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Abstract 

The quality of a soil is often viewed in relation to its ability to suppress plant disease and enhance agricultural 
productivity. A soil is considered suppressive when, in spite of favourable conditions for disease incidence and 
development, a pathogen cannot become established, or establishes but produces no disease, or establishes and 
produces disease for a short time and then declines. The interplay of biotic and abiotic factors has long been known 
to assert disease suppressive capabilities or otherwise. However, the multi-functionality of soil makes the 
identification of a single property as a general indicator of soil health an uphill task. In this paper, therefore, some 
indicators of soil health important to agriculture are reviewed with emphasis on pea footrot disease suppression 
potentials. Findings show that footrot disease due to Nectria haematococca (anamorph Fusarium solani f.sp pisi) 
is a globally, economically important disease of peas, and an initial inoculum density of ≥ 100 pathogenic forms 
of N. haematococca cells would produce an appreciable level of pea footrot disease depending on the relative 
amount of phosphorus, carbon and nitrogen present in soil. It would be desirable to confirm pea footrot disease 
models obtained from pot experiments with results from field experiments. 

Keywords: Nectria haematococca (anamorph Fusarium solani f.sp pisi), peas, footrot disease, soil 
healthindicators, agriculture 

1. Introduction 

The soil is a complex and dynamic biological system, harbouring a large number of organisms that help to convert 
organic matter and associated nutrients from one form to another. In addition to harbouring organisms involved in 
the conversion and cycling of organic matter and nutrients, it also serves as an environmental filter, removing 
undesirable solid and gaseous constituents from air and water (Parr et al., 1992). The extent to which a soil 
immobilizes or chemically detoxifies toxic substances, reflects the degree of soil health in the sense that plants, 
humans and/or other biological components of the system are protected from harm (Singer & Ewing, 2000). 

Having a consensus definition for soil health has been difficult to arrive at, partly because of the many and varied 
functions of the soil in sustaining the terrestrial ecosystem (Nielsen & Winding, 2002).  Definitions of air and 
water quality standards have always been based on tolerable ranges of concentration of materials, beyond which 
they become detrimental to human health. To that extent, definition of air and water quality has widely been 
accepted among the rank and file of researchers for a long time, (Sojka & Upchurch, 1999). This is not the case 
with soil health, variously defined in by various workers over the last decade (Nielsen & Winding, 2002). 

Historically, the quality of a soil is measured in relation to its agricultural productivity or fertility (Singer & Ewing, 
2000). However, in the 1990s, some argued that soil quality, in addition to plant productivity, also encompassed 
interactions with the surrounding environment, including the implications on human and animal health (Doran et 
al., 1994). Soil health from then was viewed as the net result of a dynamic conservation and degradation processes, 
which influences plant health, environmental health, food safety and quality (Halvorson et al., 1997; Parr et al., 
1992). 

Doran et al. (1996) defines soil health as the continued capacity of soil to function as a living system, to sustain 
biological productivity, promote the quality of air and water environments, and maintain plant, animal and human 
health. In spite of the various definitions and views by different workers, soil health has been defined, summarily, 
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by all to essentially mean the capacity of soil to function as a vital living system to sustain biological productivity, 
promote environmental quality and maintain plant, animal and human health (Doran & Zeiss, 2000; Halvorson et 
al., 1997; Karlen et al., 1997; Larson & Pierce, 1991; Parr et al., 1992). The term “soil health” shall therefore be 
viewed from the standpoint of plant health in this discourse, with particular reference to pea cultivation.  

Agricultural intensification is one of the major impacts on the soil environment. The advent of agriculture some 
10,000 years ago has transformed the earth’s landscape to yield abundance of food and fibre to meet the needs of its 
ever teeming human population (Doran et al., 1996). In Denmark, for example, agriculture is reported to account 
for two-third of the land use (OECD, 1999). Agriculture, hitherto, had relied almost solely on the internal natural 
resources available to it from the sun, air, rainfall, plants, animals and soil; and humans depended on natural 
processes and ecological associations for its productivity (Rodale, 1995). But about 100 years ago, agriculture 
shifted from a sole reliance on internal natural resources to external inputs such as pesticides and fertilizers, and of 
fossil fuels, which had been produced by green plants many millennia ago. These pose huge threats to the natural 
processes that sustain the global ecosphere and life on earth (Pearce & Warford, 1993). Adverse impacts of 
agriculture include loss of biodiversity, nitrogen effluents into surface water, eutrophication of surface water, 
contamination of groundwater from pesticides and nitrate, and ammonia volatization due to over-fertilization with 
manure (OECD, 1999).  

Deterioration of soil health is of concern not only for plants and animals but for humans also because air, 
groundwater and surface water consumed by humans can be adversely affected by mismanaged and contaminated 
soil (Oliver, 1997). As such, deteriorating soil health and the benefits of soil management have become a political 
concern (Nielsen & Winding, 2002). This explains why the main thrust of the European Commission in the 
beginning of 2001, as contained in the draft report of the sixth Environmental Action Programme “Environment 
2010: Our future, Our Choice”, was the need for a systematic approach to protect soil ecosystems within Europe 
(European Environmental Agency, 2001). Furthermore, a proposal was made to form a European monitoring and 
assessment framework on soil, whose task envisaged the provision of policy-makers with relevant information on 
soil and the harnessing of the wealth of soil information derived from current national soil monitoring programmes 
(European Environmental Agency, 2001). Emphasis was placed on comparing biological properties with physical 
or chemical properties (European Environmental Agency, 2001).  

In the eyes of an agriculturist and plant pathologist, the quality of a soil would be measured in relation to its ability 
to suppress plant disease and enhance agricultural productivity.  A soil is considered suppressive when, in spite of 
favourable conditions for disease incidence and development, a pathogen cannot become established, or 
establishes but produces no disease, or establishes and produces disease for a short time and then declines (Cook & 
Baker, 1983; Schneider, 1982). It has long been known that the physical, chemical and biological components of 
soil interplay to assert disease suppressiveness or conduciveness on any given soil. The interplay of these 
components is also responsible for the health and fertility of agricultural soils, linked to soil disease 
suppressiveness.  

Due to the multi-functionality of soil, however, it is difficult to identify one single property as a general indicator of 
soil health (Doran et al., 1996). Different workers have proposed various indices and endpoints as indicators of soil 
health (Doran & Parkin, 1994; Larson & Pierce, 1994; Nielsen & Winding, 2002; Smith et al., 2000). The 
respective positions notwithstanding, indicators of soil health, as it relates to plant disease suppression and/or soil 
fertility, could be categorised into two broad groups, viz: biotic and abiotic factors. Some of those endpoints, 
important to agriculture, are herein reviewed, with emphasis on pea footrot disease suppression potentials.  

2. Biotic Indicators of Soil Health 

Biotic indicators or endpoints include all aspects of association between plants and other organisms, particularly 
microorganisms in soils. During the last two decades, tremendous efforts have been made to study the role of 
microorganisms in soil processes, and their interactions with the abiotic factors of soil function (Brussard, 1998; 
Brussard et al., 1997; Giller, 2001; Kahindi et al., 1997; Lavelle, 1997; Lavelle et al., 1993, 1994, 2006). These 
studies have provided us with insight into the regulation of microbial activity, and their participation in soil’s 
physical, chemical and biological processes, and how they influence the dynamics of decomposition and soil 
organic matter and plant growth (Brussard, 1998; Lavelle et al., 2006). The composition of microbial communities 
in soil have been studied for a long time (Girvan et al., 2003; Nannipieri et al., 2003), and are known to play key 
roles in the fertility/health status of soils, including agricultural soils. The beneficial roles of microorganisms in 
soil have been exploited in agricultural practice for decades (van Veen et al., 1997). The reasons for the intentional 
use of microorganisms in agricultural practice are varied. Some of these include  

(i) supply of nutrients to crops  
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(ii) enhancement of plant growth  

(iii) improvement of soil structure  

(iv) bioremediation of polluted soils through mineralization of organic pollutants  

(v) bioaccumulation or microbial leaching of inorganics and  

(vi.) suppression of soil-borne plant diseases (Davison, 1988; Ehrlich & Brierley, 1990; Kennedy & Smith, 1995; 
Middeldorp et al., 1990; van Elsas et al., 2002; van Veen et al., 1997).  

Biotic indicators of soil quality commonly measured include soil organic matter, respiration, microbial biomass 
(total bacteria and fungi,) and mineralizable nitrogen (Stevenson, 1994). Although soil organic mass is generally 
considered to be a biological indicator, it is herein treated under chemical indicators, because plant and animals 
living in soil usually account for <5% of the soil organic carbon (Stevenson, 1994). For purposes of this review, 
biological indicators would include plant health and productivity, pathogen density, soil microbial richness and 
diversity, and microbial biomass. 

3. Plant Health and Productivity 

The relationship between soil quality and plant health has long been recognised, and has occupied a position of 
immense economic importance, partly because of the growing dislike towards the use of chemicals, coupled with 
the growing global interest to maintain biological diversity. Soil disinfectants such as ethylene dibromide, and 1, 2 
dibromochloropropane are now known to be environmentally hazardous and their use in agricultural soils banned  
(United Nations Environmental Program, 1992). The use of pesticides has also raised considerable concern among 
agriculturists, environmentalists and policy makers, as these substances often lead, with time, to the occurrence 
and build-up of resistant pests and pathogens strains (Slabaugh, 1990). This has led to an increasing demand for the 
development and improvement of alternative methods of sustaining agricultural productivity (Chellemi & Porter, 
2001) and assessing soil quality in relation to plant health. Soil quality and plant health are today known to be 
influenced by agricultural practices, such as cropping systems, inorganic/organic amendments, tilling etc 
(Chellemi & Porter, 2001; Cook, 2000). 

Various biological, chemical and physical parameters have been proposed to assess soil quality (Doran and Parkin, 
1994; Larson and Pierce, 1994). All factors that influence soil quality are known to also influence plant health. 
This is because they limit optimisation and quality of yield (Cook, 2000). From the on-going, a soil could be said to 
be healthy only with reference to specific plant(s) or crops since different crops would require different and 
varying proportions of biological, chemical and physical factors for optimum productivity. 

4. Pathogen (Inoculum) Density 

This, no doubt, would be an indispensable indicator of soil health because plant disease is an outcome of the 
interaction between a host plant, pathogen, and environmental factors (Agrios, 1997). The inoculum load within or 
near fields of host plants is critical in plant disease epidemics (Cullen et al., 2001, 2002; Goud & Termorshuizen, 
2003). Generally, increasing the amount of inoculum load enhances disease severity and reduces the time required 
for maximal disease development (Bhatti & Kraft, 1992; Etebu & Osborn, 2010, 2011b; Navas-Cortés et al., 2000; 
Rush & Kraft 1986; Sugha et al., 1994). Whilst the inoculum potential of a soil, defined as the pathogenic energy 
present to cause infection (Bouhot, 1979), is dependent on many factors, it is common practice to allow fallow 
periods between susceptible crops, to avoid build-up of high inoculum load in fields, and in so doing, also avoid 
disease outbreaks in such fields. To this effect, a 6-year rotation period is reportedly practised with pea cultivation 
in the Netherlands (Oyarzun et al., 1993) with a view to avoiding build-up of pea root rot pathogens. Among the 
fungi responsible for root rot disease complex in peas, Nectria haematococca (anamorph F. solani f.sp. pisi) is 
noted to be the most predominant fungus (Hwang & Chang, 1989; Sanssené & Didelot, 1995).  

N. haematococca is pathogenic on all commercial processing pea cultivar (Hagedorn, 1991; Grünwald et al., 
2003) and responsible for yield losses of 35-57% (Kraft, 1984; Kraft, 2001; Oyarzun, 1993). There is currently 
no effective management practice capable of controlling the disease, excepting the avoidance of fields with high 
disease potential, as neither genetic resistance nor chemical control is effective in its management (Oyarzun, 
1993).  

Although N. haematococca has long been known as the causative agent of pea footrot disease, the use of 
Peptone-pentachloronitrobenzene agar (PPA) aimed at selectively isolating and quantifying N. haematococca in 
soil (Biddle pers. Comm., 2005; Oyarzun et al., 1994) has been unsuitable (Oyarzun et al., 1997), essentially 
because the medium is not exclusively selective for N. haematococca, neither does it discriminate between 
pathogenic and non- pathogenic forms (Etebu & Osborn, 2009, 2010, 2011a; Funnell & VanEtten, 2002; Kistler 
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& VanEtten, 1988; Oyarzun, 1993; Oyarzun et al., 1994). As a result, different workers called for the 
development of molecular quantification assays as a prerequisite for determining the soil inoculum threshold 
levels necessary for disease development in a host-pathogen relationship (Cullen et al., 2001, 2002). Goud and 
Termorshuizen (2003) attempted to quantify N. haematococca in soil, using molecular approaches targeting ITS 
regions. Unfortunately, like culture-dependent assays, molecular assays targeting the ITS region was equally 
unsuitable because it was also not able to discriminate between pathogenic and non-pathogenic forms (Suga et 
al., 2000).  

The ability of Nectria haematococca to cause footrot disease in peas is linked to a cluster of six pea 
pathogenicity genes (PDA, PEP1, PEP2, PEP3, PEP4 and PEP5) which pathogenic strains of the fungus are 
known to possess (Etebu & Osborn, 2009, 2011a; George et al., 1998; Funnell et al., 2002; George & VanEtten, 
2001; Funnell & VanEtten, 2002; Han et al., 2001; Temporini & VanEtten, 2002). Following the discovery of 
these genes, several PCR-based molecular assays have been developed to selectively detect and quantify pea 
pathogenic forms of N. haematococca in agricultural soils without recourse to culture (Etebu & Osborn, 2009, 
2010, 2011b). These assays showed that gene copy numbers of each of three genes (PDA, PEP3 and PEP5) 
quantified from soil-DNA were comparable to the number of pea pathogenic forms of N. haematococca in soil. 
In a related review article, Etebu and Osborn (2011d) opine that the PEP3 gene would be the most ideal indicator 
gene to target in the molecular quantification of pea pathogenic forms of N. haematococca in soil, because the 
PEP3 homologue is the only gene that is present exclusively in highly virulent pea pathogenic isolates 
(Temporini & VanEtten, 2002; Han et al., 2001). 

5. Microbial Diversity 

The significance of biodiversity in the field of ecology has been appreciated as early as the 1950s (Hutchinson, 
1959). Nielsen and Winding (2002) define Biodiversity as the variability among living organisms, including 
diversity within species, between species, and of ecosystems. Following the early works on biodiversity which 
focused on plant and animal communities, microbiologists from the 1960s began to examine the impact of 
biodiversity on the function and structure of microbial communities (Hariston et al., 1968; Swift, 1974). From then, 
the subject of microbial diversity has continuously been accorded due recognition and significance in ecological 
studies. For example, the ‘Diversities International Research Program’ was created in 1991 to promote scientific 
investigations into the origins and conservation of biodiversity and the impact of biodiversity on ecological 
functions. Also, the Biodiversity Treaty that was issued from the United Nations Conference on Environment and 
Development in 1992 in Rio de Janeiro, Brazil, attests to the importance of microbial diversity (Colwell, 1996). 

The field of microbial biodiversity has grown significantly since the Diversities International Research Program 
and has resulted in a large body of scientific literature. There has been considerable development of techniques for 
characterizing diversity, in particular at the molecular level, for both culturable and non-culturable microorganisms 
(Rondon et al., 2000; Theron & Cloete, 2000). In spite of the numerous contributions made so far in the study of 
microbial diversity, the general consensus is that the microbial world is much more diverse than we can appreciate 
at the present. Hence our understanding of the significance of biodiversity for ecological processes in the microbial 
world or of the ways, in which we can manipulate or manage this diversity, is largely still unknown (Bull & Stach, 
2004; Rosselló-Mora and Kämper, 2004; Tilman et al., 1997; Yachi & Loreau, 1999). Morris et al. (2002) have 
largely attributed this failure or setback to problems associated with experimental designs and testing of hypothesis 
in ecological research. This notwithstanding, researchers have generally defined biological diversity at three levels 
of complexity: 

(i) Genetic (intraspecies diversity),  

(ii) Species (numbers of species), and  

(iii) ecological (community diversity) (Harper & Hawksworth 1995; Scholes et al., 2008). 

Species richness/abundance is considered to be the fundamental measures of biodiversity (Magurran, 1988; Purvis 
& Hector, 2000). Agricultural soil with diverse species of microbial community has been acknowledged to be 
resilient to plant disease (Peterson et al., 1998; Tilman & Downing, 1994, Tilman et al., 1996; Walker et al., 1999). 

The term ‘resilience’ was first introduced into ecological parlance in 1973 by C. S. Holling (1973) to elucidate the 
non-linear dynamics observed in ecosystems. Some define ecological resilience as the amount of disturbance that 
an ecosystem could withstand without altering self-organized processes and structures, whilst others view it as the 
time an ecosystem takes to return to a stable or equilibrium state following an ecological disturbance (Ives, 1995; 
Neubert & Caswell, 1997; Tilman & Downing, 1994). Proponents of this latter definition measure resilience by 
how far (in terms of time) a system has deviated from that equilibrium and how long or how quickly it returns. 
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Those opposed to this school of thought are of the opinion that this return time is better described as a measure of 
stability rather than be viewed as a measure of resilience (Holling, 1973; Ludwig et al., 1996). 

Gunderson (2000) in his excellent review describes another type of resilience whereby attention was drawn to 
some disturbances that could cause an irreversible shift in the structure and processes of certain ecosystems. For 
such, instabilities can result in a shift of the system into another stability domain different from the previous one 
prior to the disturbance (Holling, 1973; Ludwig et al., 1996). This concept recognises the presence of multiple 
stability domains and the tolerance of the system to disturbances that facilitate transitions among stable states.  

The relationship between biological diversity and resilience has been described by several authors in ecological 
cycles (Tilman & Downing, 1994, Tilman et al., 1996). It has been shown that biological diversity enhances the 
efficiency and stability of some functions of the ecosystem (Tilman & Downing 1994; Tilman et al., 1996). The 
role of biodiversity in the stability of functions within an ecosystem is related to the diversity of functional groups 
in it, and the species diversity within the groups (Norberg et al., 2001; Walker, 1992). Walker (1992), using a very 
simple and illustrative analogy, categorised functional species groups in an ecosystem into two-Drivers and 
Passengers. According to him, “drivers” are the pillars that determine the course of an ecosystem, while the 
“passengers” are less important. However, as conditions change, species functional positions also change as they 
shift roles. Some previously playing a passenger role in Walker’s analogy become drivers. Thus, according to him, 
ecological resilience is dependent both on the drivers, and on passengers who are potential drivers. In this way, 
species are said to combine to form an overlapping set of synergistic influences that help to spread risks and 
benefits amongst them (Peterson et al., 1998), and maintains the resilience of ecosystem structure and function 
(Walker et al., 1999) 

Thus, in a resilient agricultural soil, one would expect a microbial community of diverse species of 
microorganisms with none enjoying an exclusive dominance status, in terms of abundance. Expectedly, such soils 
would be both resilient and suppressive to plant diseases. A recent study by Etebu and Osborn (2011c) showed that 
fungal richness is negatively related to pea pathogen (N. haematococca) density whilst being positively correlated 
to pea shoot length. This confirms the widely accepted view of agricultural soils endowed with numerous fungal 
species to better enhance the growth and productivity of food crops. 

6. Microbial Biomass 

Soil microbial biomass represents the fraction of the soil responsible for the energy and nutrient cycling and the 
regulation of organic matter transformation (Gregorich et al., 1994; Turco et al., 1994). Microbial biomass has 
been reported to be positively correlated with decomposition rate and N-mineralization (Carter et al., 1999; 
Jenkinson, 1988) and grain yield in soils where organic (as opposed to conventional farming) is practised (Singh, 
1995). Carter et al. (1999), recommend soil microbial biomass as indicators of soil organic carbon, because 
increased microbial biomass is suggestive of increased available soil nutrients. 

7. Abiotic Indicators of Soil Health 

Many studies have shown that some soils have a capacity to suppress disease incidence or severity on susceptible 
host plants, in spite of the presence of a pathogen and climatic conditions favourable for disease onset and 
development (Baker & Cook, 1974; Schippers, 1992; Schneider, 1982; Westphal & Becker, 2001), and such soils 
are adjudged healthy (Abawi & Widmer, 2000; Mazzola, 1999; Van Bruggen & Semenov, 2000). The ability of 
suppressive soils to control pathogenic activity is dependent on inherent biotic and abiotic soil properties 
(Alabouvette et al., 1982; Garbeva et al., 2004). Abiotic factors with such modulating influence are both 
chemical and physical. Some soil chemical factors that contribute to pea plant health and productivity include 
soil organic matter (SOM), Salinity, pH, Potassium, Phosphorus etc. Physical factors, on the other hand, would 
include temperature, water holding capacity (Etebu, 2008; Etebu & Osborn, 2011c). 

8. Soil Organic Matter (SOM) 

Stevenson (1994) describes Soil Organic Matter (SOM) to mean the totality of all organic materials in soils, 
including litter, light fraction, microbial biomass, water-soluble organics, and stabilized organic matter (humus). 
Hence, according to Stevenson, SOM encompasses all plant and animals living in soil (biomass, usually accounts 
for <5% of the soil organic carbon), and those that are dead, as well as their products at various stages of 
decomposition, up to the humic states. As a result of this elaborate description for SOM, Smith et al. (2000) assert 
that soil organic matter is an indispensable environmental indicator, while admitting its limitations. 

The SOM potential of a soil is differentially influenced by a number of factors, such as soil texture (Smith et al., 
2000). For example, whereas, temperature is inversely related to SOM (Stevenson, 1986), precipitation increases 
SOM in soils (Stevenson, 1994). Management practices, such as tillage, are reported to lead to loss of SOM 
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(Paustian et al., 1997). SOM, however, plays very significant roles in soil. It strengthens soil aggregate, increases 
water retention, buffers soil pH, chelates metals, interacts with xenobiotics, and retains cations and anions in soil 
systems. In so doing, SOM largely determines the physical, chemical and biological qualities of a soil (Stevenson, 
1986, 1994) 

Chemically, SOM includes hydrogen, carbon, oxygen, nitrogen, sulphur and phosphorus (Jenkinson, 1988). The 
organic carbon-to-organic nitrogen ratio (C/N), expressed as a ratio by weight, is reportedly the most studied 
indicator of SOM (Jenkinson, 1988). It has been found to be relatively constant for different soils under a wide 
range of management practices (Jenkinson, 1971). Less commonly used are concentrations of sulphur and 
phosphorus. 

Organic carbon has been reported as a potential predictor of the ability of soils to accumulate NH3 (Tenuta & 
Lazarovits, 2004), probably due to mineralization. Recent works aimed at studying various factors responsible 
for pea footrot disease also corroborate these earlier findings (Etebu & Osborn, 2010, 2011c). Whilst organic 
carbon was observed to be positively correlated to total ammonium-nitrogen (NH4-N) (P≤0.05), it showed a 
significant (P≤0.05) inverse correlation to pea footrot disease (Etebu & Osborn, 2011c). Although the potential 
modulating role of soil organic carbon in pea footrot disease incidence and severity is not fully understood, 
Etebu and Osborn (2011c) opine that carbon in soil existing as sugars and carbohydrates may, depending on the 
relative amount of total ammonium-nitrogen, suppress the expression of the PDA gene needed to initiate footrot 
disease in peas. Their assertion stems from the fact that the expression of the PDA gene is suppressed in culture 
by glucose and amino acids (Khan & Straney, 1999; Straney & VanEtten, 1994). 

9. Salinity 

This influences decomposition of plant residues, and by extension, organic matter, indirectly and directly. It 
indirectly influences organic matter formation through the alteration of pH, soil structure, texture, aeration etc 
(Nelson et al., 1996; Olsen et al., 1996). On the other hand, it directly dictates organic matter formation by 
influencing the osmotic potential of microbial activity (Singh et al., 1969). 

In a relatively recent study, Etebu (2008) showed that differences in sodium concentrations between fields with 
prior footrot histories in the UK were not significant, and sodium was also not correlated to pea footrot disease. 
It, however, correlated to pH, C: N ratio and phosphate showing that salinity may indirectly influence soil health 
with respect to pea footrot disease. 

10. pH 

Soil pH is one of the most important factors of soil chemical abiotic factors critical to its health. pH influences 
microbial activity and diversity (Alexander, 1980; Fierer & Jackson, 2006). The influence on microbial activity 
and community would in turn significantly affect rates of decomposition of plant residues, thereby affecting 
organic matter content in agricultural soils, crucial to soil health (Paul & Clark, 1989). Microbial communities and 
activity have been observed to change with changes in soil pH. For example, microbial population has been 
observed to shift from bacteria, to actinomycetes, to fungi, as soil pH declines (Alexander, 1980). 

Etebu (2008) showed that pH measured in fields with pea footrot disease history in the UK were positively 
correlated to pea footrot disease and inversely related to growth and yield of peas. Findings by earlier workers on 
the relationship between pH and various fungal plant diseases were inconsistent. Whilst some workers have 
reported a lack of relationship between pH and various plant diseases (Mallett & Maynard, 1998; Pérez-Piqueres et 
al., 2006), others observed significant (P≤0.05) relationships between pH and disease, which were either negative 
or positive (Höper et al., 1995; Lacey & Wilson, 2001). 

Whilst peas require a pH of between 5 and 8 for good growth (Unilever, 2003), the role of pH in soil 
suppressiveness (less disease) seems to depend on the host plant and pathogen involved. Oyarzun et al. (1998), 
while studying factors associated with soil receptivity with respect to three root rot pathogens (Thielaviopsis 
basicola, Aphanomyces euteiches and Fusarium solani f. sp. pisi) of peas, observed that pH was positively related 
to black root rot caused by T. Basicola, but no relationship was observed between pH and footrot disease caused by 
F.  solani f. sp. pisi or soft root rot caused by A. euteiches.  Soil pH depends on the chemical factors introduced 
into soil, partly due to agricultural management practice and the biotic components inherent in soil. As a result, T. 
basicola proved more pathogenic on peas in soils with a relatively high content of elements indicative of alkalinity 
such as total calcium and nitrate, while its pathogenicity was less severe on peas in soils with increasing carbon and 
high magnesium and phosphorus content (Oyarzun et al., 1998). 

Rimé et al. (2003), however, observed a relationship similar to the findings of Etebu and Osborn (2011c), between 
pH and plant disease due to soil ectoparasitic nematodes. Similarly, a positive relationship between pH and disease 



www.ccsenet.org/sar Sustainable Agriculture Research Vol. 1, No. 2; 2012 

241 
 

(i.e. the more acidic the soil, the less severe the disease) was reported by Lacey and Wilson (2001) with respect to 
potato scab caused by Streptomyces scabies, and by Duffy et al. (1997) with respect to take-all disease of wheat 
caused by Gaeumannomyces graminis. However, Höper et al. (1995) observed a dissimilar (an inverse) relation 
between pH and Fusarium wilt disease (i.e. the more acidic the soil, the more severe the disease). They observed a 
positive correlation between pH and soil suppressiveness with respect to Fusarium wilt. Results from recent 
findings seem to suggest that acidic soils would generally lead to more suppressive soils (less disease) with respect 
to footrot disease due to F. solani f. sp. pisi (Etebu, 2008; Etebu & Osborn, 2011c) 

11. Phosphate 

Apart from pH, total phosphate concentration has also been shown to be significantly (P≤0.05) correlated to pea 
footrot disease, growth, and yield (Oyarzun et al., 1998; Etebu, 2008; Etebu & Osborn, 2011c). Like pH, it 
correlated positively to pea footrot disease, but inversely related to root length, shoot length, plant dry weight 
and pod dry weight (Etebu, 2008; Etebu & Osborn, 2011c). Duffy et al. (1997) in their study of the take-all 
disease of wheat caused by Gaeumannomyces graminis, also observed a significant positive relationship between 
phosphorus and disease. Similarly, Oyarzun et al. (1998) also found a positive relationship between soluble 
phosphorus and footrot diseases in peas due to F. solani f. sp. pisi but not with soft rot diseases due to A. 
euteiches. The lack of a relationship between phosphorus and pea soft rot diseases due to A. euteiches, again 
suggests that the role of abiotic factors on soil suppressiveness or conduciveness would depend on the pathogen 
in question. A number of other workers also did not observe significant (P≤0.05) relationships between 
phosphorus and various diseases. Some of these include Armillaria root disease of forest pines (Mallett & 
Maynard, 1998); Potato scab disease of potatoes (Lacey & Wilson, 2001), and black root rot of tobacco (Ramette 
et al., 2003). 

Although phosphate inputs have been reported to have no effect on pea yields (McKenzie et al., 2001), the 
significant (P≤0.05) positive correlation observed between phosphate and pea footrot disease on one hand, and 
its significant (P≤0.05) negative correlation to pea growth and yield parameters on the other (Etebu and Osborn, 
2011c), coupled with its significant (P≤0.05) positive correlation to two (PDA and PEP5) pea pathogenicity 
genes as reported by Etebu (2008), makes it a potential indicator in assessing the likelihood of pea footrot  
diseases in agricultural fields prior to cultivation. Additionally, phosphorus, alongside carbon and nitrogen, was 
identified in a pea footrot disease predictive model [DI = 1.97 + (3.48*Phosphate) + (-0.66 * C/N), where DI = 
Disease index] recently reported by Etebu and Osborn (2011c). A combination of these three factors was 
observed to account for 42% of the variability in pea footrot disease in the said predictive model (Etebu and 
Osborn, 2011c).  

12. Potassium 

Studies have shown that potassium is generally not a major factor in pea yields (Mckenzie et al., 2001). However, 
recent findings show that potassium seems to influence footrot disease (Etebu & Osborn, 2011c) and negatively 
affect the growth and yield of peas (Etebu, 2008). Furthermore, although, potassium has not been shown nor 
reported to have a deleterious effect on peas, it has been shown to have a positive correlation with pea footrot 
disease pathogen density in soil. This obvious relationship makes potassium a candidate for further studies as an 
agricultural soil health indicator, potentially capable of influencing the outcome of pea-N. haematococca 
interaction in soil. 

13. Nitrogen 

Very few works have reported the relationship between nitrogen and pea footrot disease. However, it has been 
shown that nitrogen is significantly (P≤0.05) positively correlated to pea footrot disease (Oyarzun et al., 1998, 
Etebu & Osborn, 2011c). Although nitrogen was shown to be positively related to pea footrot disease, Etebu 
(2008) observed that it was not significantly related to pea growth and yield parameters. The effect of soil factors 
on plant diseases is dictated by their impact on the pathogen, the host plant, or the interaction between plant and 
pathogen (Alabouvette & Steinberg, 2006). In particular, plant and microbial growth are both limited by nitrogen 
availability in many ecosystems (Kaye & Hart, 1997). Although in the majority of agricultural management 
practices, nitrogenous fertilizers are often applied to the soil, peas are relatively unresponsive to fertilizers, 
particularly nitrogen, except when nodulation is poor, or fails completely (Muehlbauer et al., 1983). Peas, in 
association with Rhizobium, are capable of fixing atmospheric nitrogen which meets their requirement for high 
yield (Crozat et al., 1994). This capacity to fix nitrogen probably makes it unresponsive to fertilizer application, 
particularly nitrogen. As a result, excessive nitrogen in soil, not utilized by pea plants, may lead to an increase of 
footrot disease as observed by Etebu (2008). Total oxidised nitrogen (TON) not utilized by the plant probably 
enhances pea footrot disease due to any or all of the following reasons. (i.) Nitrogen, in its nitrate form, is 
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indicative of alkalinity (Oyarzun et al., 1998), and as such, would lead to an increase in soil pH which has been 
demonstrated to show a significant positive correlation with plant disease (Etebu, 2008; Etebu & Osborn, 2011c; 
Oyarzun et al., 1998; Workneh et al., 1993). (ii.) Since peas are capable of meeting their nitrogen requirements 
through atmospheric nitrogen fixation, excess TON not utilized by pea plants in a soil infested with pathogenic F. 
solani f. sp. pisi may become available to the pathogen and other microbes for growth and reproduction, thereby 
increasing the chances of inoculum proliferation in that soil. Increase in TON has been shown to reflect an 
increase in PEP3 gene (Etebu & Osborn, 2011c). The PEP3 gene has been reported to be a reliable measure of 
pathogenic forms of Nectria haematococca (causal agent for pea footrot disease) in agricultural soils (Etebu & 
Osborn, 2010). The fact that competition for nitrogen by biocontrol agents in soil suppresses growth of 
soil-borne plant pathogens (Scher et al., 1984), coupled with the positive relationship between TON and PEP3 
gene, may further support the assumption that TON, not utilized by pea plant, may have initiated an increase in 
fungal pathogen numbers. Additionally, inoculating pea fields with Rhizobium species does not suppress root rot 
disease (Kraft, 2001) and serves no benefit to the pea plant, except in areas and fields where pea has not been 
planted or where residual nitrogen is low (Kraft, 2001).  

Etebu (2008) has further shown that total ammonium-nitrogen (NH4-N) has no significant (P=0.05) relationship 
with pea footrot disease, growth or yield. The form of nitrogen (NO3 or NH4) has been noted as an important 
factor when it comes to its role in disease suppression in soil (Janvier et al., 2007). Organic carbon has been 
reported as a potential predictor of the ability of soils to accumulate NH3 (Tenuta & Lazarovits, 2004), probably 
due to mineralization. The role of nitrogen in the conferment of soils with the capability to suppress disease 
seems to depend on the relative amount of carbon present in the same soil. C/N ratio is inversely related to pea 
footrot disease (Etebu 2008; Etebu & Osborn, 2011c). An increase in the amount of nitrogen in a soil with no 
corresponding increase in organic carbon resulted in a low C/N ratio value, which in turn resulted in increased 
pea footrot disease (Etebu & Osborn, 2011c). Various workers have shown that a high supply of nitrogen 
generally leads to severe disease conditions in plants (Agrios, 1997; Graham, 1983; Teng, 1994; Wild & Jones, 
1988). Oyarzun (1993) showed that foot/root rot disease reduced pea yield by over 50% even when more than 
200kg N per ha was applied. High amounts of nitrogen in a plant would remove carbon from metabolic pathways 
that lead to the synthesis of defence substances, such as phytoalexins, alkaloids and phenolics (Horsfall and 
Cowling, 1980). A high amount of nitrogen with no corresponding amount of carbon in soil would therefore 
render pea plants vulnerable to footrot disease.  

14. Water holding Capacity 

The concept of water holding capacity is defined as the amount of water a soil holds between its condition at field 
capacity and its permanent wilting point (Veihmeyer & Hendrickson, 1950). Soil texture and structure, the latter 
playing a more visible role, are two determinants of soil moisture or water holding capacity. Water holding 
capacity considerably influences the growth and activity of soil microorganisms responsible for the degradation of 
plant residues and nutrient cycling in agricultural soils (Schomberg et al., 1994; Sommers et al., 1981; Stanford & 
Epstein, 1974). Thomsen (1993) observed an increase in microbial biomass under moist soil conditions compared 
to wet conditions, apparently because of a limitation of oxygen under the latter condition. Pal and Broadbent (1975) 
observed 60% water holding capacity as being optimal for decomposition of crop residue. Decomposition is 
adversely affected by dry or wet soil conditions, obviously due to limitation of soil moisture or oxygen availability, 
both of which are needed for microbial activity (Kumar & Goh, 2000). Etebu (2008) showed that water holding 
capacity was neither correlated to pea footrot disease nor inoculum density of N. haematococca in agricultural 
fields with pea footrot disease histories. It was, however, inversely correlated to carbon/nitrogen ratio which in 
itself was also inversely correlated to pea footrot disease.  

15. Conclusion 

The numerous conflicting reports on the relationships between soil factors and plant diseases in literature 
substantiate the complex nature of the interrelationship that plays out between a plant, pathogen, and the 
surrounding environment. They also show that the importance and role of soil physicochemical factors towards 
plant disease suppressiveness is yet to be fully understood. 

Although works incorporating soil parameters in a predictive model for soil borne disease are scarce, a potential 
pea footrot disease predictive model [DI = 1.97 + (3.48*Phosphate) + (-0.66 * C/N)] accounts for 42% of the 
variability of pea footrot disease. An initial inoculum density of ≥ 100 pathogenic form of N. haematococca cells 
in soil is capable of causing an appreciable level of pea footrot disease. This, however, depends on the relative 
amount of phosphorus, carbon and nitrogen present in soil, amongst other factors yet to be substantiated. 

The pea footrot disease predictive model identified by Etebu and Osborn (2011c) was based on findings from pot 
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experiments; confirmation of these results from field experiments is therefore desirable. 
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