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Abstract 

Potato is a valuable source for phytochemicals like vitamins, minerals, plant phenols, amino acids and proteins. 
However, environmental stress may affect the level of all these components. In this study, two purple breeding 
clones and one yellow fleshed cultivar (cv.) were assessed in their response to drought and wounding stress in 
two consecutive years. The plants were grown in the greenhouse under control (sufficient water supply) and with 
drought stress conditions. After harvest the tubers were analyzed for the content of soluble phenols and proteins 
in fresh tissue and after wounding. In addition, free amino acids (AAS) and activity of lipid acyl hydrolases 
(LAH) were assayed in control and drought stressed tubers. The results revealed significant differences in 
soluble phenols and proteins between genotypes, and that drought stress significantly increased the level of 
soluble proteins (P < 0.0001) and LAH activity (P < 0.001), but had no significant effect on the concentration of 
phenols. Moreover, total amounts of free AAS were higher in the drought stress variant. Wounding stress caused 
a significant increase of soluble phenols in cv. Agave. But, this was less prominent in purple clones which in 
general had higher contents of phenols. Proteins were also enhanced as a result of wounding, although, the effect 
of wounding stress on their level was smaller than that of drought stress. 

Keywords: abiotic stress, stress responses, tuber quality, lipid acyl hydrolase, amino acids 

1. Introduction 

With its high nutritional value and the high level of human consumption potato (Solanum tuberosum L.) is one of 
the most important crops for human nutrition and of special interest to combat hunger in the world (Cahskan & 
Struik, 2010). In the last two decades potato production increased rapidly in developing or underdeveloped 
countries with a warmer climate in Asia, Africa and Latin America (Cahskan et al., 2010). Potato tubers are rich in 
starch, proteins, minerals and vitamins (Buckenhüskes, 2005; Jansen et al., 2001) and contain valuable secondary 
metabolites such as plant phenols (Friedman, 1997) including hydroxycinnamates, e.g. p-coumaric, caffeic, 
chlorogenic, sinapic and ferulic acid (precursor for lignin) and flavonoids, e.g. anthocyanindins like petunidin, 
peonidin, malvidin etc. (Brown et al., 2003) synthesized all via the phenylpropanoid metabolism (Crozier et al., 
2006). Phenolic compounds play a key role in resistance expression of plants (Nicholson & Hammerschmidt, 
1992) and act as radical scavengers (Grace, 2005) reducing toxic effects of oxidative stress on metabolism and 
cells (Noctor & Foyer, 1998). Plant phenols are inducible by environmental stresses (Dixon & Paiva, 1995) and 
involved in acclimation of plants to non-optimal conditions (Grace, 2005). After wheat, rice and maize the potato 
is the fourth most important source of protein for human consumption in the world (De Romana et al., 1981). Its 
tuber protein has a high nutritional and biological quality (Desborough et al., 1981; Kapoor et al., 1975) and is seen 
to be superior to proteins of other crops like cereals and legumes (Bohac, 1991). Also several proteins are induced 
by diverse types of stress (Mehta et al., 1991) and similarly as phenols generate antiradical activities, i.e. health 
promoting effects in humans when consumed (Grace, 2005; Liu et al., 2003).  

In nature, plants face a wide range of threats during growth, and abiotic stress will become a growing risk in the 
near future, especially in the course of climate changes. In this respect, drought is one of the most important abiotic 
stress factors limiting crop production worldwide (Passioura, 2007). Today about 700 million people around the 
world suffer from water shortage. It is expected that two-third of the world population will be living under drought 
stress conditions by 2025 and that water scarcity will threaten the natural resources (Anonymus, 2005). Plants have 
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the potential to adapt to such stressful conditions to a certain extent. For example, potato tubers respond to 
environmental stresses by alterations of macromolecular synthesis, e.g. by synthesizing a set of proteins (Vayda & 
Schaeffer, 1988). Significantly higher protein contents were also found in chickpea plants that were imposed to 
drought at the vegetative stage (Mafakheri et al., 2011), and new protein bands were discovered in drought stressed 
plants of different Vitex species (John et al., 2011). Proteome studies revealed that 10 of 12 proteins tested in this 
frame were increased in rice leaf sheath after drought stress (Ali & Komatsu, 2006), and dehydrin-like proteins 
could be detected in roots and leaves of drought stressed maize plants (Mohammadkhani & Heidari, 2008). In 
addition, late embryogenesis abundant (LEA) proteins are known to contribute in protecting plants to diverse types 
of stress, above all drought stress (Galau et al., 1993; Hong-Bo et al., 2005). LEA proteins are extremely 
hydrophilic and proposed to prevent the formation of damaging protein aggregates during drying, and to protect 
membranes and other proteins (Goyal et al., 2005; Hand et al., 2011). However, all these stress responses may be 
associated with alterations in the biochemical composition resulting in differences concerning physiological traits 
and with it in resistance and quality properties of tubers. Hence, it is important to get a better knowledge on stress 
responses and metabolic changes in plant tissue and their impact on the quality.  

In this study, three potato genotypes including one yellow fleshed cultivar and two purple breeding clones were 
assessed for their reaction to drought and wounding stress representing two of the major abiotic stress factors in 
nature. Results of a first study on changes of the antioxidant capacity were published already (Wegener & Jansen, 
2013). In addition to this, the aim of the present work was to get information on the influence of drought and 
wounding stress on soluble phenols and proteins accumulated in tuber tissue. Moreover, the effects of drought 
stress on the level of free amino acids (AAS) and the activity of lipid acyl hydrolases (LAH) associated with the 
glycoprotein patatin comprising about 30% of the soluble proteins in potato tubers (Moreau & Nagahashi, 1987) 
was investigated. LAH present in protein extracts from potato tubers are lipolytic enzymes with different substrate 
preference (Anderson et al., 2002; Andrews et al., 1988; Hasson & Laties, 1976) that are capable of hydrolysing 
monoacylglycerols (MAG), phospholipids and galactolipids to form fatty acids and fatty acid hydroperoxides 
(Galliard, 1971), but can also be used under certain conditions to synthesize MAG (Macrae et al., 1998). Changes 
in the composition of membrane lipids may contribute to protect cell membranes under stress conditions (Gigon et 
al., 2004). 

2. Material and Methods 

The plants of the three genotypes were grown in a glasshouse (i) with sufficient water supply (= control plants) and 
(ii) with severe drought stress conditions (= drought stressed plants) in 2010 and 2011. After harvest in September 
of each test year, the tuber yield was determined for each genotype and variant with results published elsewhere 
(Wegener & Jansen, 2013).  

2.1 Plant Material  

The study was carried out on three potato genotypes including one yellow fleshed cv. Agave (early season) and 
two purple breeding clones St 89403 and St 3792 (early-mid season, both), all from the breeding company 
NORIKA, Groß Lüsewitz, Germany. Agave is a cultivar with optimal yield and quality properties and two purple 
clones were chosen, because they contain high amounts of anthocyanins. Each randomized experimental set for the 
control and the drought stress variant was performed with four replications, comprising four plants per genotype 
and replication. In vitro plants were used for planting. The plants were grown in pots with 130 mm in diameter 
filled with a turf (95%)-sand (5%) mixture from April to September in the years 2010 and 2011 in a greenhouse. 
The mean temperature (°C) during the growing seasons in 2010/2011 was as followed: May, 9.7/12.8; June, 
15.1/16.1; July, 20.6/17.0; August, 17.1 both years; September, 12.8/14.7. Fertilizer, insecticides, fungicides and 
all other agronomic measures were conducted according to local practice, and drought stress was applied as 
detailed below. After harvest, the tubers were stored in a controlled environment at 5 °C until the tissue samples 
were prepared for the assay of phenols, proteins, LAH activity and free AAS. All analyses started in November and 
were finished in December of each test year. 

2.2 Application of Drought and Wounding Stress 

Control plants were watered daily during the whole growing period (=sufficient water supply). Plants involved in 
drought stress experiments were watered daily up to seven weeks after planting (= start of tuber initiation - growth 
stage code 40 400) (Meier, 1997), before the water supply was completely stopped during a time-span of six days. 
After that time, each plant received only 50 ml of water per day. From the middle to August until the end of 
experiments the amount of water was further reduced up to 30 ml daily per plant. In 2010, the weather was warm 
und sunny during the main growing period, especially in July. Therefore, only one drought period was applied in 
that year. In 2011, the weather was cool and cloudy, so that a second drought period of six days was inserted 11 
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weeks after planting. In addition to drought stress, wounding stress was applied as described in paragraph 2.3., in 
context with phenol and protein analyses. Both types of stress were applied as it can be expected under production 
conditions in agriculture. 

2.3 Assay of Soluble Phenols and Proteins  

Analyses of soluble phenols and proteins were carried out for fresh and wounded tuber tissue in 2010 and 2011 as 
detailed in Wegener and Jansen, 2010. For the preparation of tissue extracts ten medium sized tubers were taken 
from each genotype and replication as an average sample. The tubers were washed, air-dried and then cut into 
halves by means of a knife (= mechanical wounding procedure), and using a cork borer of 5 mm in diameter two 
cylinders were excised from the outer region of each half and each tuber. In order to study the effect of wounding 
stress on the level of soluble phenols and proteins two cylinder samples were taken per genotype and assay: the 
first one was excised from (i) fresh tissue and a second was cut (ii) 24 h after wounding of the tubers. Before 
cutting the second tissue sample, the tuber halves of each experimental set were stored for 24 h at 20 °C with the 
wound-surface upward on moist filter papers placed in a plastic box covered with a lid. This was performed in 
order to study the effect of wound stress within a period of 24 h. 

For the assay of phenols, a 1 mm thick slice was excised from the upper wound region of each cylinder. The slices 
were pooled, and 1 g of the slices was ground under liquid nitrogen before the homogenate was suspended in 4 ml 
of methanol (Roth, Karlsruhe, Germany). The suspension was stirred slightly and after 1 h centrifuged at 6000 × g 
for 10 min at 4 °C. The supernatant was removed and the plant material re-extracted. The total amount of phenols 
present in the combined extracts was assayed using Folin-Ciocalteu reagent (Sigma-Aldrich, Taufkirchen, 
Germany) according to Cahill and McComb (1992). The absorbance was measured at 725 nm on a UV 
spectrophotometer (Kontron Instruments, Neufahrn, Germany). Standards were prepared from p-coumaric acid 
(Sigma-Aldrich, Taufkirchen, Germany), and total amounts of soluble phenols (= coumaric acid equivalent) were 
expressed in grams per kilogram of fresh weight (fw).  

For the assay of soluble proteins, the slices cut from the cylinders as detailed above were pooled and 3 g of the 
slices were ground under liquid nitrogen before the thawed homogenate was centrifuged at 15 000 × g for 10 min 
at 4 °C. Amounts of proteins were assayed in the supernatant (= cell sap fraction) by means of a Bradford assay 
using a RotiR-Quant reagent (Roth, Karlsruhe, Germany) according to the manufacturer recommendations. The 
absorbance was measured at 595 nm on a UV spectrophotometer (Kontron Instruments). Standards were prepared 
from bovine serum albumin (Sigma-Aldrich, Taufkirchen, Germany), and total amounts of soluble proteins were 
calculated as milligrams per millilitre of protein extract. Extract preparations and all analyses of phenols and 
proteins were carried out in triplicate with standard deviation (SD) ≤ 5%.  

2.4 Assay of Lipid Acyl Hydrolase Activity 

Analyses of LAH in 2010 and 2011 were carried out for control and drought stressed tubers. As an average 
sample, five medium sized tubers were randomly taken from each genotype and replication before the tubers 
from two replications of each genotype were pooled into one sample. The tubers were cut into halves using a 
knife, and a 2 mm thick tissue section was excised from each tuber half before 25 g of the slices were weight, 
dried in a freeze drying unit type Alpha 1-4 LD plus (Christ, Osterode, Germany) and then ground in a laboratory 
mill SM3 equipped with a fine sieve (Brabender, Duisburg, Germany). The lyophilized tissue powder was used 
for the analyses of LAH as detailed below. 

The assay of LAH activity was carried out according to Bohac (1991) with several modifications. 100 mg of 
tissue powder were suspended in 1 ml of extraction solvent (62.5 mM Tris-HCl buffer, pH 7.0). During the 
extraction of proteins for 3 h at 4 °C the mixture was occasionally vortexed and then centrifuged at 12 000 × g 
for 3 min. The supernatant was removed, stored at -18 °C and thawed short before measurement of enzyme 
activity at 410 nm on a UV spectrophotometer (Kontron Instruments) using the kinetic programme at 20 °C. The 
reaction mixture consisted of 800 µl of sample buffer (10 mM Tris-HCl, pH 7.5), 100 µl of substrate solution 
containing 10 mM Tris-HCl (pH 7.5), 1% Triton X-100 (Amersham Bioscience, Uppsala, Sweden), 0.017% SDS 
(Pharmacia Biotech, Uppsala, Sweden) and 530 µM p-nitrophenyl-laurate (PNP) (Sigma-Aldrich) and was 
started by adding 100 µl of protein extract diluted in sample buffer. One enzyme unit was defined as the increase 
in absorbance units per minute and milligram freeze-dried matter. Analyses of LAH were performed in triplicate 
with SD ≤ 5%.  

2.5 Assay of Free Amino Acids 

Analyses of AAS were performed for control and drought stressed tubers grown in 2010. In order to prepare the 
tissue extracts, twenty medium sized tubers (= 5 tubers per replication) were randomly taken as an average sample 
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for each genotype. The tubers were cut into slices and 20 g of these slices were homogenized in 50 ml of 96% 
ethanol at 15 000 rpm for 30 sec, using a knife homogenizer HO4AP (Bühler, Hechingen, Germany). The 
homogenate was suspended in a solution containing 95 ml of 96% ethanol and 40 ml deionized water, then 
transferred into a 250 ml flask and mixed vigorously. Afterwards, a 50 ml sample was taken from this suspension, 
stored at -18 °C and thawed shortly before the analyses of free AAS.  

Free amino acids were measured following the methods detailed by Cohen & Michaud (1993) adapted to a Luna 
C18 (2) bonded silica column (Phenomenex, Aschaffenburg, Germany) according to Hernández-Orte et al. (2003). 
Sodium tetraborate decahydrate, sodium azide, glacial acetic acid and 96% ethanol were obtained from Merck 
(Darmstadt, Gemany), 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) was synthesized according to 
Cohen and Michaud (1993) and all other chemicals used in the analyses were from Sigma-Aldrich.  

HPLC assay was carried out in an Agilent 1100 series liquid chromatograph system (Agilent Technologies, 
Waldbronn, Germany) with a fluorescence detector (EX, 250 nm; EM, 400 nm). The separation of AAS was 
performed on a Luna C18 (2) column (150 × 2.0 mm; 3.0 µm), equipped with an inline filter (2.1 mm; 0.2 µm), at 
a flow rate of 0.25 ml min−1. The injection volume was 1 µl, and the column temperature was maintained at 30 °C. 
Quantities of free AAS were expressed in milligrams per 100 g of fresh weight (fw), and the analyses were carried 
out in duplicate with SD ≤ 5%. 

2.6 Statistical Analyses 

Standard statistical methods were used for the data analyses. The results in the tables are presented as mean values 
± SD (standard deviation). To assess effects of drought stress on soluble phenols, proteins and LAH a generalized 
linear model for the analysis of variance was applied, using the SAS 9.2 statistical package (PROC GLM, 
Tukey-test, SAS Institute Inc., Cary, NC, USA). The latter was also used in order to study the effect of wounding 
stress, the year and the genotype on all these parameters. P ≤ 0.05 was considered statistically significant. 
Correlations (Pearson) between individual parameters were calculated using the SAS 9.2 statistical package 
(Procedure CORR). P ≤ 0.05 was regarded to be statistically significant.  

3. Results and Discussion 

It should be mentioned at the beginning, that the tuber yield of all three potato genotypes was significantly 
diminished (P < 0.05, all) by severe drought stress in 2010 and 2011. The decrease of tuber yield amounted on 
average 44% in 2010 and 34% in 2011 (Wegener & Jansen, 2013). This strong reduction in tuber yield indicates 
that drought stress was successfully applied thus enabling the study of its effects on phenols, proteins, LAH and 
free amino acids. In addition the amino acid proline (pro) seen as a metabolic marker for drought stress (Munawarti 
et al., 2013) was enhanced in drought stressed tubers as discussed below, in paragraph 3.3. Drought stress was 
applied as it can regularly happen. But, this is only one of many scenarios that plants can experience in nature. 

3.1 The Effect of Drought Stress on Soluble Phenols 

Differences between the genotypes: In both years, the three potato genotypes varied in contents of soluble phenols 
(Table 1). The purple clone St 89403 revealed the highest amount of phenols in all tuber variants in each year, 
while cv. Agave generally had the lowest phenol contents.  



www.ccsenet.org/sar Sustainable Agriculture Research Vol. 3, No. 3; 2014 

5 
 

Table 1. Amounts of soluble phenols present in fresh tissue and 24 h after wounding of control and drought 
stressed tubers grown in 2010 and 2011 (Mean ± SD) 

  Soluble phenols (g kg−1) 

Years Genotypes 
Control 

Fresh              Wounded 

Drought stress 

Fresh              Wounded 

 
 

St 89403 

 

2.93 ± 0.18a† 

 

2.57 ± 0.18a† 

 

2.92 ± 0.25a 

 

2.82 ± 0.23a 

2010 St 3792 1.77 ± 0.11b 1.64 ± 0.27b 2.00 ± 0.27b 1.87 ± 0.35b 

 Agave 0.62 ± 0.08c††† 1.04 ± 0.05c††† 0.65 ± 0.04c††† 1.01 ± 0.07c††† 

 
 

Average 

 

1.77 ± 1.00 

 

1.75 ± 0.68 

 

1.86 ± 0.99 

 

1.90 ± 0.80 

 
 

St 89403 

 

3.12 ± 0.24a*† 

 

2.79 ± 0.22a*† 

 

2.62 ± 0.14a* 

 

2.47 ± 0.11a* 

2011 St 3792 2.26 ± 0.04b**†† 2.08 ± 0.05b†† 1.97 ± 0.10b** 2.14 ± 0.14b 

 Agave 0.62 ± 0.02c††† 0.91 ± 0.02c††† 0.64 ± 0.05c††† 1.07 ± 0.04c††† 

 
 

Average 

 

2.00 ± 1.09 

 

1.93 ± 0.82 

 

1.74 ± 0.87 

 

1.89 ± 0.63 

a,b,c Genotype means followed by different letters within the same column differ significantly at P ≤ 0.05; 
Significance of the difference in phenols between control and drought stressed tubers at *P ≤ 0.05 and **P ≤ 0.01, 
and between fresh and wounded tubers at †P ≤ 0.05, ††P ≤ 0.01 and †††P ≤ 0.0001. Significance of the difference 
between the years is described in detail in paragraph 3.  

 

In 2010 and 2011, all differences in phenols between the genotypes were statistically significant as represented 
with different letters in the same column within Table 1.  

Differences between the variants: In 2010, the differences in soluble phenols between control and drought stressed 
tubers (fresh and wounded) of the three potato genotypes were all statistically not significant (Table 1). In 2011, St 
89403 had significantly (P < 0.05) lower amounts of phenols in fresh and wounded tubers imposed to drought 
stress than in appropriate control tubers grown with sufficient water supply (Table 1). This was similarly noticed 
for St 3792, however only within fresh tubers (P < 0.01), and not when its wounded tubers were regarded. The 
yellow fleshed cv. Agave was less affected by drought stress than the others. In both years the differences in 
phenols between control and drought stress variants of this cultivar were statistically not significant. These results 
show that changes in phenols caused by drought stress are dependent on the genotype and the year. In summary, 
differences in phenols between control and drought stress variants were statistically not significant, i.e. when all 
genotypes and both years were regarded. These results may demonstrate, that the effect of drought stress on 
phenols is less evident, as noticed already for anthocyanins (Ac), peroxidases (POD) and the antioxidant capacity 
(Wegener & Jansen, 2013). Obviously, phenols as well as Ac and POD are far more involved in plant responses to 
biotic stress, such as pathogenic attack by microorganisms (Ghanekar et al., 1984) than in drought stress responses. 
The fact, that phenols were not strongly affected by drought stress can be seen as an advantage, because phenolic 
compounds contribute to the overall nutritional value of potatoes. However, it remains to be established if this 
tendency can be transferred to other potato genotypes.  

Differences between the years: In the control tubers grown with sufficient water supply, the amounts of soluble 
phenols were on average higher in 2011 than 2010 (Table 1). The difference between the years was statistically 
significant (P < 0.05). In 2010, the summer was relatively warm, e.g. in July the mean temperature was higher than 
in 2011, a fact that could coincide with a higher pathogen pressure. Together with POD enzymes, plant phenols are 
involved in the formation of lignin and suberin associated both with wound healing and resistance expression 
(Espelie et al., 1986; Vance et al., 1980). Hence, it is imaginable that a few simple phenolic compounds might be 
incorporated into lignin and suberin like polymers, probably in response to pathogens and were found to be 
reduced therefore in 2010. In this frame, it is interesting to mention that in the case of drought stressed tubers the 
effect of the year on the level of phenols was statistically not significant in summary and within genotypes (Table 
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1). Under conditions of drought stress, the role of plant pathogens was obviously less prominent, since the latter 
also need water for their spread. 

3.2 Effect of Wounding Stress on Soluble Phenols 

Mechanical wounding of the tubers was performed as it can happen in agricultural practice. With it, the results may 
reflect a real situation. After wounding, the quantity of soluble phenols was notably enhanced in tubers of cv. 
Agave (up to 67.7%), a tendency that was observed in both years for control and drought stressed tubers of this 
cultivar (Table 1). The differences in phenols between fresh and wounded tubers of cv. Agave were all statistically 
significant (P < 0.0001, in control and drought stressed tubers of each year). But, two purple clones with their high 
basic level of phenols behave different than this yellow fleshed cultivar. In most cases, their phenols were reduced 
after wounding (Table 1). This could be observed in control and drought stressed tubers of both clones in the year 
2010, and again in 2011 for both tuber variants of St 89403 as well as for control tubers of St 3792. The differences 
in phenols caused by wounding were statistically significant within control tubers of St 89403 (P < 0.05, both 
years) and St 3792 (P < 0.01, 2011), but they were not significant within drought stressed tubers of both clones. 
Also in summary, the differences in phenols between fresh and wounded tubers were statistically not significant. 
These results may demonstrate that the changes in phenols caused by wounding are dependent on the genotype. A 
similar differentiated wound-induced alteration of phenols has been reported for several cultivated and wild 
Solanum species (Wegener & Jansen, 2010). Based on their antimicrobial activity, plant phenols play a key role in 
pathogen defence (Ghanekar et al., 1984; Lyon & McGill, 1988; Weber et al., 1996) and as already mentioned they 
are precursors for lignin and suberin (Espelie et al., 1986; Vance et al., 1980). It is imaginable therefore that in 
tissue of cv. Agave the phenols raised significantly upon wounding due to its low basis phenol content (Table 1). 
The two purple clones with their relatively high basis level of phenols did not increase their phenols further. On the 
contrary, in most cases their phenols were reduced by wounding (Table 1). Probably, the purple clones have started 
to integrate a few simple phenolics into more complex suberin and lignin related compounds after wounding. This 
could be a real advantage for purple potatoes, since a rapid suberization and wound healing is most critical in 
avoiding pathogen infections (Lulai & Corsini, 1998). In addition, it may be helpful to maintain water, and thus 
tuber quality during storage. 

3.3 The Effect of Drought Stress on Soluble Proteins, Lipid Acyl Hydrolases and Free Amino Acids 

Differences in proteins between the genotypes: St 89403 displayed the highest amounts of soluble proteins in 
control and drought stressed tubers among the three genotypes (Table 2). In both years, the yellow fleshed cv. 
Agave had the lowest content of proteins in fresh and wounded control tubers, while in the case of drought stressed 
tubers St 3792 ranked on the lowest protein level. Differences in proteins between genotypes were all statistically 
significant as indicated with different letters within the same column in Table 2, except St 3792 and cv. Agave with 
their wounded drought stressed tubers tested in 2011.  

Differences in proteins between the variants: In both years, all three genotypes contained higher amounts of 
soluble proteins in drought stressed tubers than in control tubers grown with sufficient water supply (Table 2). The 
differences in proteins between these two variants were statistically significant within fresh (2010, P < 0.0001; 
2011, P < 0.001) and wounded tubers (2010, P < 0.05; 2011, P < 0.0001) of St 89403, fresh (2010, P < 0.001; 2011, 
P < 0.01) and wounded tubers (2010, P < 0.0001; 2011, P < 0.01) of cv. Agave and fresh tubers of St 3792 (2011, 
P < 0.01). In summary, the protein levels were significantly higher in the drought stress variant, a result valid for 
fresh and wounded tubers tested in 2010 and 2011 (P < 0.0001; each year and variant). This may demonstrate that 
drought stress clearly induced the soluble proteins in tuber tissue, i.e. a result that concurred with other studies on 
plant proteins expressed under drought stress conditions (Mafakheri et al., 2011; John et al., 2011). The observed 
increase in proteins by drought stress can be seen as an advantage with regard to the nutritional and health value of 
tubers. However, it is important to find out if this tendency can be transferred to other potato genotypes and which 
proteins are involved in these processes. 

Differences in proteins between the years: It should be pointed out that the amounts of soluble proteins measured 
in fresh and wounded control tubers were on average higher in 2011 than in 2010 (Table 2), a tendency coinciding 
with those observed for phenols (Table 1) which were also higher in 2011. The differences in proteins between the 
two years were statistically significant within fresh and wounded control tubers (P < 0.05, both). But, they were not 
significant when the drought stressed tubers of all genotypes were regarded. 
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Table 2. Amounts of soluble proteins in extract samples prepared from fresh tissue and 24 h after wounding of 
control and drought stressed tubers grown in 2010 and 2011 (Mean ± SD) 

  Soluble proteins (mg ml−1) 

Years Genotypes 
Control 

Fresh              Wounded 

Drought stress 

Fresh                 Wounded 

 
 

St 89403 

 

7.60 ± 1.37a*** 

 

7.90 ± 1.41a* 

  

12.64 ± 1.22a*** 

 

11.84 ± 0.31a* 

2010 St 3792 4.54 ± 0.50b 4.83 ± 0.47b  4.58 ± 0.08c  4.93 ± 0.29c 

 Agave 3.46 ± 0.14c** 4.03 ± 0.14c***  7.68 ± 0.30b**  7.41 ± 0.11b*** 

 
 

Average 

 

5.20 ± 1.99*** 

 

5.59 ± 1.91*** 

   

 8.30 ± 3.53*** 

   

 8.06 ± 2.99*** 

 
 

St 89403 

 

8.05 ± 0.10a** 

 

8.10 ± 0.26a*** 

 

10.95 ± 0.48a** 

 

11.50 ± 0.12a*** 

2011 St 3792 4.83 ± 0.13b**† 5.48 ± 0.38b†  6.00 ± 0.28c**†  6.30 ± 0.34b† 

 Agave 4.15 ± 0.33c**†† 4.73 ± 0.22c**††  6.45 ± 0.19b**  6.65 ± 0.59b** 

 
 

Average 

 

5.68 ± 1.79***††

 

6.10 ± 1.53***††

   

 7.80 ± 2.35*** 

   

 8.15 ± 2.50*** 

a,b,c Genotype means followed by different letters in the same column differ significantly at P ≤ 0.05; Significance 
of the difference in proteins between control and drought stressed tubers at *P ≤ 0.05, **P ≤ 0.01 and ***P ≤ 
0.0001, and between fresh and wounded tubers at †P ≤ 0.05 and ††P ≤ 0.01. Significance of the difference between 
the years is described in detail in paragraph 3.  

 

Protein extracts derived from potato tubers contain patatin, a family of glycoproteins with molecular weights of 
approximately 40-43 kDa comprising 20-40% of the total soluble protein in tubers (Racusen & Foote, 1980). 
Patatin is seen as a storage protein exhibiting lipid acyl hydrolase (LAH) activity (Anderson et al., 2002; Andrews 
et al., 1988; Racusen, 1984) and suggested to be associated with plant stress responses (Bárta et al., 2012; De 
Souza Candido et al., 2011; Strickland et al., 1995). This was the reason why the LAH was studied in this work.  

Differences in LAH between the variants: The assay of LAH revealed significantly higher enzyme activity in 
drought stressed tubers than in control tubers grown with sufficient water supply (Table 3). Elevated LAH 
activities caused by drought stress were consistently found for all three genotypes in both years. The differences in 
LAH between control and drought stressed tubers were all statistically significant at P < 0.05 within genotypes and 
years (Table 3, see column %Increase).  

Differences in LAH between the genotypes: The three genotypes differed significantly in their LAH activity as 
indicated by the different letters within Table 3. St 89403 had the highest LAH level in both tissue variants and also 
showed the strongest increase of enzyme activity due to drought stress in 2011. This is an important fact, since 
lipid acyl hydrolases are lipolytic enzymes that are involved in changes of membrane lipids and release fatty acids 
(Galliard, 1971). Linolenic acid, for example, can serve as precursors for the biosynthesis of jasmonic acid and its 
derivatives known for their regular function in plant defence and adaptation to stressful conditions (Schaller et al., 
2005; Creelman & Mullet, 1997). Moreover, acyl hydrolases can stimulate the mobilization of lipid reserves to 
provide sugars that are involved in osmotic adjustment (Creelman & Mullet, 1997). Thus, in drought stressed 
Arabidopsis leaves increased lipolytic activity was associated with reduced lipid contents in response to drought 
(Gigon et al., 2004).  

Altogether, these results support the notion that patatin is involved with its LAH in drought stress responses of 
tubers. In future, it could be interesting to study its specific role. Although, under conditions of wounding stress the 
tuber patatin was found to be down regulated, i.e. expression of RNA corresponding to patatin was decreased in 
tubers after wounding (Logemann et al., 1988). This may explain why soluble proteins comprising the 
glyocoprotein patatin were less strongly affected by wounding stress than by drought stress as discussed below. 
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Table 3. Lipid acyl hydrolase activity in control and drought stressed tubers grown in 2010 and 2011 (Mean ± 
SD) 

  Lipid acyl hydrolase activity (U mg-1min-1) 

Years Genotype  Control  Drought stress % Increase 

 

 

 

St 89403 

 

1.63 ± 0.19a 

 

2.98 ± 0.16a 

   

 82.8* 

2010 St 3792 0.61 ± 0.08b 0.86 ± 0.17b  41.0* 

 Agave 1.04 ± 0.05c 1.95 ± 0.14c  87.5* 

  

Average 

 

1.09 ± 0.47     

 

1.93 ± 0.95♦       

  

 77.1* 

  

St 89403 

 

1.60 ± 0.11a 

 

3.58 ± 0.16a 

  

123.8* 

2011 St 3792 0.81 ± 0.05b 1.16 ± 0.10b  43.2* 

 Agave 1.22 ± 0.06c 2.08 ± 0.13c  70.5* 

  

Average 

 

1.21 ± 0.36 

 

2.27 ± 1.10♦ 

  

 87.6* 

All years Average 1.15 ± 0.40 2.10 ± 1.00  82.6** 

a,b,c Genotype means followed by different letters within the same column differ significantly at P ≤ 0.05. The 
difference between the years was significant at ♦P ≤ 0.01. Significance of the difference in LAH between control 
and drought stressed tuber at *P ≤ 0.05 and **P ≤ 0.01. 

 

Amino acid assay: About 49% of total amino acids present in tuber tissue are non-proteinogenic, free amino acids 
(De Romana et al., 1981). Besides plant proteins, the latter may also play a role in drought stress responses of 
tubers. Above all proline is known to protect plants against low water potentials and/or drying and is seen as a 
stress-related signal. For example, changes in proline became significant in Saccharum spontaneum (Munawarti et 
al., 2013) and poplar when drought progressed (Yang & Miao, 2010), and proline was increased in maize 
(Mohammadkhani & Heidari, 2008) and in tomato root, stem and leaf as a result of drought stress (Ghorbanli et al., 
2011), a tendency that was similarly noticed in drought stressed potato plants (Farhad et al., 2011). In agreement 
with these findings, all potato genotypes tested in this work had higher concentrations of proline in drought 
stressed tubers than in control tubers grown with sufficient water supply (Table 4). St 89403 displayed the 
strongest increase of pro (5.8-fold) due to drought stress. This may be additional evidence, besides the strong yield 
reduction (Wegener & Jansen, 2013), that the drought stress was successfully applied in this work and may again 
underline the role of proline in drought stress responses of tuber tissue.  

Moreover, it is worth to mention that also total amounts of free AAS were elevated in drought stressed tubers of all 
genotypes (St 89403, +42.5%; St 3792, +61.2%; Agave, +11.9%), and many of the 18 amino acids tested in this 
frame, i.e. 13 in St 89403, 17 in St 3792 and 11 in cv. Agave, were on a higher level in drought stressed tubers than 
in control tubers (Table 4). Above all, St 3792 showed strong enhancement of AAS due to drought stress. Besides 
proline, especially asparagine (asn) was increased upon drought in all genotypes, i.e. asn was elevated by 81.5% 
(St 89403), 75.7% (St 3792) and 42.6% (cv.Agave), respectively. This corresponds with other studies on AAS, e.g. 
in Brassica napus leaves most of the amino acids showed an increase (up to 5.9-fold) under drought stress (Good 
& Zaplachinski, 1994) and also in leaves of Sporobolus stapfianus the AAS were enhanced by desiccation stress 
(Martinelli et al., 2007). These results were not surprising, since amino acids are known to function as osmolytes 
often used by water stressed organisms to maintain the cell volume and to stabilize proteins and other 
macromolecules (Yancey, 2001). Of the three genotypes, the yellow fleshed cv. Agave ranked on the highest level 
in total amounts of free AAS in control and drought stressed tubers, followed by St 3792 and St 89403 (Table 4). 
Agave differed significantly in this respect from St 3792 (P < 0.01) and St 89403 (P < 0.05), however, this was 
only found for control and not for drought stressed tubers of this cultivar. The two purple clones, again, did not 
differ significantly in their AAS levels. However, it was interesting that the ranking of genotypes with regard to 
tuber yield under drought stress (Wegener & Jansen, 2013) correlated with their ranking in total amounts of free 
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AAS in drought stressed tubers (Table 4). It is imaginable thus that the whole free amino acids have contributed to 
adapt to drought during growth. It should be mentioned, that similarly enhanced AAS contents were found in other 
potato genotypes grown under drought stress conditions (unpublished results). 

 

Table 4. Amounts of free amino acids (AAS) in control and drought stressed tubers grown in 2010 

Amino acid 

(mg 100 g−1) 

St 89403 

Control      Drought 

St 3792 

Control      Drought 

Agave 

Control      Drought 

 

Alanine 

    

   7.62 

   

  7.11 

   

  5.45 

   

  6.53 

    

   9.47 

   

  9.82 

Arginine   10.68  14.32  14.09  27.84   23.04  23.96 

Asparagine   92.11 167.13 183.98 323.22  227.50 324.44 

Aspartic acid   17.66  18.36  10.97  17.38   22.75  24.69 

Glutamine   42.49  60.25  61.63  97.44  106.79  91.87 

Glutamic acid   46.71  48.16  41.53  56.71   76.12  76.37 

Glycine    1.00   1.03   1.78   2.39    2.48   2.06 

Histidinees    6.61   8.14   7.09  12.91    8.15   9.24 

Isoleucinees    9.01   9.51  11.73  16.30   12.01  10.52 

Leucinees    4.22   5.80   3.25   4.81    5.07   6.20 

Lysinees    7.61   5.55  11.05  19.67   17.39  14.59 

Methioninees    2.70   4.33   4.77   8.17    9.68   7.42 

Phenylalaninees    6.05   8.00   4.94   8.47   12.82  14.28 

Proline    6.02  35.10   6.38  11.47    8.65  12.85 

Serine    7.37   9.62   8.43  11.99   21.39  22.32 

Threoninees    8.77   8.56   7.61   7.53   15.94  16.85 

Tyrosine   16.67  15.49  16.93  21.93   22.80  16.83 

Valinees   19.43  19.18  26.35  35.05   34.94  28.34 

 

AASes 

   

  64.40 

  

 69.07 

  

 76.79 

 

112.91 

  

 116.00 

 

107.44 

Total AAS  312.73 445.64 427.96 689.81  636.99 712.65 
esessential amino acids. 

 
Asn formed the highest portion on total amounts of free AAS in control and drought stressed tubers (Table 4), 
followed by glutamine (gln) and glutamic acid (glu), as a precursor for the synthesis of proline, a protectant against 
dehydration damage (Heldt, 2003). In tubers of St 89403, the last three AAS plus aspartic acid (asp) accounted on 
average for 63.6 (control) and 66.0% (drought stressed) on total AAS. In St 3792, the latter reached a portion of 
69.7 and 71.7% and in cv. Agave, they accounted for 68.0 and 72.6% of total AAS. The amino acid contents of the 
present study were in a good agreement with those of other reports (Davies, 1977; Synge, 1977), and also the 
prominence of asn, gln, glu and asp concurred with published results (Galdón et al., 2010). Moreover it should be 
mentioned, that total amounts of these four AAS were higher in drought stressed tubers than in control tubers of all 
three genotypes, i.e. they were enhanced on average by 47.7% (St 89403), 66.0% (St 3792) and 19.4% (cv. Agave), 
respectively.  

In addition, it should be mentioned that the highest concentration of essential AAS was found in control tubers of 
cv. Agave, followed by drought stressed tubers of St 3792 (Table 4). St 3792, again, showed a clear enhancement 
of essential AAS (+47.0%) by drought stress, a tendency that was observed less for the other genotypes. Amino 
acids are basic elements for the protein biosynthesis. Moreover, they are involved in metabolic reactions and serve 
as synaptic transmitter (Fonnum, 1984; Millward, 1999; Oldendorf, 1971; Hawkins et al., 2006). Apart from their 
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health value, most amino acids have taste qualities and directly contribute to the flavour of foods, above all 
glutamic acid is known for its flavour enhancing capacity (Kemp & Birch, 1992; Solms, 1969). It was important 
therefore to find out that drought stress had no negative effect on the level of free AAS comprising essential amino 
acids. On the contrary, many of the 18 AAS tested in this work were induced by drought stress, a fact which can be 
seen as an advantage with respect to adaptive responses and tuber quality including the health value. It is argued 
that changes in all these metabolites under drought stress conditions are associated with protecting cellular 
function and can be seen as a part of the adaptive response of plants to survive (Seki et al., 2007).  

3.4 Effect of Wounding Stress on Soluble Proteins 

In control tubers of all genotypes, the amounts of soluble proteins were higher 24 h after wounding, a tendency 
observed in both test years (Table 2). The differences in proteins due to wounding were statistically not significant 
in 2010, but they were significant in 2011 (P < 0.01). The changes in soluble protein contents caused by wounding 
stress concurred with other reports (Mehta et al., 1991; Wegener & Jansen, 2010). Although, within tubers 
imposed to drought stress during growth the effect of wounding stress was generally less evident. Only St 3792 
showed a significant increase (P < 0.05) in proteins after wounding of its drought stressed tubers. In this case, the 
enhancement of proteins by wounding was additive to those generated by drought stress. Furthermore, it should be 
mentioned that the increase in proteins after wounding was smaller on average, e.g. +7.5% in 2010 and +7.4% in 
2011, than those associated with drought stress, e.g. +59.6% in 2010 and +37.3% in 2011. With it, drought stress 
exhibited a stronger inducing effect on the protein levels than wounding stress had (Table 2). It seems thus that the 
tuber proteins are more important for drought stress responses than for wound stress responses of tubers, where 
plant phenols play a decisive role (Lulai & Corsini, 1998). As mentioned already, the tuber protein patatin was 
down regulated after wounding (Logemann et al., 1988). It was not surprising therefore, that soluble proteins 
consisting to a high portion of the glycoprotein patatin were found to be less strongly affected by wounding stress.  

3.5 Correlations Between Parameters 

Significant correlations were discovered between phenols and proteins measured both in fresh and wounded 
control and drought stressed tubers grown in 2010 and 2011, and between the two test years for phenols and 
proteins (Table 5). Significant correlations for the last two parameters could also be detected between control and 
drought stressed tubers as well as between fresh and wounded tubers, in each year (Table 6). Moreover, significant 
correlations (P < 0.01, all) were found for free amino acids between control and drought stressed tubers of the three 
genotypes St 89403 (r = 0.96), St 3792 (r = 0.99) and cv. Agave (r = 0.98).  

4. Conclusions  

The results revealed significant genotypic differences in the phenol and protein content and that drought stress 
leads to significantly higher level of soluble protein and lipid acyl hydrolase activity. Also the total amount of free 
amino acids, above all proline and asparagine was higher in drought stressed tubers than in control tubers. With it, 
the results highlight the role of proteins including lipid acyl hydrolases and free amino acids in adaptive responses 
of potato to drought stress. Wounding stress, on the other side, caused a significant increase of phenols in cv. 
Agave, a tendency which was less prominent in purple breeding clones that in general had higher phenol contents. 
Also proteins were enhanced after wounding, however this was less evident than it was found with drought stress. 
In summary, the results show that each component studied in this work fulfils its specific task within a complex 
network of tissue responses upon various types of environmental stress.  

The fact that the amounts of phytochemicals like soluble phenols, proteins and free AAS including essential amino 
acids were not considerably reduced by drought stress is another important finding, above all with regard to the 
quality, nutritional and health value as well as resistance of potatoes grown under conditions of climate changes 
often associated with water scarcity. On the contrary, total amounts of free AAS and soluble proteins including the 
lipid acyl hydrolases associated with the glycoprotein patatin were increased by drought stress, a fact that can be 
seen as an advantage with regard to adaptive responses and tuber quality including the health value. 
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Table 5. Correlations between proteins and phenols measured in 2010 and 2011, and correlations between the two 
test years for both parameters 

Correlation between Control Drought stress 

Fresh Wounded Fresh Wounded 

Proteins and phenols     

2010 0.86 0.81 0.50ns 0.61 

2011 0.84 0.87 0.67 0.62 

 

2010 and 2011 

    

Proteins 0.93 0.91 0.92 0.94 

Phenols 0.98 0.93 0.95 0.89 

The correlation coefficients that are not marked are statistically significant at P ≤ 0.05; ns, statistically not 
significant (P ≥ 0.05). 

 

Table 6. Correlations between control and drought stressed tubers, and correlations between fresh and wounded 
tubers for phenols and proteins 

 

Parameters 

 

Year 

Correlation between  

control and drought stress 

Correlation between  

fresh and wounded tissue 

Fresh Wounded Control Drought stress 

Phenols 2010 0.96 0.92 0.97 0.98 

 2011 0.99 0.98 0.99 0.99 

 

Proteins 

 

2010 

 

0.78 

 

0.76 

 

0.97 

 

0.98 

 2011 0.96 0.93 0.99 0.99 

The correlation coefficients are all statistically significant at P ≤ 0.05. 
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