

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

Data Collection Period and Food Demand System Estimation using Cross Sectional Data

Tullaya Boonsaeng

Research Assistant Professor, Department of Agricultural and Applied Economics, Texas Tech University, Lubbock, TX79409-2132, tullaya.boonsaeng@ttu.edu

Carlos E. Carpio

Associate Professor, Department of Agricultural and Applied Economics, Texas Tech University, Lubbock, TX79409-2132, carlos.carpio@ttu.edu

```
Selected Paper prepared for presentation at the Southern
Agricultural Economics Association's 2016 Annual Meeting, San
Antonio, Texas, February 6-9, 2016
```


Data Collection Period and Food Demand System Estimation using Cross Sectional Data*

Abstract

This study analyzes U.S. consumers' demand for eight food commodity groups: Cereal and Bakery goods, Meat and Eggs, Dairy, Fruits and Vegetables, Nonalcoholic Beverages, Fats and Oils, Sugar and Sweets, and Miscellaneous goods. The data used in this study is Nielsen Homescan data for the period 2002-2006. Three different levels of temporal aggregation, biweekly, monthly and yearly were considered. We conclude that the data collection period does affect the value of elasticities obtained from estimated food demand models. Moreover, larger biases in the estimated elasticities are likely to be present even when using econometric methods currently recommended to account for this problem.

Keywords: Censored demand models, EASI demand model.

[^0]
Data Collection Period and Food Demand System Estimation using Cross Sectional Data

Previous literature suggests that biased elasticity estimates are not uncommon in the food demand field, in part due to the quality of empirical data available (Park et al. 1996; Raper, Wanazala and Nayga, 2002; Andreyeva, Long and Brownell, 2010). Accurate elasticity measures for food products are key elements in food policy discussion and analysis. Hence, the use of biased elasticities may lead to adoption of suboptimal food policies with far-reaching impacts on the target population. A potential source of biases in elasticity estimates is the data used in the analysis. For example, some datasets correspond to household surveys with very short reference periods which in turn give raise to problems with reports of zero expenditure. These zeros may come from two sources: 1) genuine non-consumption, and 2) infrequency of purchases. Econometricians have developed models that attempt to account for both problems; however, as argued by Gibson and Kim (2011), there are very few studies that have evaluated the performance and identifying assumptions of these models, in part because of lack of suitable data.

Gibson and Kim (2011) showed that infrequency of purchase models (IPMs), prominent in the analysis of consumer expenditure data, perform better over longer periods of observation, despite their application to data with shorter reference periods. However, over all time horizons (8-25 days), the IPMs provided biased estimates of income elasticities when compared to models estimated using measured consumption from food stocks instead of self-reported expenditure data. Okrent and Alston (2010) also showed that elasticity calculations using an annual data set provided more accurate estimates than a monthly data set, though the data sets were from different sources. We
improve upon this work by comparing three data collection periods from the same data set. Moreover, since our dataset contains price as well as income information, in contrast to Gibson and Kim (2011), we compare estimates of price and income elasticities. By working with Nielsen Homescan data, this study attempts to overcome the limitations of previous studies.

The main objectives of this study are: 1) to analyze the impact of data collection periods in the estimation of food demand models using cross sectional data (biweekly, monthly and yearly data), and 2) to provide improved comprehensive elasticity measures of US consumers demand for food at home products.

Censoring in Food Expenditures

One of the barriers to accurate consumer demand estimation using cross-sectional survey data, in particular as it relates to food products, is how to interpret a zero expenditure value. Over the survey period, it is possible for households to consume from "stocks" of previous purchases and not record purchases in the survey period. In these cases, zero food expenditures are present due to infrequency of purchases. A zero expenditure can also represent a true corner solution, due to the household selection of only one or several but not all brands or types of a food product. Zero corner solutions at higher levels of product aggregation can also occur if the price of the product is too high, or if consumers abstain for religious, moral, or preference reasons (Gibson and Kim 2011).

Econometricians have developed models that attempt to account for both problems: infrequency of purchases and corner solutions. Infrequency of purchase models (IPMs), introduced in the 1980's by Deaton and Irish (1984) and later Keen (1986) are a statistical "fix" to the infrequency of purchases problem. However, treating zero
observations that truly represent corner solutions as infrequent purchases can lead to biased estimates of income elasticities (Gibson and Kim, 2011; Raper, Wanazala and Nayga, 2002).

An alternative means to overcome the zero observations problem is to use a longer time horizon where remaining zeros are truly corner solutions. Econometricians have turned to infrequency of purchase models rather than longer time horizons due to data availability. Much of the disaggregate data needed for detailed food demand analysis are from diary surveys with short durations. Changing survey time frames would involve a long, complex and costly process and has thus far been rejected in favor of the econometric models.

By using Homescan data, which tracks a household's consumption over an extended period of time, and also at a level of aggregation commonly used for policy analysis, the corner solution problem is practically eliminated. ${ }^{1}$ The results of the analysis using the entire period can then be used to benchmark the performance of econometric models proposed to account for infrequency of purchases using data from a randomly selected sample of expenditures for each household for a lower time period (e.g., a month).

Data

The Nielsen Homescan program provides households from across the continental United States with a handheld scanner to record all food purchases made from all outlets as they occur. Each record in the data set refers to a food purchase and contains detailed product information down to the Universal Product Code (UPC) level including price, weight,
product characteristics (such as container type, brand, and flavor), and store location. A number of household self-identified demographic variables are also captured and matched to the purchases. We restrict this analysis to only the subset of households that also recorded non-UPC items such as fresh fruits or vegetables and in-store packaged breads and meats, the "Fresh Foods Panel." Failure to account for additional non-UPC purchases would bias the total expenditure of a household downwards. Since there is a sizeable time burden on participating households, the retention rate for households within the Homescan panel varies. ${ }^{2}$ Thus, data are treated as cross-sectional rather than panel due to participation differences in the dataset across time from 2002 to 2006.

Food Commodity Groups

Using established USDA nutrition-based guidelines from the Quarterly Food At Home Price Database (QFAHPD) we consider eight commodity groups: 1) Cereal and Bakery products, 2) Meats and Eggs, 3) Dairy, 4) Fruits and Vegetables, 5) Nonalcoholic Beverages, 6) Fats and Oils, 7) Sugar and Other Sweets, and 8) Miscellaneous foods. Each commodity group is itself composed of subgroups, identified in table 1.

To make data comparable across product sizes (e.g., ounces, pounds, etc.) all product sizes were converted to grams following the method used by the QFAHPD and price per 100 g of product reported (Todd et al., 2010). Products with similar descriptions and characteristics were aggregated using unit values into "aggregate products" following the nutritional guideline-based methods of the QFAHPD. We further distinguished "aggregate products" by brand type as a control for quality. ${ }^{3}$ The aggregate products were identified as belonging to subgroups and then to one of the eight commodity groups. A list
of the commodity groups and subgroups is provided in table 1 along with the number of aggregate products identified within that group. Using yogurt as an example: Dannon fat free blueberry individual size yogurt and Dannon reduced fat strawberry quart-size yogurt are treated as the same aggregate product: "Dannon-branded reduced fat yogurt," within the subgroup "Low fat yogurt and other dairy", within the "Dairy" group.

Prices

To approximate a representative composite commodity price, researchers have adopted a number of indexing methods. The index number represents the deviation of the price paid by a household relative to the average household. Construction of a single price index to represent a composite commodity is a multi-stage process involving: 1) Determination of the price per unit for the aggregate food products, and 2) Construction of price indices for the commodity groups.

The first stage involves the determination of a single price for a relatively homogeneous-in-quality product. Following Diewert (1997) we use the unit value as the elementary price at the aggregate food product level. The unit value for aggregate product g in food commodity group j for household $i\left(U V^{i}{ }_{g j}\right)$ is calculated as:

$$
\begin{equation*}
U V_{g j}^{i}=\frac{\sum_{m=1}^{M} p_{m g j}^{i} q_{m g j}^{i}}{\sum_{m=1}^{M} q_{m g j}^{i}} \tag{1}
\end{equation*}
$$

Where $p^{i}{ }_{m g j}$ is household i 's price of the m brand in aggregate product g within the commodity group j, and $q^{i}{ }_{m g j}$ is household i 's quantity purchased of the m brand in aggregate product g within the commodity group j. For some of the brand product categories where prices $p^{i}{ }_{m g j}$ are missing, prices were predicted following the methods proposed by Meghir and Robin (1992) and Zhen et al. (2011) (see Leffler, 2012 for more
details). This required one regression over all households for each of the aggregate commodities (1,784 regressions).

In the second stage, unit values $U V^{i}{ }_{g j}$ are combined into an index representing the commodity group price. The price index selected is the Laspeyres price index which takes the form:

$$
\begin{equation*}
P_{L j}^{i}=\frac{\sum U V_{g j}^{i} q_{g j}}{\sum U V_{g j} q_{g j}} \tag{2}
\end{equation*}
$$

where $U V_{g j}$ is the unit value for aggregate product g in commodity j for the average household and $q_{g j}$ is the average quantity purchased for aggregate product g in commodity j for the average household. The index thus represents the differential in price household i pays for an average quantity of commodity j relative to the average household. Although, some authors advocate the use the Fisher price index, which is a geometric mean of the Laspeyres and Paasche indexes, the use of the Paasche index introduces measurement error in the calculated prices of the products using monthly and bi-weekly data (Diewert, 1997). Thus, for purposes of this project the annual Laspeyres price indices are assumed as the true values and used as benchmark for the analyzes. It is also important to mention that Laspeyres-type priced indices are still widely used and reported by National and International Statistical Agencies and used by researchers as the price variables in demand models.

Temporal Aggregation - Annual, Monthly and Biweekly Data

The static panel Homescan data in its native format contains one record for each product purchased for each household trip to the store, provided that the household records at least
one trip per week for ten consecutive months. To provide a more manageable data set, we aggregate household purchases to biweekly and monthly level. We only consider those households in the "Fresh Foods Panel" and focused only on households in urban and suburban locations with purchases in at least one commodity group.

We also aggregated household purchases to an annual level. Aggregating to an annual level leaves a data set with 35,421 year-specific average monthly household observations. The annual data is taken as a true measure of the demand for the food commodities, owing to the longer period of observation. One month and 2-weeks data from each household-specific year are randomly selected to comprise the monthly and biweekly data set, respectively. This resulted in three data sets: 1) one with a record of a household's consumption for a year, 2) one with a record of a randomly selected month of consumption for the same household in the same year, and 3) one with a record of a randomly selected 2-weeks of consumption for the same household in the same year. To make data comparable between households with the biweekly and monthly data, the annual data was transformed to average monthly data. ${ }^{4}$

Model Specification and Estimation

Preferences are assumed to be weakly separable, allowing models of household food at home to be constructed independently of households' other consumption choices (Meghir and Robin 1992; Alfonso and Peterson 2006). Expenditures on the eight food commodity groups identified previously are conditional on the broad food-at-home allocation (Gorman 1959). The demand systems are estimated using the Exact Affine Stone Index (EASI)
demand system proposed by Lewbel and Pendakur (2009). This model specification was chosen over the AIDS model for its treatment of the error terms as unobserved preference heterogeneity. In addition, the model is linear in log-prices but allows for nonlinearity in demographic characteristics and real expenditures which facilitates estimation and interpretation while accommodating nonlinear Engel curves. Since Lewbel and Pendakur (2009) found that estimates from the linear approximation differed little from nonlinear exact estimates empirically, we use the linear approximation which can be expressed for this model as:

$$
\begin{equation*}
w_{j}^{i}=\sum_{r=0}^{R} b_{r j}\left(y^{i}\right)^{r}+\sum_{h=1}^{H}\left(C_{h j} z_{h}^{i}+D_{h j} z_{h}^{i} y^{i}\right)+\sum_{k=1}^{K} A_{k j} \ln P_{L k}^{i}+\sum_{k=1}^{K} B_{k j} \ln P_{L k}^{i} y^{i}+e_{j}^{i}, \tag{3}
\end{equation*}
$$

where w_{j}^{i} is household i 's budget share on commodity $j ; y^{i}$ is a measure of real total income; $z^{i}{ }_{h}$ are the h demographic characteristics of household $i ; \ln P^{i}{ }_{L k}$ is the natural \log of the Laspeyres price index for household i on each commodity $k ; b_{r j}, \mathrm{C}_{h j}, D_{h j}, A_{k \mathrm{j}}$, and $B_{k j}$ are the parameters; e_{j}^{i} is an random error term with unknown distribution; R is the highest order polynomial in $y^{i}, . \mathrm{K}$ is the number of goods. Total real income was calculated using $y^{i}=\log ($ income $)-\sum^{J}{ }_{k=1} w^{i}{ }_{k} \ln P^{i}{ }_{L k}$.

Notice that in contrast to other studies estimating demand systems for food (e.g., Rape et al. 2002) we do not use real total expenditures on food as the explanatory variable but instead real total income; thus the J good in the system is a numeraire good encompassing expenditures on all other goods/services. As shown in Meghir and Robin (1992; p. 58), in the context of the infrequency of purchase models, the use of total expenditures creates measurement error problems on the calculated total expenditure variable with subsequent estimation problems (Schennach 2012). Moreover, an advantage
of this approach relative to a conditional modeling approach is the estimation of unconditional income and price elasticities which are more useful for policy analysis.

Estimation of the Annual Model

Since the annual data contains few zero observations on the dependent variables, the linear approximation of the EASI demand system in equation (3) is estimated using Seemingly Unrelated Regression (SUR). We impose the symmetry ($\boldsymbol{A}_{\mathrm{kj}}=\boldsymbol{A}_{\mathrm{jk}}, \boldsymbol{B}_{\mathrm{kj}}=\boldsymbol{B}_{\mathrm{jk}} \quad \forall k, j$) and homogeneity ($\sum^{K}{ }_{\mathrm{k}=1} \mathbf{A}_{\mathrm{kj}}=\sum^{\mathrm{K}}{ }_{\mathrm{k}=1} \mathbf{B}_{\mathrm{kj}}=0 \forall j$) restrictions. Following convention, the last equation is dropped from the system and its parameters are recovered from the adding up constraint. (Barten 1969 as cited in Barnett and Serletis 2008 p. 219; Lewbel and Pendakur 2009; and Zhen et al. 2011)

Estimation of Monthly and Bi-weekly Models

Estimation of the monthly and bi-weekly data models is carried out using the twostep econometric method of Shonkwiler and Yen (1999). Under the model assumptions, this method provides consistent parameter estimates that accounts for zeros due to corner solutions and infrequency of purchases, and is probably the most commonly used method to account for zero expenditures in demand model estimation (e.g., Alfonzo and Peterson 2006; Carpio and Wohlgenant 2010; Yen and Lin 2006). The procedure works as follows. Consider the two equation system:

$$
\begin{align*}
& w_{j}^{i *}=f\left(\boldsymbol{y}^{i} \mathbf{z}^{i} \boldsymbol{P}_{L}^{i} ; \boldsymbol{\theta}_{j}\right)+e_{j}^{i}, \quad \quad d_{j}^{i *}=\boldsymbol{\alpha}_{j}{ }^{\prime} \boldsymbol{x}^{i}+v_{j}^{i}, \tag{4}\\
& \text { where } d_{j}^{i}=\left\{\begin{array}{l}
1 \text { if } d_{j}^{i *}>0 \\
0 \text { if } d_{j}^{i *} \leq 0
\end{array} \text { and } \quad w_{j}^{i}=d_{j}^{i} * w_{j}^{i *} .\right.
\end{align*}
$$

In the above system the index i corresponds to household and the index j to commodity. The variable $w_{j}^{i, *}$ is the latent (unobserved) budget share and $d_{j}^{i{ }^{*}}$ is the latent variable defining the discrete choice decision of a household whether to buy a commodity. The function $f\left(\boldsymbol{y}^{i} z^{i} \boldsymbol{P}^{i} ; \boldsymbol{\theta}_{j}\right)$ is the EASI model as specified in equation (3), z^{i} represents the vector of socio-demographic characteristics, \boldsymbol{P}_{L}^{i} the vector of \log Laspeyers price indexes, and $\boldsymbol{\theta}_{j}$ the vector of parameters. In the sample selection model, $\boldsymbol{\alpha}_{j}^{\prime}$ is a vector of parameters corresponding to the vector \boldsymbol{x}^{i} of socio-demographic characteristics and v_{j}^{i} is an error term. The vector of demographic variables in the sample selection equation \boldsymbol{x}^{i} differs from the vector z^{i} specified in the EASI model by the addition household variables (Table 2) modeled after those used by Zhen et al. (2009).

The first step of the Shonkwiler and Yen (1999) method involves the estimation of a probit model describing the sample selection. Estimates of $\boldsymbol{\alpha}_{\mathrm{j}}$ from the probit are used to calculate $\Phi\left(\widehat{\boldsymbol{\alpha}}_{j}{ }^{\prime} \boldsymbol{x}^{i}\right)$ and $\phi\left(\widehat{\boldsymbol{\alpha}}_{j} \boldsymbol{x}^{i}\right)$. In the second step, estimates of $\boldsymbol{\theta}_{j}$ are obtained by SUR using a modified version of the EASI demand model incorporating $\Phi\left(\widehat{\boldsymbol{\alpha}}_{j}{ }^{\prime} \boldsymbol{x}^{i}\right)$ and $\phi\left(\widehat{\boldsymbol{\alpha}}_{j}{ }^{\prime} \boldsymbol{x}^{i}\right)$. The modified EASI demand model is:
$w_{j}^{i}=\Phi\left(\widehat{\boldsymbol{\alpha}}_{j}^{\prime} x^{i}\right)\left(\sum_{r=0}^{R} b_{r j}\left(y^{i}\right)^{r}+\sum_{h=1}^{H}\left(C_{h j} z_{h}^{i}+D_{h j} z_{h}^{i} y^{i}\right)+\sum_{k=1}^{K} A_{k j} \ln P_{L k}^{i}+\sum_{k=1}^{K} B_{k j} \ln P_{L k}^{i} y^{i}\right)+S_{j} \phi\left(\widehat{\alpha}_{j}^{\prime} x^{i}\right)+\xi_{j}$,
where s_{j} is an additional parameter for the probability density function and ξ_{j}^{i} is the random error term again with unknown distribution. Estimation of the parameters in the modified EASI demand system incorporating $\Phi\left(\widehat{\boldsymbol{\alpha}}_{j}{ }^{\prime} \boldsymbol{x}^{i}\right)$ and $\phi\left(\widehat{\boldsymbol{\alpha}}_{j}{ }^{\prime} \boldsymbol{x}^{i}\right)$ uses the full system of eight commodities imposing the symmetry $\left(\boldsymbol{A}_{\mathrm{kj}}=\boldsymbol{A}_{\mathrm{jk}}, \boldsymbol{B}_{\mathrm{kj}}=\boldsymbol{B}_{\mathrm{jk}} \quad \forall k, j\right)$ and adding up restrictions ${ }^{8}\left(\sum_{j=l}^{J} \boldsymbol{b}_{r j}=1\right.$ when r=1; $\sum_{j=l}^{J} \boldsymbol{b}_{r j}=0, \forall r \neq 1,0 ; \sum^{J}{ }_{j=1} \boldsymbol{A}_{k j}=\sum_{j=l}^{J} \boldsymbol{B}_{k j}=0 \quad \forall j, k$;
$\left.\sum^{J}{ }_{j=l} \boldsymbol{C}_{h j}=\sum^{J}{ }_{j=l} \boldsymbol{D}_{h j}=0 \forall j, h\right)$. Heteroskedastic-robust standard errors of parameters and elasticities in all models were calculated using bootstrapping resampling procedures with 199 iterations.

Price elasticities were estimated for the average household using the elasticity equations and procedures described in Lewbel and Pendakur (2009) and Castellon, Boonsaeng and Carpio 2014). To assess differences across the demand systems estimates we calculated the percentage error between the elasticities obtained when using biweekly and monthly data and those obtained when using the yearly data.

Results

Summary Statistics

Descriptions and summary statistics of demographic variables employed to account for household heterogeneity are detailed in Table 2. We observe that for most of the cases the reference person in the household is at least 30 years old, while the predominant racial group is Caucasian. Also, 50% of the households have a female as head of the household and 8% of the reference persons self-identify as Hispanics.

Summary statistics for the food groups' income shares, log of price and the degree of censoring observed across three different datasets (biweekly, monthly, and yearly period) are presented in Table 3. Average budget shares were similar in magnitude for all commodity groups among three different datasets. Average log of prices were observed higher differently between biweekly and yearly data than between monthly and yearly data. The proportion of zero budget share observations ranged from 0.1% to 43.2% for the
biweekly data and from 0.1% to 22.1% for the monthly data. The comparable percentages for the yearly dataset ranged from 0% to 0.6%.

Comparison of Yearly Model vs. Monthly and Biweekly Models

Estimation results for the demand systems for all datasets show the expected signs for the income and own-price elasticities (see Appendices): all own price elasticities are negative and all income elasticities are positive. To make our results comparable to those of Gibson and Kim (2011) we first compare the estimated income elasticity values (Table 4). First, results in table 4 suggest that, except for the numeraire good, the demand model using biweekly or monthly data provide substantially different food products income elasticity estimates, compared to the demand model using yearly data. For example, in the case of the biweekly elasticities, meats \& eggs, fats \& oils, and sugar \& other sweets are all luxuries according to the demand model using biweekly data, while the income elasticities estimated by using yearly data are only all below 0.35 . The differences between biweekly and yearly food elasticities ranged from -3.5% to 425% difference, with an average percent difference of 238%. Moreover, all the food products income elasticities estimated using biweekly data were higher in order of magnitude.

Although the differences between monthly and yearly estimates are smaller, the percentage error differences are still substantial ranging from a -1.1% difference to a 161% percent difference, with an average difference of 82%. As in the case of the biweekly elasticities, all the food products income elasticities estimated using monthly data were higher in term of magnitude, except for the income elasticity of the numeraire good which was slightly lower. It is also important to mention that the degree of linear correlation
between biweekly and yearly income elasticities and between monthly and yearly elasticities were very different: 0.25 and 0.95 , respectively.

It is important to mention the fact that the both the magnitude and the direction of the income elasticity biases estimated in this study differ from the results of Gibson and Kim (2007) study. First, they found that relative to the income elasticities estimated using total consumption, elasticities estimated using an infrequency of purchase model and shorter periods of time resulted in smaller income elasticity estimates. Our results find the opposite, the use of shorter periods of time and a model to account for infrequency of purchases tend to result in higher income elasticity estimates. However, the results are not directly comparable since the baseline for comparison, the products analyzed, and the econometric methods used for the estimation differ across studies. Regarding the baseline for comparison, Gibson and Kim (2007) assumes that the "true" elasticities are those estimated using total consumption which includes both change in stocks and acquisitions during the period of observations (8 to 25 days). In contrast, our baseline for comparison are the elasticities estimated using annual data. Regarding the products used for the analysis, whereas Gibson and Kim (2007) tended to focused on specific goods, we used aggregate food goods. Finally, whereas Gibson and Kim (2007) used univariate type of analyses in the context of Engel equations with only income and socio-demographic characteristics as explanatory variables in the equations, we used system demand estimation approaches with income, prices and sociodemographic characteristics as explanatory variables.

Regarding the comparison of own price elasticities obtained across the three datasets, we found that, on average, the differences in terms of percentage errors were smaller compared to the differences found with the income elasticities. The average difference in terms of percentage errors between the yearly and biweekly own price elasticities was 45%, whereas the difference between yearly and monthly own price elasticities was 21%. Thus, in both cases, own price elasticities estimated using shorter observation periods resulted, on average, in more inelastic own price elasticities (higher values but lower absolute values). In addition, in the case of the biweekly model, all the estimated own price elasticity values were more inelastic than the elasticities estimated using the yearly model. In the case of the monthly model, although most (6 out of 9) of the estimated own price elasticities were more inelastic, some (3 out of 8) were found to be more elastic. Finally, we found similar linear correlation coefficients between yearly and biweekly own price elasticities (0.61) and between yearly and monthly own price elasticities (0.53).

The differences between biweekly and yearly cross-price elasticities ranged from -1089.83% to 1964.74%, with an average percent difference of 25.92%. The differences between monthly and yearly cross-price elasticities are but still highly variable and range from -477.13% to 870.31%, with an average difference of 9.35%. Mean absolute average percent error for cross-price elasticities between biweekly and yearly data was 293.82%, and 124.12% in the case of the difference between the monthly and yearly models.

With respect to the statistical significance of the elasticities (10% level), all the food income elasticities using three different data periods were statistically significant. All eight
own-price elasticities from the model using yearly data were significant, and this number decrease to seven and six own-price elasticities in the case of the monthly and biweekly models, respectively. For cross price elasticities, 59 of 72 were statistically significant in the yearly model, 40 in the monthly model and 31 in the biweekly model. Thus, in addition to differences in the values of the elasticity estimates, the use of data at different levels of temporal aggregations also seems to affect the ability of the models to detect statistical significant differences from zero, especially in the case of price elasticities.

Summary and Conclusions

This article used an incomplete demand system for eight food commodity groups and five years of data (2002-2006) from the Nielsen Homescan program. Three different levels of temporal aggregation, biweekly, monthly and the average month within a year were considered. Given the fact that the levels of censoring in the annual data are very small, we conclude that the zero consumption values observed in the biweekly and monthly datasets are due to the infrequency of purchase problem. Using elasticities obtained from the annual dataset as the benchmark, we evaluate the performance of demand models estimated with datasets from the shorter observation periods and an estimation procedures recommended to account for the infrequency of purchases problem. Estimation results for the demand systems for all datasets show the expected signs for the income and own-price elasticities. All own price elasticities are negative and all income elasticities are positive. Biweekly own price elasticities tended to be less elastic than annual elasticities and furthermore biweekly income elasticities are more elastic than yearly elasticities.

Regarding the comparison of own price elasticities obtained across the three datasets, we found that, on average, the differences in terms of percentage errors were smaller compared to the differences found with the income elasticities. Furthermore, the differences between monthly and yearly estimates for income, own-price, and cross-price elasticities are smaller than the differences between biweekly and yearly for income, ownprice, and cross -price elasticities. We conclude that the monthly data more closely approximates the underlying annual elasticities than the biweekly data.

In addition to differences in the values of the elasticity estimates, the use of data at different levels of temporal aggregations also seems to affect the ability of the models to detect statistical significant differences from zero, especially in the case of price elasticities. We conclude that the data collection period does affect the value of elasticities obtained from estimated food demand models. Moreover, larger biases in the estimated elasticities are likely to be present even when using econometric methods currently recommended to account for this problem.

Table 1 - Commodities, subgroups, and aggregate products

Commodity Group	Subgroups	Number of aggregate
Cereal and Bakery Goods	1.) Whole grain Bread, rolls, rice, pasta, cereal 2.) Whole grain flour and mixes 3.) Whole grain frozen/ready to cook 4.) Refined grain Bread, rolls, rice, pasta, cereal 5.) Refined grain flour and mixes 6.) Refined grain frozen/ready to cook 7.) Baked good mixes 8.) Bakery items, ready to eat 9.) Packaged baked goods 10.) Frozen desserts	263
Meat \& Eggs	1.) Fresh/Frozen low fat meat 2.) Fresh/Frozen regular fat meat 3.) Canned meat 4.) Fresh/frozen poultry 5.) Canned poultry 6.) Fresh/frozen fish 7.) Canned fish 8.) Eggs	209
Dairy	1.) Low fat milk 2.) Low fat cheese 3.) Low fat yogurt and other dairy 4.) Regular fat milk 5.) Regular fat cheese 6.) Regular fat yogurt and other dairy 7.) Ice cream and frozen novelties	137
Fruits \& Vegetables		414
Nonalcoholic Beverages	1.)Non-alcoholic carbonated beverages 2.) Non-carbonated caloric beverages 3.) Water 4.) Fruit juice 5.) Coffee and Tea	141
Fats \& Oils	1.) Oils 2.) Solid Fats 3.) Nut butters 4.) Salad Dressings and Spreads	74
Sugars and other Sweets	1.) Raw sugars 2.) Packaged sweet goods (candy) 3.) Jams, jellies, preserves and other sweets	88
Miscellaneous	1.) Raw \& processed nuts \& seeds 2.) Frozen entrees and sides 3.) Canned soups and sauces 4.) Packaged snacks 5.) Packaged/Ready to cook meals and sides 6.) Ready to eat deli items (hot \& cold) 7.) Baby food 8.) Spices, seasonings, condiments, olives, pickles, relishes	458

Table 2 - Summary Statistics - Socio-demographic Variables

Demographic Characteristic	Variable	Description	Mean	Standard Deviation
Education	LowEd MidEd $\mathrm{HiEd}^{\mathrm{a}}$	1 if head of household does not have high school diploma, 0 otherwise 1 if head of household is a high school graduate, but does not have a college degree, 0 otherwise 1 if head of household is a college graduate or holds an advanced degree	$\begin{aligned} & 0.035 \\ & 0.518 \\ & 0.447 \end{aligned}$	$\begin{aligned} & 0.184 \\ & 0.500 \\ & 0.497 \\ & \hline \end{aligned}$
Region	NE MW SO $W^{a}{ }^{a}$	1 if household resides in Northeast Region, 0 otherwise 1 if household resides in Midwest Region, 0 otherwise 1 if household resides in South Region, 0 otherwise 1 if household resides in West Region, 0 otherwise	$\begin{aligned} & 0.238 \\ & 0.144 \\ & 0.395 \\ & 0.223 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.426 \\ & 0.351 \\ & 0.489 \\ & 0.416 \\ & \hline \end{aligned}$
Age	Age_ref1 Age_ref2 Age_ref3 Age_ref4 Age_ref5 Age_ref6 ${ }^{a}$	1 if head of household < $25 \mathrm{yrs}, 0$ otherwise 1 if head of household ≥ 25 and $<30 \mathrm{yrs}, 0$ otherwise 1 if head of household ≥ 30 and $<40 \mathrm{yrs}, 0$ otherwise 1 if head of household ≥ 40 and $<50 \mathrm{yrs}, 0$ otherwise 1 if head of household ≥ 50 and $<65 \mathrm{yrs}, 0$ otherwise 1 if head of household $\geq 65 \mathrm{yrs}, 0$ otherwise	$\begin{aligned} & 0.003 \\ & 0.020 \\ & 0.146 \\ & 0.245 \\ & 0.372 \\ & 0.214 \\ & \hline \end{aligned}$	0.050 0.141 0.353 0.430 0.483 0.410
Race	RefWhite RefBlack RefOrient RefOther ${ }^{\text {a }}$	1 if Household self-identifies as white, 0 otherwise 1 if Household self-identifies as black, 0 otherwise 1 if Household self-identifies as "oriental", 0 otherwise 1 if Household self-identifies as "other", 0 otherwise	$\begin{aligned} & 0.753 \\ & 0.145 \\ & 0.037 \\ & 0.065 \end{aligned}$	$\begin{aligned} & 0.431 \\ & 0.352 \\ & 0.188 \\ & 0.247 \end{aligned}$
Family Size	Family Size	categorical variable indicating number of members 1-9 with 9 being 9 or greater.	2.412	1.356
Hispanic	Hispanic nonHispanic ${ }^{a}$	1 if Household self-identifies as Hispanic, 0 otherwise 1 if Household does not self-identify as Hispanic, 0 otherwise	$\begin{array}{r} 0.081 \\ 0.919 \\ \hline \end{array}$	$\begin{aligned} & 0.274 \\ & 0.274 \\ & \hline \end{aligned}$
\dagger Children in Household	dperslt 18 dpersgt $18{ }^{a}$	1 if household includes children under age 18,0 otherwise 1 if household does not include children under age 18,0 otherwise	$\begin{aligned} & 0.255 \\ & 0.745 \end{aligned}$	$\begin{aligned} & 0.436 \\ & 0.436 \end{aligned}$
\dagger Year	d2002 d2003 d2004 d2005 d2006 ${ }^{\text {a }}$	1 if year of purchase is 2002, 0 otherwise 1 if year of purchase is 2003, 0 otherwise 1 if year of purchase is 2004, 0 otherwise 1 if year of purchase is 2005, 0 otherwise 1 if year of purchase is 2006, 0 otherwise	$\begin{aligned} & 0.208 \\ & 0.212 \\ & 0.203 \\ & 0.196 \\ & 0.180 \end{aligned}$	$\begin{aligned} & 0.406 \\ & 0.409 \\ & 0.402 \\ & 0.397 \\ & 0.384 \end{aligned}$
\dagger Presence of female adult**	dfadult dmadult ${ }^{a}$	1 if female head of household, 0 otherwise 1 if male head of household, 0 otherwise	$\begin{aligned} & 0.500 \\ & 0.500 \end{aligned}$	$\begin{aligned} & 0.500 \\ & 0.500 \end{aligned}$
\dagger Age of female adult**	dfadult35 dfadult 36^{a}	1 if female head of household is less than 35 years old, 0 otherwise 1 if female head of household is at least 35 years old, 0 otherwise	$\begin{aligned} & 0.046 \\ & 0.454 \end{aligned}$	$\begin{aligned} & 0.209 \\ & 0.498 \end{aligned}$
\dagger Female Adult unemploy ment**	dfadultun dfadultemp ${ }^{\text {a }}$	1 if female head is not employed for pay, 0 otherwise 1 if female head is employed for pay, 0 otherwise	$\begin{aligned} & 0.247 \\ & 0.253 \end{aligned}$	$\begin{aligned} & 0.431 \\ & 0.435 \end{aligned}$

Note: sample consists of 35,421 observations for each variable.
\dagger used only in Probit model for censored monthly demand
${ }^{\text {a }}$ dropped (reference household is in the West region, identifies race as "other" and not Hispanic, with a college-graduate head over 65 yrs.)

Table 3: Comparison of Mean Budget Share, Mean Log of Price, and Level of Censoring for Yearly, Monthly, and Biweekly Data

	Mean Budget Share			Mean log of price			Level of censoring		
	Yearly	Monthly	Biweekly	Yearly	Monthly	Biweekly	Yearly	Monthly	Biweekly
	0.00835	0.00837	0.00863	-0.0087	-0.0060	-0.0050	0.000	0.036	0.112
Cereal and Bakery	0.000	0.076	0.187						
Meats and Eggs	0.01171	0.01169	0.01222	-0.0091	-0.0047	-0.0043	0.004	0.075	0.001
Dairy	0.00631	0.00635	0.00642	-0.0079	-0.0056	-0.0050	0.001	0.062	0.154
Fruit and Vegetables	0.00762	0.00763	0.00786	-0.0050	-0.0029	-0.0028	0.001	0.053	0.141
Nonalcoholic Beverages	0.00720	0.00723	0.00751	-0.0111	-0.0066	-0.0059	0.001	0.064	0.177
Fats and Oils	0.00208	0.00207	0.00219	-0.0061	-0.0050	-0.0055	0.006	0.221	0.432
Sugar and other Sweets	0.00270	0.00269	0.00283	-0.0323	-0.0225	-0.0181	0.005	0.214	0.404
Miscellaneous goods	0.01528	0.01527	0.01577	-0.0051	-0.0031	-0.0031	0.000	0.019	0.070
Other goods	0.93876	0.93147	0.93657	-0.0030	-0.0031	-0.0030	0.000	0.001	0.001

Table 4- Expenditure Elasticities for Yearly, Monthly and Biweekly data

	Expenditure Elasticities			Percent Differences in Marshallian Ownprice Elasticities	
	Yearly	Monthly	Biweekly	Monthly vs Yearly	Biweekly vs Yearly
Cereals \& Bakery	$0.217^{* *}$	$0.416^{* *}$	$0.709^{* *}$	91.527	226.810
Meats \& Eggs	$0.344^{* *}$	$0.545^{* *}$	$1.167^{* *}$	58.444	239.409
Dairy	$0.219^{* *}$	$0.411^{* *}$	$0.624^{* *}$	88.115	185.279
Fruit \& Vegetables	0.228**	0.404**	$0.749^{* *}$	76.743	228.062
Nonalcoholic Beverages	$0.256^{* *}$	$0.668^{* *}$	$0.773^{* *}$	161.471	202.237
Fats \& Oils	$0.219^{* *}$	0.343**	1.072**	56.637	389.211
Sugar \& Other Sweets	0.258**	0.498**	1.354**	92.948	424.034
Miscellaneous Goods	$0.186^{* *}$	$0.406^{* *}$	0.654**	118.367	252.002
Other goods	1.049**	$1.037^{* *}$	1.012**	-1.150	-3.553
Average Difference				82.567	238.166
Average Absolute Difference				82.823	238.955

[^1]**Statistically significant at the 0.05 level.

Table 5-Comparison of Marshallian Own Price

	Marshallian Own Price Elasticities			Percent Differences in Marshallian Ownprice Elasticities	
	Yearly	Monthly	Biweekly	Monthly vs Yearly	Biweekly vs Yearly
Cereals \& Bakery	-0.903**	-0.514**	-0.394**	-43.135	-56.343
Meats \& Eggs	-1.119**	-0.853**	-0.427**	-23.775	-61.866
Dairy	$-1.135^{* *}$	-0.821**	$-1.005^{* *}$	-27.663	-11.451
Fruit \& Vegetables	-1.636**	-0.964**	-0.704**	-41.064	-56.990
Nonalcoholic Beverages	-0.558**	-0.803**	-0.153	43.910	-72.603
Fats \& Oils	-0.705**	-0.253	-0.242	-64.130	-65.703
Sugar \& Other Sweets	-1.187**	$-1.368^{* *}$	-0.898**	15.251	-24.335
Miscellaneous Goods	-0.923**	-0.449**	-0.379**	-51.402	-58.927
Other goods	-0.989**	-0.991**	-0.987**	0.196	-0.132
Average Difference				-21.313	-45.372
Average Absolute Difference				34.503	45.372

*Statistically significant at the 0.10 level.
**Statistically significant at the 0.05 level.

Footnotes to text

1. Proportion of observations with zero expenditures were 0.6% or less over a year-long period
2. In the final dataset with 11,980 households (35,421 year-specific household records) 25% of households were included for all five years followed by $17 \%, 14 \%, 17 \%$, and 27% for 4 years, 3 years, 2 years, and 1 year, respectively. Also notable is that while the inclusion years are consecutive, years are not necessarily the same years for all households.
3. Similar to the method used by Zhen et al. (2011), brands composing a five percent or greater market share of their respective aggregate product were identified individually. To address degrees of freedom concerns in the price regressions explained in the next section, where these brand-specific aggregate products contained fewer than 3,200 observations, brand-specific aggregate products were added to the "other brands" aggregate product. In the event an entire aggregate product (all brands and non/store brand combined) contained fewer than 3,200 observations, that aggregate product was combined with another aggregate product considered similar by product characteristics within the same subgroup.
4. 1,110 households or 3% recorded purchases for 10 months, 3,229 households, or 9% recorded purchases for 11 months, and the remaining $31,082(88 \%)$ recorded purchases for all 12 months in a given year.

References

Alfonzo, L., and H.H. Peterson. 2006. "Estimating Food Demand in Paraguay from Household Survey Data." Agricultural Economics, 34: 243-257.

Andreyeva, T, M.W. Long, and K.D. Brownell. 2010. "The Impact of Food Prices on Consumption: A Systematic Review of Research on the Price Elasticity of Demand for Food." American Journal of Public Health, 100(2): 216-222.

Barnett, W.A., and A. Serletis. 2008. "Consumer Preferences and Demand Systems." Journal of Econometrics 147: 210-224.

Carpio, C.E., and M.K. Wohlgenant, 2010. "A General Two-Constraint Model of Consumer Demand." European Review of Agricultural Economics 37(4): 433452.

Castellon, C.E., Boonsaeng, T., and C.E., Carpio 2014. "Demand System Estimation in the Absence of Price Data: An Application of Stone-Lewbel Price Indices." Applied Economics 47(6): 553-568.

Deaton, A. 1997. The Analysis of Household Surveys: A Microeconometric Approach to Development Policy. Washington, DC: Johns Hopkins University Press.

Deaton, A., and M. Irish. 1984. "Statistical Models for Zero Expenditures in Budget Shares." Journal of Public Economics 23: 59-80.

Gibson, J., and B. Kim. 2012. "Testing the Infrequent Purchase Model Using Direct Measurement of Hidden Consumption from Food Stocks." American Journal of Agricultural Economics 94(1):257-270.

Gorman, W.M. 1959. "Separable Utility and Aggregation." Econometrica 21:63-80.

Keen, M. 1986. "Zero Expenditures and the Estimation of Engel Curves." Journal of Applied Econometrics 1(3):277-286.

Kinsey, J. and B. Senauer. 1996. "Consumer Trends and Changing Food Retailing Formats." American Journal of Agricultural Economics 78(5):1187-1191.

Leffler, K.K. 2012. "Temporal Aggregation and Treatment of Zero Dependent Variables in the Estimation of Food Demand using Cross-Sectional Data." Unpublished M.S. thesis. The John E. Walker Department of Economics, Clemson University.

Lewbel, A., and K. Pendakur. 2009. "Tricks with Hicks: The EASI Demand System." American Economic Review 99:827-863.

Meghir, C., and J.M. Robin. 1992. "Frequency of Purchase and the Estimation of Demand Systems." Journal of Econometrics 53:53-85.

Okrent, A., and J.M. Alston. 2010. "The Demand for Food in the United States: A Review of the Literature, Evaluation of Previous Estimates, and Presentation of New Estimates of Demand." Paper presented at AAEA annual meeting, Denver CO, 25-27 July.

Park, J.L., R.B. Holcomb, K.C. Raper, and O. Capps. 1996. "A Demand Systems Analysis of Food Commodities by U.S. Households Segmented by Income." American Journal of Agricultural Economics 78(2):290-300.

Raper, K.C., M.N. Wanazala, and R.M. Nayga. 2002. "Food Expenditures and Household Demographic Composition in the US: A Demand Systems Approach." Applied Economics 34:981-992.

Schennach, S. M. (2012). Measurement error in nonlinear models: A review (No. CWP41/12). cemmap working paper, Centre for Microdata Methods and Practice Shonkwiler, J.S., and S.T. Yen. 1999. "Two-step Estimation of a Censored System of Equations." American Journal of Agricultural Economics 81:972-982.

Todd, J.E., L. Mancino, E. Leibtag, and C. Tripodo. 2010. Methodology behind the Quarterly Food-At-Home Price Database. Washington DC: U.S. Department of Agriculture, ERS for Technical Bulletin 1926, April.

Yen, S.T., and B.H. Lin. 2006. "A Sample Selection Approach to Censored Demand Systems." American Journal of Agricultural Economics 88:742-749.

Zhen, C., J.L. Taylor, M.K. Muth, and E. Leibtag. 2009. "Understanding Differences in Self-Reported Expenditures Between Household Scanner Data and Diary Survey Data: A Comparison of Homescan and Consumer Expenditure Survey." Review of Agricultural Economics 31(3):470-492.

Zhen, C., M.K. Wohlgenant, S. Karns, and P. Kaufman. 2011. "Habit Formation and Demand for Sugar-sweetened Beverages." American Journal of Agricultural Economics 93(1):175-193.

Appendices:

Group Commodity	Average Yearly Marshallian Elasticities								
	CB	ME	D	FV	NB	FO	SO	Misc	OG
Cereal and Bakery (CB)	$-0.903^{* *}$	$0.259^{* *}$	$-0.063^{* *}$	$0.463^{* *}$	-0.008	$0.141^{* *}$	-0.035**	0.207**	-0.278**
Meats and Eggs (ME)	$0.183^{* *}$	-1.119**	0.118**	$0.222^{* *}$	$-0.051{ }^{* *}$	$-0.057^{* *}$	$0.027^{* *}$	$0.389^{* *}$	-0.057
Dairy (D)	$-0.084^{* *}$	$0.221^{* *}$	-1.135**	0.036	$0.139^{* *}$	0.010	-0.004	$0.398^{* *}$	$0.200^{* *}$
Fruit and Vegetables (FV)	0.508**	$0.343^{* *}$	0.030	-1.636**	$0.287^{* *}$	0.029**	$0.075^{* *}$	0.514**	$-0.378^{* *}$
Nonalcoholic Beverages (NB)	-0.009	$-0.082^{* *}$	$0.122^{* *}$	0.304**	$-0.558^{* *}$	$0.024^{* *}$	$0.040^{* *}$	0.292**	$-0.387^{* *}$
Fats and Oils (FO)	$0.563^{* *}$	$-0.318^{* *}$	0.031	$0.10{ }^{*}$	0.084**	-0.705**	-0.019	$0.282^{* *}$	$-0.244^{* *}$
Sugar and other Sweets (SO)	$-0.108^{* *}$	$0.118^{* *}$	-0.010	$0.210^{* *}$	$0.106^{* *}$	-0.015	$-1.187^{* *}$	0.061	$0.565^{* *}$
Miscellaneous goods (Misc)	$0.114 * *$	$0.300^{* *}$	0.165**	$0.257^{* *}$	$0.138^{* *}$	$0.038^{* *}$	0.011	$-0.923 * *$	-0.284********)
Other goods (OG)	$-0.009 * *$	$-0.00{ }^{* *}$	-0.004**	-0.009**	-0.009**	$-0.002^{* *}$	$-0.001^{* *}$	$-0.018^{* *}$	$-0.989^{* *}$

*Statistically significant at the 0.10 level.
**Statistically significant at the 0.05 level.

Group Commodity	Monthly Marshallian Elasticities								
	CB	ME	D	FV	NB	FO	SO	Misc	OG
Cereal and Bakery (CB)	$-0.514^{* *}$	0.023	-0.076*	0.370 **	-0.041	0.089**	-0.036*	0.142	$-0.378^{* *}$
Meats and Eggs (ME)	0.015	$-0.853^{* *}$	0.200*************)	$0.126^{* *}$	-0.002	-0.017	0.029	$0.241^{* *}$	$-0.286^{* *}$
Dairy (D)	-0.098*	0.374*********	$-0.821^{* *}$	-0.049	-0.036	-0.010	-0.041^{*}	0.067	0.198**
Fruit and Vegetables (FV)	0.399**	$0.199^{* *}$	-0.041	$-0.964^{* *}$	$0.213^{* *}$	0.054	$0.078^{* *}$	0.194*	$-0.539^{* *}$
Nonalcoholic Beverages (NB)	-0.048	-0.004	-0.033	0.220 **	$-0.803^{* *}$	0.050^{*}	-0.017	-0.064	0.028
Fats and Oils (FO)	0.293**	-0.078	-0.025	0.165	0.149^{*}	-0.253	-0.025	$-0.666^{* *}$	0.093
Sugar and other Sweets (SO)	-0.090^{*}	0.107	-0.080^{*}	$0.182^{* *}$	-0.037	-0.020	$-1.368^{* *}$	$-0.189^{* *}$	$0.993^{* *}$
Miscellaneous goods (Misc)	0.079	0.196*********)	0.029	0.100*	-0.030	-0.114**	$-0.042^{* *}$	$-0.449^{* *}$	-0.180
Other goods (OG)	$-0.009^{* *}$	-0.010**	-0.003**	$-0.010^{* *}$	-0.003***	$-0.002^{* *}$	$0.002^{* *}$	$-0.013^{* *}$	-0.991

*Statistically significant at the 0.10 level.
**Statistically significant at the 0.05 level.

| Group Commodity | Biweekly Marshallian Elasticities | | | | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | CB | ME | D | FV | NB | FO | SO | Misc | OG |
| Cereal and Bakery (CB) | $-0.394^{* *}$ | $-0.362^{* *}$ | -0.048 | $0.493^{* *}$ | $-0.162^{* *}$ | $0.118^{* *}$ | $-0.150^{* *}$ | -0.035 | -0.170^{*} |
| Meats and Eggs (ME) | $-0.238^{* *}$ | $-0.427^{* *}$ | -0.029 | -0.081 | $-0.346^{* *}$ | 0.034 | -0.045 | 0.128 | -0.163 |
| Dairy (D) | -0.061 | -0.052 | $-1.005^{* *}$ | 0.151 | 0.043 | 0.077 | $-0.077^{* *}$ | 0.046 | $0.255^{* *}$ |
| Fruit and Vegetables (FV) | $0.524^{* *}$ | -0.129 | 0.124 | $-0.704^{* *}$ | 0.121 | $-0.291^{* *}$ | -0.013 | 0.133 | $-0.514^{* *}$ |
| Nonalcoholic Beverages (NB) | $-0.173^{* *}$ | $-0.565^{* *}$ | 0.035 | 0.121 | -0.153 | -0.057 | -0.035 | $0.278^{* *}$ | -0.223^{*} |
| Fats and Oils (FO) | $0.296^{* *}$ | 0.133 | 0.150 | $-0.694^{* *}$ | -0.137 | -0.242 | 0.058 | $-0.720^{* *}$ | 0.083 |
| Sugar and other Sweets (SO) | $-0.312^{* *}$ | -0.145 | $-0.127^{* *}$ | -0.030 | -0.071 | 0.047 | $-0.898^{* *}$ | $-0.371^{* *}$ | $0.554^{* *}$ |
| Miscellaneous goods (Misc) | -0.019 | 0.120 | 0.020 | 0.072 | $0.150^{* *}$ | $-0.163^{* *}$ | $-0.102^{* *}$ | $-0.379^{* *}$ | $-0.353^{* *}$ |
| Other goods (OG) | $-0.005^{* *}$ | 0.000 | -0.001 | $-0.007^{* *}$ | $-0.004^{* *}$ | 0.001 | $0.004^{* *}$ | $-0.012^{* *}$ | $-0.987^{* *}$ |

*Statistically significant at the 0.10 level.
**Statistically significant at the 0.05 level.

[^0]: *Support for this research was provided by a grant from the USDA AFRI Foundational Program

[^1]: *Statistically significant at the 0.10 level.

