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Did technical change in agricultural production decrease the emission of pollutants 

on the Amazon Forest during 1990-2009? 

 

 

ABSTRACT 

 

The Amazon Forest is the largest tropical forest in the world stretching over nine states in northern 

Brazil. Land use in the Amazon Forest has been under discussion due to its direct and indirect 

effects on emission and sequestration of greenhouse gases (GHGs) such as CO2, N2O and CH4. 

Our interest here is to investigate whether technological change in agriculture has resulted in higher 

or lower costs of emissions abatement. We examined a panel of nine states from this region during 

the period 1990-2009, a period of rapid agricultural expansion as well as a series of new 

environmental regulations. The rate of technical change and its biases were estimated using 

stochastic and non-stochastic approaches. Preliminary results indicate a technological progress for 

Brazilian’s Amazon Forest states, which suggests a simultaneously expansion on GDP and 

contracted on CO2e emissions due to technical change. This technical change has been biased 

toward GDP and against emissions, indicating an increase in GDP foregone to achieve a given 

reduction in emissions.  

  

Key words: Amazon forest, Agriculture, Greenhouse gasses and Technical change. 

JEL: Q54, Q55, O13, D24. 

 

 

1. Introduction 

 

The Amazon Forest is the largest tropical forest in the world. Around 60% of Brazil’s area, it 

covers 771 municipios in nine northern states. Its preservation has been the focus of several 

institutions across the world such as REDD+(Reducing Emission from Deforestation and Forest 

Degradation), now the Global Climate Fund, and the United Nations (UN), Conference of Parties 

(COP) as evidenced in COP21 in Paris last November.  



3 

 

One of the reasons land use in the Amazon region have been under scrutiny is the rather 

important impact it has on atmospheric Carbon Dioxide (CO2) cycle. Land clearing for commercial 

agriculture increases pollutants’ emission and decreases their sequestration. Agriculture is the 

main driver of land use change in this region, and responsible for emission of harmful pollutants 

to human health such as Methane (CH4) and Nitrous Oxide (N2O). In 2014, the largest emitters in 

Brazil were the state of Para, followed by the states of Minas Gerais and Mato Grosso (System 

Study Greenhouse Gas Emission Estimates – SEEG, 2015).   

During the last two decades, technical and efficiency improvements have affected agricultural 

production in this area and might have affected emissions too. It would be important to know if 

environmental efficiency has improved or deteriorated. A few studies have looked at technical 

change in Brazilian agriculture (overall) and in particular in this region [Gomes and Braga (2008), 

Bragagnolo et al. (2010), and Rada and Valdes (2012)]. They have found technical progress in 

agriculture. None of the studies have considered pollutants. 

This paper aims at investigating the impact of technical change and emissions in agriculture in 

the Brazilian Amazon states during1990-2009. The objective is to find out if emissions intensity 

has improved or deteriorated as innovations in agriculture have taken place. CO2, CH4 and N2O 

are considered. We are not aware of any other study that investigate the nature of technical change 

in Brazilian agriculture with a focus on the intensity of emissions. We estimate emissions reducing 

technical progress in the states that represent the agricultural frontier, in particular during 2005-

2009.  

Section 2 presents a brief description of the Amazon Forest region and the literature that has 

discussed it. Section 3 illustrates the theoretical framework adopted. It is follow by data description 

and the empirical specification. Section 5 discusses the results. Section 6 concludes.  

 

2. The Amazon Forest Region  

 

Several studies have investigated the relationship between deforestation and agricultural 

production on this region (Cattaneo (2002), Morton et al. (2006), Rivero et al. (2009), Richards et. 

al. (2012), Hargrave and Kis-Kato (2013), Richards et al. (2014), and Araujo et al. (2014)) These 

studies mainly found that livestock and grains production are the major drivers of deforestation.  
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 Few studies focused on CO2 emission from land use in this region aiming to evaluate the role 

of Brazil’s participation in REDD+1. Nepstad et al. (2007) estimated a cost of US$5.5 per ton 

carbon if the forest were conserved over 30 years (a total cost of US$ 257 billion). Boner et al. 

(2010) also found similar results. They conclude that it would be feasible to compensate producers 

given that the converted land in the Amazon has a low return per hectare. Soares-Filho et al. (2006), 

also interested in forest conservation, found that at the 2006 deforestation rate, only 60% of the 

Brazilian Amazon forest would remain by 2050.  

Institutional changes and governmental policies and regulations that affect the rate of 

deforestation have also been the subject of study by Nepstad et al. (2014), Soares-Filho et al. 

(2014), Nepstad et al. (2013), Stickler et al. (2013), Garret et al. (2013) and Gibbs et al. (2015). 

Oliveira (2008), Araujo et al. (2009) and Araujo et al. (2010) investigate the strength and 

characteristics of property rights and found a positive impact of weak property rights on 

deforestation. Villoria et al. (2014) presents a vast literature review on the impacts of technological 

change on deforestation. They point out that the relationship between technical progress and 

deforestation is weak, that global agricultural progress is land saving but that low-yield land 

abundant regions will experience expansion in the future. 

Technical change, or an increase in output per unit of input has been the object of study of 

many authors, among then Solow (1957), and Griliches (1958). A few studies such as Christensen, 

Jorgenson, and Lau (1973), Lim and Shumway (1997), Fulginiti (2010) and Färe and Karagiannis 

(2014) should be highlight by its investigation of the theme and for developing new concepts to 

also analyze agricultural markets.    

Brazilian agriculture has experienced rapid technical progress since the late 70’s (Arnade, 

1992), with different rates across regions. For instance, Bragnolo et al. (2010) found different rates 

of technical progress2 per state for the period from 1975 to 2006, ranging from 10.2% for the state 

of Amazonia to 1.3% for the Federal District (Brasilia), an average of 4.3% for the whole country. 

Rada and Valdes (2012) estimated an annual rate of technical change for livestock of 7.13% and 

for crops of 2.93% during the 1985-2006 period. Helfand et al. (2015) recently have studied the 

impact of farm size on Total Factor Productivity for Brazilian agriculture. They had access to a 

                                                           
1 May et al. (2011) and Heres et al. (2013) also discuss the role of REDD+ policies on Brazil.  
2 Arnade (1992) also shows progressive technical change for Brazil during the period 1968-1987, but with rates lower 
than 1%. In addition, Mendes et al. (2009) estimated the total factor productivity (TFP) for Brazilian agriculture, with 
average rate of 1.03% for the period of 1985-2004. 
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unique dataset which consists of representative farms for three different Agricultural Census 

(1985, 1995/96 and 2005). The authors found a rate of technical change of 5% for Brazil and of 

7.09% for the Northern region, on average.  

Northern Brazil experienced rapid growth of commercial agriculture after the expansion of 

grain and livestock production toward the Central-West region – Mato Grosso – during the 90’s 

(Nepstad et al., 2014). Garret et al. (2013) suggest that this expansion has been a main source of 

deforestation. Total factor productivity growth rates for the Brazilian Amazon region for the period 

1990-2004 were estimated by Gomes and Braga (2008). They found an average growth rate of 

productivity of 2% for the period, with a rate of 2.63% over the 1990-1996 subperiod. They 

estimated an annual rate smaller than 1% before 1995 and higher than 1% after. The authors 

suggested that this increase in growth rate is due to changes in the energy sector impacting 

agriculture and increasing infrastructure in the region.  

 

3. Theoretical framework 

 

The production technology that involves both desirable and undesirable outputs is describe in 

Färe et al. (2005), Cuesta et al. (2009) and Macpherson et al. (2010) and will be summarized here. 

The agriculture production technology uses inputs �� = ����, … , �	�
 	∈ ℜ�	 to develop outputs 

�� = ����, … , ���
 	∈ ℜ�� . Some outputs are desirable �� = ����, … , ���
 	∈ ℜ��, such as the 

agricultural Gross Domestic Product and some undesirable �� = ����, … , 	���
 	∈ ℜ�� , such as CO2, 

CH4 and N2O emissions. The subscript � = �1,2,… , �
 represents the observed unit. The 

production technology is represented in Figure 1, where the output set considered is based on Färe 

et al. (2005).  
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In the Figure 1, the observation J1 jointly produces desirable (y) and undesirable (b) outputs 

given an input set (x). The directional output distance function seeks to maximize the simultaneous 

expansion of y and contraction of b. The distance, also known as the inefficiency, is the distance 

from the frontier (efficient units have a distance equal to zero), given by A – J1. The mathematical 

representation of the directional output distance function is given by   

 

�������, �, �, �; 1,−1
 = !"�#$: &� + $() , � − $(*+	,	-��
. (1) 

 

defines a directional output distance function. -��
 is the output set, () and (* are elements of the 

directional vector ( = �(), −(*
 defined in output space. As in Färe et al. (2005), we assume these 

to be equal to 1 and -1, respectively, representing an increase of desirable outputs and a reduction 

of undesirable outputs that occurs simultaneously and proportionally. We are also interested in 

find out the effect of technical change on the output set, including y and b. Technical change is 

represented by t in equation (1) and it is the difference between the two output sets, B - A. The 

joint-production technology is assumed to be null-joint in desirable and undesirable outputs and 

weakly disposable in both types of outputs. In other words, production of desirable outputs is 

possible only under undesirable outputs generation. The directional output distance function is 

strongly disposable in desirable outputs, non-increasing in desirable outputs, non-decreasing in 

Figure 1: Output Set - P(x), and directional output distance function 
Source: Own elaboration. 
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undesirable outputs, weakly disposable in both desirable and undesirable outputs, and concave in 

both types of outputs (Färe et al. 2005).  

The distance function can be used as measure of efficiency. It takes a value of zero for efficient 

firms, those on the isoquant of the production set. It is greater than zero for the inefficient firms, 

those in the interior of the set. We evaluate the impact of technical change following the strategy 

developed by Färe and Karagiannis (2014). Studies by Weber and Xia (2011) and Badau (2014) 

have applied these concepts. Following Färe and Karagiannis (2014) the total differential of the 

distance function is 

     

−&∇*�����+0(*1$ + &∇)�����+0()1$ + 2�����2� 1� + 2�
����2� 1� = 0 

(2) 

 

Given the definition of technical change  1� = 0, then solving for technical change 

 

4&∇*�����+0(* − &∇)�����+0()5 1$1� = 2�
����2�  

(3) 

 

and using the translation property3 it is possible to obtain the rate of technical change as  

 

1$1� = 2�
����2�  

(4) 

 

Färe and Karagiannis (2014) define technical change as the common number of times the desirable 

output and the undesirable output vectors (() and (*) can be added to the desirable output and 

subtracted from the undesirable output as a result of technological change. In the Figure 1 it is 

represented by the length of the segment AB. Equation (4) is the primal output-based directional 

measure of the rate of technical change. 

                                                           
3Translation property implies that the unit will be more efficient by $ if an increase on desirable output by $ and 
contraction in undesirable output by $ occurs (Färe et al., 2005). Chambers (2002) shows that this can be 

represented as  −&∇*�����+0(* + &∇)�����+0() = −1. 
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We define the Marginal Rate of Transformation (MRT) as the boundary of the production 

possibility set, or output set. In which, following Färe et al. (2005) and using the duality between 

directional distance function and the normalized revenue function,  

 

6��, 7, 8
 = !"�),*97� − 8� ∶ �;��, �, �, �
 ≥ 0	= (5) 

 

where 6��, 7, 8
 refers to the normalized revenue function, and p and q are the desirable and output 

price, respectively. The first order condition is given by 

 

∇*�;��������, �, �; (
�7() + 8(*
 = 8 ≥ 0  
(6) ∇)�;��������, �, �; (
&7() + 8(*+ = −7 ≤ 0  

 

Färe et al. (2005) argues that if the observation is efficient (�;��, �, �, �
 = 0) the shadow price 

ratio (−8 7⁄ ) will be independent of the directional vector. Thus, the ratio of shadow4 prices is 

equal to the boundary of the output set: 

 

8@7A = −B
2�;��, �, �, (
 2�@⁄
2�;��, �, �, (
 2�A⁄ C , ! = 1,… ,D	"E1	F = 1,… , G (7) 

 

where 8@ represents the (shadow) price of undesirable output, 7A represents the known price of 

desirable output, and the right hand side of this expression is the slope of the output set boundary, 

which is known as MRT. The shadow price of the undesirable output is equal to the normalized 

price of the desirable output: 

 

8@ = −7A B 2�;��, �, �, (
 2�@⁄
2�;��, �, �, (
 2�A⁄ C , ! = 1,… ,D	"E1	F = 1,… , G (8) 

 

As the price of the desirable output is a market price, it is used along with the estimated MRT to 

calculate the price of the undesirable output. Equation (8) is interpreted as how much of desirable 

                                                           
4 Shadow because it considers a price vector normalized by the directional vectors and a price of non-market output. 



9 

 

output has to be foregone to decrease one unit of undesirable output. Since, it is a static model, this 

revenue would have to be foregone annually.   

In order to estimate the Hicksian and the Overall Biases of technical change we follow Fulginiti 

(2010) and define Hicksian neutrality as the invariance of the MRT along an expansion path. 

Hicks’ biases are: 

 

HA@��, �, �, �
 ≡ 2 ln&D6LA@+2� 	= 	 2 ln&∇AM����� ∇@M�����N +2� 	,!, F = 1,… ,D,! ≠ F (9) 

 

which, according to Fulginiti (2010), can be interpreted as the relative cost of producing additional 

units of output m (CO2 for example) in terms of units of output j (GDP for example). It measures 

the biases in technical change as a rotation on the Production Possibility Frontier (PPF) in output 

space (Fulginiti, 2010). HA@ > 0 means that technical change is biased towards the production of 

output j relative to output m and  HA@ < 0 indicates the opposite. This bias measure aims to find 

whether the MRTs displayed in Figure 1 are different due to technical change. 

We define the overall bias as in Fulginiti (2010),   

 

HA@��, �, �, �
 ≡ R S@MT
�

@UAV�
HA@��, �, �, �
							, S@MT = �∇@M�����
�@�����  

(10) 

 

where , S@MT  is referred as shadow price of the output j (Fulginiti, 2010). HA@ > 0 means that 

technical change is output-m reducing; HA@ = 0, it means that the technical change was Hicks 

neutral; and HA@ < 0, it means that less input is required to produce output m relative to the other 

outputs (output-m augmenting). 

 

4. Data and empirical estimation 

4.1.Data 

 

Dataset consist of nine states, Amapá, Acre, Amazonas, Mato Grosso, Maranhão, Tocantins, 

Para, Rondônia and Roraima, and 20 years – from 1990 to 2009. We have one desirable output, 
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agricultural Gross Domestic Product, and four undesirable outputs – CO2, CO2equivalent, CH4 

and N2O. 

The agricultural sector has increased considerably in the last 20 years, doubling its Gross 

Domestic Product (GDP). This variable was obtained from the Institute for Applied Economic 

Research (IPEA) website and is illustrated in Figure 2. Mato Grosso’s GDP has increased over the 

period, which indicates an expansion of agriculture to the Central-West region. Additionally, 

Maranhão, Para and Tocantins have also been important agricultural producers. Para’s agricultural 

activities have decreased by more than 60% during the period.   

 

[Figure 2] 

 

We find different measures of emission in the literature. For instance, Aguiar et al. (2012) have 

developed a spatial analysis of emission of CO2, CH4 and N2O at a 25 x 25km2 grid, for a short 

period that has not been aggregated to the state level. The Brazilian Ministry of Science, 

Technology and Innovation (MCTI) has a panel data set available for a longer time series. The 

document 5 classifies emission in raw, removal and net emissions. Only net emissions are available 

in a longer time series at the state level. Since our model is static and considers yearly agricultural 

production and use of inputs, annual raw emissions from agricultural production would be 

preferred. We use the emissions data from the System Study of Greenhouse Gas Emission 

Estimates (SEEG), which uses the MCTI documents (inventories) to estimate the state level raw 

emission of CO2, CO2equivalent, CH4 and N2O, among other gases. Figure 3 illustrates CO2 

emission over the period of study for selected states. 

 

[Figure 3] 

 

The states of Mato Grosso and Para have higher CO2 emissions given the rate of deforestation 

and the importance of agriculture in the region (Figure A1 and A2). These states also have the 

highest level of infrastructure, kilometers of pavement roads, in the region, as seen in Figure A3. 

                                                           
5 Annual Estimates of Greenhouse Gases Emission for Brazil, 2nd edition. 
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Of interest in this study is emissions of CO2equivalent (CO2e GWP6) as it is a measure of joint 

greenhouse gases. Graphically, CO2e and CO2 have the same evolution although the former has 

higher values. CO2e, estimated by SEEG considers ten different gases (CO2, CH4, N20, HFC-125, 

HFC-134a, HFC-143a, HFC-152a, CF4, C2F6, and SF6). 

Emission of CH4 and N2O are from land use change and from agriculture. This includes 

emission from forest fires and agriculture production.  

 

[Figure 4] 

[Figure 5] 

 

After 2001 Mato Grosso has the biggest share of agricultural among the states considered 

(Figure 1) but this leadership also produces two major pollutants, CH4 and N2O, as illustrated in 

Figures (4) and (5). In 2009, Mato Grosso was responsible for 40% of the corn produced on the 

region and more than 90% of soybeans while, in 1990, it produced less than 5% and 35%, 

respectively (Brazilian Institute of Geography and Statistics – IBGE, 2015). Mato Grosso share of 

cattle production did not change over the 20 years, keeping around 35%. Rondônia increased its 

livestock share from 6.5% to 15.4%; Pará kept it constant at 23%, and Maranhão and Tocantins, 

together, lost 10% of their share (IBGE, 2015).   

Galford et al. (2013) points out the fast expansion in corn a soybean in Mato Grosso, also 

allowed by double-cropping, as one of the reasons for the high emission of N2O due to nitrogen 

fertilizer and CO2 from tillage of the soil. MCTI’s inventory indicates manure (residues from 

cattle) as the main direct and indirect source of N2O emission at around 60% of the total emissions 

in 2005. 

Figure (6) and Figure (2A) (appendix) show a link between pollutants’ emission and 

agricultural Gross Domestic Product.  As the agricultural sector expands (contract) emission of 

CH4 and N2O clearly increases (decreases). A clear positive link between CO2 and agricultural 

GDP does not exist after 2005 since deforestation has been decreasing due to institutional policies. 

Nesptad et al. (2014) show evidence of decreasing deforestation (Figure A1) due to law 

enforcement with the creation of Detection of Deforestation in Real Time (DETER) and of the 

                                                           
6 GWP is Global Warming Potential. It considers the influence of gases in changing earth’s energy balance (SEEG, 
2015) 
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Plan for the Protection and Control of Deforestation in the Amazon (PPCDAm), and the 

occurrence of Soy Moratorium in 2006. In fact, although the agricultural sector continues to 

expand after 2004, CO2 emissions start to decrease.  

 

[Figure 6] 

 

We constructed two input variables, labor and capital. The former consists on hired labor at 

agricultural production level, and we obtained at General Record of Employed and Unemployed 

Workers (CAGED, 2012). Figure 7 displays hired labor over the period for selected states. It 

illustrates the increasing importance of Mato Grosso, followed by Pará, Maranhão and Tocantins. 

As mentioned before, the production of grains and livestock increased in these states during this 

period.  

 

[Figure 7] 

 

Pará has shown a sharp decrease on GDP jointly to an increase on hired labor while Mato 

Grosso has shown an increase in both GDP and hired labor. Deforestation, CO2 emissions and 

GDP patterns (displayed on Figure A1, Figure 2 and Figure 3) indicate, for the state of Para for 

example, a dependence of GPD on illegal deforestation. 

Capital is modeled by year and state as agricultural real capital stock using the procedure 

suggested by Mendes et al. (2009) and Gomes and Braga (2008)  

  

W�,M =	 B6WM X Y�-MZ[Y�-M\;\]C � ^
_(`�,M_(`M a 	,											� = 1,… , 9	"E1	� = 1990, . . ,2009; 

(11) 

    

where the subscripts i and t represents state and year (W�,M is the agricultural real capital stock for 

state i in time t), 6WM is the Brazilian real capital stock over the period, Y�-MZ[  is the Brazilian 

agricultural GDP over the period, Y�-M\;\ is the Brazilian total GDP over the period, _(`�,M is the 

land used in agriculture in the state i and year t, and _(`M is the land used in agriculture in Brazil. 

Figure 8 shows the behavior of this variable for selected states.  
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[Figure 8] 

 

Figure 8 shows the relevance of Mato Grosso on the modern agricultural sector in the region. 

A trend was used to capture technical change. We also include fixed effects by state. Table 1 has 

descriptive statistics for all variables. 

 

[Table 1] 

 

4.2.Estimation 

 

Several functional forms have been used to approximate distance functions with undesirable 

outputs such as the translog (Cuesta et al., (2009), Emvalomatis et al. (2011), Lee et al. (2012), 

Bukusheva and Kumbhakar (2014), and Zhou et al. (2015)7). The quadratic flexible functional 

form has alse been used (Färe et al. (2005), Färe et al. (2006), Kumar and Managi (2011), Färe et 

al. (2012), Wei et. al. (2013) and Kumar et al. (2014)) and is preferred over the translog due to the 

additive nature of the directional distance function. We use the quadratic function to approximate 

the directional output distance function we use in this study.  

Following Färe et al (2005) we use a direction vector ( = &() , −(*+ = �1,−1
  representing 

a simultaneous expansion of desirable outputs and contraction of undesirable outputs. Thus, we 

approximate Equation (1) by the quadratic directional distance function 

 

�����,���, �, �; 1, −1
 = 	 γe +Rγfxfh
i

fV�
+ 12RRγfjxfhxjh

i

jV�

i

fV�
+ R βly

n

lV�
 

																																	+	12 R Rβloylhyoh
n

oV�

n

lV�
+ θqbqh + 12RRθqq�′qt�′u�

[

�V�

�

@V�
+RR δflxfh�lh

n

lV�

i

fV�
 

																																		+RRφfqxfh�qh
x

qV�

i

fV�
+ RRμlq�lhbqh

x

qV�

n

lV�
+ z��� + 12z������

+	R z�{xf|�,h��
	��

{V}
+ R ~���lh��

�

AV�
+R�����bqh

�

�V�
, �i = 1,2, … , N
 

(12) 

                                                           
7 Zhou et al. (2014) presents a literature review about estimating shadow prices of undesirable outputs. 
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where ylh is the desirable output represented by agricultural GDP for each state i, time t is not 

represented in this formulation for simplicity, bqh is the undesirable output represented by the 

emissions of CO2, CO2e, CH4, and N2O, and xfh represent the inputs used in production, capital 

and labor. Technical change in this equation is represented by a trend t. Dummies are included to 

account for unobserved characteristics of each state not captured by this model.  

Two theoretical properties were imposed on estimation of Equation (12), the translation 

property and symmetry8,  

 

−y�� 	= γe +Rγfxfh
�

fV�
+ 12RRγfjxfhxjh

�

jV�

�

fV�
+ R θlb′A�

�

lV�
+ 12 R Rθlob′lb′o

�

oV�

�

lV�
+RRφf�xf�′�

�

fV�

�

�V�
+ z��� + 12z������ +	R z�{xf|�,h��

�

{V}
+R�����b′q

�

�V�
+ ,� 

(13) 

 

where γe represents a constant and the state fixed effects. All the variables (y, b, x) were normalized 

by their overall means, and b′A� represent the undesirable output normalized by the output 

translation factor (b′A� = bA� − $), as in equation (1). For equation (13) the agricultural GDP was 

used as the normalizing factor ($), which by the translation property becomes the dependent 

variable. Equation (13) was estimated using a distribution-free approach for the inefficiency term, 

Ordinary Least Squares (OLS) where the inefficiencies are calculated by modifications in the error 

term. This method is known as Corrected OLS (COLS). Kunbhakar et al. (2015) illustrates using 

a deterministic production frontier represented by 

 

�� = ����, �
 − �� ,				�� ≥ 0 (14) 

 

where ����, �
 = ��∗ is the frontier output level, which depends on inputs, ��, and the parameters 

estimated, �, and �� is the production inefficiency. Using a linear functional form, we can re-

arrange equation (14) as 

 

                                                           
8 These properties are described in the equation (18vii) and (18viii). 
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�� = �e + ��0�� − �� 			 (15) 

 

which can be estimated by adding a stochastic error, ��, and using OLS. Since ,� = −�� + �� and 

����
 ≠ 0, the intercept, �e, is biased although the slope coefficients,	��, are not. With the 

coefficients obtained it is possible to estimate the residuals, ,��, by taking the difference between 

observable output, ��, and estimated output, �e + ��0��.  
Technical inefficiencies (distance) can be estimate as in Atkinson et al. (2003) and in Badau 

(2014), recovering the residuals from the OLS regression of equation (13) and performing the 

following estimation    

 

,�� = ����
 + ��			 (16) 

 

where �� is a vector of variables that might affect the residuals such as state level dummies, 

interaction with the trend, and socio-economic variables like roads (in kilometers), legal (juridical) 

expenses, number of conflicts, rate of homicides, and homicides caused by land conflicts; and �� 
is a random error. Equation (16) was estimated using OLS. Technical inefficiency can be captured 

by subtracting the min{,���}9 from the fitted values, ,���   (Badau, 2014).  

 

�������, �, �; 1, −1
 = L��ℎE��"�	�E�������E���� = 	,��� −min	9,���=		 (17) 

 

For cross-sections, the COLS approach has the drawback that the statistical errors from the 

frontier cannot be separated from the inefficiencies (Kumbhakar et al., 2015). A second estimation 

approach was used.  The directional output distance function was also estimated using nonlinear 

programming, following Färe et al. (2005) and Färe et al. (2006).  

 

min	R��������{, �{, �{; 1, −1
�	

{V�
− 0
  

(18) 

                  Subject to   �������{, �{, �{; 1, −1
 ≥ 0, (i)  

                                                           
9 The min{,���} represents the most technical efficient state since �� is the smallest (Badau, 2014). 
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2����������{, �{, �{; 1, −1
 2�⁄ ≥ 0, (ii)  

2����������{, �{, �{; 1, −1
 2�N ≤ 0, (iii)  

2����������{, �{, �{; 1, −1
 2�⁄ ≥ 0, (iv)  

2}�������������{, �{, �{; 1, −1
 2}�N = 2}�������������{, �{, �{; 1, −1
 2}�⁄ ≤ 0, (v)  

�������{, �{, 0; 1, −1
 < 0 (vi)  

�A −R θr
3

�=1
= −1, �AA −R �A��

�V� = 0, 
(vii) 

 

Rθq�
�

uV�
− μmr = 0, R δkmM

m=1 −R φkrR
r=1 = 0,  

θq� = θ�q, αkl = αlk (viii)  

   

where this minimization problem aims to estimate the parameters that minimizes the distance in 

output space of the decision making units (states) from the output isoquant representing technical 

efficient production, subject to a set of constraints. We assume that the output plans are feasible, 

and that the output set satisfies (i) monotonicity with respect to desirable and undesirable outputs 

and in inputs (ii-iv), concavity in desirable and undesirable outputs (v), and null-jointness in 

desirable and undesirable outputs (vi). We also impose the translation property and symmetry (vii-

viii). As in the stochastic estimation described by Equation (13), all variables were normalized by 

their overall mean. 

This method was used mainly to see about robustness of the stochastic estimation. For both 

estimating approaches we obtained the directional distance to the frontier, the rate and biases of 

technical change, and the shadow prices of the undesirables. Technological change is obtained 

using Equation (4) and equation (13) for the stochastic frontier approach10  

 

2�����2� = 	 z1 + z11�� +	R z1£xk−1,i
4

£=2
+R �1�b′r

3

�=1
 (19) 

 

                                                           
10 Its estimation for the non-stochastic approach takes into account all coefficients (including those with respect to the 
desirable output) and since the translation property is imposed directly by the constrain (vii). The directional output 
distance functions represented in Equation (18) considers a quadratic functional form described in Equation (12). 
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This is the Hicks neutral rate of expansion (or contraction) of the production possibility frontier 

(PPF).  Hicksian biases in equation (9) indicate if the slope of the frontier changed as a result of 

technical change while Overall biases in equation (10) indicate if the share of that output has 

changed. Hicksian biases are 

 

H[¥�,¦;}§�Y�-, ¨©}�, �, �
 ≡ ª�1,¦;}§∇����¦;«§ −
�1,¦;}§∇����[¥�¬ � (20) 

 

where by translation property ��,¨©2� = ~�,[¥�, and  ∇����¦;«§ and ∇����[¥� represent the first derivative 

of the directional distance function with respect to the undesirable and desirable outputs, 

respectively.  In addition, 

 

∇����¦;«§ =	θ� + θ����� +Rφf�xfh +
�

qV�
μ���� + �1,¦;}§�� ≥ 0 

(21) 

∇����[¥� =	β� + β��y� +Rδf�xfh
�

fV�
+ μ�b�� + ~1,Y�-�� ≤ 0 

 

by the monotonicity property, i.e. the distance function should increase with undesirable outputs 

and decrease with desirable outputs. These properties will be cheeked after estimation. As an 

example, equation (20) illustrates the pairwise bias of GDP and CO2e. The overall bias can be 

calculated as a weighted sum of the pairwise biases.  

The shadow price is obtained using Equation (8) 

 

8¦;«§ = −7	[¥� Bθ� + θ����� + ∑ φf�xfh +�qV� μ���� + �1,¦;}§��β� + β��y� + ∑ δf�xfh�fV� + μ�b�� + ~1,Y�-�� C,		 (22) 

 

and should be positive. Equation (13) and (16), the stochastic model, is estimated using Stata 14 

while the minimization problem described in Equation (18) is solved using GAMS.    
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5. Results and policy implications 

 

Two approaches were used to estimate a model with one desirable output, GDP, and one 

undesirable output, CO2e. In addition a stochastic approach was used to estimate the output 

directional distance function with three undesirable outputs, CH4, N2O and CO2. The symmetry 

and the translation properties were imposed in all models while monotonicity was checked in the 

stochastic approach and imposed in the non-stochastic approach.11  Table 2 presents the estimation 

results for all three models.  

 

[Table 2] 

 

The distance (technical inefficiency) estimated using Equation (14) and (15) is displayed in 

Figure 812 by state. The average is 0.37, which means that a simultaneously expansion of 

normalized GDP of 37% and a 37% contraction of normalized CO2e is possible by decreasing 

technical inefficiencies. As expected, technical inefficiency decreases when more outputs are 

added to the model. By eliminating technical inefficiency, it is possible, on average, to expand 

normalized GDP by 18% and simultaneously contracts normalized emissions of CO2, CH4 and 

N2O by 18%. Technical efficiency seems to have improved in the region, which results in 

decreases in greenhouses gases emission. 

 

[Figure 08] 

 

Technical change, the objective of this study, can also be seen as responsible for reductions in 

greenhouse gases. For the whole region, technical change over the period (1990-2009) was 0.06513. 

It indicates that normalized GDP is expanded by 6.5% while normalized CO2e is simultaneously 

                                                           
11 For the model with two outputs, 9 GDP predictions and 19 CO2e predictions out of 180 violated the monotonicity. For the 
model with four outputs, monotonicity was violated in 1, 16, 135, and 8 observations out of 180 for GDP, CO2, CH4 and N2O, 
respectively. 
12 It is also in Table 4, but more aggregated. 
13 It is not statistically significant. In Table 3, we display technical change per state, which for a few states it is 
statistically significant.  
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contracted by 6.5% due to innovations. Figure 914 displays the pattern of evolution of technical 

change per state.  

 

[Figure 09] 

 

Figure 9 shows an increase in technical change over the period for some states such as Mato 

Grosso (MT), Para (PA), Tocantins (TO), and Maranhão (MA) as expected, since they form the 

“arc of deforestation” or the agricultural frontier. A few states show a decreases of technical change 

over time – Acre (AC), Amapá (AP), and Roraima (RR). It is interesting to notice a break in the 

evolution of technical change around 2004, when deforestation control policies were introduced. 

A per state and selected periods analysis is performed on Table 3, where it is shown that our 

estimate of technical change is significantly different from zero in some states and sub-periods.  

None of the states show a statistically significant rate of technical progress in the 1990-1995 

years. Some states have significant rates of technical change in the during 1996-2004 and during 

2005-09. Considering only the observations that satisfy output monotonicity15, in the third period, 

states on the agriculture frontier have experienced a statistically significant technical progress16 of 

0.14917. It is consistent with Figures 2 and 3, where MT shows increasing GDP and a decreasing 

CO2 emissions.      

 

[Table 3] 

 

The rate of technical change estimated indicates an upward shift of the production frontier but 

it does not give information about the rotation of the production possibility frontier around the 

directional expansion assumed. This is the change in the MRT between outputs as a result of 

technical change. This information is obtained from the Hicksian pairwise biases estimated, using 

                                                           
14 These graphs should be read with caution since each graph has a different vertical axis. 
15 Preliminary results for technical change considering all observations are shown in Table 3.  
16 Gomes and Braga (2008) found a growth rate for TFP for this region of 7.34% in 2004. Although is a different 
concept, it shed light on these results. Bragagnolo et al. (2010) found a technical change rate on average of 8% for the 
states on agricultural frontier considering the period of 1995-2005 [i.e. PA (8.7%), TO (8.9%), MA (4.9%), MT 
(7.6%)]. Helfand et al. (2015) found a rate of technical change for the north of Brazil of 7.09% using the period 1985-
2006. 
17 This value is affected by outliers related to the state of Para. The average of technical progress for the same period 
for the states of MA, RO and TO were 0.095, 0.053 and 0.092, respectively. 
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Equation (20) and displayed in Table 4. We found a positive sign (H[¥�,¦;}§ > 0) of the pairwise 

bias between GDP and CO2e which suggests that technical progress is biased towards production 

of CO2e emission and against GDP. The shadow price of CO2e in terms of GDP, is also displayed 

in Table 4. Figure 11 illustrates the increasing MRT due to technical progress. There is no need to 

estimate an overall bias for the model with two outputs since it is calculated by the weighted sum 

of pairwise biases.    

 

    [Table 4] 

 

Table 4 shows the pairwise bias between GDP and CO2, CH4, and N2O. Over the period, CO2 

emission become less costly (H[¥�,¦;}§ < 0), as is also reflected in in the shadow price of CO2 

estimated. The overall bias suggests a similar behavior. This suggests that technological progress 

has been biased toward production of GDP and against GHG emissions. 

Results from the programming calculation of the directional distance function are displayed in 

Table 5. We found a higher technical average inefficiency of 0.54, a lower technical progress of 

0.017, and a similar result for the pairwise bias (positive) between GDP and CO2e. Technical 

progress, as in the stochastic estimation, is higher in the states in the agricultural frontier.   

   

    [Table 5] 

 

We obtain an output set for states that are technical efficient in different years using the 

parameters obtained from the minimization problem18 (Equation 16). We followed Färe et al. 

(2005) and use the quadratic formula to obtain the estimated GDP for each unit of CO2e, given 

fixed input quantities. For example, Mato Grosso was technical efficient (����� = 0) in 2009, where 

224432 of capital and 83892 of labor was used. Since technical efficient units are on the boundary 

of the output set, we estimated the GDP that would keep them at the boundary for different values 

of CO2e, given fixed input quantities. Färe et al. (2005) considered undesirable output starting at 

zero units and increasing by 0.25, while we considered starting at zero and increasing by 0.1. We 

performed the same exercise for four years (2009, 2002, 1997, and 1991) and different technical 

                                                           
18 We opted for using the parameter obtained in this method since theoretical properties were imposed. 
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efficient units (MT, TO, AP, and PA). Values for inputs in each case are at the bottom of the Figure 

1119.  

 

[Figure 10] 

 

The output set has an inverted U shape given the concavity property. Technical progress 

expanded the output set across the years and moved it closer to the vertical axis, which means it 

allowed producing more GDP per CO2e (increasing the slope of the boundary). 

Shadow prices are estimated based on the dual relationship between normalized revenue and 

the output distance function. It is in Figure 11 as a tangent line to the boundary of the output set. 

Results for stochastic and non-stochastic models are displayed in Table 4 and 5. On average, the 

shadow price of CO2e in terms of GDP (US$ 45.5520) is higher than the CO2 in terms of GDP 

(US$ 15.78), as expected. For 2006, these values are US$ 25.48 and US$10.71, respectively.  

 

5.1.Policy Implications 

 

Several regulations to decrease deforestation and indirectly GHG emissions have been 

introduced in the last 10 years. Galford et al. (2013) also discuss recommendations on tillage 

practices that would decrease release of CO2 from the soil. Soares-Filho et al. (2014) point out 

modification of the Forest Code in 2012 that lead to the creation of a market mechanisms such as 

the Environment Reserve Cota (CRA). Boner et al. (2010) investigate the viability of applying 

payments for environmental services (PES) through REDD+ and they find that this system would 

not substitute command-control policies that took place several years ago. They argue that PES 

need policies that would support the development of a market mechanism. 

Nonetheless, none of these policies aims to directly correct technical inefficiencies and generate 

technical progress. We have shown that innovations and catching–up to the most efficient units 

could reduce emissions and simultaneously increase output in, especially states on the agriculture 

                                                           
19 As in Färe et al. (2005), the output set was built aiming to show its expansion due to technical change. GDP and 
CO2e quantities are calculated considering the estimated technology (parameters), thus it aims to show the behavior 
of the technology instead of predicting quantities.    
20 A 2006 exchange rate was used to estimate the shadow price – US$ 1 is equivalent to R$ 2.57. 
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frontier. These reductions can be achieved by enhancing infrastructure, credit availability, and 

technical assistance to farmers that adopt ‘clean’ agricultural practice21. It is important to notice 

that Brazil just committed22 in COP 21 (Paris) to reduce greenhouse emissions by 37% (below 

2005 levels) by 2025.       

 

6. Conclusions 

 

This paper evaluates the impact of technical change on agricultural production and greenhouse 

gas emissions in the Amazon Forest region in Brazil during the period 1990-2009. Three quadratic 

directional distance function were estimated by two different approaches – stochastic and non-

stochastic. We present in this paper preliminary results.   

These results indicate technical progress in the region, more important in the states in the ‘arc 

of deforestation’. Maranhão, Roraima and Tocantins have shown a simultaneous expansion of 

normalized GDP of around 8% and contraction of normalized CO2e emission of 8% during the 

period of 2005/2009. The pairwise bias between GDP and CO2e emission suggests an increase in 

emission reduction cost of CO2e in terms of GDP due to technical progress.  

Brazilian government policies have achieved positive results in terms of decreasing 

deforestation and greenhouse emissions. However, policies toward enhancing technical efficiency 

and building a foundation to technical change might have superior results.  
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FIGURES AND TABLES 

 

 

Figure 02 – Agricultural Gross Domestic Product (additional value) for selected states and per 
year  
Source:  Institute for Applied Economic Research (IPEA, 2015). 

 

 

 

Figure 03 – CO2 emission that considers liming for agriculture per states and year  
Source:  SEEG (2015). 
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Figure 04 – CH4 emission that considers liming for agriculture per states and year  
Source:  SEEG (2015). 

 

 

 

Figure 05 – N2O emission that considers liming for agriculture per states and year  
Source:  SEEG (2015). 
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Figure 06 – Agricultural GDP and CO2 emission for Amazon Forest Region per year 
Source: SEEG (2015) and IPEA (2015). 

 

 

 

Figure 07 – Hired workers per year and group of states 
Source: CAGED (2015). 
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Figure 08 – Agricultural real stock of Capital per state and year 
Source: Author using data from (IPEA, 2015). 
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Table 1 – Descriptive statistics for the states in the Legal Amazon, Brazil, 1990-2009 

  AC AM AP MA MT PA RO RR TO LA 

GDP 
(R$1000) 

Mean 240361.3 679453.4 98659.07 1968645 3553266 3970425 1027727 82763.06 657269.6 1364286 

Min 59707.64 274252.7 60588.49 1028790 825142.4 1865078 543351.1 16018.88 265884.7 16018.88 

Max 595177.9 1141058 152749.8 3975933 7878815 9657855 2055593 202201.3 1332287 9657855 

CO2e 
(Mg GWP) 

Mean 32448.94 48522.68 3589.69 111417.7 448270.4 343124.6 148953.5 15771.16 66742.87 135426.8 

Min 13371.31 22491.51 335.97 72354.35 126231.7 229539.5 44986.48 5645.78 43955.18 335.9711 

Max 70782.13 123827 23862.98 169588.7 802101.4 540277.9 280318.9 34037.32 104300.2 802101.4 

CO2 
(Mg) 

Mean 29078.34 44938.75 3048.80 98381.85 399761.1 310930.9 132690.9 14351.21 54796.49 120886.5 

Min 9232.1 20454.34 0 61512.86 78622.16 208966 26662.64 4643.68 30955.9 0 

Max 66780.67 116866.2 22665.63 153914.6 725668.4 490351.4 261514.8 31731.88 91075.52 725668.4 

CH4 
(Mg) 

Mean 127.27 139.01 18.91 291.27 1788.66 1218.36 611.50 52.82 431.28 519.90 

Min 59.56 76.08 10.92 230.76 821.10 761.61 261.43 35.04 285.24 10.92 

Max 219.06 286.89 48.96 385.63 2861.41 1915.61 981.47 90.50 537.03 2861.41 

N2O 
(Mg) 

Mean 2.25 2.14 0.46 10.42 35.31 21.31 11.03 1.00 9.32 10.36 

Min 0.99 1.42 0.28 8.59 15.84 14.77 4.32 0.84 6.70 0.28 

Max 3.54 3.02 0.62 13.21 52.72 31.28 17.43 1.30 11.63 52.72 

Capital 
(Units) 

Mean 14481.05 15231.55 3391.60 53903.46 197270.9 93692.49 34140.38 9464.64 64858.46 54048.28 

Min 10739.03 11199.43 2427.03 41600.93 161782.7 73614.52 28459.13 6175.09 51922.75 2427.03 

Max 21733.69 22976.15 4821.86 81445.72 295679.9 142877.2 51678.29 17500.38 105233.3 295679.9 

Labor 
(Sum of 

employee) 

Mean 1611.9 1462.7 461.3 7570.7 38309.6 18549.4 3883.15 402.8 6480.95 8748.06 

Min 179 313 39 1873 8185 6882 412 24 927 24 

Max 2928 2938 1290 17624 83892 39013 9948 1225 14235 83892 

Source: Own elaboration 



 

 

Table 2 – COLS parameter estimates for ����� in 9 states of the Legal Amazon, Brazil, 1990-2009 

 
COLS 

(GDP & CO2e) 

Nonlinear 
Programming 
(GDP & CO2e) 

COLS 
(4 outputs) 

GDP -0.389*** 0.0001 -0.066 
GDP square  -0.091*** -0.0141 0.072 
CO2e square -0.091*** -0.0141 - 
GDP*CO2e -0.091*** -0.0141 - 
GDP*Capital  -0.056 0.0052 -0.016 
CO2e*Capital -0.056 0.0052 - 
GDP*Labor -0.08 0.0014 0.037 
CO2e*Labor -0.08 0.0014 - 
CO2e 0.611*** 1.0001 - 
CO2 - - 0.753*** 
CO2 square - - -0.5937** 
CH4 - - -0.976 
CH4 square - - -2.459** 
N2O - - 1.156** 
N2O Square - - -1.091 
Labor -1.37*** -0.2426 -0.698*** 
Labor square -0.076 -0.005 0.022** 
Capital -0.119 -0.1349 -0.347** 
Capital square 0.037 -0.0319 0.227*** 
Capital*Labor -0.11* 0.0111 -0.057* 
CO2*Capital - - -0.353*** 
CO2*Labor - - 0.039 
CH4*Capital - - 0.696** 
CH4*Labor - - -0.067 
N2O*Capital - - -0.359* 
N2O*Labor - - 0.064 
CO2*N2O - - -0.366 
CO2*CH4 - - 1.031** 
N2O*CH4 - - 1.399 
GDP*N2O - - 0.072 
GDP*CH4 - - -0.0581 
GDP*CO2 - - -0.028 
Trend 0.005 -0.0006 0.0061 
Trend square -0.001 -0.00003 -0.0007 
Trend*Capital -0.021 0.0064 -0.031*** 
Trend*Labor 0.09*** 0.0118 0.029*** 
Trend*GDP 0.025*** 0.00003 -0.0054 
Trend*CO2e  0.025*** 0.00003 - 
Trend*CO2 - - -0.024* 
Trend*CH4 - - -0.011 
Trend*N2O - - -0.03 
Constant 1.35** -0.822 -0.618 
State Fix Effects Yes Yes Yes 

Note: *** for p-value bigger than 0.01, ** bigger than 0.05, and * bigger than 0.1. 
Source: own elaboration. 

 



 

 

 

Figure 09 – Distance (Technical inefficiencies) 
Source: Own elaboration. 
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Figure 10 – Technical Change (Equation 5) 
Note: Vertical axis changes given different pattern of technical change across states. 
Source: Own elaboration.
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Table 3 – Technical change per state and selected periods using COLS for the model with GDP and CO2e 

  States  

Periods  AC AP AM MA MT PA RO RR TO Total 

1990/95 
TC 0.007 0.001 -0.002 0.010 0.100 -0.003 0.011 0.000 -0.008 0.013 

p-value 0.666 0.864 0.567 0.655 0.159 0.592 0.611 0.897 0.601 0.624 

1996/04 
TC 0.008 -0.007 0.001 0.022 0.345 0.124 0.029 -0.007 0.035 0.061 

p-value 0.315 0.319 0.703 0.159 0.000 0.000 0.016 0.326 0.024 0.207 

2005/09 
TC 0.001 -0.009 -0.004 0.095 0.623 0.357 0.053 -0.008 0.093 0.133 

p-value 0.861 0.539 0.811 0.000 0.000 0.000 0.011 0.565 0.000 0.310 

Total 
TC 0.006 -0.005 -0.001 0.037 0.341 0.144 0.029 -0.005 0.037 0.065 

p-value 0.557 0.537 0.689 0.268 0.048 0.178 0.193 0.557 0.191 0.358 

Source: Own elaboration. 



 

 

 

Table 4 – Main results obtained using COLS on the �����  

Period 
Distance 

(GDP & CO2e) 
Distance 

(4 outputs) 

Bias ®¯°±,²³´µ¶  

Bias ®¯°±,²³´¶  

Bias ®¯°±,²·¸¶  

Bias ®¯°±,¹´º¶  

Overall  
Bias 
For 

GDP 

Shadow Price 
of CO2e (US$) 

Shadow Price 
of CO2 (US$) 

1990/95 
0.3828 
(0.068) 

0.1816 
(0.073) 

0.531 
(0.191) 

-0.609 
(0.244) 

-0.242 
(0.226) 

0.143 
(0.259) 

0.036 
(0.172) 

5.34 25.37 

1996/04 
0.395 

(0.066) 
0.1981 
(0.039) 

3.667 
(1.316) 

-2.511 
(1.223) 

-1.312 
(1.898) 

-0.121 
(0.265) 

 

-3.88 
(0.58) 

16.32 13.34 

2005/09 
0.346 

(0.108) 
0.1805 
(0.074) 

20.273 
(7.276) 

-2.418 
(1.112) 

-3.551 
(7.594) 

-0.116 
(0.342) 

-2.09 
(1.69) 

176.32 9.55 

Overall 
0.373 

(0.081) 
0.1887 
(0.061) 

6.084 
(2.184) 

-1.953 
(0.913) 

-1.157 
(2.01) 

-0.045 
(0.282) 

-2.261 
(0.739) 

45.55 15.78 

Note: Standard errors in the parentheses. 
Source: Own elaboration. 



 

 

Table 5 – Main results obtained using Nonlinear Programming on the �����  

State/Period Distance 
Technical 

Change (TC) 
TC 

 (x 100) 

Bias ®¯°±,²³´µ¶  
Shadow 

Price (US$) 

RO 0.79957 0.00844 0.84 0.01409 181.26 

AC 0.13655 0.00300 0.30 0.09170 1438.01 

AM 0.23616 0.00290 0.29 0.03371 430.26 

RR 0.08011 0.00077 0.08 0.82062 16601.84 

PA 1.15033 0.03539 3.54 0.00626 58.51 

AP 0.02546 0.00013 0.01 1.13265 11985.88 

TO 0.08154 0.01556 1.56 0.05336 801.59 

MA 0.34839 0.01577 1.58 0.01229 157.59 

MT 2.03137 0.07433 7.43 0.00561 79.94 

1990/95 0.41589 0.12963 12.96 0.22859 6152.79 

1996/04 0.67768 0.03704 3.70 0.20076 2321.42 

2005/09 0.45422 0.06667 6.67 0.29504 2095.52 

LA Region 0.54338 0.01747 1.74 0.23288 3405.12 

Source: Own elaboration. 



 

 

Figure 11 – Output set [P(x)] for selected efficient states in 1991, 1997, 2002 and 2009 
Note: Capital and labor used to build the output set was 224432 and 83892 for 2009, 3088 and 261 for 2002m 54547 
and 4422 for 1997, and 116594 and 8999 for 1991. 
Source: Own elaboration. 

APPENDIX A 

 

Figure A1: Amazon deforestation (in km2) per state during the period 1990-2014. 
Source: PRODES-INPE (2014). 
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Figure A2: Deforestation in 2006 and until 2006 (in km2). 
Source: PRODES-INPE (2014). 
 

 

Figure A3 – Roads (km) per selected state and year 
Source:  
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Figure A4 – Agricultural GDP, CH4 and N2O emission for Amazon Forest Region per year 
Source: SEEG (2015) and IPEA (2015). 

 

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

180.00

200.00

0.00

1000.00

2000.00

3000.00

4000.00

5000.00

6000.00

7000.00

8000.00

1
9

9
0

1
9

9
1

1
9

9
2

1
9

9
3

1
9

9
4

1
9

9
5

1
9

9
6

1
9

9
7

1
9

9
8

1
9

9
9

2
0

0
0

2
0

0
1

2
0

0
2

2
0

0
3

2
0

0
4

2
0

0
5

2
0

0
6

2
0

0
7

2
0

0
8

2
0

0
9

R
$

/N
2

O
(G

g
)

T
g

CH4(Gg) N2O(Gg) GDP (R$ million)


