

The World's Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from **AgEcon Search** may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

Economic Threshold for Dynamically Optimal Late Blight Management

Yangxuan Liu Department of Agricultural Economics, Purdue University

Michael Langemeier Department of Agricultural Economics, Purdue University

Benjamin Gramig
Department of Agricultural Economics, Purdue University

Paul Preckel Department of Agricultural Economics, Purdue University

Ian Small
Department of Plant Pathology and Plant-Microbe Biology, Cornell University

Laura Joseph
Department of Plant Pathology and Plant-Microbe Biology, Cornell University

William Fry
Department of Plant Pathology and Plant-Microbe Biology, Cornell University

Selected Paper prepared for presentation at the Southern Agricultural Economics Association (SAEA) Annual Meeting, San Antonio, Texas, February 6-9, 2016.

Copyright 2016 by Yangxuan Liu, Michael Langemeier, Benjamin Gramig, Paul Preckel Ian Small, Laura Joseph, and William Fry. All rights reserved. Readers may make verbatim copies of this document for non-commercial purposes by any means, provided this copyright notice appears on all such copies.

Economic Threshold for Dynamically Optimal Late Blight Management

Abstract

This study evaluates economic thresholds for a new web-based decision support system

developed for precision fungicide management for potato production. We extend previous work

(Zhang and Swinton, 2009), by developing an intra-seasonal dynamic economic optimization

model. This model allows us to evaluate economic thresholds for disease control. The

suggested model is applied to the problem of controlling potato late blight disease in 152

locations for 5 major potato producing states in the United States. The empirical results show

that the economic thresholds improved disease suppression and farming profit relative to the

previous critical thresholds while maintaining fungicide use efficiency.

Key Words: Economic threshold, stochastic optimization, precision farming, disease

management, late blight

2

Introduction

Potatoes are the fourth largest world crop, surpassed only by wheat, rice, and corn. Of all potato diseases, late blight is debatably the most economically damaging pathogen for potatoes and creates a persistent risk to potato production. Historically, late blight brought devastating epidemics and led to the Irish potato famine in 1845 (Stevens 1933; Bourke 1993; Fry and Goodwin 1997b; Wale, Platt, and Nigel 2008). In the U.S., the annual cost of late blight is estimated to be \$287.8 million, of which fungicide cost consists of a substantial proportion (Guenthner, Michael, and Nolte 2001). The most prevalent means of late blight control in modern agriculture is the preventive use of fungicide. However, fungicide use remains a source of much debate concerning environmental pollution and food safety issues. In addition, the use of fungicides raises the cost of farming and can simultaneously lead to the emergence of more virulent late blight strains with high fungicide resistance (Fry, Bruck, and Mundt 1979; Deahl et al. 1991; Deahl, Inglis, and Demuth 1993; Goodwin, Sujkowski, and Fry 1996).

An alternative method of late blight control relies on the use of precision farming technology, named BlightPro decision support system (DSS) (Small, Joseph, and Fry 2015a). It uses precision farming technology to recommend precise and timely fungicide application in accordance with weather conditions and pathogen inoculum. This system could potentially improve potato farming efficiency, increase farm profits, and reduce risks and the environmental impact compared to a convential fungicide application schedule (Fohner, Fry, and White 1984; Liu et al. 2015).

The efficacy of DSS in disease surpression and fungicide reduction has been the topic of much discussion and past biology and pathology research (Fry, Apple, and Bruhn 1983; Fohner, Fry, and White 1984; Small, Joseph, and Fry 2015b). Economic research in the area of late

blight management is limited (Johnson et al. 1997; Guenthner, Michael, and Nolte 2001; Liu et al. 2015). Liu et al. (2015) identified risk-efficient strategies between the DSS recommended spray schedule and a calendar spray schedule and evaluated the economic benefits of scheduling fungicide applications with DSS. However, the version of DSS evaluated by Liu et al. (2015) schedules fungicide application according to disease supression. The system neglects the economic cost and benefit of additional application in control of the disease and thus the recommended fungicide applications may not be economically optimal.

This paper evaluates the use of economic thresholds in the late blight decision support system. In this study, we introduce economic aspects into the current DSS model. Specifically, an intra-seasonal dynamic economic optimization model is developed as guidance for further improvement of the current DSS. This model allow us to evaluate different thresholds to obtain the optimal economic threshold for disease control. The model also incorporates economic considerations as well as disease control with respect to local weather.

BlightPro Decision Support System

Late blight diseases pose a special challenge for potato growers in humid (Olanya et al. 2007) and cool (16-21 °C) climates (Wallin 1962; Krause, Massie, and Hyre 1975). For infected farms, late blight can destroy substantial portions of the crop rapidly and result in significant economic losses for growers (Fry and Goodwin 1997). If not controlled properly, the disease has the potential to completely destroy the entire field within 2-3 weeks after the first visible symptoms show on the leaves (Johnson 2008). The complexity in decision making for disease management creates an opportunity for precision farming technology to provide scientific-based information as a guidance in decision making.

BlightPro DSS is an internet based platform and has been available through USAblight website (www.usablight.org and http://blight.eas.cornell.edu/blight/). It is developed to increase the in-season precision of fungicide application to assist producers in the United States to optimize the timing of fungicide application and to manage weather- and climate-related risks (Small, Joseph, and Fry 2015a). DSS links several models into a system that enables predictions of disease dynamics based on weather conditions, host resistance, pathogen inoculum, and fungicide. Based on work by Krause, Massie, and Hyre (1975), Fry, Apple, and Bruhn (1983), and Andrade-Piedra, Hijmans, Forbes, et al. (2005), DSS processes location-specific weather information along with crop and management information to predict disease-conductive conditions and generate lociation-specific management recommendations for fungicide application. DSS includes an integrated alert system, which issues notifications concerning upcoming critical thresholds for intervetion (fungicide applications) when conditions for disease development are favorable via e-mail and/or text message. The primary objective of the DSS is to to utilize location-spefic weather data to drive disease forecast for late blight, and provide realtime support for late blight management in the USA (Small, Joseph, and Fry 2015a).

Figure 1 illustrates the method of application for the DSS-recommended spray schedule. The timing of the fungicide application for the DSS-recommended spray schedule is based on wet period duration and average temperature during each wet period, as well as daily precipitation/irrigation (Small, Joseph, and Fry 2015a). Three major systems are enbedded into DSS (Small, Joseph, and Fry 2015a), including late blight disese simulator system, and two late blight forecasting systems: Blitecast and Simcast (Figure 2). Using the Blitecast forecasting system (Krause, Massie, and Hyre 1975), a user might schedule his/her initial fungicide application based on the accumulation of a Blitecast severity value of 18. Then, the user can

swith to Simcast to schedule subsequenct fungicide applications using Simcast thresholds. Simcast integrates the effect of host resistance, prevailing weather on late blight progress, and prevailing weather on fungicide application (Fry, Apple, and Bruhn 1983). The Simcast forecast system functions by calculating blight units and fungicide units, which reflect the influence of prevailing weather on the disease and fungicide residue, respectively (Fry, Apple, and Bruhn 1983). If the daily accumulated blight units or fungicide units reach a critical threshold a fungicide application is recommended to the user.

The current version of DSS schedules fungicide application according to disease suppression. Simcast thresholds (Blight Unit and Fungicide Unit) were established based on field experiemnts (Small, Joseph, and Fry 2015a). Under some circumstances, results with the DSS schedules for moderately susceptible crops did not achieve sufficient disease suppression (Small, Joseph, and Fry 2015b). Moreover, the system neglects the economic cost and benefit of additional application in control of the disease. Thus, the current Blight Unit and Fungicide Unit thresholds in Simcast system may not be economically optimal (see Table 1 for current thresholds). This paper evaluates the use of economic thresholds in the late blight decision support system. In this study, we introduce an intra-seasonal dynamic economic optimization model as guidance for further improvement of the current DSS. This model allows us to evaluate different Blight Unit and Fungicide Unit thresholds in the Simcast system to obtain the optimal economic threshold for disease control.

Methods

Zhang and Swinton (2009) use the control path method to develop a deterministic dynamic decision model for soybean aphids. They derived the Natural Enemy-adjusted Economic Threshold (NEET) model for spraying insecticide and tried to solve the individual farmer's profit maximization problem in a single year. Compared with dynamic pest control, dynamic optimal disease control is more challenging due to disease proliferation.

We extend Zhang and Swinton's (2009) optimal pest control model to a dynamic optimal disease model for late blight control. To better fit the growers' decision making process, the new objective function of net income over fungicide cost for the grower is introduced. This will improve the fungicide spray recommendation based on economic factors instead of disease suppression.

Our dynamic optimal disease model integrates different models covering DSS, pathology models, and economic components. We use the threshold of DSS Simcast System (blight units and fungicide units), the LATEBLIGHT simulation model (Andrade-Piedra, Hijmans, Juarez, et al. 2005), and the yield model (Shtienberg et al. 1990) to construct an economically optimal path for fungicide application. This path is achieved by selecting the largest net income (revenue of potato minus the cost of fungicide application) of simulated critical threshold combinations as a guidance for fungicide application decisions in different years. Weather plays a significant role in determining potato late blight disease and potato yield. The model used in this paper not only considers the dynamic decision making process, but also considers the influence of weather on late blight disease incidence and severity, and potato yield.

We estimate the base parameters of the proposed model using computer simulation programs for various critical threshold combinations. Computer simulations were generated at

Fry Lab at Cornell University, using 10 years of meteorological data (2005-2014), obtained from the Northeast Regional Climate Center. 152 locations were examined, in 5 major potato producing states (Maine, Massachusetts, New York, North Dakota, and Wisconsin). Only locations and years with less than 2% missing weather data between the date of emergence and vine kill were used. This criterion resulted in 919 environments with suitable weather data. The simulation experiments were generated for three levels of disease resistant potato cultivars: susceptible, moderately susceptible, and moderately resistant cultivars. The simulations started 6 days after the Blitecast threshold reached a severity value of 18.

Figure 3 shows the simulation process for 152 locations from 2005 to 2014. We investigated different combinations of blight unit and fungicide unit critical thresholds in order to select the optimal combination. The number of combinations of thresholds for susceptible, moderately susceptible, and moderately resistant were 208, 176, and 30 respectively. The optimal combination was selected based on the average AUDPC, fungicide use efficiency, and net income for the threshold combination over 10 years and 152 locations. Simulations were also generated for two additional methods of fungicide application throughout production season: the calendar based (the 7-day spray schedule) method and a control (no fungicide application). In total, 388,764 simulations (919 environment × three resistant levels × three method of fungicide application) were used to compare the DSS recommended spray schedule with the traditional calendar spray schedule.

The following common parameters were used for each season: the length of the season was 110 days, the disease epidemic was initiated with 0.001% disease severity (one lesion per 10 plants), and the protectant fungicide chlorothalonil was applied at a rate of 1.5 pints per acre per application (equivalent to 1.34 kg a.i./ha). Potato prices and yields for each state were obtained

from the USDA Potatoes Annual Summary. Average yield and price were assumed to be the same among different cultivar resistance levels. Bravo WeatherStik (chlorothalonil) was used for each fungicide application. Application costs are listed in Table 2.

We have limited our study to rain fed regions and temperate climates in which the cold winter eliminates host plants between growing seasons (Small, Joseph, and Fry 2015b). All diseases other than late blight and the effects of pests, weeds, nutrients, and heat or frost shock were not modelled and assumed to be non-limiting. Growers are also assumed to be willing to follow spray schedules recommended by the DSS, and to be able to initiate fungicide applications based on the DSS-recommended spray schedule. We did not attempt to estimate the loss due to tuber infections, only yield loss was considered.

Results

Susceptible Cultivars

Table 3, Table 4, and Table 5 report the average disease severity (AUDPC), fungicide efficiency, and net income for susceptible cultivar. We investigated 208 different combinations of blight unit and fungicide unit critical thresholds in order to select the optimal combination. Average AUDPC ranges from 61 to 1774 and average AUDPC for previous threshold (30 Blight Unit and -15 Fungicide Unit) in the system is 339. The best disease suppression threshold is achieved at 25 Blight Unit and -13 Fungicide Unit. Average fungicide use efficiency ranges from 6.3 to 7.6 and average fungicide use efficiency for previous threshold in the system is 7.1. The best fungicide use efficiency threshold is achieved at 40 Blight Unit and -16 Fungicide Unit. Average net income ranges from \$3,053/Acre to \$3,170/Acre and average net income for

previous threshold in the system is \$3,158. The best net income threshold is achieved at 40 Blight Unit and -13 Fungicide Unit.

The optimal thresholds combination was selected based on the average AUDPC, fungicide use efficiency and net income. We constructed contour graphs of average AUDPC (Figure 4) average fungicide use efficiency (Figure 5) and net income (Figure 6) in order to determine the blight unit and fungicide unit combination that resulted in a lower AUDPC while maintaining fungicide use efficiency and net income, relative to the results for the previous critical thresholds. The new optimal combination of critical thresholds we selected for susceptible cultivar is 40 blight units and -13 fungicide units. This modification improved disease suppression by 15% relative to the previous critical thresholds and the fungicide use efficiency improved by 7%.

Moderately Susceptible Cultivars

Table 6, Table 7, and Table 8 reports the average disease severity (AUDPC), fungicide efficiency, and net income for moderately susceptible cultivar. We investigated 176 different combinations of blight unit and fungicide unit critical thresholds in order to select the optimal combination. Average AUDPC ranges from 142 to 1847 and average AUDPC for previous threshold (35 Blight Unit and -20 Fungicide Unit) in the system is 1035. The best disease suppression threshold achieve at 25 Blight Unit and -15 Fungicide Unit. Average fungicide use efficiency ranges from 7.7 to 8.9 and average fungicide use efficiency for previous threshold in the system is 8.8. The best fungicide use efficiency threshold is achieved at 40 Blight Unit and -17 Fungicide Unit. Average net income from \$3,090/Acre to \$3,199/Acre and average net income for previous threshold in the system is \$3,166/Acre. The best net income threshold achieve at 40 Blight Unit and -15 Fungicide Unit.

The optimal thresholds combination was selected based on the average AUDPC, fungicide use efficiency and net income. We constructed contour graphs of average AUDPC (Figure 7) average fungicide use efficiency (Figure 8) and net income (Figure 9) in order to determine the blight unit and fungicide unit combination that resulted in a lower AUDPC while maintaining fungicide use efficiency and net income, relative to the results for the previous critical thresholds. The new optimal combination of critical thresholds we selected for moderately susceptible cultivar is 40 blight units and -16 fungicide units. This modification improved disease suppression by 49% relative to the previous critical thresholds while the fungicide use efficiency was maintained.

Moderately Resistant Cultivars

Table 9, Table 10, and Table 11 reports the average disease severity (AUDPC), fungicide efficiency, and net income for moderately resistant cultivar. We investigated 30 different combinations of blight unit and fungicide unit critical thresholds in order to select the optimal combination. Average AUDPC ranges from 114 to 323 and average AUDPC for previous threshold (40 Blight Unit and -25 Fungicide Unit) in the system is 178. The best disease suppression threshold is achieved at 39 Blight Unit and -23 Fungicide Unit. Average fungicide use efficiency ranges from 12.6 to 13.5, and average fungicide use efficiency for previous threshold in the system is 13.2. The best fungicide use efficiency threshold is achieved at 43 Blight Unit and – 28 Fungicide Unit. Average net income from \$3,259/Acre to \$3,269/Acre and average net income for previous threshold in the system is \$3,264/Acre. The best net income threshold is achieved at 43 Blight Unit and -28 Fungicide Unit.

The optimal thresholds combination was selected based on the average AUDPC, fungicide use efficiency and net income. We constructed contour graphs of average AUDPC

(Figure 10) average fungicide use efficiency (Figure 11) and net income (Figure 12) in order to determine the blight unit and fungicide unit combination that resulted in a lower AUDPC while maintaining fungicide use efficiency and net income, relative to the results for the previous critical thresholds. We cannot select a new optimal combination of critical thresholds which can resulted in a lower AUDPC while maintaining fungicide use efficiency and net income, relative to the results for the previous critical thresholds. Thus, the previous critical thresholds is already at its optimum.

Summary and Conclusion

This study evaluates the economic thresholds in the late blight decision support system. We introduced an intra-seasonal dynamic economic optimization model as guidance for further improvement of the current DSS. This model allow us to evaluate different combinations of thresholds to obtain the optimal economic thresholds for disease control. Results have been generated using 10 years of historical weather conditions (2005-2014) in 152 locations (5 states including: MA, ME, ND, NY, WI). Three potato cultivar resistance levels for late blight (susceptible, moderately susceptible and moderately resistant) are under study.

The new optimal combination of critical thresholds we selected are 40 blight units and -13 fungicide units for susceptible cultivar, 40 blight units and -16 fungicide units for moderately susceptible cultivar, and the previous critical thresholds for moderately resistant cultivars (40 Blight Unit and -25 Fungicide Unit) is already at its optimum. These modifications improved disease suppression by 15% relative to the previous critical thresholds and the fungicide use efficiency improved by 7% for susceptible cultivars. These modifications also improved disease

suppression by 49% relative to the previous critical thresholds while the fungicide use efficiency was maintained for moderately susceptible cultivars.

Future research will compare and optimize the net income value under each of the 919 environments with different combinations of thresholds. Only the thresholds which achieve the highest net income will be picked for each of the 919 environments. Distribution of the optimal combination of thresholds will be generated as a guidance to select the best optimal combination of thresholds to further imporve the DSS. Precision farming technology is critical to increasing agricultural efficiency and productivity. Our research improves the current precision farming technology in order to achieve higher efficiency in agriculture production. Incorporating economic thresholds into the DSS will help improve late blight management actions taken by potato growers to control the spread of the disease and limit potential loss.

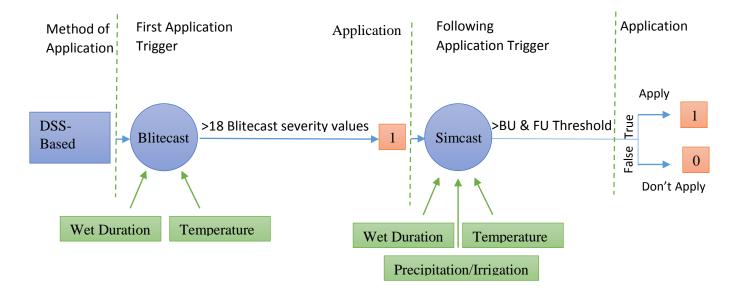


Figure 1. The method of application of the DSS-recommended spray schedule. The Blitecast system report daily severity values, which are calculated based on web period duration and average temperature during each wet period. The Simcast report Blight Unit and Fungicide Unit threshold, which are calculated based on wet period duration and average temperature during each wet period, as well as daily precipitation/irrigation.

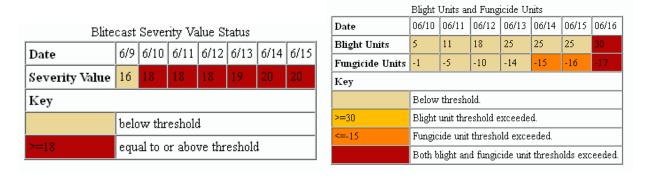


Figure 2. Disease forecast reports, Blitecast Summary (left), Simcast Summary (right).

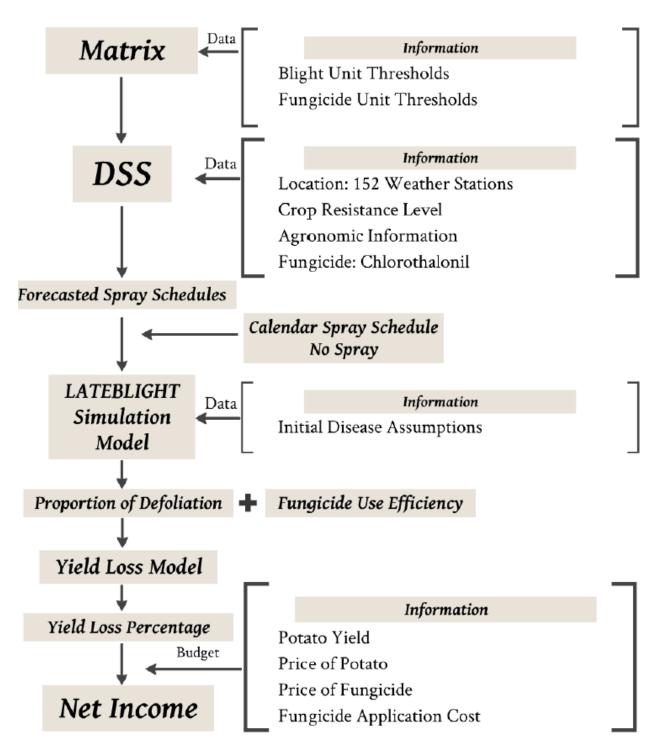


Figure 3. Simulation process for 152 locations from 2005 to 2014. The simulation experiments were generated for three level of disease resistant potato cultivars: susceptible, moderately susceptible, and moderately resistant cultivars.

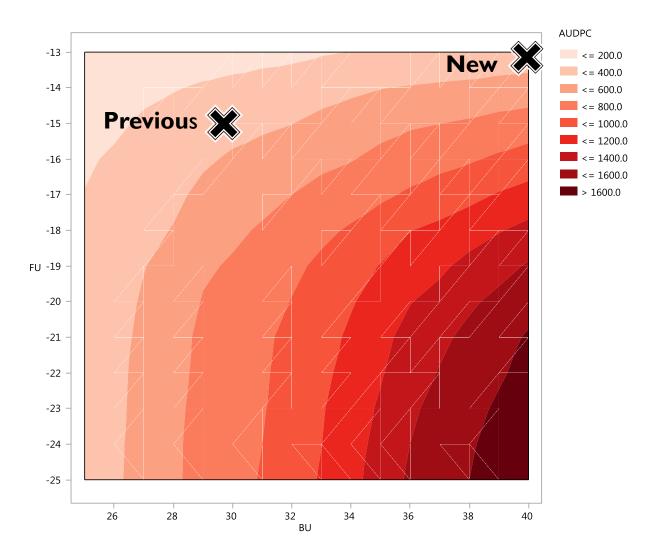


Figure 4. Contour plot of Area Under Disease Progress Curve (AUDPC) for combinations of critical blight unit and fungicide unit thresholds for susceptible cultivars. The X indicates either the previous combination of critical thresholds or the new combination of critical thresholds.

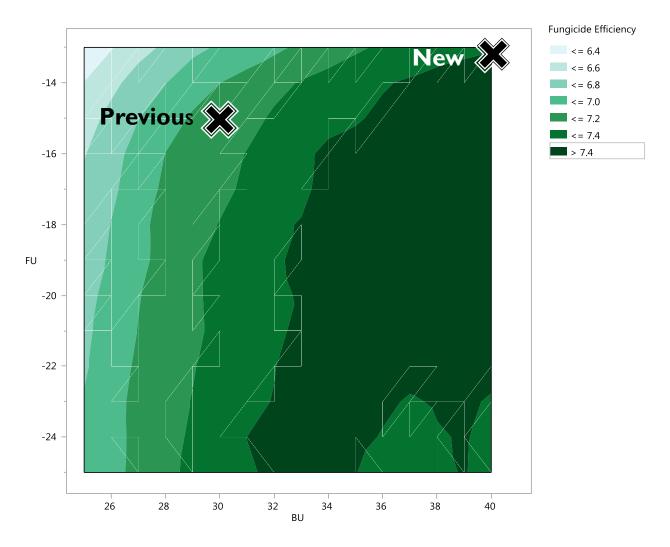


Figure 5. Contour plot of fungicide use efficiency for combinations of critical blight unit and fungicide unit thresholds for susceptible cultivars. The X indicates either the previous combination of critical thresholds or the new combination of critical thresholds.

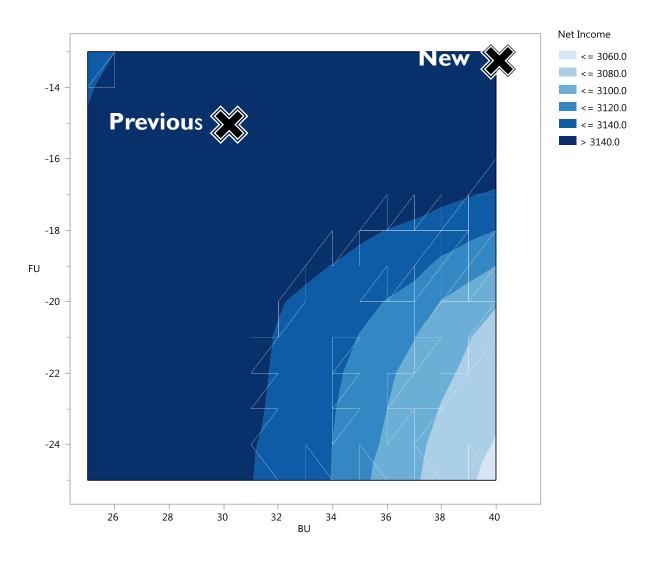


Figure 6. Contour plot of net income for combinations of critical blight unit and fungicide unit thresholds for susceptible cultivars. The X indicates either the previous combination of critical thresholds or the new combination of critical thresholds.

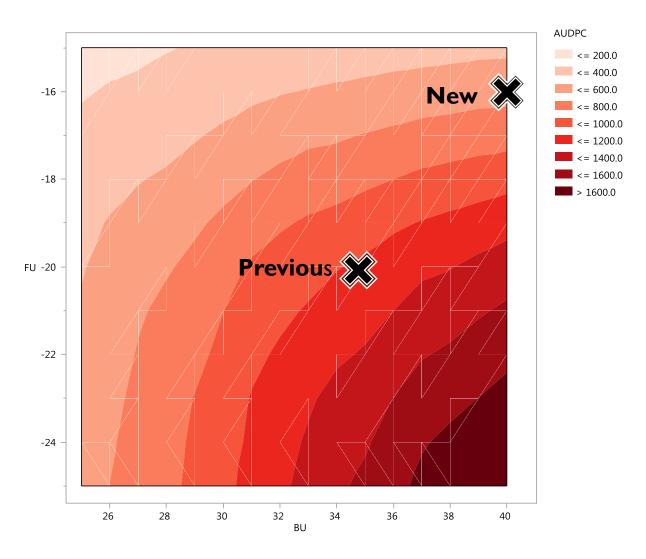


Figure 7. Contour plot of Area Under Disease Progress Curve (AUDPC) for combinations of critical blight unit and fungicide unit thresholds for moderately susceptible cultivars. The X indicates either the previous combination of critical thresholds or the new combination of critical thresholds.

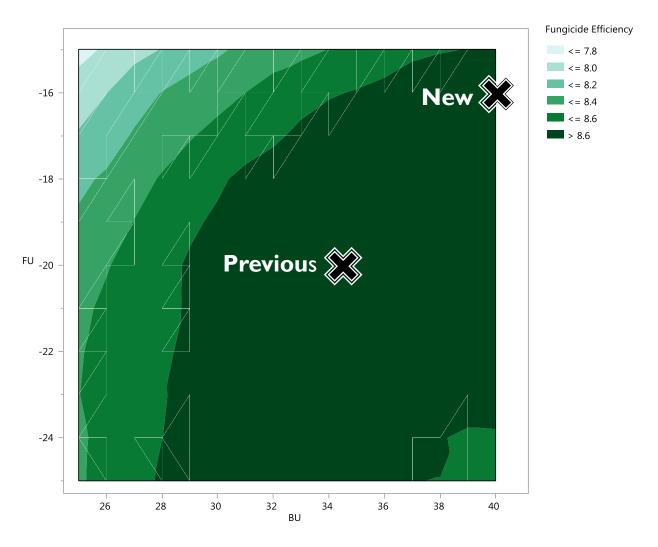


Figure 8. Contour plot of fungicide use efficiency for combinations of critical blight unit and fungicide unit thresholds for moderately susceptible cultivars. The X indicates either the previous combination of critical thresholds or the new combination of critical thresholds.

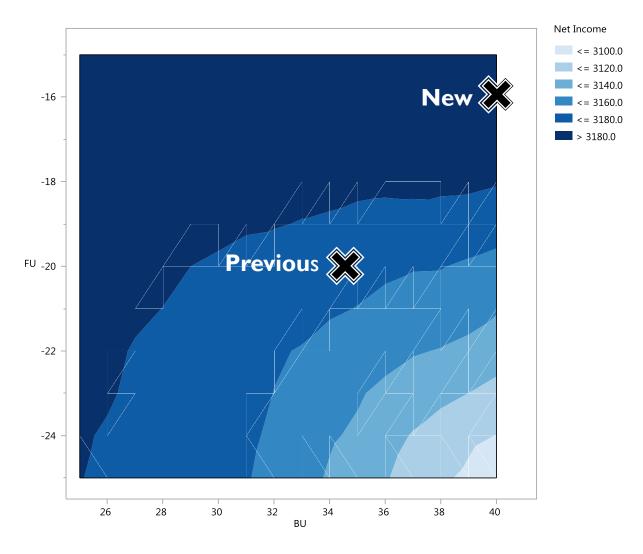


Figure 9. Contour plot of net income for combinations of critical blight unit and fungicide unit thresholds for moderately susceptible cultivars. The X indicates either the previous combination of critical thresholds or the new combination of critical thresholds.

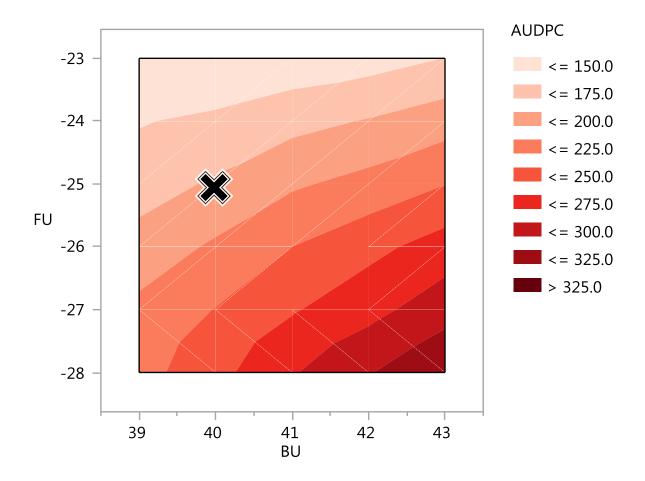


Figure 10. Contour plot of Area Under Disease Progress Curve (AUDPC) for combinations of critical blight unit and fungicide unit thresholds for moderately resistant cultivars. The X indicates the combination of critical thresholds.

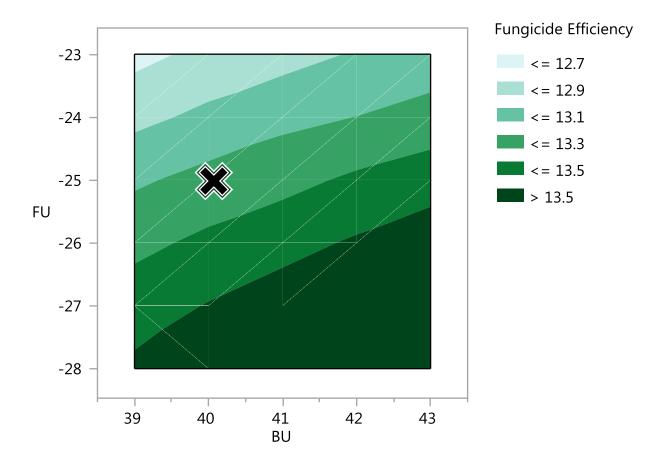


Figure 11. Contour plot of fungicide use efficiency for combinations of critical blight unit and fungicide unit thresholds for moderately resistant cultivars. The X indicates the combination of critical thresholds.

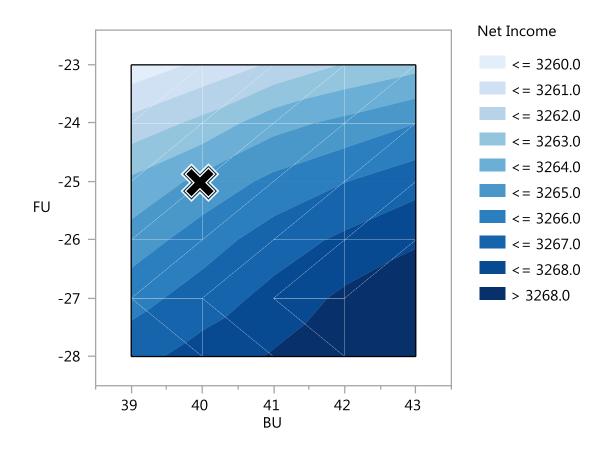


Figure 12. Contour plot of net income for combinations of critical blight unit and fungicide unit thresholds for moderately resistant cultivars. The X indicates the combination of critical thresholds.

Table 1. Current Thresholds Used in Simcast System.

Cultivars	Fungi	cide	Thresholds				
	Active	Product	Blight Units	Fungicide Units			
	Ingredients	Example					
Susceptible	chlorothalonil	Bravo WS	30	-15			
Moderately Susceptible	chlorothalonil	Bravo WS	35	-20			
Moderately Resistant	chlorothalonil	Bravo WS	40	-25			

Table 2. Fungicide application cost in 2013.

Name	Quantity	Fungicide Cost	Application Cost	Total fungicide application cost
Bravo WeatherStik	1.5 pints	\$8.63 /acre/application	\$6.58 /acre/application	\$15.21 acre/application

^{*}Fungicide price is obtained from local agricultural chemical distributor on Long Island by Dr. M. T. McGrath in April 2013. Application cost (\$6.58/acre/application) comes from Lazarus (2013). USDA prices paid indices (agricultural chemical and machinery indices) are used to adjust the fungicide price and application cost in 2013 to nominal prices in previous years.

Table 3. Average disease severity (AUDPC) of 152 locations from 2004-2014 for susceptible cultivars.

									Critic	al Bligh	t Unit						
		25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
	-13	61	79	95	109	129	137	149	160	183	203	222	239	251	268	277	288
	-14	113	132	162	191	216	237	260	280	326	362	394	412	428	440	465	482
٠.	-15	144	170	224	252	290	339	368	397	449	489	540	576	598	626	667	696
Unit	-16	178	222	274	309	371	425	466	508	555	590	648	702	741	778	832	883
de I	-17	205	256	314	358	446	506	549	600	659	706	766	828	884	945	1016	1073
gici	-18	226	280	344	410	510	569	619	677	758	824	904	995	1048	1115	1187	1258
gun	-19	254	308	393	473	575	619	681	760	838	931	1008	1103	1164	1259	1338	1420
F	-20	262	324	422	498	611	661	727	807	892	985	1076	1192	1264	1370	1448	1531
Critical Fungicide	-21	275	345	437	527	644	688	765	850	933	1031	1144	1272	1361	1449	1530	1621
Cri	-22	283	360	446	532	658	693	776	866	955	1069	1182	1320	1411	1499	1579	1654
	-23	287	364	450	547	678	711	785	891	985	1101	1228	1365	1468	1548	1626	1713
	-24	291	368	460	559	687	726	800	907	998	1124	1261	1401	1510	1582	1656	1743
	-25	287	372	463	561	689	731	813	925	1015	1143	1288	1433	1529	1600	1678	1774

represent the Blight Unit and Fungicide Unit thresholds where the lowest average AUDPC achieved. represent the Blight Unit and Fungicide Unit thresholds previously in the system.

represent the Blight Unit and Fungicide Unit thresholds where the highest average AUDPC achieved.

Table 4. Average fungicide use efficiency of 152 locations from 2004-2014 for susceptible cultivars.

									Critic	al Blight	Unit						
		25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
	-13	6.3	6.4	6.5	6.6	6.8	6.8	6.9	7.0	7.0	7.1	7.2	7.2	7.3	7.3	7.3	7.4
	-14	6.4	6.5	6.7	6.8	6.9	7.0	7.1	7.2	7.2	7.3	7.3	7.4	7.4	7.5	7.5	7.6
	-15	6.5	6.7	6.8	6.9	7.0	7.1	7.1	7.2	7.3	7.4	7.4	7.4	7.5	7.5	7.6	7.6
Unit	-16	6.6	6.7	6.9	7.0	7.1	7.1	7.2	7.3	7.4	7.4	7.5	7.5	7.6	7.6	7.6	7.6
de 1	-17	6.6	6.8	6.9	7.0	7.1	7.2	7.2	7.3	7.4	7.5	7.5	7.6	7.6	7.6	7.6	7.6
Critical Fungicide	-18	6.7	6.8	7.0	7.1	7.1	7.2	7.3	7.4	7.4	7.5	7.5	7.5	7.5	7.6	7.6	7.6
gun	-19	6.7	6.8	7.0	7.1	7.2	7.3	7.3	7.4	7.4	7.5	7.5	7.5	7.5	7.5	7.5	7.5
F	-20	6.7	6.9	7.0	7.1	7.2	7.3	7.3	7.4	7.4	7.5	7.5	7.5	7.5	7.5	7.5	7.5
tica	-21	6.8	6.9	7.0	7.1	7.2	7.3	7.3	7.4	7.4	7.5	7.5	7.5	7.4	7.5	7.5	7.4
Cri	-22	6.8	6.9	7.0	7.1	7.2	7.3	7.3	7.4	7.5	7.5	7.5	7.5	7.4	7.5	7.5	7.4
	-23	6.8	6.9	7.1	7.1	7.2	7.3	7.4	7.4	7.5	7.5	7.5	7.4	7.4	7.4	7.4	7.4
	-24	6.8	6.9	7.1	7.1	7.2	7.3	7.4	7.4	7.5	7.5	7.4	7.4	7.4	7.4	7.4	7.4
	-25	6.8	6.9	7.1	7.1	7.3	7.4	7.4	7.4	7.5	7.4	7.4	7.4	7.3	7.4	7.4	7.4

represent the Blight Unit and Fungicide Unit thresholds where the highest average fungicide use efficiency achieved. represent the Blight Unit and Fungicide Unit thresholds previously in the system.

represent the Blight Unit and Fungicide Unit thresholds where the lowest average fungicide use efficiency achieved.

Table 5. Average net income (\$/Acre) of 152 locations from 2004-2014 for susceptible cultivars.

									Critic	al Bligh	t Unit						
		25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
	-13	3135	3140	3145	3149	3153	3156	3157	3159	3161	3163	3165	3167	3167	3168	3169	3170
	-14	3139	3144	3149	3152	3157	3159	3160	3163	3162	3163	3163	3165	3165	3167	3168	3169
+	-15	3141	3146	3150	3155	3158	3158	3158	3160	3160	3160	3159	3159	3159	3160	3160	3161
Unit	-16	3142	3146	3150	3154	3157	3157	3156	3158	3158	3158	3157	3156	3155	3156	3155	3152
de 1	-17	3143	3147	3152	3155	3156	3154	3154	3153	3154	3153	3152	3153	3150	3145	3141	3138
Critical Fungicide	-18	3144	3148	3152	3152	3151	3150	3151	3150	3148	3148	3144	3140	3136	3130	3125	3120
ßun	-19	3144	3146	3148	3146	3146	3146	3146	3142	3143	3140	3135	3130	3125	3116	3108	3100
F	-20	3143	3146	3146	3145	3145	3144	3144	3141	3138	3135	3126	3119	3113	3099	3090	3082
tics	-21	3143	3145	3145	3143	3144	3143	3143	3139	3135	3129	3119	3110	3101	3089	3081	3071
Cri	-22	3142	3144	3144	3144	3143	3143	3143	3138	3134	3124	3113	3103	3093	3084	3076	3068
	-23	3142	3144	3145	3143	3142	3142	3142	3138	3131	3121	3110	3100	3088	3079	3072	3063
	-24	3143	3145	3145	3143	3141	3141	3141	3135	3130	3120	3107	3097	3085	3074	3067	3059
	-25	3144	3145	3145	3143	3141	3142	3141	3134	3128	3119	3105	3093	3082	3072	3063	3053

represent the Blight Unit and Fungicide Unit thresholds where the highest average net income achieved. represent the Blight Unit and Fungicide Unit thresholds previously in the system.

represent the Blight Unit and Fungicide Unit thresholds where the lowest average net income achieved.

Table 6. Average disease severity (AUDPC) of 152 locations from 2004-2014 for moderately susceptible cultivars.

									Critica	l Blight	Unit						
		25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
	-15	142	159	169	193	210	226	246	267	293	305	308	322	331	340	353	357
	-16	187	212	229	245	282	323	357	388	408	426	445	465	485	503	525	533
Unit	-17	236	271	303	334	384	433	486	533	563	577	609	639	674	692	715	726
	-18	298	351	390	427	479	536	594	640	685	712	758	800	842	870	899	933
Fungicide	-19	353	412	467	526	571	639	720	774	827	865	917	966	1012	1049	1090	1132
l Bun	-20	387	460	519	581	648	733	822	890	932	990	1035	1105	1162	1191	1248	1306
	-21	419	490	576	646	722	798	888	959	1018	1083	1133	1200	1279	1322	1379	1431
Critical	-22	439	508	614	687	756	844	956	1027	1089	1169	1220	1301	1387	1431	1491	1553
Cri	-23	472	544	650	726	807	892	1012	1098	1173	1262	1326	1404	1495	1543	1602	1666
	-24	503	575	682	743	828	921	1035	1127	1226	1310	1379	1481	1581	1646	1726	1783
	-25	527	603	699	757	840	942	1071	1163	1263	1366	1443	1536	1648	1713	1784	1847

represent the Blight Unit and Fungicide Unit thresholds where the lowest average AUDPC achieved. represent the Blight Unit and Fungicide Unit thresholds previously in the system. represent the Blight Unit and Fungicide Unit thresholds where the highest average AUDPC achieved.

Table 7. Average fungicide use efficiency of 152 locations from 2004-2014 for moderately susceptible cultivars.

									Critical	Blight U	Jnit						
		25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
	-15	7.7	7.8	7.9	8.0	8.1	8.2	8.2	8.3	8.4	8.4	8.4	8.5	8.6	8.6	8.6	8.6
	-16	7.9	8.0	8.1	8.2	8.3	8.3	8.4	8.5	8.5	8.6	8.6	8.7	8.7	8.7	8.8	8.8
Unit	-17	8.0	8.1	8.2	8.3	8.4	8.5	8.5	8.6	8.6	8.7	8.7	8.8	8.8	8.8	8.8	8.9
	-18	8.2	8.2	8.3	8.4	8.5	8.6	8.6	8.7	8.7	8.8	8.8	8.8	8.8	8.9	8.9	8.9
Fungicide	-19	8.2	8.3	8.4	8.5	8.6	8.6	8.7	8.7	8.7	8.8	8.8	8.8	8.8	8.9	8.8	8.8
l gm	-20	8.3	8.4	8.5	8.6	8.6	8.7	8.7	8.7	8.8	8.8	8.8	8.8	8.8	8.9	8.8	8.8
I F	-21	8.4	8.4	8.5	8.6	8.6	8.7	8.7	8.7	8.8	8.8	8.8	8.8	8.8	8.8	8.8	8.8
Critical	-22	8.4	8.5	8.5	8.6	8.7	8.7	8.7	8.7	8.8	8.8	8.8	8.8	8.8	8.8	8.8	8.7
Cri	-23	8.4	8.5	8.5	8.6	8.6	8.7	8.7	8.7	8.7	8.7	8.7	8.7	8.7	8.7	8.7	8.7
	-24	8.4	8.5	8.5	8.6	8.6	8.7	8.7	8.7	8.7	8.7	8.7	8.7	8.6	8.6	8.6	8.6
	-25	8.4	8.5	8.5	8.6	8.7	8.7	8.8	8.8	8.8	8.7	8.7	8.7	8.6	8.6	8.6	8.6

represent the Blight Unit and Fungicide Unit thresholds where the highest average fungicide use efficiency achieved. represent the Blight Unit and Fungicide Unit thresholds previously in the system.

represent the Blight Unit and Fungicide Unit thresholds where the lowest average fungicide use efficiency achieved.

Table 8. Average net income (\$/Acre) of 152 locations from 2004-2014 for moderately susceptible cultivars.

									Critical	Blight U	Unit						
		25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
	-15	3180	3182	3185	3186	3188	3190	3192	3193	3194	3195	3196	3197	3198	3199	3199	3199
	-16	3184	3185	3188	3190	3191	3192	3193	3194	3195	3195	3195	3196	3197	3198	3198	3198
Unit	-17	3185	3186	3189	3190	3190	3191	3191	3190	3190	3191	3191	3191	3190	3191	3191	3190
de 1	-18	3185	3184	3186	3187	3187	3188	3188	3188	3185	3185	3184	3183	3183	3184	3183	3181
Critical Fungicide	-19	3185	3184	3185	3185	3184	3184	3182	3181	3179	3178	3175	3175	3175	3173	3172	3170
Sum	-20	3185	3183	3184	3182	3180	3178	3175	3172	3171	3168	3166	3163	3161	3161	3157	3153
I F	-21	3184	3183	3182	3180	3177	3174	3172	3169	3167	3163	3159	3156	3153	3151	3146	3142
tica	-22	3183	3182	3179	3178	3176	3171	3166	3162	3159	3153	3151	3146	3142	3139	3136	3129
Cri	-23	3183	3181	3178	3177	3174	3172	3166	3160	3154	3146	3142	3136	3130	3125	3120	3114
	-24	3181	3179	3176	3177	3174	3170	3164	3157	3150	3142	3137	3128	3119	3110	3103	3100
	-25	3180	3178	3175	3177	3175	3170	3161	3153	3146	3138	3131	3122	3111	3102	3097	3090

represent the Blight Unit and Fungicide Unit thresholds where the highest average net income achieved. represent the Blight Unit and Fungicide Unit thresholds previously in the system. represent the Blight Unit and Fungicide Unit thresholds where the lowest average net income achieved.

Table 9. Average disease severity (AUDPC) of 152 locations from 2004-2014 for moderately. resistant

			Critic	cal Blight	Unit	
		39	40	41	42	43
de	-23	114	121	133	139	150
Fungicide nit	-24	148	156	167	177	189
Fun	-25	164	178	197	208	224
	-26	185	204	225	243	261
ritical	-27	206	226	248	267	290
2	-28	216	242	273	298	323

represent the Blight Unit and Fungicide Unit thresholds where the lowest average AUDPC achieved. represent the Blight Unit and Fungicide Unit thresholds previously in the system.

represent the Blight Unit and Fungicide Unit thresholds where the highest average AUDPC achieved.

Table 10. Average fungicide use efficiency of 152 locations from 2004-2014 for moderately. resistant cultivars

			Critic	al Blight U	nit	
		39	40	41	42	43
ge	-23	12.6	12.8	12.8	12.9	13.0
gici	-24	12.8	12.9	13.0	13.1	13.2
Fungicide ^J nit	-25	13.1	13.2	13.2	13.3	13.4
[] [] [] [] [] [] [] [] [] [] [] [] [] [-26	13.2	13.3	13.4	13.5	13.6
ritical	-27	13.4	13.5	13.6	13.7	13.8
	-28	13.5	13.7	13.7	13.8	13.8

represent the Blight Unit and Fungicide Unit thresholds where the highest average fungicide use efficiency achieved. represent the Blight Unit and Fungicide Unit thresholds previously in the system.

represent the Blight Unit and Fungicide Unit thresholds where the lowest average fungicide use efficiency achieved.

Table 11. Average net Income (\$/Acre) of 152 locations from 2004-2014 for moderately resistant cultivars.

			Critic	al Blight U	nit	
		39	40	41	42	43
de	-23	3259	3260	3261	3262	3263
ıgicide	-24	3261	3262	3264	3264	3265
l Fun Unit	-25	3263	3264	3265	3266	3267
	-26	3264	3266	3266	3267	3268
riti	-27	3266	3266	3267	3268	3269
0	-28	3267	3267	3268	3269	3269

represent the Blight Unit and Fungicide Unit thresholds where the highest average net income achieved. represent the Blight Unit and Fungicide Unit thresholds previously in the system.

represent the Blight Unit and Fungicide Unit thresholds where the lowest average net income achieved.

References

- Andrade-Piedra, J. L., R. J. Hijmans, G. A. Forbes, W. E. Fry, and R. J. Nelson. 2005. Simulation of potato late blight in the Andes. I: Modification and parameterization of the LATEBLIGHT model. *Phytopathology* 95 (10):1191-1199.
- Andrade-Piedra, J. L., R. J. Hijmans, H. S. Juarez, G. A. Forbes, D. Shtienberg, and W. E. Fry. 2005. Simulation of potato late blight in the Andes. II: Validation of the LATEBLIGHT model. *Phytopathology* 95 (10):1200-1208.
- Bourke, A. 1993. *'The visitation of god?' The potato and the great Irish famine*. Arbour Hill, Dublin, Ireland: Lilliput Press.
- Deahl, K. L., R. W. Goth, R. Young, S. L. Sinden, and M. E. Gallegly. 1991. Occurrence of the A2 mating type of phytophthora infestans in potato fields in the United States and Canada. *American Potato Journal* 68 (11):717-725.
- Deahl, K. L., D. A. Inglis, and S. P. Demuth. 1993. Testing for resistance to metalaxyl in phytophthora infestans isolates from Northwestern Washington. *American Potato Journal* 70 (11):779-795.
- Fohner, G. R., W. E. Fry, and G. B. White. 1984. Computer-simulation raises question about timing protectant fungicide application frequency according to a potato late blight forecast. *Phytopathology* 74 (10):1145-1147.
- Fry, W. E., A. E. Apple, and J. A. Bruhn. 1983. Evaluation of potato late blight forecasts modified to incorporate host-resistance and fungicide weathering. *Phytopathology* 73 (7):1054-1059.
- Fry, W. E., R. I. Bruck, and C. C. Mundt. 1979. Retardation of potato late blight epidemics by fungicides with eradicant and protectant properties. *Plant Disease Reporter* 63 (11):970-974.
- Fry, W. E., and S. B. Goodwin. 1997. Re-emergence of potato and tomato late blight in the United States. *Plant Disease* 81 (12):1349-1357.
- Repeated Author. 1997b. Re-emergence of potato and tomato late blight in the United States. *Plant Disease* 81 (12):1349-1357.
- Goodwin, S. B., L. S. Sujkowski, and W. E. Fry. 1996. Widespread distribution and probable origin of resistance to metalaxyl in clonal genotypes of Phytophthora infestans in the United States and western Canada. *Phytopathology* 86 (7):793-800.
- Guenthner, J. F., K. C. Michael, and P. Nolte. 2001. The economic impact of potato late blight on US growers. *Potato Research* 44 (2):121-125.

- Johnson, D. A. 2008. *Potato Health management*. 2 ed. St. Paul, Minnesota, U.S.A.: The American Phytopathological Society Press.
- Johnson, D. A., T. F. Cummings, P. B. Hamm, R. C. Rowe, J. S. Miller, R. E. Thornton, G. Q. Pelter, and E. J. Sorensen. 1997. Potato late blight in the Columbia Basin: An economic analysis of the 1995 epidemic. *Plant Disease* 81 (1):103-106.
- Krause, R. A., L. B. Massie, and R. A. Hyre. 1975. Blitecast: a computerized forecast of potato late blight. *Plant Disease Reporter* 59 (2):95-98.
- Liu, Y., M. R. Langemeier, I. M. Small, L. Joseph, and W. E. Fry. 2015. Risk management strategies using potato precision farming technology. In *Agricultural & Applied Economics Association Annual Meeting*. San Francisco, CA.
- Olanya, O. M., G. C. Starr, C. W. Honeycutt, T. S. Griffin, and D. H. Lambert. 2007. Microclimate and potential for late blight development in irrigated potato. *Crop Protection* 26 (9):1412-1421.
- Rakotonindraina, T., J. Chauvin, R. Pelle, R. Faivre, C. Chatot, S. Savary, and J. Aubertot. 2012. Modeling of Yield Losses Caused by Potato Late Blight on Eight Cultivars with Different Levels of Resistance to Phytophthora infestans. *Plant Disease* 96 (7):935-942.
- Shtienberg, D., S. N. Bergeron, A. G. Nicholson, W. E. Fry, and E. E. Ewing. 1990. Development and evaluation of a general model for yield loss assessment in potatoes. *Phytopathology* 80 (5):466-472.
- Small, I. M., L. Joseph, and W. E. Fry. 2015a. Development and implementation of the BlightPro decision support system for potato and tomato late blight management. *Computers and Electronics in Agriculture* 115:57-65.
- Repeated Author. 2015b. Evaluation of the BlightPro Decision Support System for management of potato late blight using computer simulation and field validation. *Phytopathology*.
- Stevens, N.E. 1933. The dark ages in plant pathology in America: 1830-1870. *Journal of the Washington Academy of Sciences* 23:435-446.
- Wale, S., H. W. Platt, and C. Nigel. 2008. *Diseases, pests and disorders of potatoes: a color handbook*. Burlington, MA, USA: Academic Press.
- Wallin, J. 1962. Summary of recent progress in predicting late blight epidemics in United States and Canada. *American Journal of Potato Research* 39 (8):306-312.
- Zhang, W., and S. M. Swinton. 2009. Incorporating natural enemies in an economic threshold for dynamically optimal pest management. *Ecological Modelling* 220 (9-10):1315-1324.