The filling-in approach corresponds to using
a restricted version of the grand model that includes only the focus regressors.

The key idea of the DMP approach is to also consider all the intermediate models
between these two extremes, namely, all models obtained from the grand model by
dropping alternative subsets of auxiliary regressors. Expanding the model space in
this way has two advantages. First, the original tradeoff between bias and precision
is transformed into a problem of model uncertainty, for which a variety of alternative
strategies is available. Second, any intermediate model in the expanded model space
may now play a role in dealing with the tradeoff between bias and precision.

The Stata command gmi (acronym for generalized missing indicator) presented in
this article implements several methods corresponding to two alternative strategies:
model reduction and Bayesian model averaging. In general, these methods may be
regarded as providing a compromise that avoids dropping the incomplete cases while
using the available imputations in a sensible way. The extreme choice of using either
the complete-case or the filling-in approach is still available but is unlikely to emerge
as the best one. Bayesian model averaging avoids the pretesting problem that plagues
model reduction techniques. It also allows one to formally incorporate, through the
choice of priors, the researcher’s beliefs on the reliability of the imputations—on which
the estimates must ultimately depend.
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The remainder of this article is organized as follows. In section 2, we review theoret-
ical background. In section 3, we describe the two alternative strategies for estimating
the regression parameters of interest: model reduction and Bayesian model averaging.
Section 4 provides a detailed description of the gmi command, and section 5 illustrates
gmi using data available on the Stata website. In section 6, we use data from the first
wave of the Survey of Health, Ageing, and Retirement in Europe (SHARE) to provide an
empirical application on the relationship between an objective health indicator and a set
of sociodemographic and economic covariates affected by substantial item nonresponse.
We conclude the article in section 7.

2 Background

Consider modeling the relationship between an outcome Y and a set of covariates X
using data where some covariate values are missing. We assume that in the absence of
these values, the data would satisfy the classical linear model

Y = Xβ + U

where Y is the N × 1 vector of observations on the outcome of interest, X is an N ×K
matrix of observations on the covariates, β is the K ×1 vector of regression parameters,
and U is an N × 1 vector of regression errors that are homoskedastic, serially uncor-
related, and have zero mean conditional on X. This means that the full-information
estimator—the unfeasible ordinary least-squares (OLS) estimator from the regression of
Y on X—is unbiased for β and efficient in the Gauss–Markov sense.

We also assume that all missing covariate values can be replaced by imputations.
These imputations may be provided by the data-producing agency or constructed by
the researcher by using, for example, the Stata command mi impute.

Because the first element of X is considered the constant term, which is always
observed, the number of possible missing-data patterns is equal to 2K−1 (no missing
data, only the first covariate missing, only the first and the second missing, etc.). A
particular dataset need not contain all the possible patterns, so we simply index the
patterns present in the data by j = 0, . . . , J , with j = 0 corresponding to the subsample
with complete data, which is assumed to be always available, and J ≤ 2K−1−1. To keep
track of exactly which covariate values are missing, we introduce the N×K missing-data
indicator matrix M, whose (n, k)th element is equal to 1 if the nth case has a missing
value on the kth covariate and is equal to 0 otherwise.

We are concerned with the problem of how to combine the observed and the im-
puted values to estimate the regression parameter β. We shall introduce the generalized
missing-indicator approach starting with two building blocks of the theory: complete-
case analysis and the filling-in approach. The results in this section are taken from
DMP (2011), where proofs can be found.
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2.1 Complete-case analysis

This approach ignores the imputed values and uses only the subsample with complete
data, denoted by [X0, Y 0], where X0 is an N0 ×K matrix and Y 0 is an N0 × 1 vector.
Complete-case analysis is a benchmark because, under two key conditions, it delivers
an unbiased estimate of the regression parameter β.

The two key conditions are full rank of X0 and a conditional independence assump-
tion on the missing-data process.

Assumption 2.1 X0 has full column rank.

Assumption 2.2 M and Y are independent conditional on X.

Assumption 2.1 implies that the complete-case estimator, the OLS estimator from the
regression of Y 0 on X0, exists and is unique. For this assumption to hold, there must
be enough cases (at least K) without missing covariate values. Assumption 2.2 says
that given the true values of the covariates, the pattern of missing data can be ignored
when predicting Y . This assumption is different from the standard missing-at-random
(MAR) assumption, which in our setting would require the missing-data process to be
independent of the missing covariates given the observed outcome and the nonmissing
covariates.

A simple example where assumption 2.2 is satisfied but MAR is not is when health
is the outcome of interest, income is the only regressor, and missing income depends on
true income but not on health. On the other hand, an example where MAR is satisfied
but assumption 2.2 is not is when missing income depends on health but not on true
income. Thus assumption 2.2 admits patterns where cases with low or high levels of
income systematically have greater percentages of missing values, but the assumption
fails if the health–income relationship is different for observations with and without
missing income values.

Under assumptions 2.1 and 2.2, we have the following result, which represents the
main justification for complete-case analysis:

Result 1 If assumptions 2.1 and 2.2 hold, then the complete-case estimator from a

regression of Y 0 on X0 is unbiased for β.

Even if unbiased, the complete-case estimator has the drawback of being less precise
than the full-information estimator except when the fraction of complete cases is close
to 1. In the rest of this section, we review alternative uses of the observations with
missing data.

2.2 The filling-in and the simple missing-indicator approaches

A common alternative to complete-case analysis is to use all cases and regress Y on
the completed design matrix W, whose (n, k)th element is equal to the corresponding
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element of X if a covariate value is not missing and is equal to the imputed value other-
wise. This approach, which we call the filling-in approach, ignores that the imputations
are not the same as the missing covariate values; thus it gives an estimator of β that is
more precise than the complete-case estimator, but it may also be biased if MAR is not
satisfied or the imputation model is not “congenial” in the sense of Meng (1994).

Another alternative, often called the simple missing-indicator approach, consists of
regressing Y on the completed design matrix W and a set of J indicators, D1, . . . ,DJ ,
where the elements of Dj are equal to 1 for cases that belong to the jth missing-data
pattern and are equal to 0 otherwise (the subsample with complete cases represents
the baseline). Adding the indicators for the missing-data patterns allows the inter-
cepts to differ across patterns but not across the other coefficients. This increases the
flexibility of the model but does not guarantee unbiasedness (Little 1992; Jones 1996;
Horton and Kleinman 2007).

2.3 The generalized missing-indicator approach

The problem with complete-case analysis is that one may end up with too few observa-
tions. On the other hand, the filling-in approach ignores that the population regression
of Y on the completed design matrix W may differ across missing-data patterns and
that all of these regressions may be different from the full-information regression of Y
on X. The aim of the generalized missing-indicator approach is to account for these
differences.

The intuition is the following. By introducing a set of indicators for the missing-
data patterns, one only controls for differences in the intercepts of these regressions.
But if one adds enough auxiliary regressors to also control for differences in the slope
coefficients, then one may hope to obtain an unbiased estimate of β, the regression
parameter of interest. This is precisely what our grand model does. In practice, a
one-to-one relation exists between the auxiliary regressors included in the grand model
and the subsets of imputed missing values. The grand model coincides with the model
used in complete-case analysis; and excluding some auxiliary variables from the grand
model is equivalent to assuming that for some subsamples of imputed missing values,
there is no difference in the regression coefficients of interest. If we exclude all auxiliary
variables from the grand model, then one obtains the same model used in the filling-in
approach.

The formal result is as follows. Let Y j and Wj , respectively, denote the Nj × 1
subvector of Y and the Nj ×K submatrix of W corresponding to the jth missing-data
pattern. The generalized missing-indicator approach is based on the grand model
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where β is the regression parameter of interest, the δj are K × 1 vectors of nuisance
parameters that may be interpreted as the asymptotic bias in the regression of Y j on
Wj , and the V j are Nj × 1 vectors of projection errors that have mean zero and are
orthogonal to the columns of Wj . A compact representation of the grand model is

Y = Wβ + Zδ + V (1)

where

W =




X0

W1

...
WJ


 , Z =




0 · · · 0
W1

. . .

WJ


 , δ =




δ1

...
δJ


 , V =




U0

V 1

...
V J




respectively, an N ×K matrix of observed or imputed covariates, an N ×JK matrix of
auxiliary regressors, a JK×1 vector of nuisance parameters, and an N ×1 error vector.
The variables in matrix Z consist of JK interactions between the set of J indicators,
D1, . . . ,DJ , for the missing-data patterns and the K columns of the completed design
matrix W. This matrix is not required to have full column rank. This occurs when some
of the Wj do not have full column rank, either because Nj < K or because Nj ≥ K, but
the columns of Wj are linearly dependent, as when mean imputation or deterministic
regression imputation is used. Incidentally, such imputation methods are known to
produce datasets with undesirable properties (see, for example, Lundström and Särndal
[2001]). When some of the Wj do not have full column rank, only a subset of the
coefficients in δj is identifiable, but this does not affect the estimates of β. Additionally,
regression errors in (1) need not have constant variance, because the projection errors
V 1, . . . , V J may be heteroskedastic.

The main result in DMP (2011) is the following:

Result 2 If assumption 2.1 holds, then, for any choice of imputations, the OLS estimate

of β in (1) equals the complete-case estimate of β.

If assumption 2.2 holds, regressing Y on W and Z allows one to fully exploit the
available information and to obtain an unbiased estimator of the regression parameter
β. In addition, in this case, the filling-in approach gives an unbiased estimator of β only
if the elements of δ—the coefficients on the auxiliary regressors—all equal 0.

3 Alternative strategies for estimating β

Both the filling-in and the simple missing-indicator approaches correspond to using
restricted versions of (1) obtained by placing restrictions on the vector δ. The former
restricts δ to equal 0; the latter restricts all the elements of δ to equal 0 except the
first one. When these restrictions are at odds with the data, imposing them leads
to an estimator of β that is biased but more precise than the OLS estimator of β in
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(1), which, from result 2, is numerically the same as the complete-case estimator of β.
This suggests that by placing restrictions on δ or, equivalently, by excluding some of
the auxiliary regressors in Z, one may obtain an estimator of β that is better in the
sense of mean squared error (MSE) than the complete-case estimator. Our gmi command
implements two alternative strategies for obtaining an estimator of β in this way: model
reduction and model averaging.

3.1 Model reduction

Model reduction involves selecting first an intermediate model between the grand model
(1) and the model corresponding to δ = 0 and then estimating the parameter of interest
β conditional on the selected model. Because the variables in the completed design
matrix W are treated as focus regressors and are always included, an intermediate
model corresponds to one of the 2JK possible subsets of auxiliary regressors in Z.

The conceptually simplest and most transparent model reduction procedure is step-
wise selection, through either backward elimination or forward selection. Backward
elimination (general to specific) starts from the model that includes all the auxiliary
regressors (the grand model) and drops them one at a time if their p-value is above a
threshold chosen by the modeler. Forward selection (specific to general) starts from the
model without auxiliary regressors and adds them one at a time if their p-value is below
a chosen threshold.

In either case, the threshold on the p-value may reflect prior beliefs about the qual-
ity of the imputations: the more one trusts the imputations—that is, the less weight
one wants to place on the auxiliary regressors—the lower one may set the threshold.
Further, comparing the results obtained with different values of the threshold may give
some indication about the quality of the available imputations. For example, stepwise
results that are close to the estimates obtained from the filling-in approach even for
high values of the threshold may be interpreted as favorable evidence for the quality of
the imputations. An improvement over the standard stepwise procedure is the variable
selection method recently introduced by Lindsey and Sheather (2010), where instead of
a fixed significance level, an information criterion such as Akaike’s information criterion
(AIC) or the Bayesian information criterion is used to gauge each model.

One well-known problem with this strategy is pretesting.1 Another is that model
reduction and estimation are completely separated. Thus the reported conditional esti-
mates tend to be interpreted as if they were unconditional. A third problem is that with
J subsamples with incomplete data and K covariates (including the constant term), the
model space may contain up to 2JK models. Thus the model space is huge unless both J
and K are small. Simple model reduction techniques, such as backward and forward se-
lection, analyze at most JK(JK+1)/2 models. More complicated model reduction tech-
niques, such as the “leaps and bounds” technique implemented in Lindsey and Sheather
(2010), usually analyze a larger number of models.

1. See Magnus (2000) and the FAQ titled What are some of the problems with stepwise regression?,
available at http://www.stata.com/support/faqs/stat/stepwise.html.
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3.2 Model averaging

Model averaging takes a different route. Instead of selecting a model out of the available
set of models, one first estimates the parameter of interest β conditional on each model
in the model space and then computes the estimate of β as a weighted average of these
conditional estimates. When the model space contains I models, a model averaging
estimate of β is of the form

β =

I∑

i=1

λiβ̂i

where the λi are nonnegative random weights that add up to 1 and β̂i is the estimate
of β obtained by conditioning on the ith model. In Bayesian model averaging (BMA),

each β̂i is weighted by the posterior probability of the corresponding model. If equal
prior probabilities are assigned to each model, then λi is proportional to the marginal
likelihood of Y under model i. The BMA literature is vast, and we refer the reader to
Raftery, Madigan, and Hoeting (1997) for a starting point.

Our gmi command implements two BMA procedures in the options bma and wals:
standard BMA and weighted-average least squares (WALS). The implementation of stan-
dard BMA is based on the bma command provided by De Luca and Magnus (2011).
This approach assumes a classical Gaussian linear model for (1), noninformative pri-
ors for β and the error variance, and a multivariate Gaussian prior for δ. Notice that
the computational burden required to obtain a standard BMA estimate is proportional
to the dimension of the model space. Because this is equal to 2JK in our case, the
computational burden is substantial unless both J and K are small.

WALS was introduced by Magnus, Powell, and Prüfer (2010). It also assumes a clas-
sical Gaussian linear model for (1) and noninformative priors for β and the error vari-
ance. However, instead of a multivariate Gaussian prior for δ, it uses a distribution with
zero mean for the independent and identically distributed elements of the transformed
parameter vector η = η(δ), whose hth element is the population t statistic for testing
the significance of the hth element of δ. Magnus, Powell, and Prüfer (2010) use the
Laplace distribution, while Kumar and Magnus (2011) use the Subbotin family, which
leads to estimators with better asymptotic properties. Our Stata implementation for
both Laplace and Subbotin priors is again based on the wals command provided by
De Luca and Magnus (2011). The assumption that the regression errors in (1) are ho-
moskedastic and serially uncorrelated is not crucial for WALS, and the method can be
generalized to nonspherical errors (Magnus, Wan, and Zhang 2011).

WALS has three main advantages over standard BMA. First, its computational burden
is only proportional to JK. Second, its choice of priors corresponds to a more intuitive
concept of uncertainty about the role of the auxiliary regressors. Third, WALS estimates
have bounded risk and are near optimal in terms of a well-defined regret criterion
(Magnus, Powell, and Prüfer 2010).



V. Dardanoni, G. De Luca, S. Modica, and F. Peracchi 583

3.3 Standard errors of the estimators

Like standard Stata estimation commands, we provide estimated coefficients, standard
errors, and t ratios. We do not provide p-values and confidence intervals, because
our estimators are generally biased and their distribution need not be Gaussian, not
even asymptotically. On the other hand, the hth regressor may be considered robustly
correlated with the outcome if the t ratio on its coefficient is greater than 1 in absolute
value, in which case the MSE of the unrestricted OLS estimator of the coefficient is
lower than that of the restricted OLS estimator (see, for example, Magnus [2002]). On
the basis of this criterion, we also provide one-standard-error bands for the estimated
coefficients.

Computation and interpretation of the standard errors differ depending on the es-
timation strategy (model reduction versus model averaging) and the general approach
to estimation (frequentist versus Bayesian). For model reduction, the default is classi-
cal standard errors of the OLS estimator of the selected model. These standard errors
do not take into account heteroskedasticity or serial correlation in the data and, most
importantly, ignore the additional sampling variability induced by the model selection
step. The bootstrap option gives standard errors based on the wild bootstrap that are
valid under conditional heteroskedasticity and also consider the additional variability
due to model selection.

For BMA, the default standard errors explicitly consider model uncertainty and have
the usual Bayesian interpretation of measuring the spread of the posterior distribution
of the parameters of interest given the data. In this case, the option bootstrap provides
a frequentist measure of the variability due to sampling, including the variability due
to model selection.

Neither model reduction nor model averaging considers the additional sampling vari-
ability due to imputation. This problem could be addressed by multiple-imputation
methods (Rubin 1987). As illustrated in sections 5 and 6, the gmi command can be
combined with the built-in Stata prefix mi estimate (see [MI] mi estimate).

4 The gmi command

The new Stata command gmi handles the tradeoff between bias and precision when
fitting a classical linear regression model with imputed covariates. The earliest version
of Stata required to run this command is version 11.1.
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4.1 Syntax

The syntax for the gmi command is

gmi depvar
[
varlist

] [
if
] [

in
]
, impvar(varlist) misind(varlist)

[
summarize cc

fi smi sw vs bma wals full vce(bootstrap
[
, bootstrap options

]
)

mimputations auxiliary(string) keep nowarn stepwise options vselect options

bma options wals options mi options
]

where depvar is the dependent variable; varlist is an optional list of observed covariates
(covariates whose values are fully observed); impvar() is the list of imputed covariates
(covariates whose missing values are replaced by imputed values); and misind() is the
relevant list of missing-data indicators (the nonzero columns of the matrix M corre-
sponding to the set of imputed covariates). Missing-data indicators take on the value
0 for observed cases and the value 1 for imputed cases. The number of imputed co-
variates must coincide with the number of missing-data indicators. The first variable in
impvar() is paired with the first indicator in misind(), the second variable in impvar()

is paired with the second indicator in misind(), and so on.

The constant term (which is always included) and the set of observed and imputed
covariates correspond to the K columns of the completed design matrix W. The auxil-
iary regressors in Z (the JK interactions between the J indicators for the missing-data
patterns and the K columns of W) are instead automatically generated by the com-
mand with the information from misind(). misind() and impvar() are required. The
gmi command shares the same features of all Stata estimation commands, including
access to the estimation results. Factor variables, time-series operators, and weights are
not allowed. Descriptions of the options specific to this command are provided in the
next sections.

4.2 Options of the gmi command

summarize, the default, provides a description of the grand model (number of obser-
vations, number of observed and imputed covariates, number of focus and auxiliary
regressors, number of missing-data patterns, and dimension of the model space)
and summaries of the distribution of depvar (number of observations, mean, and
standard deviation) for the complete-case estimate and each missing-data pattern.

cc provides the complete-case estimate of β, the OLS estimate from a regression of depvar

on the K focus regressors in W using only the complete cases. From result 2, this
is numerically the same as the OLS estimate of β in the grand model (1).

fi provides the filling-in estimate of β, the OLS estimate from a regression of depvar on
the K focus regressors in W using all cases.
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smi provides the simple missing-indicator estimate of β, the OLS estimate of β from
a regression of depvar on the K focus regressors in W and the J dummies for the
missing-data patterns using all cases.

sw provides the OLS estimate of β from a regression of depvar on the K focus regressors
in W and the subset of auxiliary regressors in Z selected through the built-in Stata
command stepwise. This estimate of β is conditional on the selected model. A
brief description of the options for the stepwise command is given in section 4.3.

vs provides the OLS estimate of β from a regression of depvar on the K focus regressors
in W and the subset of auxiliary regressors in Z selected through the vselect

command by Lindsey and Sheather (2010). Similarly to the sw option, this estimate
of β is conditional on the selected model. A brief description of the options for the
vselect command is given in section 4.4.

bma provides the BMA estimate of β in the grand model (1) using the bma command
implemented by De Luca and Magnus (2011). This option assumes a classical Gaus-
sian linear model for (1), noninformative priors for the regression parameter β and
the error variance, and a multivariate Gaussian prior for the auxiliary parameter δ.
This estimate is obtained as a weighted average of the estimates of β from each of the
2JK possible models in the model space with weights proportional to the marginal
likelihood of depvar in each model. A brief description of the options for the bma

command is given in section 4.5.

wals provides the WALS estimate of β in the grand model (1) using the wals com-
mand implemented by De Luca and Magnus (2011). Like bma, this option assumes
a classical Gaussian linear model for (1) and noninformative priors for the regression
parameter β and the error variance. Unlike bma, wals uses orthogonal transforma-
tions of the auxiliary regressors and their parameters, which reduces to JK the order
of magnitude of the required calculations. Further, the transformed auxiliary pa-
rameters in η are assumed to be independent and identically distributed according
to either a Laplace or a Subbotin prior. A brief description of the options for the
wals command is given in section 4.6.

full displays the estimation results for all model parameters (focus and auxiliary pa-
rameters) and returns the associated estimates and their variance–covariance ma-
trix in the vector e(b) and the matrix e(V), respectively. By default, display of
the estimation results is restricted to the focus parameters of interest; the associ-
ated estimates and their variance–covariance matrix are returned in the vector e(b)
and the matrix e(V), respectively, while estimates of the auxiliary parameters and
their variance–covariance matrix are returned in the vector e(b aux) and the matrix
e(V aux), respectively.

vce(bootstrap
[
, bootstrap options

]
) uses wild bootstrap to estimate the variance–

covariance matrix of the parameter estimates (see [R] bootstrap). By default, boot-
strap estimates of the variance–covariance matrix are computed only for the focus
parameters. To obtain bootstrap estimates of the variance–covariance matrix for the
focus and the auxiliary parameters, one must combine the option vce(bootstrap)
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with the option full. In any case, vce(bootstrap) and full cannot be jointly
specified when applying model reduction techniques (the options sw and vs), be-
cause the subset of selected regressor variables can vary across bootstrap repli-
cates. Furthermore, the option vce(bootstrap) cannot be combined with the op-
tion mimputations. Standard options for bootstrap estimation can be specified as
suboptions within vce(bootstrap) (see [R] vce option).

mimputations runs the specified gmi command on multiply imputed data by using the
built-in Stata prefix mi estimate (see [MI] mi estimate). By default, multiple-
imputation estimates are computed only for the focus parameters. To obtain multi-
ple-imputation estimates of the focus and the auxiliary parameters, one must com-
bine the option mimputations with the option full. In any case, mimputations and
full cannot be jointly specified when applying model reduction techniques (the op-
tions sw and vs), because the subset of selected auxiliary regressors may vary across
imputations. Moreover, the option mimputations cannot be combined with the op-
tions cc and vce(bootstrap). A brief description of the options for mi estimate

is given in section 4.7.

auxiliary(string) specifies the prefix for the name of the auxiliary regressors. The
default is auxiliary(D). Thus auxiliary regressors are named Dj and Dj varname,
where j = 1, . . . , J is an index for the subsamples of missing data and varname is
the name of each variable listed in varlist and impvar().

keep specifies to keep the auxiliary regressors in the data after estimation. By default,
they are dropped.

nowarn suppresses the display of a warning message on dropped collinear regressors.

4.3 Options for stepwise

With the sw option, gmi carries out model reduction through the built-in Stata com-
mand stepwise (see [R] stepwise for details). The relevant options of the stepwise

command are pr(#) (significance level for backward elimination), pe(#) (significance
level for forward selection), forward (backward stepwise), and lr (likelihood-ratio test-
of-term significance). Because the auxiliary regressors in Z have no hierarchical ordering,
backward hierarchical selection and forward hierarchical selection are not allowed.

4.4 Options for vselect

With the vs option, gmi carries out model reduction through the vselect command
provided by Lindsey and Sheather (2010). This command offers three model reduction
techniques: backward elimination (the default), forward selection (forward), and leaps-
and-bounds selection (best). An information criterion is used to judge the validity
of each model through the options r2adj (adjusted R2), aic (AIC), aicc (corrected
AIC), bic (Bayesian information criterion), cp1, or cp2 (Mallows’s Cp). Mallows’s Cp

criterion can only be used with leaps-and-bounds selection, and the decision rule can be



V. Dardanoni, G. De Luca, S. Modica, and F. Peracchi 587

either a value of Cp close to 0 (cp1) or a value close to the number of covariates (cp2).
For additional information, see Lindsey and Sheather (2010).

4.5 Options for BMA

With the bma option, gmi carries out standard BMA through the bma command provided
by De Luca and Magnus (2011). In this case, one can use the option nodots to suppress
the display of the dots that track the progress of bma estimation. By default, dots are
displayed only if the model space consists of more than 128 models. One dot means
that 1% of the models in the model space have been fit.

4.6 Options for WALS

With the wals option, gmi carries out BMA through the wals command provided
by De Luca and Magnus (2011). As for the prior on the transformed auxiliary param-
eters, one can choose between Laplace and Subbotin priors through the option q(#).
This option defines the free parameter 0 < q ≤ 1 of a Subbotin density for the elements
ηh of the transformed parameter vector η. This density is standardized to have a prior
median of ηh equal to 0 and a prior median of η2

h equal to 1. The default is q = 1,
corresponding to the Laplace prior. Values of q in the interval (0, 1) give instead a
class of Subbotin priors. Kumar and Magnus (2011) argue that values of q close to 0
are unappealing from the point of view of ignorance. For empirical applications, they
recommend q = 0.5. For a Subbotin prior with q 6= 1 and q 6= 0.5, one can also specify
a set of additional options (intpoints(#), eps(#), and iterate(#)) to control the
accuracy of the numerical process for approximating the constrained parameter of a
Subbotin density. Additional information can be found in De Luca and Magnus (2011).

4.7 Options for multiple imputations

With the mimputations option, gmi computes multiple-imputation estimates through
the built-in Stata prefix mi estimate (see [MI] mi estimate for details). One can
specify these options with mi estimate: nimputations(#), imputations(numlist),
saving(miestfile

[
, replace

]
), vartable, noisily, trace, esample(newvar), and

dots. The remaining options are suppressed because they can be inappropriate for
most of the estimation methods implemented by the gmi command. Furthermore, we
forced the built-in Stata prefix mi estimate to respect the reporting output of the gmi

command to avoid misleading interpretations of the estimation results.
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5 Examples

This section illustrates the gmi command using data available on the Stata website.

. quietly use "http://www.stata-press.com/data/r11/mhouses1993s30"

. describe

Contains data from http://www.stata-press.com/data/r11/mhouses1993s30.dta
obs: 1,647 Albuquerque Home Prices

Feb15-Apr30, 1993
vars: 13 19 Jun 2009 10:50
size: 47,763 (_dta has notes)

storage display value
variable name type format label variable label

price int %8.0g Sale price (hundreds)
sqft int %8.0g Square footage of living space
age float %10.0g Home age (years)
nfeatures byte %8.0g Number of certain features
ne byte %8.0g Located in northeast (largest

residential) sector of the city
custom byte %8.0g Custom build
corner byte %8.0g Corner location
tax float %10.0g Tax amount (dollars)
lnage float %9.0g
lntax float %9.0g
_mi_miss byte %8.0g
_mi_m int %8.0g
_mi_id int %12.0g

Sorted by: _mi_m _mi_id

. set seed 1234

We want to fit a classical linear regression model for the relationship between home
sale price (price) and home characteristics (sqft, nfeatures, ne, custom, corner,
lnage, and lntax). Because there are cases with age and tax missing, lnage and lntax

are affected by a missing-data problem, and their missing values have been imputed by
using a multivariate normal regression model (see [MI] mi impute mvn).

. mi describe

Style: mlong
last mi update 19jun2009 10:50:22, 386 days ago

Obs.: complete 66
incomplete 51 (M = 30 imputations)

total 117

Vars.: imputed: 2; lnage(49) lntax(10)

passive: 2; age(49) tax(10)

regular: 6; price sqft nfeatures ne custom corner

system: 3; _mi_m _mi_id _mi_miss

(there are no unregistered variables)
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. mi misstable summarize lnage lntax
Obs<.

Unique
Variable Obs=. Obs>. Obs<. values Min Max

lnage 49 68 30 0 3.970292
lntax 10 107 95 5.407172 7.475906

Thus the data contain 117 observations and 30 multiple imputations stored in the mlong
style (see [MI] styles) for each of the 51 incomplete cases.

Below we generate the missing-data indicators for lnage and lntax and the local
first imp, which is used to restrict the estimation sample to the first imputation. Con-
tinuous covariates are centered to their median values to obtain meaningful estimates
of the constant term.

. generate mis_lnage=(lnage==.)

. generate mis_lntax=(lntax==.)

. by _mi_id, sort: egen M_lnage=max(mis_lnage)

. by _mi_id, sort: egen M_lntax=max(mis_lntax)

. foreach x of varlist sqft nfeatures lnage lntax {
2. quietly summarize `x´ if _mi_miss==0|_mi_m==1, d
3. quietly replace `x´=`x´-r(p50)
4. }

The gmi command with its default option summarize produces the following output:

. gmi price sqft nfeatures ne custom corner if `first_imp´,
> impvar(lnage lntax) misind(M_lnage M_lntax)
note: D1_nfeatures D1_ne D1_custom D1_corner D1_lnage D1_lntax D3_corner
> omitted because of collinearity

Grand model

Number of obs : 117
Number of observed covariates : 6
Number of imputed covariates : 2
Number of focus covariates : 8
Number of missing data patterns : 3
Number of auxiliary covariates : 17
Dimension of model space : 131072

Missing data patterns Summary of price by missing data pattern
(1 complete, 0 imputed) Freq. Percent Cum. Mean Std.Dev.

1 1 66 56.41 56.41 1168.61 404.38
1 0 2 1.71 58.12 1010.00 452.55
0 1 41 35.04 93.16 930.44 298.59
0 0 8 6.84 100.00 880.50 307.17
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Our model includes eight focus regressors, of which six (including the constant term)
are observed and two are imputed. Excluding the subset of complete cases (66 obser-
vations), there are 22 − 1 = 3 missing-data patterns: 1) lnage observed and lntax

missing (2 observations); 2) lnage missing and lntax observed (41 observations); and
3) lnage and lntax both missing (8 observations). The grand model therefore includes
3 × 8 = 24 auxiliary regressors, but 7 of them are dropped because of perfect collinear-
ity. In particular, because the variable corner is constant for the third missing-data
pattern, the auxiliary regressors D3 and D3 corner are perfectly collinear, so the latter
is dropped.

. tab corner if `first_imp´ & M_lnage==1 & M_lntax==1

Corner
location Freq. Percent Cum.

0 8 100.00 100.00

Total 8 100.00

Six other auxiliary regressors are dropped because the first missing-data pattern includes
only two observations, so we can identify at most two of the eight associated auxiliary
parameters. After dropping from Z all collinear variables, the dimension of the model
space reduces to 217 = 131072. The summary statistics for the dependent variable
across missing-data patterns reveal that both the mean and the variance of price are
considerably higher for the subsample with complete cases.

We obtain the complete-case estimator of the focus parameters β by specifying the
cc option.

. gmi price sqft nfeatures ne custom corner if `first_imp´,
> impvar(lnage lntax) misind(M_lnage M_lntax) cc nowarn

Complete-case estimates Number of obs = 66
df_m = 7

price Coef. Std. Err. t [1 Std. Err. Bands]

sqft .4357152 .0983648 4.43 .3373504 .5340799
nfeatures .3227029 18.34047 0.02 -18.01776 18.66317

ne 7.398968 46.91899 0.16 -39.52002 54.31796
custom 181.0344 54.37951 3.33 126.6549 235.4139
corner -78.70756 49.85979 -1.58 -128.5673 -28.84777
lnage -39.2261 27.55061 -1.42 -66.77671 -11.67549
lntax 302.2674 145.0322 2.08 157.2353 447.2996
_cons 1000.288 39.59419 25.26 960.6942 1039.883

These estimates could also be obtained through the built-in Stata command regress

after restricting the estimation sample to the subset of complete data. They are also
numerically the same as the OLS estimate of β in the grand model (1). Result 1 implies
that under our assumptions, the complete-case estimator is unbiased for β. Our findings
suggest that home sale price is positively related to the square footage of living space,
the log of taxes paid, and whether the home is located in a custom building. On the
other side, there is negative association with the log of home age and whether the
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home has a corner location. The effects of the other covariates are not robust, because
the corresponding t ratios are smaller than 1 in absolute value. Also notice that the
complete-case estimator is likely to be highly inefficient because it discards about 44%
of the sample observations.

To explore the tradeoff between bias and precision, consider now the filling-in and
the simple missing-indicator approaches. The former ignores that missing values have
been imputed by restricting all auxiliary parameters to 0, while the latter restricts all
auxiliary parameters to 0 except the coefficients on the dummies for the missing-data
patterns.

. gmi price sqft nfeatures ne custom corner if `first_imp´,
> impvar(lnage lntax) misind(M_lnage M_lntax) fi nowarn

Filling-in estimates Number of obs = 117
df_m = 7

price Coef. Std. Err. t [1 Std. Err. Bands]

sqft .382786 .0729738 5.25 .3098122 .4557598
nfeatures 3.622533 13.89274 0.26 -10.27021 17.51527

ne 28.93578 37.16146 0.78 -8.225679 66.09725
custom 145.1389 46.45179 3.12 98.68716 191.5907
corner -85.8675 42.73586 -2.01 -128.6034 -43.13164
lnage -26.48807 21.62821 -1.22 -48.11628 -4.859864
lntax 262.9705 106.5927 2.47 156.3778 369.5632
_cons 984.3707 35.50699 27.72 948.8638 1019.878

. gmi price sqft nfeatures ne custom corner if `first_imp´,
> impvar(lnage lntax) misind(M_lnage M_lntax) smi nowarn

Simple missing indicator estimates Number of obs = 117
df_m = 10

price Coef. Std. Err. t [1 Std. Err. Bands]

sqft .3993985 .0718978 5.56 .3275006 .4712963
nfeatures -5.977141 14.29397 -0.42 -20.27111 8.316833

ne 49.92553 37.20047 1.34 12.72506 87.12601
custom 157.4772 47.33692 3.33 110.1403 204.8141
corner -103.4662 42.61305 -2.43 -146.0793 -60.85319
lnage -30.55087 21.47985 -1.42 -52.03073 -9.071018
lntax 204.6133 108.1598 1.89 96.45353 312.7731
_cons 1007.357 35.88174 28.07 971.4752 1043.239

. matrix list e(b_aux)

e(b_aux)[1,3]
D1 D2 D3

y1 -119.71306 -82.584248 -164.8674

. matrix list e(V_aux)

symmetric e(V_aux)[3,3]
D1 D2 D3

D1 18343.655
D2 826.58661 1662.3468
D3 527.1418 680.08892 4520.6579
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Both approaches impose arbitrary restrictions on the auxiliary parameter δ, so they
are likely to result in biased estimates of the focus parameter β. However, as suggested
by their considerably lower standard errors, these estimators are more precise than the
complete-case estimator. The most striking differences are in the estimated coefficients
of corner and lntax. To force users to treat the auxiliary parameters as nuisance
parameters, their estimates and the associated variance–covariance matrix are returned
in the vector e(b aux) and the matrix e(V aux), respectively.

The gmi command provides two alternative strategies for finding a better estimator
of β in the MSE sense: model reduction and model averaging. Although the choice
between these two strategies is left to the user, we strongly encourage choosing model
averaging to avoid the problems caused by pretesting.

Model reduction can be carried out through the built-in Stata command stepwise

or the vselect command by Lindsey and Sheather (2010). There are reasons to prefer
the latter: model reduction is based on an information criterion instead of an arbitrary
significance level, and the leaps-and-bounds algorithm is expected to select the best
model. To save space, we present only the OLS estimates of the model selected by
vselect with the best and the bic options.

. gmi price sqft nfeatures ne custom corner if `first_imp´,
> impvar(lnage lntax) misind(M_lnage M_lntax) vs best bic full nowarn

Model reduction: L&B with bic Number of obs = 117
df_m = 9

price Coef. Std. Err. t [1 Std. Err. Bands]

sqft .4911947 .0722097 6.80 .418985 .5634044
nfeatures 1.022459 12.73723 0.08 -11.71477 13.75968

ne 6.726864 34.54129 0.19 -27.81442 41.26815
custom 163.2298 43.00966 3.80 120.2202 206.2395
corner -80.96139 39.22133 -2.06 -120.1827 -41.74006
lnage -25.25726 19.84414 -1.27 -45.1014 -5.413129
lntax 257.7811 98.19124 2.63 159.5898 355.9723
_cons 983.4677 32.52224 30.24 950.9454 1015.99

D2_sqft -.2688726 .0622148 -4.32 -.3310874 -.2066578
D3_custom -400.7815 168.7942 -2.37 -569.5757 -231.9873

In this case, we specified the full option to display estimates of the focus and the
auxiliary parameters. The selected model includes two auxiliary regressors: the inter-
action between sqft and the dummy D2 for the second missing-data pattern, and the
interaction between custom and the dummy D3 for the third missing-data pattern. The
standard errors are conditional on the model selected by vselect and therefore should
be treated with caution.
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Next we focus on model averaging using BMA and WALS, respectively.

. gmi price sqft nfeatures ne custom corner if `first_imp´,
> impvar(lnage lntax) misind(M_lnage M_lntax) bma nowarn

Model space: 131072 models

Estimation
10% 20% 30% 40% 50%

.................................................. 50%

.................................................. 100%

Model averaging: BMA Number of obs = 117
df_m = 24

price Coef. Std. Err. t [1 Std. Err. Bands]

sqft .4379617 .0994773 4.40 .3384844 .5374391
nfeatures 2.712441 13.75563 0.20 -11.04319 16.46807

ne 14.97688 38.36088 0.39 -23.384 53.33776
custom 157.6969 44.93556 3.51 112.7614 202.6325
corner -77.18778 41.95601 -1.84 -119.1438 -35.23177
lnage -31.51599 21.10457 -1.49 -52.62056 -10.41142
lntax 318.0173 138.4967 2.30 179.5206 456.514
_cons 981.8827 35.19818 27.90 946.6845 1017.081

. gmi price sqft nfeatures ne custom corner if `first_imp´,
> impvar(lnage lntax) misind(M_lnage M_lntax) wals nowarn

Model averaging: WALS - Lap. prior Number of obs = 117
df_m = 24

price Coef. Std. Err. t [1 Std. Err. Bands]

sqft .420371 .0885567 4.75 .3318143 .5089278
nfeatures .5016072 16.63116 0.03 -16.12955 17.13277

ne 18.17247 43.4971 0.42 -25.32463 61.66958
custom 175.4686 51.53303 3.40 123.9356 227.0016
corner -80.34054 46.61626 -1.72 -126.9568 -33.72429
lnage -35.90108 25.46287 -1.41 -61.36395 -10.4382
lntax 298.6159 130.3276 2.29 168.2883 428.9434
_cons 994.0145 37.68866 26.37 956.3258 1031.703

Magnus, Powell, and Prüfer (2010) argue that WALS is theoretically superior to BMA

in the choice of priors for the auxiliary parameters and is practically superior because
of the substantially lower computational burden. Although the Stata command bma is
much faster than Magnus’ original Matlab command, we recognize that BMA can be very
time consuming when the covariates or missing-data patterns are moderate or large. In
such circumstances, users are encouraged to rely on WALS, at least when performing a
preliminary model-specification search. In this example, BMA estimation requires about
45 seconds on a standard desktop computer. As for the estimated coefficients, we find
that BMA and WALS estimates are similar, which suggests that differences in the priors
for the auxiliary parameters play a minor role. Similar findings are also supported by
the estimates from WALS with a Subbotin prior for the auxiliary parameters.
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. gmi price sqft nfeatures ne custom corner if `first_imp´, impvar(lnage lntax)
> misind(M_lnage M_lntax) wals q(.5) vce(bootstrap, rep(100)) nowarn
(running gmi on estimation sample)

Bootstrap replications (100)
1 2 3 4 5

.................................................. 50

.................................................. 100

Model averaging: WALS - Sub.(q=.5) prior Number of obs = 117
Replications = 100
df_m = 24

Observed Bootstrap Bootstrap
price Coef. Std. Err. t [1 Std. Err. Bands]

sqft .4183898 .0968522 4.32 .3215375 .515242
nfeatures .1203615 16.5871 0.01 -16.46674 16.70746

ne 21.76857 47.98438 0.45 -26.21581 69.75295
custom 177.8062 70.68029 2.52 107.1259 248.4865
corner -80.24304 46.45896 -1.73 -126.702 -33.78408
lnage -35.72275 32.14764 -1.11 -67.87038 -3.575108
lntax 302.3153 145.1049 2.08 157.2104 447.4202
_cons 992.4352 38.75039 25.61 953.6848 1031.186

In the above example, standard errors are estimated by the wild bootstrap with 100
replications. Bootstrapped standard errors are usually larger than traditional ones be-
cause they account for heteroskedasticity of unknown form. As we argued in section 3.3,
the wild bootstrap also provides an easy way to ensure comparability of the standard
errors across the different estimation methods.

Finally, we can use the 30 multiple imputations on lnage and lntax to account for
the sampling variability induced by the imputation of missing values. This can be done
by specifying the mimputations option.
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. gmi price sqft nfeatures ne custom corner, impvar(lnage lntax)
> misind(M_lnage M_lntax) wals q(.5) nowarn mi full

Multiple-imputation estimates Imputations = 30
Model averaging: WALS - Sub.(q=.5) prior Number of obs = 117

Average RVI = 0.1202

price Coef. Std. Err. t [1 Std. Err. Bands]

sqft .4317465 .0867584 4.98 .3449881 .5185049
nfeatures -.2094938 16.38439 -0.01 -16.59388 16.17489

ne 21.21545 42.39104 0.50 -21.17559 63.60649
custom 169.9147 50.06324 3.39 119.8515 219.978
corner -78.7322 46.13668 -1.71 -124.8689 -32.59552
lnage -42.43074 26.08771 -1.63 -68.51845 -16.34302
lntax 280.3926 127.9489 2.19 152.4437 408.3415
_cons 991.3835 37.04141 26.76 954.3421 1028.425

D1 -113.878 110.0119 -1.04 -223.8899 -3.866018
D1_sqft .3657415 .4004362 0.91 -.0346947 .7661776

D2 -54.71213 69.21678 -0.79 -123.9289 14.50465
D2_sqft -.0689371 .1178286 -0.59 -.1867657 .0488915

D2_nfeatures -3.48209 25.28178 -0.14 -28.76387 21.79969
D2_ne 17.66156 65.09508 0.27 -47.43352 82.75664

D2_custom -33.78444 80.12972 -0.42 -113.9142 46.34528
D2_corner -42.7017 74.37813 -0.57 -117.0798 31.67643
D2_lnage -3.959991 41.30198 -0.10 -45.26197 37.34199
D2_lntax -151.7439 171.2648 -0.89 -323.0086 19.52088

D3 -167.1674 275.5164 -0.61 -442.6838 108.349
D3_sqft .1767931 .8775505 0.20 -.7007574 1.054344

D3_nfeatures -25.63685 77.73594 -0.33 -103.3728 52.09909
D3_ne 145.6077 276.0254 0.53 -130.4177 421.6331

D3_custom -310.4791 394.2583 -0.79 -704.7373 83.77917
D3_lnage 35.51389 252.4899 0.14 -216.976 288.0038
D3_lntax -205.2547 1406.123 -0.15 -1611.378 1200.868

This option runs the specified gmi command on each imputed dataset to obtain a set
of alternative estimates of the model parameters and their variance–covariance matrix.
Multiple-imputation estimates are then obtained by applying the combination rules
of Rubin (1987) on the resulting set of alternative estimates (see [MI] mi estimate).
Although mi estimate has its own reporting output, we forced this built-in Stata prefix
to respect the reporting output of the gmi command to avoid misleading interpretations
of the estimation results. As we discussed in section 3.3, this is important because
p-values and confidence intervals must be treated with caution.

6 Empirical application

This application investigates the relationship between hand grip strength (GS) and a set
of sociodemographic and economic characteristics by using data on the elderly European
population. As argued by Andersen-Ranberg et al. (2009), GS is an important measure
of health because it is objectively measured, it directly affects everyday functions, it is
known to decline linearly with age, and it is a strong predictor of disability, morbidity,
frailty, and mortality. Furthermore, measuring GS is cheap and can be carried out by
trained interviewers in nonclinical studies.
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Our data are from release 2.4.0 of the first wave of SHARE, a multidisciplinary and
cross-national household panel survey that provides information on self-reported and
objective measures of health, socioeconomic status, and social and family networks
for nationally representative samples of people aged 50 and over in the participating
countries.2 The first wave, conducted in 2004–2005, covers about 28,500 individuals in
11 European countries (Austria, Belgium, Denmark, France, Germany, Greece, Italy,
the Netherlands, Spain, Sweden, and Switzerland).3

The data include two GS measurements on each hand obtained using a hand-grip
dynamometer. Respondents are excluded in case of swelling, inflammation, severe pain,
recent injury, or surgery to both hands in the last 6 months. For respondents with prob-
lems in one hand, the GS test is performed on the other hand only. The measurement
of GS on each hand is considered valid if the two assessments on the same hand were
greater than 0 kg, lower than 100 kg, and did not differ from each other by more than
20 kg. The overall GS test is considered valid if there is at least one valid measurement
on one hand.

Following Andersen-Ranberg et al. (2009), our dependent variable is the maximum
GS (maxgrip) measurement resulting from a valid test. Our set of sociodemographic and
economic covariates includes age, gender, macroregion of residence (Northern, Central,
or Southern countries), self-reported weight and height, an indicator for educational
attainment, per capita household income, and household net worth. To ensure cross-
country comparability of the information on educational attainment, we recoded the
original values by using the 1997 International Standard Classification of Education.
For similar reasons, per capita household income and household net worth have been
adjusted for the differences in purchasing power across countries.

Unlike Andersen-Ranberg et al. (2009), who use imputed values of household income
and household net worth by relying on the estimates from the filling-in approach, we
are interested in investigating the tradeoff between bias and precision when replacing
the missing values on these two variables with imputations. This is important to con-
sider because these covariates are affected by substantial item nonresponse. The item
nonresponse rates for household income and household net worth range, respectively,
between a maximum of 76% and 77% in Belgium and a minimum of 49% and 52% in
Greece and are equal to 62% and 64% on average.

The substantial amount of item nonresponse reflects three problems. First, these
variables are not asked directly to respondents but are obtained by aggregating a large
number of income and wealth components (27 and 13, respectively). Second, infor-
mation about incomes, real and financial assets, mortgage, and other debts are asked
through open-ended and retrospective questions that are sensitive and difficult to an-
swer. Third, according to SHARE fieldwork rules, a household with two spouses is
considered interviewed if at least one of them agrees to participate. If the other does
not, then household income and household net worth must be imputed because the

2. Data can be freely downloaded from the SHARE website: http://www.share-project.org.
3. For additional information on survey design, target population, country coverage, and response

rates, see Börsch-Supan et al. (2005).
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individual components are missing for the nonresponding spouse. To deal with the
potential selectivity effects generated by item nonresponse, the public-use SHARE data
include five multiple imputations of the key survey variables. As discussed at length in
Christelis (2010), these imputations are constructed by the multivariate iterative proce-
dure of van Buuren et al. (2006), which attempts to preserve the correlation structure
of the imputed data. In what follows, we account for the additional sampling variability
induced by imputation by using the combination rules proposed by Rubin (1987) on the
five multiple imputations of household income and household net worth.

Also unlike Andersen-Ranberg et al. (2009), we focus on respondents between 50
and 80 years old who do not report serious health problems. This choice is primarily
motivated by the need of compensating for cross-country differences in coverage of
the institutionalized target population. Accordingly, we select respondents who have at
most one limitation with activities in daily living, who have at most one chronic disease,
and whose self-reported health status is at least fair. After we apply this sample selection
criterion, dropping the invalid measurements of maxgrip (about 5% of the cases) and
the few missing data on weight, height, and education (about 1% of the cases), our
working sample consists of 13,724 observations. Summary statistics for the outcome
and the covariates are presented in table 1, separately by gender and macroregion.
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Table 1. Descriptive statistics for the outcome of interest and the covariate. Weight
is in kilograms, height is in centimeters, purchasing power parity-adjusted per capita
household income is in 10,000 Euros, and household net worth is 100,000 Euros.

Male Female

Region Variable Median Mean Standard Median Mean Standard
deviation deviation

North maxgrip 49.0 48.3 9.0 29.0 29.1 6.3
age 60.0 61.2 7.9 59.0 60.9 7.8
weight 81.0 82.7 11.8 66.0 67.7 10.9
height 178.0 178.3 6.5 165.0 165.2 5.9
education 1.0 0.6 0.5 1.0 0.6 0.5
income 2.3 2.7 2.0 2.2 2.6 1.7
net worth 1.4 2.9 5.6 1.2 2.4 4.7

Complete obs. 204 238
Imputed obs. 1123 1203

Center maxgrip 47.0 47.1 9.3 30.0 29.8 6.7
age 60.0 61.4 7.9 59.0 60.9 8.0
weight 80.0 81.3 11.9 67.0 68.0 12.1
height 176.0 175.6 7.0 164.0 164.0 6.3
education 1.0 0.7 0.5 1.0 0.6 0.5
income 1.8 2.5 2.5 1.8 2.6 2.7
net worth 2.2 4.1 9.1 2.0 3.8 9.9

Complete obs. 730 799
Imputed obs. 3798 4057

South maxgrip 43.0 42.3 10.3 26.0 26.3 6.6
age 60.0 61.7 8.0 58.0 60.1 7.7
weight 79.0 79.3 11.4 66.0 67.8 10.9
height 170.0 171.3 7.2 161.0 161.5 6.2
education 0.0 0.4 0.5 0.0 0.3 0.5
income 0.9 1.3 1.4 0.9 1.4 1.5
net worth 1.7 3.5 9.2 1.6 3.0 6.8

Complete obs. 48 470
Imputed obs. 1785 1758
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Given the high level of comparability of the SHARE data, we pool data from countries
in the same macroregion and estimate our linear regression model of interest separately
by gender and macroregion. We assume that the errors in the grand model are inde-
pendent and spherically distributed. The model specification in each subgroup includes
7 focus regressors, of which 5 (age, weight, height, education, and the constant term)
are observed and 2 (household income per capita and net worth) are imputed; 3 sub-
samples with incomplete data; and 21 noncollinear auxiliary regressors. The resulting
dimension of the model space is 2,097,152. After centering the focus covariates on their
median for each subgroup, we compare the estimates from five alternative approaches:
complete-case (CC), filling-in (FI), model reduction (VS), BMA, and WALS. Model reduc-
tion estimation is carried out using the vs estimation option of the gmi command with
leaps-and-bounds selection and AIC as model information criteria; WALS estimation is
carried out using a Subbotin prior with parameter q = 0.5.4

The estimated coefficients and their standard errors are presented in tables 2 and 3,
separately by gender and macroregion.5 Qualitatively, our results are consistent with
the empirical findings in Andersen-Ranberg et al. (2009). In all specifications, maxgrip
is negatively related to age and positively related to self-reported weight and height.
Women have a lower level of maxgrip than men, but they also present a considerably
flatter decline with advancing age. The positive gradient between Northern-Continental
and Southern countries persists even after focusing on the healthier segment of the
elderly population. For men, the age-related decline in maxgrip is steeper for those
living in Southern countries. For women, it is steeper for those living in Northern
and Continental countries. Education, per capita household income, and household net
worth do not seem to be robustly correlated with maxgrip. The only exceptions are
the positive correlations between maxgrip and education for men and women living in
Continental countries, between maxgrip and per capita household income for women
living in Southern countries, and between maxgrip and household net worth for men
and women living in Southern countries.

4. Estimates from the simple missing-indicator approach are omitted because they are similar to those
obtained from the filling-in approach. Estimates from WALS with a Laplace prior are omitted
because they are very similar to those obtained with a Subbotin prior.

5. Using a desktop computer with 2 quad-core Intel Xeon E5504/2 GHz processors and Stata/MP4
version 11.2, the computer time required for BMA estimation varies between a minimum of 10 hours
in the specification Male–North and a maximum of 1 day in the specification Female–Center.
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Table 2. Estimated coefficients and standard errors (in parentheses) for males by
macroregion. Estimation is based on M = 5 multiple imputations for income and
net worth. Results for the auxiliary regressors are omitted to save space. * denotes a t
ratio greater than 1 in absolute value.

Region Variable CC FI VS BMA WALS

North constant 49.758 * 49.236 * 49.429 * 49.228 * 49.485 *
(1.015) (0.414) (0.437) (0.424) (0.830)

age −0.410 * −0.446 * −0.442 * −0.444 * −0.423 *
(0.067) (0.031) (0.031) (0.032) (0.059)

weight 0.214 * 0.106 * 0.111 * 0.108 * 0.166 *
(0.057) (0.022) (0.022) (0.022) (0.049)

height 0.265 * 0.265 * 0.256 * 0.266 * 0.267 *
(0.101) (0.040) (0.040) (0.043) (0.087)

education −2.595 * −1.075 * −1.158 * −1.091 * −1.893 *
(1.161) (0.496) (0.496) (0.503) (0.956)

income 0.290 0.021 0.201 * 0.072 0.179
(0.304) (0.126) (0.145) (0.158) (0.265)

net worth 0.138 0.033 −0.002 0.029 0.087
(0.174) (0.043) (0.045) (0.046) (0.135)

Center constant 46.670 * 47.013 * 47.005 * 47.019 * 46.841 *
(0.584) (0.247) (0.247) (0.252) (0.468)

age −0.382 * −0.436 * −0.437 * −0.436 * −0.407 *
(0.041) (0.017) (0.017) (0.018) (0.031)

weight 0.082 * 0.119 * 0.119 * 0.119 * 0.096 *
(0.028) (0.012) (0.012) (0.013) (0.025)

height 0.252 * 0.209 * 0.208 * 0.209 * 0.237 *
(0.053) (0.022) (0.022) (0.022) (0.048)

education 1.694 * 0.779 * 1.112 * 0.813 * 1.277 *
(0.686) (0.291) (0.334) (0.313) (0.550)

income 0.014 0.045 0.048 0.046 0.030
(0.132) (0.059) (0.059) (0.061) (0.100)

net worth 0.063 * 0.012 0.017 * 0.013 0.038
(0.061) (0.015) (0.016) (0.016) (0.045)

South constant 42.006 * 42.670 * 42.391 * 42.553 * 42.295 *
(0.583) (0.286) (0.352) (0.329) (0.474)

age −0.560 * −0.536 * −0.587 * −0.539 * −0.552 *
(0.055) (0.028) (0.036) (0.032) (0.045)

weight 0.105 * 0.113 * 0.114 * 0.113 * 0.105 *
(0.039) (0.021) (0.021) (0.021) (0.031)

height 0.245 * 0.226 * 0.226 * 0.225 * 0.236 *
(0.068) (0.034) (0.034) (0.035) (0.054 )

education 0.646 0.193 0.395 0.184 0.409
(0.966) (0.466) (0.486) (0.489) (0.781)

income −0.266 0.270 * −0.098 0.207 −0.053
(0.331) (0.159) (0.216) (0.210) (0.291)

net worth 0.248 * 0.022 0.216 * 0.049 0.175 *
(0.098) (0.025) (0.088) (0.082) (0.074)
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Table 3. Estimated coefficients and standard errors (in parentheses) for females by
macroregion. Estimation is based on M = 5 multiple imputations for income and net
worth. Results for the auxiliary regressors are omitted to save space. * denotes a t ratio
greater than 1 in absolute value.

Region Variable CC FI VS BMA WALS

North constant 28.805 * 29.170 * 29.141 * 29.161 * 28.986 *
(0.654) (0.288) (0.287) (0.291) (0.511)

age −0.284 * −0.259 * −0.255 * −0.259 * −0.271 *
(0.051) (0.022) (0.022) (0.023) (0.040)

weight 0.070 * 0.067 * 0.077 * 0.067 * 0.068 *
(0.033) (0.016) (0.017) (0.017) (0.026)

height 0.250 * 0.250 * 0.281 * 0.251 * 0.247 *
(0.067) (0.030) (0.033) (0.039) (0.052)

education 0.147 −0.028 −0.000 −0.023 0.055
(0.781) (0.353) (0.352) (0.358) (0.611)

income −0.130 0.117 * 0.129 * 0.116 * −0.006
(0.371) (0.108) (0.108) (0.111) (0.284)

net worth 0.062 −0.003 0.005 −0.001 0.031
(0.109) (0.036) (0.043) (0.040) (0.083)

Center constant 29.449 * 29.429 * 29.291 * 29.338 * 29.446 *
(0.376) (0.156) (0.161) (0.186) (0.267)

age −0.303 * −0.262 * −0.259 * −0.261 * −0.284 *
(0.030) (0.012) (0.012) (0.013) (0.024)

weight 0.091 * 0.070 * 0.092 * 0.070 * 0.080 *
(0.020) (0.008) (0.013) (0.010) (0.016)

height 0.200 * 0.227 * 0.244 * 0.236 * 0.213 *
(0.037) (0.016) (0.017) (0.020) (0.029)

education 0.807 * 0.823 * 0.810 * 0.803 * 0.822 *
(0.476) (0.199) (0.198) (0.208) (0.340)

income 0.116 0.028 0.046 0.033 0.078
(0.124) (0.039) (0.055) (0.042) (0.094)

net worth 0.003 0.004 0.005 0.005 0.008
(0.040) (0.010) (0.010) (0.010) (0.028)

South constant 25.245 * 25.859 * 25.630 * 25.845 * 25.496 *
(0.407) (0.194) (0.234) (0.205) (0.355)

age −0.219 * −0.237 * −0.236 * −0.237 * −0.227 *
(0.039) (0.020) (0.020) (0.020) (0.031)

weight 0.046 * 0.036 * 0.036 * 0.036 * 0.042 *
(0.028) (0.014) (0.014) (0.014) (0.022)

height 0.142 * 0.181 * 0.180 * 0.180 * 0.160 *
(0.052) (0.025) (0.025) (0.027) (0.039)

education 1.264 * 0.401 * 0.399 * 0.406 * 0.909 *
(0.715) (0.342) (0.343) (0.348) (0.604)

income 0.249 0.235 * 0.223 * 0.234 * 0.227 *
(0.267) (0.102) (0.103) (0.105) (0.200)

net worth 0.069 0.047 * 0.031 * 0.047 * 0.064 *
(0.071) (0.024) (0.026) (0.025) (0.054)
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Although there is broad agreement with previous studies on the sign of the estimated
associations, their magnitude and the size of the standard errors are different. For ex-
ample, the point estimate of the coefficient on weight in the specification Male–North
ranges between a minimum of 0.106 with a standard error of 0.022 using the filling-in
approach to a maximum of 0.214 with a standard error of 0.057 using complete-case
analysis. Similar differences are observed for the estimated coefficients on education in
the specifications Male–North and Male–Center, household net worth in the specifica-
tion Male–South, weight in the specification Female–Center, and per capita household
income in the specification Female–South.

The estimates from model reduction and model averaging are somewhat in between
the estimates from the complete-case and the filling-in approaches. In particular, the
conditional estimates from model reduction are quite close to the unconditional esti-
mates from BMA. This suggests that, in this example, the effects of pretesting are not
very important. The differences in the unconditional estimates from BMA and WALS

suggest that alternative assumptions on the prior distributions for the auxiliary pa-
rameters may matter. From this viewpoint, WALS has the advantage of using priors
that ensure bounded risk and a coherent treatment of ignorance about the auxiliary
parameters.

7 Conclusions

In this article, we introduced a Stata command that implements the generalized missing-
indicator approach of Dardanoni, Modica, and Peracchi (2011) for fitting a regression
model with imputed covariates. The command enables one to go beyond the alternative
of either dropping the observations with imputed values (the complete-case approach)
or using all the observations without distinguishing between observed and imputed
values (the filling-in approach). The command essentially expands the model space by
including all the intermediate cases between the model that contains only the observed
or imputed covariates and a “grand model” that adds to them a full set of auxiliary
regressors.

In the expanded model space, the proposed command offers two alternative strategies
for obtaining a best estimate of the regression parameters of interest: model reduction
and BMA. The second strategy avoids the pretesting problem that plagues model reduc-
tion techniques and allows one to formally incorporate, through the choice of priors, the
researcher’s uncertainty about the role of the auxiliary regressors.

The proposed command also offers two different BMA implementations: standard
BMA and WALS. Relative to standard BMA, the advantages of WALS are its more intuitive
concept of uncertainty about the role of the auxiliary regressors, the bounded risk and
near optimality of its estimates, and most importantly for practitioners, its substantially
lower computational burden.
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