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VALUE OF PREDICTORS OF
UNCONTROLLED FACTORS IN RESPONSE
FUNCTIONS

D. R. BYERLEE and J. R. ANDERSON#*
University of New England

A method is developed for assessing the monetary value of additional
information in the framework of a response process which involves
interaction between controlled and uncontrolled factors, The method is
illustrated through an analysis of the value of a rainfall predictor in
determining optimal applications of nitrogen to wheat in an environment
with variable rainfall. The analysis defines the conditions under which
the predictor is most valuable and suggests types of predictors which may
be of greater value,

Introduction

In recent years economists have favoured decision theory as a norma-
tive tool for decision making under uncertainty.! However, relatively
little attention has been explicitly focused on the economics of obtaining
additional information to reduce uncertainty. In this paper a method is
developed and illustrated for evaluating information in the context of a
micro-production function which we denote as a response function.

Theoretical Considerations

In the classical theory of the firm, a micro-production function is used
to describe the production process. A key assumption of the usual theory
is the existence of perfect knowledge about future events. By relaxing
this assumption we can examine the physical characteristics of a process
which determine whether or not information will have economic value.

In its simplest form, the response function may be written as

y = f(-x'ﬁ): (l - 13 2a ALY n)a

where y is output and the x; are perfectly divisible, homogeneous inputs
under the control of the decision maker. Profit is defined by the objective
function,

T = P,y — ZpiXi,
which is maximized when

ay/axz = pi/ sz
and the required second-order conditions are satisfied.

This simple response function is readily partitioned to a more realistic
and comprehensive model of production by specifying the relationship

* Mr Byerlee is now at Oregon State University. With the usual disclaimers the
authors are grateful to J. L. Dillon, A. N. Halter, J. B, Hardaker, J. B. Phillips
and J. S. Russell for helpful comments.

1 Several authors (e.g. [5, 7, 8]) have reviewed modern developments and

agricultural applications of such aspects of decision theory as utility analysis and
Bayesian statistics.
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in a form which explicitly considers uncertainty and controllability?,
namely
y=Fx, x %), (=12,..,nj=n+1,n+2,... m
k=m-+1, m+2,...r),

where x; is the level of the i-th controlled input, x; is the level of the j-th
uncontrolled input known at the time of the decision and x, is the level
of the k-th uncontrolled input which is unknown (uncertain) at the time
of the decision. The prices of the uncontrolled inputs, the p; and p;, here
and in general are zero.

If the x; and x; have independent effects in the production process,
then in general

ay/dx; = f'(x;, x;)

3*y/0x;0x;, = 0.

That is, the marginal products of the x; are independent of the levels of
the x;. Since the x; are known or can be estimated prior to making the
decision, the optimal levels of x;, denoted x;*, can be determined. Al-
ternatively, if the x; and x; interact in the production process,
0y/0x; = f (xi, x5 x3).

In this case, the marginal products of the x; cannot be equated directly
with the appropriate price ratios to determine the optimal levels of the
x;. In the absence of perfect knowledge,? the decision maker is unable
to choose the levels of x; which will necessarily be optimal ex post and
the decision maker may incur a loss—a cost of uncertainty. This cost
arises from the interaction between the controlled and uncertain factors
in the process. Thus, interaction between controlled and uncertain
factors is a necessary condition for additional information on the un-
certain factors to have economic value. Information is defined here as
anything which causes revision of the prior probability of an event.

and

An Hlustrative Application

The relationship among input factors for a large number of agricul-
tural response processes can be viewed in the theoretical framework
outlined. Here we will consider one such process. While concentration
on a particular process will not enable any empirical generalizations to
be drawn concerning the whole area of information in a production
economics setting, we hope our example will suggest approaches which
may be useful in other situations.

Our illustrative example relates to the questions of the application of
nitrogen to wheat and the prediction of rainfall one year ahead. Russell
[9] has recently reported an extensive series of investigations into the
response of wheat to nitrogen in the South Australian wheat belt—an
area where use of applied nitrogen is not part of the traditional tech-
nology. Bowen has recently suggested in a confidential publication that

2 Without being too pedantic about the degree of precision of control over
inputs, we believe inputs can usefully be considered in the simple dichotomy of
controlled and uncontrolled. An analogous model of an agricultural response
process has been discussed in [3, pp. 194-205].

3 Here we only consider the case where the prices are known with certainty.
In practice, p, will often be uncertain (p; less frequently) and it will then be
most appropriate to use the expected prices computed with the decision maker’s
subjective probabilities [1, p. 50].
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it may be possible to make long-term predictions of rainfall trend as
distinct from rainfall amount.*

The factors® considered were: applied nitrogen, growing season (May
to October) rainfall, 15 atmospheres soil moisture, total soil nitrogen
(0-6 inches) and initial soil nitrate (0-36 inches). The dependent vari-
ables considered were grain yield, and response in grain yield (ie.
y= Yy — Y.., v). We used conventional least-squares regression to fit
various second-order and some third-order polynomials using several
combinations of dependent and independent variables. The final equation,
chosen on the basis of a subjective consideration of tests of statistical
significance, agronomic principles and computational feasibility, was

y = 0-05274N — 0-00156N? 4 0-01755NG — 0-00498NS,,
(151) (2-46) (11-25) (3-80)
— 0-00119NGS,,
(4-26)

2

R =054
where

y = response in grain yield (bushels per acre),
G = growing-season rainfall (inches),
N = nitrogen applied (pounds of nitrogen per acre),
S,. = soil moisture content at 15 atmospheres (per cent),
S, = initial soil nitrate (p.p.m. of nitrogen).

Respective values of Student’s ¢ are shown in parentheses. For the
purpose of our expository example we abstract from the difficulties re-
lated to the algebraic specification of, and variance not explained by, the
chosen response function. The assumed relevant prices of y and N are
$1.10 per bushel and 125 cents per pound respectively.®

A feature of the function is the significant interaction between res-
ponse to nitrogen and rainfall. This interaction is a necessary condition
for additional information on rainfall to have any significant economic
value. The third-order term (NGS,) apparently accounts for the signifi-
cant interaction between nitrogen response and site and season reported
by Russell [9, p. 459].

In this response process, the x; are represented by N, the x; by S,, and
S,, and the x; by G. Thus for any combination of values of N, Sy and
S,, ¥ is determined by the variable G.

4 We are grateful to Dr E. G. Bowen, Chief of the Division of Radio Physics,
C.S.LR.O. for allowing us to use data from the predictor he is developing.

5 Data {9, pp. 455-457] on nitrogen response were recorded at 16 widely scat-
tered locations in South Australia, varying in average annual rainfall from 11-3
to 19-9 inches. Fifty-two site-season combinations are represented in the experi-
ments in which nitrogen was applied at 0, 11-5, 23 and 46 1b. per acre. Soil
measurements were taken at sowing time and rainfall recorded over the growing
season of May to October.

6 These prices were approximately the present value of wheat net of harvest
and selling costs and the marginal cost of applied nitrogen respectively at the time
of the study. Subsequently, nitrogen price has declined substantially and will
probably continue to do so for some time.This price fall implies slight reductions
in the computed values of the predictions reported herein.
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Historical rainfall data for a specific location can be used to estimate
a continuous probability distribution for G, which is denoted as the prior
distribution, 4,(G). Using this distribution we can compute the level of
nitrogen, N,*, which maximizes expected profit. In decision theory jar-
gon, N,* is the prior optimal action. Expected profit is maximized when

E£(3y/0N) = E(px/p,)
— pN/py:
where, for the prior case,
E(dy/dN) = f (8y/dN)h,(G)dG.

As an example of this computation, for the location? considered in
this paper, when S,, = 3 per cent and S, = 1 p.p.m., expected profit is
maximized when N = N,* — 181 Ib. per acre.

We turn now to considering how additional information on rainfall
can influence optimal rates of fertilizer, and, through measurement of the
consequent effects on profits, we will show how the value of additional
information can be assessed. Additional probabilistic information is
combined with the prior distribution to give posterior distributions.

Posterior Distributions of Annual Rainfall

Additional information on rainfall is provided by a predictor of trends
(i.e. upward or downward) in annual rainfall from one year to the next.
The amount of additional information on rainfall in any prediction is
determined by the direction of the predicted trend and the rainfall in the
previous year. For example, a prediction of an upward trend following
a year of very low rainfall is not very informative.

The posterior distributions of annual rainfall were determined by
comparing observed rainfall with the prediction for each year over a
period of years. Six predictions denoted by [Py; k=1, 2, . . ., 6], are
considered in this analysis. These include three predictions of a down-
ward trend when rainfall in the preceding year is in the first (k = 1),
the second or third (k = 2), or the fifth (k = 3) deciles respectively;
and three predictions of an upward trend when rainfall in the preceding
year is in the fifth (k = 4), the eighth or ninth (k — 5), or the tenth
(k = 6) deciles respectively. The first decile is the lower end of the range
of the distribution of rainfall. Relative frequency distributions of rainfall
conditional on each type of prediction were then estimated. Since there
was no evidence that the accuracy of the predictions varied significantly
over the Australian continent, rainfall data expressed in deciles for 90
centres were pooled to estimate posterior distributions of annual rainfall
measured in deciles. These posterior distributions were then converted
to annual rainfall measured in inches for the specific location, and are
denoted by p.(A;) and the subscript & indicates that each distribution is
conditional on a prediction P,.

Posterior Distribution of Growing-Season Rainfall

Although the rainfall predictor is directly relevant to annual rainfall,
it is also relevant to several other variables. In this response process,
because growing-season rainfall is both the logical measure of rainfall
and the measure recorded by Russell, posterior distributions of growing-

7 Eurelia, S.A.
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season rainfall were required. To establish a quantitative relationship
between growing-season rainfall, G, and annual rainfall, 4, these were
each classified into six intervals to give the sets [G; i=1, 2, . . ., 6]
and [A; j=1, 2, . . ., 6]. A matrix of conditional probabilities
[p(GilA);i,j=1,2,..., 6] was estimated from historical rainfall data,
making necessary adjustments for finiteness [10]. If pi(A4;) are the
posterior probabilities of annual rainfall, then the posterior probabilities
of growing-season rainfall p,(G;) are calculated from

6
pi(G;) = Elp(GﬂAj)pk(Aj)-

These discrete distributions were smoothed by plotting cumulative dis-
tributions, denoted H(G), in a manner following that of Schlaifer [10,
pp. 290-299] and are illustrated in Figure 1.
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Fic. 1—Cumulative posterior probability distributions of growing-season
rainfall given the predictions, compared with the prior distribution.

Fitting Functions to the Probability Distributions

Because standard distributions such as the normal and lognormal did
not provide a satisfactory description of the posterior distributions, a
method of polynomial approximation was developed. The cumulative
distribution was segmented and each segment approximated by a poly-
nomial function, Satisfactory approximations were obtained by segment-
ing the cumulative distribution, H(G), about H(G) = 0-5. Cubic
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functions were fitted to eight co-ordinates of each segment. In nearly all
cases this procedure gave a coefficient of multiple determination greater
than 0-99. Estimated probability density functions were obtained by
differentiating the cumulative functions. A probability density function,
h(G), thus consists of two segments defined as

m(G) = dH:1(G)]/dG, a < G < b

ho(G) = d[H:(G)1/dG, b < G < c.
This procedure was used to obtain the posterior distributions [A;,(G),
hey (G); k=1, 2, .. ., 6] for the predictions [P;; k=1, 2, . . ., 6].
In each case the area under the density function was very close to unity,
indicating a satisfactory approximation.
In order to explore the potential for improvement in the rainfall pre-
dictor, we also examined the following hypothetical predictors:

(i) predictor of trends in growing-season rainfall analogous to the
annual rainfall predictor;
(ii) perfect predictor of trends in growing-season rainfall;
(iii) perfect predictor of annual rainfall, and
(iv) perfect predictor of growing-season rainfall.

and

Computing the Value of Information

In this analysis, the decision maker is assumed to be indifferent to the
riskiness of various outcomes in decisions on fertilizer use. Since the
monetary returns from the use of nitrogen fertilizer form only a small
proportion of total returns, this may not be an unreasonable assumption.
Thus, in effect, the relevant segment of the decision maker’s utility
function is approximated by a linear function. This simplifying assump-
tion enables us to ignore the variance and higher moments of y. Appro-
priate analysis for a decision maker strongly averse to risk would involve
determining strategies which maximize expected utility—an analysis
made very difficult by the general absence of data on variability over
time as it relates to varying input rates.

Analogously to the prior case, expected profit for a given level of soil
moisture and initial nitrate is maximized when

El9y/ON] = px/py,
where

EL3y/aN) = § (ay/N)hus(G)G + § (33/aN) hin(G)dG.

One solution for the prior distribution %,(G) was noted above. In a
similar manner, a Bayesian strategy [N;*; k=1, 2, . . ., 6] relating to
the set of predictions [P;; k=1, 2, . . ., 6] can be computed. The
results are displayed in Table 1.

When fixed costs are ignored, profit for any combination of the pro-
ductive factors is given by

™= pyy — PN,

and expected profit uy, for the prediction Py, is

pr = E(ar)
b ¢
— .! Whlfe(G)dG —|— bf ’ﬂ'hzk(G)dG,

B1
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TABLE I

Bayesian Strategies for Six Annual Rainfall Predictions
Compared with the Prior Actions

. 15 atmos-
Soil pheres ..
nitrate soil Prediction
moisture Prior 1 2 3 4 5 6
p.p.m.N per cent 1b. N per acre
1 3 181 4-0 8-4 133 257 317 362
3 3 11-9 0-0 3.7 7-8 18-4 23-5 274
5 3 6-7 0-0 0-0 2-3  11-1 13-4 186
1 6 13-3 00 3.7 85 209 269 314
3 6 7-1 0.0 0-0 3-0 13-6 187 22:6
5 6 1-0 00 0-0 0-0 6-3 106 13-8
1 9 85 00 0-0 3.7 161 22-1 26-7
3 9 2-3 11 0-0 00 88 139 179
5 9 00 00 0-0 0-0 1-5 5.8 9.0

where the expectation is over G since this is the probabilistic factor in .
Using these expected profit functions based on the posterior distributions,
h.(G), the expected profits g and p.* for inputs N,* and N;* respect-
ively can be computed for each prediction P;. The value, Vy, of the
prediction P;; is then determined as

Vie=wm™ — px’.
Values of six predictions of annual rainfall for a range of soil conditions
are shown in Table 2.

TABLE 2
Values of Some Annual Rainfall Predictions
15 atmos-
Soil pheres Prediction
nitrate soil 1 2 3 4 5 6
moisture
p.p.m.N per cent cents per acre
1 3 33 15 3 9 31 56
3 3 24 11 2 7 23 41
5 3 13 7 2 4 15 28
1 6 33 15 3 9 31 56
3 6 20 11 2 7 23 41
5 6 3 2 0 4 15 28
1 9 28 15 3 9 31 56
3 9 8 5 2 7 23 41
5 9 0 0 0 0 5 14

Similarly, if g, is the probability of the prediction P; being made and
q, is the probability of no prediction being made (i.e. only prior informa-
tion is used),® the maximum expected profit given the rainfall predictor
is

p*=3qu*. (k=0,1,... 6)

8 For the predictions considered here,
[qo, a1, G2, . . ., ge} = [0-398, 0-011, 0-036, 0-254, ¢-254, 0-036, 0-011].
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If u,* is the expected profit given only prior information, the value, V,
of the predictor is
Vo= ¥ — p*
Using this procedure, the values of the annual rainfall predictor and
the various hypothetical predictors were computed for the same set of
conditions and the results are tabulated in Table 3.

TABLE 3
Values of Various Rainfall Predictors
15 atmos- Perfect
. . - Perfect
Soil pheres Predictor predictor .
nitrate soil Predictor of of Pedrfetct predlgtor
moisture of annual growing- growing- p;e ¢ orl ot
rainfall season season ° qn?uﬁl growing-
rainfall rainfall ramnfa season
trends rainfall
p.p-m.N per cent cents per acre
1 3 57 79 16-0 21-8 360
3 3 4-2 5-8 11-2 15-6 260
5 3 28 3-5 7-4 10-0 15-¢
1 6 5-7 79 15-7 21-4 34-0
3 6 4-2 56 10-7 14-9 22-0
5 6 20 2-4 5-2 7-1 10-0
1 9 56 7:6 15-2 20-4 31-0
3 9 3-8 4-5 8-7 11-7 17-0
5 9 0-3 05 1-9 2-3 5-0
Discussion

Implications for the Rainfall Predictor

Although the largest value of the annual rainfall predictor is only 5-7
cents per acre, aggregated over a large area the potential value in formu-
lating strategies for nitrogen application may be quite substantial. How
much of this potential would be realizable in practice depends on the
extent to which farmers attempt to maximize expected profits in their
decisions on fertilizer rates. As the predictions could apparently be
derived and released at rclatively small cost, there appears to be some
economic justification for supplying such additional information on rain-
fall to farmers.

While the value of individual predictions could exceed 30 cents per
acre, such valuable predictions would be made so rarely that the value of
the predictor on average would be relatively low. The values for each
prediction differ markedly with the measured characteristics of the soil.
If regional patterns of soil nitrogen could be identified, areas of low
nitrogen status could be defined in which the publicity of the predictions
could most profitably be concentrated.

The values of various hypothetical predictors suggest scope for im-
provement of the annual rainfall predictor. Thus a significant increase in
value could be obtained by a more accurate predictor of trends. How-
ever, the ultimate value of the predictor is limited by the fact that trend
rather than an absolute measure of rainfall is the subject of prediction.

B2
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For example, where rainfall is high and a downward trend is predicted,
very little additional information is provided. It is unlikely in such a case
that all the information available to the forecaster is given in the predic-
tion of a trend. The use of probabilistic forecasts of actual rainfall rather
than trends seems feasible and would be more valuable.

The hypothetical predictor of growing-season rainfall indicates that
some of the additional information on annual rainfall is lost when it is
related to growing-season rainfall. It appears that in most agricultural
processes, some categorization of rainfall other than annual would be a
more appropriate basis for prediction.

General Implications of the Approach

For systems of prediction analogous to the one discussed here, final
assessment of value can be made only after investigating the predictions
ex post for a lengthy period. However, the decision-theoretic approach
allows us to reach, ex ante, interim conclusions concerning the economic
usefulness of a predictor.?

Our analysis has established that interaction between the controlled
and uncertain inputs is necessary for ‘uncertainty-reducing’ information
to have an economic value. In the nitrogen response example considered,
the value of the rainfall predictor is not strongly influenced by the
moisture-holding characteristics of the soil,® but decreases markedly as
initial soil nitrate increases. These results can be explained by the fact
that soil nitrate affects the interaction between rainfall and applied nitro-
gen through a third-order interaction term. Thus, in the generalized
response function, y = f(x;, x;, x;.), it is the interaction between the X;
and the x; which determines whether information on the x; has a
positive value, but it is the interaction between all three types of input,
along with the specification of the process, the prices, the prior distribu-
tion and the predictor which determines the magnitude of the value.

Much scope exists for integrating decision theory with a broad class
of topics in production economics in which the central problem is as-
sembling knowledge as a basis for action. Questions which might be
considered in this framework range from deciding when to stop experi-
menting on a response process to incorporating probabilistic information
on uncontrolled production factors such as weather and prices [2, Ch.4.].
We hope that the methodology developed in this paper might prove
useful in considering many questions of the latter type.
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