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Abstract 

 

One approach to modeling the ex-ante effects of extreme weather events on production 

entails statistical downscaling of global climate model ensembles to regional or sub-regional 

levels. However, statistical downscaling of global climate ensembles is highly technical and 

computationally expensive in terms of time, data storage, and human resource costs. Our 

approach considered the use of copulas to generate multivariate empirical distributions of crop 

yields and meteorological information. The fundamental idea is that retrospective data on 

drought, floods, or other extreme weather events are statistically associated with crop 

performance. We posit the historical record of crop production and meteorological events 

embody all of the necessary information needed to understand what happens to agricultural 

production when extreme weather events prevail. These trends are evident in publicly available 

records. By mining the correlation structure between yields and growing conditions embedded in 

the historical record, we can simulate sequentially poor weather years and the corresponding 

effects on agricultural production.  
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Introduction 

The U.S. agricultural sector is expected to experience declining yield growth trends for 

major crops under various climate projections into the 21st century (USDA-ERS, 2015). Many 

factors are expected to be closely related to various in crop production, especially the prospect of 

more frequent extreme weather events and prolonged drought. An increase in the severity, 

duration and area affected by drought has been observed to occur over larger geographic areas 

since the 1970s (Li et al, 2009). From 1980 to 2014, billion-dollar disaster droughts have 

occurred 22 times, costing on average 9.4 billion USD per event (NOAA, 2015).  

Our research questions are motivated by the trends and associations depicted in Figures 1, 

2, and 3. The National Ocean and Atmospheric Administration (NOAA) complied monthly 

historical temperature and precipitation records and interpolated to the county level (NOAA, 

2015). NOAA used these data to calculate various drought indictors, including the Palmer 

Modified Drought Index (PMDI). The PMDI is a standardized variable NOAA uses to classify 

drought conditions into categories such as moderate, extreme, or severe. According to Figure 1, 

from1970 to 2011, there are three or four years when extreme drought impacted more than 30% 

the counties in lower 48 states (Figure 1). Outstanding years include 1977, 1988, and 2011. The 

drought of 1988 appears to be flanked by periods where 15 to 20% of the counties were impacted 

by moderate or extreme drought. From 2000 to 2003 there are consecutive periods where 

counties experienced severe drought. A similar sequence appears again, 2006 – 2008. However, 

the spatial distribution of impacted counties suggests somewhat of a different story. While the 

relative frequency of drought appears to be clustered (as seen in the bar chart of Figure 1), the 

spatial-temporal appears less structured, although periods 2001 – 2003 exhibit some degree of 

regional persistence. Figure 2 presents the same data from a different, with corn yield deviates 
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(left y-axis) and PMDI (right y-axis) against time (x-axis). In some years and in certain regions, 

variations in corn yield and the PMDI are coupled. In other years, the co-movement is less 

evident.  

 

[Figure 1] 

[Figure 2] 

 

How did crop production respond to these events? Figure 2 compares corn and soybean 

production during the “drought years” of 1977, 1988, 2000, and 2007. The data are ASD-level, 

de-trended yield deviates reported by NASS. The lower (higher) the yield deviation, the worse 

(better) the yield was from a historical average. Holding many other factors constant, we would 

expect to see some correspondence between the PMDI and yield deviates. Regions with low 

PMDIs are impacted by drought. In the absence of irrigation or drought resistant corn or soybean 

varieties, low PMDI’s (extreme or severe drought) should correspond with negative yield 

deviations (green to dark blue shading) (Figure 2). Close inspection of Figure 2 suggests there 

may be some corresponded, but it is not immediately evident.    

 

[Figure 3] 

 

We are left with the following question: can the impact of drought on crop production be 

simulated using the hypothesized correlation between drought and crop production which one 

would naturally expect to find in the historical record? Our preliminary research attempts to 

answer this question by developing a framework for simulating how extreme weather events – 
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such as prolonged drought – could impact crop yields if drought events become more frequent 

and persist for longer periods. Changes in production should also impact price, and eventually 

crop planting decisions. In theory, higher national (state) prices (driven by production shortfalls 

in a particular region), should encourage producers in regions unencumbered by drought (but 

possibly with access to groundwater irrigation) to intensify production of the crop during 

shortfalls. Our approach taps into the historical climate and crop yield data to generate bivariate 

copula for replicating the empirical distributions of crop yields. The basic idea is that, by 

resampling from the lower tails of yield distributions, we can simulate the impacts of drought on 

production under a variety of temporal and geographic scenarios.  

 

Literature Review 

There are several approaches to simulate the impacts of drought or other adverse weather 

conditions on yield. The first line of research uses stochastic weather generators to simulate the 

effects of extreme weather events on crop yields (Torriani et al., 2007; Xiong et al., 2009; 

Kapphan, Carlanca, 2012; Wang, Wang and Liu, 2011). An example of a plant growth model 

using weather generators is the Environmental Policy Integrated Model (EPIC) system. When 

sub-regional information on plant requirements and management practices is available, EPIC can 

be calibrated and then downscaled to different spatial levels to reflect regional variation in 

production (USDA-ERS, 2015).  

The second general approach combines regression analysis and theoretical distributions 

to generate yield forecasts for the mean of crop yield in response to different climate or soil 

projections. (McCarl, Villavicencio, and Wu, 2008; Woodard and Garcia, 2008; Goodwin, 

2001). Nelson and Preckel (1989) used the conditional beta distribution to fit the crop yield for 
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its range and skewness. Zanini et al (2001) found that Weibull distribution best summarized 

yield distribution of corn and soybeans of Illinois Farms. Tack (2013) analyzed county-level corn 

yield data of U.S. Corn Belt and found evidence in favor of generalized maximum-entropy 

distribution to fit crop yields. Sherrick et al. (2004) compared the performance of alternative 

parametric distributions for modeling yields on Illinois farms. Ramirez, Misra and Field (2003) 

suggested a family of parametric distributions that allowed for non-normal yields. Other 

researches apply non-parametric approach to model yield distributions. For example, Goodwin 

and Ker (1998) and Ker and Goodwin (2000) suggested a nonparametric kernel density method 

to model crop yields. Ker and Coble (2003) introduced a semi-parametric estimator that 

combines the desirable properties of both parametric and non-parametric estimators. Compared 

to previous studies which focus on the mean of yield distribution, Harri et al (2011) and Tack, 

Harri and Coble (2012) focused on higher moments of crop yield. 

The above approaches clearly suggest the importance of modeling yields and climate 

drivers as joint distributions. Copulas provide another approach to model joint distributions. 

Sklar (1959) introduced the concept of copula. Nelsen (2006) summarized the details of 

construction and properties of copulas. In the applied agricultural economics literature, copula-

based approaches have seen more frequent use in the investigation of systematic production and 

price, crop insurance, and meteorological-induced disasters (Xu et al., 2010; Okhrin, Odening, 

and Xu, 2012; Feng and Hayes, 2014; Annan, Tack, Harri and Coble, 2014; Goodwin and 

Hungerford, 2014).  

 

Methods 
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We use copulas to generate multivariate empirical distributions of drought severity (with 

NOAA’s PMDI) and crop yields. This analysis examines yield deviates and the PMDI index at 

the Agriculture Statistic District (ASD) level for mainly corn and soybeans. The drought index 

we use is the Palmer Z-index. Future research will use county-level data and the PMDI to 

generate copula and estimate copula other major crops and their association with the drought 

index.  

The copulas are calibrated using historical crop production and weather data. We 

investigate the possibility of simulating the impacts of extreme weather events on production by 

focusing on the lower percentiles of the simulated yield distributions to replicate poor growing 

conditions. The key idea is that retrospective data on drought, floods, or other extreme weather 

events are statistically associated with crop performance (Mishra and Cherkauer, 2010). In other 

words, the historical record of crop production and meteorological events – defined by key 

variables like precipitation and temperature – embody all of the necessary statistical information 

needed to simulate what happens to agricultural production when extreme weather events 

prevail. Put simply, when plants do not have adequate water, production decreases. These trends 

are evident in publicly available records for rain-fed crops. By mining the correlation structure 

between yields and growing conditions embedded in the historical record, we hope to simulate at 

any given time step, sequentially poor weather years and the corresponding effects on 

agricultural production.  

Copula models are reliable and flexible method to re-construct and amplify the 

multivariate correlation structure. Let H be an n-dimensional distribution function with the 

marginals 𝐹1, 𝐹2, … , 𝐹𝑛. Then there exists an n-copula C,  
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(1)                                 𝐻(𝑥1, 𝑥2, … , 𝑥𝑛) = 𝐶(𝐹1(𝑥1), 𝐹2(𝑥2), … , 𝐹𝑛(𝑥𝑛)),   𝑥1, 𝑥2, … , 𝑥𝑛 ∈ 𝑅. 

 

Let 𝐹1
(−1)

, 𝐹2
(−1)

, … , 𝐹𝑛
(−1)

 be quasi-inverses of 𝐹1, 𝐹2, … , 𝐹𝑛, respectively. That is, 

 

(2) 𝐶(𝑢1, 𝑢2, … , 𝑢𝑛) = 𝐻(𝐹1
(−1)

(𝑢1), 𝐹2
(−1)

(𝑢2), … , 𝐹𝑛
(−1)

(𝑢𝑛)), 𝑢1, 𝑢2, … , 𝑢𝑛 ∈ [0,1] . 

 

Next, define h to be the density function of distribution H. Then, the corresponding 

density function of equation (1) can be written as: 

 

(3)                                  ℎ(𝑥1, 𝑥2, … , 𝑥𝑛) = 𝑐(𝐹1(𝑥1), 𝐹2(𝑥2), … , 𝐹𝑛(𝑥𝑛)) ∏ 𝑓𝑖(𝑥𝑖)
𝑛
𝑖=1 . 

 

Finally, let c denote the density function of the copula C. Then the corresponding density 

function of equation (2) can be summarized as: 

 

(4)                                 𝑐(𝑢1, 𝑢2, … , 𝑢𝑛) =
ℎ(𝐹1

(−1)
(𝑢1),𝐹2

(−1)
(𝑢2),…,𝐹𝑛

(−1)
(𝑢𝑛))

∏ 𝑓𝑖(𝑥𝑖)𝑛
𝑖=1

. 

 

Feng and Hayes (2014) compare the technical differences between copulas. The copula 

family generally consists of parametric and nonparametric copulas. Typical parametric copulas 

are Gaussian, t, Clayton, and Gumble copulas. The Gaussian copula assumes linear correlation 

and zero dependence in the tails of the distribution. However, linear correlations do not contain 

all relevant information on the dependence and joint distributions with the same correlation 

coefficient, resulting in unexpected behavior, particularly in the tails (SAS 13.2 User’s Guide, 
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2014 ). The Gaussian copula does permit tail dependence (co-movement of tails between the 

distributions of random variables), whereas the parameterized t, Clayton, and Gumble copulas 

do. A t-copula allows for non-zero tail dependence, but imposes symmetry in the dependence 

distribution in both tails of the distribution (Ahmed and Goodwin, 2015). The Gumble copula 

implies a stronger upper tail dependence, while the reverse is true for the Clayton copula. Given 

the variety of copula, model selection is an issue. In our preliminary analysis we use a t-copula, 

which allows for strong dependence in alternative tails.  

Let ={(𝑣,): 𝑣(1,), 𝑅𝑚×𝑚} and let 𝑡𝑣 be a univariate t distribution with v degrees 

of freedom. The Student’s t copula can be written as 

 

(5)  𝐶Θ(𝑢1, 𝑢2, … , 𝑢𝑚) = 𝑡𝑣,(𝑡𝑣
−1(𝑢1), 𝑡𝑣

−1(𝑢2), … , 𝑡𝑣
−1(𝑢𝑚)), 

 

where 𝑡𝑣, is the multivariate Student’s t distribution with a correlation matrix  with 𝑣 degrees 

of freedom. 

We calibrate the t-copula using Kendall’s τ rank correlation coefficient, a nonparametric 

measure of association, against the empirical distributions of the de-trended, ASD-level crop 

yield deviates and the PMDI. The degrees of freedom parameter, ν, is estimated with maximum 

likelihood. Once the yield and PMDI data were fit with the copula, yield and PMDI data points 

were simulated for n = 1,000 replicates, the observed and simulated empirical distributions 

compared.  

 

Preliminary Results 
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 Kendall’s τ (a measure of association between crop yield deviates and the drought index) 

suggests there are regional similarities with respect to the strength of association between the 

drought index and variation in production. The panels in Figure 4 summarize the association 

(Kendall’s τ) between the weather index and nine major crops. The strength of association varies 

regionally for each crop. In general, ASD highlighted in blue are regions where the expected 

relationship between rain-fed crops and the drought index holds. Production regions highlighted 

in brown or yellow indicate regions where the association between variation in yield and the 

drought index are weak or negative. In these cases, crops were likely irrigated (for example, corn 

and hay in the western US).  

[Figure 4] 

 

The top-left panel of Figure 5 plots the relationship between the historical corn yield 

deviates and the Z index (n = 40 observations of corn yield and the Palmer Z index). The 

observed data is transformed to the unit square using a kernel estimator. A t-copula is then used 

to fit the multivariate distribution using Kendall’s  (a non-parametric measure of association) as 

the correlation measure. One-thousand (1,000) pseudo-observations are generated with the fitted 

copula (bottom-left panel, Figure 5). The empirical distribution of the pseudo-observation 

population (red line) nearly approximates the observed distribution of the historical relationship 

(blue line) between drought and crop production (in this example, corn).  

 

[Figure 5] 

 

The region-specific simulated empirical distributions could provide flexibility in terms of 

simulating extreme weather conditions. For example, to force a drought scenario over 
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consecutive years, yields corresponding with the lower tails of the empirical distribution (e.g., 

“Poor” in Figure 5) could be pulled during a Monte Carlo simulation. Alternatively, “Excellent” 

weather conditions (or even use of irrigation) could be simulated by repeatedly sampling the 

upper tail of the empirical distribution.  

  

Conclusions 

This study used a t-copula to fit historical drought and crop yield data with the eventual goal of 

simulating the impacts of drought on crop production, commodity prices, and land use decisions. 

The method shows potential with respect to alternative methods relying on downscaling 

algorithms that push global climate predictions to disaggregated spatial units. The proof-of-

concept method appears to replicate well the empirical distributions of drought and crop yield 

variation when measures of association between these variables are significant. In cases where 

the historical record indicates negative associations between drought and crop production, the 

results are less clear. One obvious reason is that producers will irrigate when drought conditions 

prevail. Another reason could be that the impact of drought on productivity will vary, depending 

on what stage of growth the plant is in when drought occurs.  

 The preliminary findings suggest the following research avenues. Future steps suggest the 

following extensions: 

 Future extensions of this work are stated as follows: 

1. Disaggregate the ASD analysis to counties. 

2. Focus on production instead of yield deviates. 

3. Hold other factors constant, such as irrigation, topography, soil productivity, and 

other unobservable effects. 
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4. Investigate the use of other copula allowing for different tail dependencies. 

5. The NOAA data is recorded at monthly intervals. Determine which month is most 

strongly (positively) correlated with production indices at a spatially disaggregated 

level. 
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Figure 1. Historical distribution of droughts, 1970 – 2011
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Figure 2. NOAA drought index and corn yield, 1970 – 2011 (Source: authors’ analysis) 
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Figure 3. Yield deviates for corn and soybean and the PMDI index, 1977, 1988, 2000, 2007 

(Source: authors’ analysis) 
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Figure 4. Kendall’s tau correlations of the Palmer-Z index and corn production deviations 

(Source: authors’ analysis) 
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Figure 5. Generating crop yield and drought index copula with the corresponding 

simulated empirical distributions (Source: authors’ analysis) 
 

 

 

 

 
 

 


