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ECONOMICS OF WILD OATS CONTROL:
AN APPLICATION OF A STOCHASTIC DYNAMIC
PROGRAMMING MODEL

Abstract

Current weed control decisions influence future profits
through their effects on the seed bank. Thus all future benefits
and costs need to be considered for deriving an optimal level of
weed control. In this paper a stochastic dynamic programming
model is developed for evaluating alternative policies for
controlling wild oats in wheat. The ’'state’ variable 1is the
number of viable wild oats seeds in the soil and the policies
examined are the alternative rates of pre- and post-emergent
herbicides and crop rotation. The basic model consists of a wild
oats population dynamics model, wheat yield response to wild
oats, and dose reponse to various quantities of herbicides.
Densities of wild oats and herbicide performance are considered
to be uncertain. Optimal decision rules are derived for both
risk-averse and risk-neutral farmers.

Weeds impose a considerable burden on the Australian farmer. Total
losses due to weeds for 1985/86 have been estimated to be approximately
$1500 million (Combellack 1987). In 1984, farmers in Australia spent over
$220 million on herbicides (Blacklow, Pearse and Humphries 1984), a large
proportion of which was for weed control in wheat. Despite such massive
amounts of expenditure involved, current recommendations are based on a
simplified concept of threshold cast on a deterministic framework.

The effects of uncertainty within the crop-weed-herbicide systems
cannot be satisfactorily evaluated within such a simplified framework.
Uncertainty arises mainly from the variability in the performance of
control measures, the variability of weed density, the variability of the

effects of weed competition on crop yields, and the variability of crop
prices.

Benefits from weed control have a multiperiod dimension due to (a)
the effects of current level of control on future buildup of infestation,
(b) development of resistance, and (c) pesticide carryover. Even though
current profits may not be adequate to recoup the current costs, some
treatment may be justifiable if the possible prevention of future losses
is also taken into account. Crop rotation decisions in many cases are
governed by such long term considerations. Similarly, if resistance to
herbicide is likely to develop, recommendations based on current period
effects only will be suboptimal. Despite the importance of such long term
effects, advice given to farmers is mostly ad hoc and is based on ' gut-
feelings’ rather than on a systematic analysis of the problem in a
stochastic multiperiod framework. The level of control currently applied,
hence, is unlikely to be optimal.

In this paper, optimal policy is obtained by taking into account the
effect of current treatment on future buildup of infestation. The
dynamically optimal solution is obtained by employing a dynamic
programming model in conjunction with a bioeconomic simulation model.
Uncertainties in the performance of herbicide and crop yields are modelled
and optimal decision rules are derived for risk-neutral farmers. A
continuous cropping system with wheat infested by wild oats (Avena fatua)
is analysed.



An Economic Model of Weed Management

Consider a farm infested with a single species of annual weed spread
uniformly over the farm. Assume the farm to represent a closed system in
the sense that movement of weed seeds in and out of the farm is
negligible. The farm may be large or small but is assumed to be managed by
a single farmer. The economic output of the farm is the grain yield of an
annual crop. The farmer wishes to maximise profits over a planning horizon
of T periods. The profit function is assumed to be stationary in the sense
that its parameters are constant over time. The decision problem is to
derive an optimal strategy for chemical control of the annual weed. The
solution is the degree of control applied in each time period such that
the present value over the planning horizon is maximised.

The solution to the problem can be found by using the tools of the
optimal control theory. Let B(SDt’xt) define implicit profit in time

period ‘t’' as a function of the number of weed seeds (SD) and herbicide
quantity (X). In the parlance of optimal control theory, SD and X are the
state and decision variables, respectively. The change in seed number from
one time period to the next depends on the initial seed number which
determines the potential for seed production during the current time
period and the quantity of herbicide used which determines the actual
number of seeds produced. Let G(SDt’xt) be a function measuring the change

in seed number. The function G represents the equation of motion. Also,
let S(SDT) represent the terminal value of the stock of weed seeds at the

end of the planning horizon. The objective function is to maximise present
value (PV)

-1
Max PV = % BV(SD_,X )6C + 61S(SD.) , (1)
. e Xe T

subject to SDt+ - SDt = G(SDt,Xt),

1

where §° is the discount factor for time period 't'. Applying Pontryagins'
Principle of Maximum, one of the first order conditions requires that

2 . i
) 6B/6Xt + )\t+16G/6Xt = 0; t=0,1,...,T-1. (2)

The first term in equation (2) is the marginal current profit. If
future effects are to be ignored, the static solution is obtained by
solving the condition 48B/3X = 0. The second term measures the marginal

benefit resulting from the effects of current level of control on future
infestation. The costate variable A 41 Yepresents the marginal change in

present value caused by a marginal change in the number of seeds at the
beginning of time period 't’. An increase in number of seeds (and hence
weeds) reduces profits; hence, At+1 < 0. Also, 6G/6Xt < 0 because weed

population is reduced by herbicides. The second term in equation (2) is
hence non-negative. Due to the beneficial effect of the current level of
control on future profits, the marginal productivity of control inputs is
increased. This results in a higher level of control than when current
profits are maximised.

Dynamic Programming Model

Dynamic programming is a computationally efficient method for
obtaining optimal control policies in a multiperiod context. The
application of this method in models of agricultural resource management



has been reviewed by Kennedy (1986). This method has been wused for
deriving optimal weed control strategies by Fisher and ILee (1981),
Shoemaker (1982) and Taylor and Burt (1984). The advantage of dynamic
programming is that risk can be incorporated relatively easily compared to
other programming methods and globally optimal solutions can be found even
if the obhjective function may be non-concave and discontinuous. The
solution procedure consists of dividing the total planning horizon into
different periods (or 'stages’ in the dynamic programming paralance) and
deriving the optimal solution for each stage. The interdependence of
decision between stages is captured by using the concept of the state. The
state variables completely summarise  the state of the system at the
beginning of each stage. Thus the effects of decisions in one stage on the
following stage is transmitted through the state variable. State variables
need to be defined so that all information relevant to the current
decision problem are captured by the state variables. This requirement of
dynamic programming is called the condition of Markovian independence
(Nemhauser 1966).

When a post-emergent herbicide is the control agent, weed density at
the spraying time is one of the state wvariables. If seeds exhibit
dormancy, as in the case of wild oats, the number of viable seeds in the
soil is another state variable. However, weed density can be dropped out
if recruitment is assumed to be a constant proportion of the size of the
seed bank. Thus, in the deterministic model in which all stochastic
variables are replaced by their mean values, the size of the seed bank is
the only state variable. The stochastic model is properly specified as a
two-state variables model. However, to save computation time, Taylor and
Burt’s (1984) decomposition method was used for solving the stochastic
model. The decomposition Procedure is explained in a later section,

The wuncertain variables included in the model are herbicide
performance and weed free yields. All other variables such as crop price,
weed density, spray efficiency are assumed to be known with certainty. It
has been the experience of farmers and researchers that the variability in
herbicide performance is one of the dominant sources of risk in weed
control. Similarly, variability in weed free yield as determined by
climatic wvariability can make weed control decisions profitable or
unprofitable.

The solution procedure involved in the dynamic programming model 1is
described by the recursive equation:

Vt[SDt,Wt] - ng[}zn[sot,wt,st] + ﬂEVt_l[SDt_l,wt_l” , t=l,2...,T, (3)
t

where Vt(SDt’wt) is the optimal value function at stage 't’ given seed

number (SD) and weed density (W); I is the current profit if decision S is
implemented; B is the discount factor, and E is the expectations operator.
In accordance with the dynamic programming method, time subscripts are
specified in reverse order. Thus, the last year of the planning horizon is
labelled as stage 1, the second last year as stage 2, and so on.

The length of the planning horizon, T, may be finite or infinite. An
approximate solution of a finite horizon problem can be derived by first
solving the model for an infinite horizon such that Vt = vt-l and using

the optimal decision rule corresponding to Vt for deriving solutions for a
finite horizon problem.

In the deterministic model, weed density was dropped out as a state
variable because weed density is assumed to be a constant proportion of



seed number. The stochastic model was solved in two steps. First, the
optimal wvalue function for an infinite horizon problem was derived by
dropping weed density as in the case of a deterministic model. 1In the
second step, the optimal value function derived in the first step was

substituted for Vt-l and an additional iteration solved. The recursive
equation for the second step is written as:
Vt[SDt’wt] = ng[EH[SDt,Wt,St] + ﬂEVt_l[SDt_l]] . 4)
t

The two-state variable problem is solved in the second stage by specifying
current profit as a function of weed density and seed number. Although
Vt-l is specified as a function of SDt-l only, the decision rule derived

is not myopic because the dynamic effects of current decisions are
reflected in the size of the seed bank which appears in vt-l' It is also

assumed that weed density in the current period does not have any
significant effect on weed density next period. This is a reasonable
assumption because any such effect is likely to be dominated by the size
of the seed bank.

For deriving numerical solutions, the state and decision variables
were represented by 63 and 17 discrete values, respectively. The decision
alternatives considered are different doses (including non-use) of
Hoegrass. For each starting value of the state variable, profits and
ending value of the state variable were calculated for all discrete
decision alternatives. For the ending value of the state variable falling
between the two grid points, the optimal value function was approximated
by linear interpolation between the adjacent grid points.

Risk is introduced in the model through random variables. Two random
variables are required to incorporate risks in herbicide performance and
weed free yields. In the estimated weed kill function, Therbicide
performance was found to depend on soil moisture condition which can take
any of the three ranked values. A discrete probability distribution for
the soil moisture condition was derived by analysing the climatic data.
Values from this distribution were selected by Monte-Carlo sampling. In
the case of weed free yield, the simulated values were used directly as a
sample from its distribution.

When more than one random variable is incorporated correlation
between the variables also needs to be considered. In the present study, a
positive correlation is expected because both the weed free yield and the
herbicide performance vary directly with soil moisture content. The
correlation is built into the model by adjusting the sampling procedure.
The simulated data on weed free yields were first classified into three
groups corresponding to good, average and poor moisture conditions. Within
each category, the probability distribution of yield was represented by a
discrete cumulative distribution function. When the sampled moisture
condition was good, yields were sampled from the probability distribution
of yield corresponding to good soil moisture condition. The same procedure
was applied to soil moisture conditions in other categories.

Bioeconomic Simulation Model

A bioeconomic simulation model was developed to trace the effect of
weed control decisions on both the current and the future profits. The
overall model is comprised of submodels for weed population dynamics,
yield response to weed infestation, weed kill function, weed free yield of
crop, and climatic and economic factors.



A life cycle model of wild oats is used for predicting seedling
recruitment, plant survival, seed production and seed survival. The
recruitment of wild oats is not synchronised and occurs in waves during
its life cycle (Quail and Carter 1968, Amor 1985). If a non-residual post-
emergent herbicide is the control agent, it would be useful to divide
seedlings into three cohorts. Plants which emerge before sowing belong to
cohort 1. The cohort 2 has weeds emerging after sowing but before the
post-emergent herbicide is applied. The third cohort has weeds emerging
after the application of post-emergent herbicide.

The seed bank is assumed to be homogeneous. The recruitment in each
cohort is specified to be a constant proportion of the seed bank.
Seedlings in cohort 1 are assumed to be killed by presowing cultivations.
Due to the competitive effects exerted by seedlings upon each other, only
a proportion of seedlings survive to maturity. Empirical evidence
indicates that most of the cohort 2 seedlings which die before maturity
are dead before the biologically appropriate time for post-emergent
herbicide application (Medd 1988, personal communication). Thus, it is
assumed that the full effect of density-dependent mortality is realised
before the application of post-emergent herbicides.

The number of seeds produced by mature plants is also density
dependent and is described by a hyperbolic function. Some proportion of
new seeds produced is assumed to be removed by the combine and and killed
by straw burning. Also, a proportion of the existing seed bank is lost due

to natural mortality. Thus, the seed dynamics can be described by the
following identity:

SDt+1 = SDt - Gt - Mt + Nt (5)

where SDt+1 is the size of the seed bank at the start of the period t+1,
SDt is the starting stock of seed bank, G is the loss due to recruitment,

M is the loss due to mortality, and N is new seed added to the seed bank.
Most of the parameters for the model are obtained from experimental work
at Orange, NSW (Medd and Ridings 1988). Values of the parameters
unavailable from this source were obtained from experimental work in the
United Kingdom (Cousens et al 1986)

The yield (Y) of a weedy crop is specified as
*
Y = Y g(W) (6)

where Y* is a parameter representing the maximum attainable yield in a
weed free situation given the level of environmental and management
inputs, W is the weed density, and g(+) is a function often called the
‘relative yield response’ (Lanzer and Paris 1981). By definition, g(0) =1

and g(w) = c*, where c* = 0. Thus the function g(*) provides a scaling
factor. It is usual to represent g(+) in the case of pests by a linear or
sigmoidal function of pest density (Feder 1979, Zimdahl 1980), However, in
the case of weeds, g(.) is more accurately represented as a hyperbola
(Cousens 1985). The specific form used is:

g = 1-w/alewly 7

where W is the weed density and ’'a’ and 'b’' are the parameters. Since
crops and weeds exert competitive effects on each other, yield loss due to
weeds also depends on crop density. Based on Australian data, Martin,
Cullis and McNamara (1987) found 'a’ to be proportional to crop density.
Their parameter estimates have been used in the present study.



Dose response function relates the quantity of herbicide applied to
the proportion of weeds killed. The dose response relationship is
typically sigmoidal when plotted on an appropriate scale and has the
properties of a probability distribution  function (Finney 1971,
Lichtenberg and Zilberman 1986). Since the response to herbicides is a
binomial variable (with the plants being considered as dead or alive),
probit and 1logit regressions are the appropriate methods for efficient
estimation of dose response relationships (Finney 1971, Hewlett and
Plackett 1979). The logit specification is used in the present study. The
dose response relationship for Hoegrass was specified as:

log[Pi/(l - Pi)] = ay + a; log Xi + apSM. + agA; + u, (8)

where P is the proportion of weeds killed, X is the quantity of herbicide
applied, SM and A are measures of soil moisture and additives which also
affect the performance of herbicides, and u is the random disturbance
term. All parameters except a, are expected to be positive.

Experimental trials on the control of wild oats by Hoegrass conducted
by Hoechst in Western Australia, Victoria and New South Wales were used in
this study. The data were adjusted for the effects of mnatural mortality
using Abbott’'s formula (Finney 1971). Based on the description of the
season in the trial report as good, average and dry, the soil moisture
conditions was rated as 3, 2 and 1 respectively. The variable 'A’' was
specified as a dummy (A=l if wetting agent added, A=0 otherwise).

Weed free yield of wheat was predicted by using a wheat growth
simulation model developed at the West  Australian Department of
Agriculture. The model wuses daily climatic data as inputs. Wheat yields
for 74 years from 1912 to 1985 were predicted for Merredin by wusing the
simulation model. Since all management-specific inputs are assumed non-
limiting in the simulation, predicted yields were adjusted to reflect the
level of input usage in the region.

Results and Discussion

For deriving a deterministic solution, the weed free yield and the
proportion of weeds killed were set at the respective average values. The
optimal decision rule derived by solving the infinite horizon problem is
presented in Figure 1. Although the number of seeds in the soil is the
state variable, results are presented in terms of weed density. The
decision rule illustrated is quite simple and can be a useful decision
tool. The optimal dose of herbicide depends on weed density and is updated
as weed density changes over time.

The time traces of weed number when the optimal decision rule is
applied repeatedly are shown in Figures 2 and 3. These traces were
derivedfor initial seed numbers 100 and 5000, representing respectively
low and high infestations. Shown in the diagrams are also the resulting
time trace when policies which maximise profits in each time period are
applied (ie, time trace corresponding to the static solution). The weed
density corresponding to the approximate steady-state is lower in the case
of dynamic optimisation. Hence, at the steady-state, profits are higher
under dynamic optimisation. The present value of profits is also higher
under dynamic optimisation and the gain over the static solution increases
over time. The results show that, in the case of wild oats, significant
gains can be realised in future periods by reducing the weed burden early
in the planning horizon even if current gains from such actions might be
negative. It is also observed that weeds are not eradicated at the optimal
steady-state.
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100

~————— dynamic solution
60 ——e—— Static solution

——¢—— difference in
40 F cumulative PV

20r

_2() s 1 " 1 " 1 1 ]

Figure 2: Optimal Trajectory of Weed Density
(initial seed number 100)



801
O
=
<
z 60 [
=
)
w2
S of
&
2
2
) 20
o
= ———— dynamic solution
§ or ——e—— static solution

—¢—— difference in
cumulative PV
220 . : —!
0 10 20
Year

Figure 3: Optimal Trajectory of Weed Density
(initial seed number 5000)

In the stochastic version, the solution procedure is conceptually
similar except that transitions are probabilistic. The  stochastic
solutions were derived using the two-step method described earlier.
Farmers were assumed to maximise expected profits. The results are
presented in Figure 4.
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Figure 4: Optimal Herbicide Rate According to Seed Bank
and Weed Density
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The optimal decision depends on weed density as well as on the size
of the seed bank. For a given weed density, the optimal herbicide dose
decreases with an increase in the size of the seed bank. This is expected
because the size of the seed bank can be manipulated by varying the
herbicide quantity only when there are a few seeds in the soil to start
with. On the other hand, when the initial seed bank is large, varying the
addition to the seed bank by killing more weeds is unlikely to affect the
seed bank substantially. If the seed bank is very large, the dynamic
solution will approach the static solution.

The economic threshold at which herbicide is applied decreases with a
decrease in the seed bank. When the seed bank consists of about 500 seeds,
the dynamic economic threshold is approximately 10 weeds/m?. The static
economic threshold is approximately 30 weeds/m?2.

If farmers are assumed to be risk averse, then both the mean and
variability in profits enter the objective function. If herbicide
performance is assumed to be stochastic but the weed free yield is
deterministic, an increase in herbicide will reduce the variance. Thus a
risk averse farmer would tend to apply more herbicide compared to a risk
neutral farmer. If herbicide performance is assumed to be deterministic
but the weed free yield is stochastic, the opposite result will hold
because the variability of profits increases with an increase in herbicide
rate. The expected direction of change is ambiguous if both the weed free

yield and herbicide performance are assumed to be stochastic
simultaneously.

Summary and Conclusions

In this paper dynamically optimal dose of a post-emergent herbicide
was derived using the method of stochastic dynamic programming. A
bioeconomic simulation model was used to generate return matrix and
transition probabilities. The results indicate that the dynamically
optimal solution 1is to maintain a lower steady-state weed population in
comparison to the static solution. The dynamic economic threshold is also
lower than the static economic threshold.
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