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Standard spatial equilibrium activity analysis models, as developed by
Takayama and Judge (1971), are based on linear supply and demand functions
and fixed input-output coefficients. Such models are suitable for multiple-
market level trading systems where the fixed input—output coefficients are
appropriate. A primal—dual price form of these models is developed in which the
assumption of constant per unit costs of transformation is relaxed. In the case
when the average cost curves of transformation are quadratic in nature the
problem becomes one that will be termed cubic programming (that is, a cubic
objective function and linear and/or quadratic constraints) which is solved in a
concave region of the solution space. In the paper, the formulation of a simplified
spatial equilibrium model with quadratic average costs of transformation is
presented and solved. A discussion of possible applications of such a model is
also presented.

One of the deficiencies, yet also significant advantages, of the
standard spatial equilibrium model is the assumption of linear supply
and demand functions and fixed per unit costs of transportation. There
have been a number of instances of models where in various ways these
two assumptions have been relaxed (King and Ho 1972; MacKinnon
1975; Rowse 1981; Tobin and Friesz 1983; Harker 19844; Pang and
Lin 1984; Dafermos and Nagurney 1984; Rathburn and Zwart 1985;
Nagurney 1987; Tobin 1988). Generally, specialised solution algor-
ithms have been involved or the approach has required significant
expansion of the matrices used in the model through the use of
linearisation techniques (Duloy and Norton 1975; McCarl and Tice
1980). With the development of more efficient general non-linear
programming computer packages, such as MINOS (Murtagh and
Saunders 1987), it now becomes possible to contemplate models with
these assumptions relaxed and to solve them for relatively large-scale
spatial systems on a standard and widely used solution algorithm. In
addition, the behavioural assumptions of recent formulations are being
substantially expanded (Harker 198454) and a range of new solution
algorithms are being applied to obtain solutions under these new
behavioural assumptions, particularly with linear and non-linear com-
plementarity algorithms (Asmuth, Eaves and Peterson 1979; Takay-
ama and Uri 1983; Harker 1988; Tobin 1988).

In this paper, the theoretical basis for a spatial equilibrium model
with guadratic average costs of transformation is developed using a

*An earlier version of this paper was presented at the 32nd Annual Conference of the
Australian Agricultural Economics Society, La Trobe University, Melbourne, February
8—11, 1988. Helpful comments from Takashi Takayama, particularly in relation to
equation (17), Wilfred Candler and an anonymous referece are gratefully ack-
nowledged.
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primal-dual formulation in the price domain. The advantage of the
primal-dual formulation is that both price and quantity variables can
be simultaneously constrained or modified so as to incorporate various
policy interventions. Further, they have the advantage that such
models can be extended on the supply side to include representative
firm models which are linked in terms of both prices and quantities.
Work is in progress on the details of such formulations.

The model has many of the characteristics of the standard spatial
activity analysis model as developed by Takayama and Judge (1971).
The extension of their model is to allow for the possibility that the costs
of transformation from one commodity to another are not based on
constant input—output coefficients and therefore the need to have
constant unit costs of transformation. The transformation costs can
include transportation costs, handling costs or the processing costs of
transforming one product into another. The particular modification
allows for the direct solution of the types of market problems in which
there is transportation of raw materials to a processing site, transform-
ation of the product in some way, and then transportation of processed
product. The average costs are assumed to be quadratic and to decline
as the volume handled increases and then, as the volume becomes
large, to rise again (for an illustration in the case of an abattoir, see
Piggott, Dumsday, Small and Wright 1987). There is no theoretical
reason why multiple processing levels could not be handled in the
model with each level having slightly different cost curves. Grain
handling, meat processing, fruit packing and distribution, and milk
handling and processing are a few of the areas of analysis that would be
suitable for the application of such a model.

Standard Spatial Equilibrium Models

The standard spatial equilibrium model is outlined in detail in
Takayama and Judge (1971), and simplified in Martin (1981). Details
of the price form of the net social monetary gain model (to be referred
to as the ‘net revenue’ model) are given in MacAulay and Casey (1987).
The advantage of the price form of the net revenue model is that it can
be substantially reduced in size if the assumption is made that the
possibility of the irregular cases occurring, as illustrated by Takayama
and Judge (1971), is excluded. This makes no substantial difference to
the development of the model and greatly simplifies the algebra. The
advantage of the net revenue form of the model over the original social
welfare-type objective function proposed by Samuelson (1952) is the
greater generality of the model in that asymmetric sets of supply and
demand coefficients can be utilised.

To further simplify the initial development of the model it is
reasonable to think of the transformation costs as simply trans-
portation costs. The model can then be subsequently modified to cover
the more general notion of transformation. The extension to the
Samuelson-Takayama-Judge version of the model is then a matter of
changing a set of fixed per unit transportation costs to a functional rela-
tionship represented as a quadratic average cost per unit of trans-
portation.

The standard spatial equilibrium model and the corresponding price
equilibrium is illustrated in the top part of Figure 1 where the excess
supply and demand functions are shown as ED; and ES, for region |.
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FiGURE 1—Representation of the Net Revenue Objective Function and the Spatial
Equilibrium Model with Fixed Unit Transport Costs.
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The equilibrium prices after trade takes place are indicated as p; and
p2. The fixed per unit transportation cost of shipment from region 1 to
region 2 is indicated as f12. The trade from region | to region 2 is
indicated as x> and is equal to the difference x| —y:1 or y»— X2 in this
two-region case where x; is the quantity supplied and y: is the quantity
demanded for region .

The basis of the mathematical solution of the standard spatial
equilibrium problem and the connection between the prices, trade
flows and the objective function are illustrated in Figure 1. If a vertical
difference between the excess supply and demand functions is calcu-
lated the demand for transport services is obtained. The supply of
transport services is assumed to be perfectly elastic and represented by
a horizontal line set at the level of the fixed per unit transport cost.

The revenue from the sale of transport services at each volume
shipped can be calculated from the demand for transport services and
is plotted as a quadratic curve in the lower part of Figure 1. The total
cost of transport services is obtained by multiplying the average per
unit cost by the volume of trade so as to obtain a linear function for
total cost. The difference between the revenue and the transport cost 1s
the net revenue from the system and it is this that is to be maximised in
the mathematical programming model formulations. In the case of
Figure 1 net revenue is a quadratic function.

The solution to the competitive spatial equilibrium model is in-
dicated in Figure 1 where the net revenue curve intersects the xi2 axis
and is indicated by a small c. The competitive spatial equilibrium has a
zero net revenue because arbitragers are in a position to bid any excess
profits away by trading in the commodity concerned. The math-
ematical formulation of the model also generates the same result. The
spatial monopolist is assumed to maximise net revenue and thus the
equilibrium solution would be at the maximum of the net revenue
curve indicated by m. It is also worth noting that the net revenue
formulation of the model is essentially a primal-dual formulation in
which the primal model is subtracted from the dual model and the
constraints from both models are included. For this reason the
objective function has a zero value at the optimum since the value of
the objective function of the primal part of the problem must equal the
value of the dual part at the optimum.

A very useful characteristic of the net revenue formulation is the zero
objective function which permits verification that the model has been
constructed in a self-dual fashion. Although it is not a guarantee that
the problem has been correctly formulated it provides a very useful and
practical diagnostic device for helping to ensure the correctness of the
formulation.

Non-Linear Transport Cost Function

As indicated above, the standard spatial equilibrium model is based
on the assumption of a perfectly elastic supply of transport services. In
many cases this may be reasonable when the volume of a particular
commodity carried 1s small in relation to the total volume or when the
rates are set according to some government policy and do not change
with the volume carried. If, however, the transport rates do change with
the volume carried then the standard model needs to be adjusted. Over
a reasonable range of volumes a quadratic average cost function could
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be used to approximate many non-linear functions. Thus, for the
purposes of this analysis a quadratic curve seemed appropriate al-
though other functional forms might equally have been used.

In the case of Figure 2 the average cost curve for transport services is
presented as quadratic in character. Figure 2 is very similar to Figure 1
except for the average per unit transport cost curve in the middle
section of the figure which is quadratic and the consequent cubic-
shaped total cost curve in the lower section. With such a cubic total
transport cost curve, which must pass through the origin, the net
revenue curve also takes on a cubic shape.

The question of whether or not a solution will exist to such a problem
is important. Takayama and Judge (1971) have shown that a solution
exists to the standard spatial equilibrium model since it is a standard
quadratic programming problem for which a unique set of prices exists.
Intuitively, from Figure 2, it can be observed that provided the shape of
the cubic total cost curve is such that, in the positive quadrant, part of it
lies below the total revenue curve then there will be a maximum to the
net revenue function and the spatial equilibrium system will have a
solution. In fact, the objective function will be concave.

The issue of the concavity of the net revenue objective function can
be considered by using a simplified algebraic representation of the
spatial equilibrium system. As a starting point the excess supply and
demand function will be used to formulate a problem in the quantity
domain. Let the excess supply function, measured in terms of the
quantity shipped from region 1 to region 2, that is x12 in Figure 3 (note
in this case x12= —x21), be represented as:

() pr=ai+pix

and let the excess demand function, measured in terms of x12, be
(2) pr=a>— Prx12

and let the quadratic average cost of transportation be

(3) te=p—rtx+ixi

The Greek symbols a1, @z and B, tﬁz represent intercepts and slopes of
the excess supply and demand functions and u, 7 and A are the
coefficients of the average cost of transport curve. Since these costs are
assumed to initially decline as the volume increases and then increase
there are restrictions on the values of these coefficients as follows:
u=0, =<0, A=>0. In addition, ¢2= a1 and =0, f2=0.

The net revenue may be written as:

(4) NR=paxi—p1xX12—tiax12

Substituting equations (1) to (3) into (4) and simplifying, the following
expression 1s obtained:

(5) NR=(a:— a1~ wxu+(1— fi—B)x},— Ax,

For this function to be concave the second derivative must be negative
and this condition implies that:

(6) (‘E—ﬁl_ﬁz)/3;{,<xlz

Thus, as long as (f2+ B1) < 7, then it is possible for x12 to have values
along the positive axis and the situation is as represented in Figure 3. If
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FIGURE 2—Representation of the Net Revenue Objective Function and the Spatial
Equilibrium Model with Quadratic Average Unit Transport Costs.
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this relationship is not true then the cubic cost function lies above the
revenue function as illustrated in Figure 4. This implies that the cost of
transportation will always exceed the revenue gains from the process of
moving goods from one region to another. Although the above argu-
ment does not provide a general proof of the required nature of the
transport cost function it provides sufficient rationale to develop a
more general model.

12 - Revenue/cost

10

Total transport cost

Net revenue

VR -

.2 . 1 N 1 . L . 1 : I . 1 : 1 X 4o

FiGurE 3—Illustration of the Relationship between Total Transport Cost, and Gross
and Net Revenues from Trade with a Cubic Total Transport Cost Curve ( 82+ 1)=0-1,
1=0-25. R=2x12-0-1x}, t12=2x12—0-25x%,+0-01 Lx{,.

The Concave Cubic Programming Mode!

To complete the development of the model, it is necessary to modify
the standard spatial equilibrium model along the lines of the previous
section [for details of the net revenue form of the standard model see
MacAulay and Casey (1987) the basic structure of which is followed in
this section]. By analogy to a quadratic programming model which has
a quadratic objective function and linear constraints, the model with a
cubic objective function and quadratic constraints will be referred to as
a cubic programming model.

Defining the following notation for # regions (as used by Takayama
and Judge 1971), let:

X be a vector of (n2 X 1) net trade flows, x;;, from region i to region j; p
be a vector of (2n X 1) non-negative demand prices in region i, p;, and
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FIGURE 4—Illustration of the Relationship between Total Transport Cost, and Gross
and Net Revenues from Trade with a Cubic Total Transport Cost Curve ( B2+ 51)=0-1,
7=0-1. R=2x12—0-1x}, t12=2x12—0-1x},+0-011x},.

non-negative supply prices in region j, p/, such that p=[p,p.]’; Tbe a
vector of (n? X 1) transfer costs, ¢;;, between regions i and j which for the
modified model will be a quadratic function of the trade flows X so that
T(X)=u—tX+AX? where u, 7 and A are (n2X1) vectors of
non-negative coefficients and X2an (12X 1) vector of elements x;2; y be
a vector of (n X 1) quantities demanded, y;, in region i; x be a vector of
(n 1) quantities supplied, Xx;, in region i; p, be a vector of (nX 1)
demand prices, p;, in region i; px be a vector of (n X 1) supply prices, p/,
in region j; ¥V be a vector of dimension (2n X 1) of, w;, slack variables
such that py= py— w where w, is non-negative and positive so as to
ensure y;=>0 and, v;, variables such that p.=p.+v where v is
non-negative and positive so as to ensure that x;=0 so that V=[wv]".
The vectors wand v are used to handle the irregular cases as outlined 1n
Takayama and Judge (1971, p. 156).
The typical demand function will be represented as:

(7Y yi=ai—Bipi;, i=1,..,n
and the typical supply function as:
®) xi=0:+yp, i=1,...,n

where a;and 0; are the intercepts and fB; and y; are the slope coefficients
for n regions,
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In matrix form the supply and demand functions may be represented
as:

(9 y=a—Bpy

=a—B(py—w)
(10) x=0+TIpx
=0+T(p<t+v)

where a and @ are (nX1) vectors of demand and supply intercepts
respectively, B is an (n X n) matrix of the demand slope coeflicients 3,
and I" is an (n X n) matrix of the supply slope coefficients y [both may
be asymmetric as shown by Takayama and Judge (1971) and
Takayama and Uri (1983)].

Net social monetary gain or net social revenue is defined as total
social revenue less total social costs less transfer costs as represented in
the average cost function T'(X), so that:

(11) NSR=pjy—pxx—T(X)'X

and by substituting equations (9) and (10) into (11), the following cubic
objective function is obtained:

a B 0 Gy _B O py py
_9 O r Gx 0 F px px
(12) NSR=|| -t |-| -6, =Gz 0 0 o||X]|||X
—a —B 0 0 B O w W
—0 0 Ir 0 0 T v v

where G, and G are defined below.

A spatial equilibrium solution may be obtained when the objective
function (12) is maximised subject to the set of constraints (13)
modified to take into account the cost of transport function 7(X) [see
Takayama and Judge (1971, p. 162) and elsewhere in the text for a
detailed justification of the formulation]:

a B 0 G, —-B 0][p
—0 0 T G 0 T||ps
a3 | -7 |- -6 —6: 0 0 0||X|=<0
—a ~B 0 0 B 0w
—0 o I 0 0 T||v

and

(14) (py px X" W v)=0
The (n X n2) matrix Gy is structured so as to sum the shipments into a

region and the (nXn?) matrix Gx is structured so as to sum the
shipments out of a region as follows:

1 1 1
1 1 1

-

G,=
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—1—1...—1
—1—1... -1
Ge= '

—1—=1...—1

To simplify the mathematical notation the vectors w and v will be
ignored in the subsequent argument since they make no difference to
the essential logic of the formulation and are only included to deal with
certain irregular cases as outlined in Takayama and Judge (1971).
Thus, in problem 1 the vector p does not contain w and v. In presenting
the mathematical programming tableau and solution these variables
will not be included for the sake of presenting a more compact tableau.
A compact form of the problem above can be written as problem 1 by
redefining the vectors and matrices.
Problem 1: maximise d’p— p’"Hp—T(X)'X

subject to
—d+Hp+(GX=0
T(X)—G'p=0
and
(p” X)=0

where G is a combined matrix of G, and Gx, 4 is the set of combined
intercept vectors, p is the set of combined supply and demand price
vectors and H is the matrix of demand and supply slope coefficients.
The sufficient conditions for a local maximum to this problem are that
the objective function be differentiable and concave in the neighbour-
hood of the maximum, that T(X) also be a concave function in the
neighbourhood of the optimum X value, that each constraint is
differentiable and convex and that the optimum solution satisfies the
following Kuhn-Tucker conditions.

The Lagrangian function for problem 1 and the associated
Kuhn-Tucker conditions, evaluated at the optimal values p°, X?, k{,

kS, where k| and k; are Lagrangian multipliers, are:

(15) ¢=d'p—p'Hp—T(X) X +Ki[T(X)—G’p]
+k3(—d+Hp+GX)

(16) 9¢%dp=d—(H+H")p°—Gk?+Hk<0 and (d¢°/op) p°=0

(17) d¢oloX=—T(X°)—[aT(X°)/IX] X°
+[0T(X)oXTk{+Gk§=<0  and (3¢°/aX)'X°=0

(18) 8¢°/ak, = T(X%)— G’ p°=0 and  (3¢9/ak;)'k9=0
(19) a¢°/oks=—d+Hp°+GX°=0 and  (9¢°/9k2)’ks=0
(20) (p” X ki k§)=0

An interpretation of these conditions can be found in Martin (1981),
except for condition (17) and a slight modification to condition (18).
Condition (17) requires the product rule of differentiation and there-
fore has two additional terms. These cancel out because of the self-dual
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nature of the problem since at the optimum X¢ equals k7. Since the
second and third terms cancel out condition (17) then becomes
equivalent to condition (18). Condition (18) implies that the price
difference between any two regions must be less than or equal to the
transport cost 7(X?).

The concavity of the objective function is illustrated in the section
above provided that the cubic cost curve falls below the quadratic
revenue curve. The constraint qualification can be tested using the
Arrow-Enthoven constraint qualification test (Chiang 1984, p. 746).
The test will be satisfied if each constraint function is differentiable
and quasiconcave and there exists a point in the non-negative orthant
such that all constraints are satisfied as strict inequalities at that point,
hopefully near ( p°” X°). Since the constraints in the first set are linear,
they satisfy the constraint qualification. Each function in the second set
is quadratic and, with the coefficient restrictions as noted above, will
be a concave function. Thus, provided there is a point that will satisfy
all the constraints as strict inequalities, a local optimum will exist. It is
also worth noting again that in the case of the self-dual competitive
spatial equilibrium model the value of the objective function at that
optimum will be zero.

Transformation Costs and Activity Analysis Extensions

Next consider the problem of transformation costs (essentially a
processing margin) rather than the simpler transportation costs. One of
the simplest forms of this problem is the case of a short-term storage
and handling charge that varies with the volume of the good handled.
This form of the problem is simple since the quantity measure of the
commodity stays the same (handling losses could, of course, be
incorporated). The handling of grain is an illustration of such a
case.

One way of envisaging such a model is to consider the shipment of
grain from farms to a number of central storage sites and then shipment
from these storage sites to a number of consumption points. Thus,
there are essentially two commodities, namely, the grain shipped from
farm to storage site and the grain shipped out of the storage site. The
flows and prices at different points in the system must all be appro-
priately linked together.

Using the basic structure of equations (12) to (14) and ignoring the
vectors w and v (on the assumption that irregular cases will not be
encountered) such a model may be expressed as problem 2.

Problem 2: maximise

ai [ B Gy, Py Py
0 G,n —1I Px Px:
- g I p. p.
= — I G, Py: Py
(2D NSR=|| ¢, o Go || e | ] £a
—-T -Gy — G5 X X1
—H r —-r -i —g(X) X X
L—T>] | -G, —GY, J LA LY

subject to )
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a B Gy, Py

0 GXI _I px;
-6 I p.

0 j_ I G, P | <

(22) - 92 | ze Px: =0
T | | =Gy —Gx X
—u [ -1 - —g(Xy) X
_—Tz_l L _G,{iz —G:rz _ _XZ__‘

and

(23) (py Pxi Pc Pyr Pr: X1 X1 X2)=0

In problem 2 a capacity constraint and its associated shadow value
have been included where p.is the shadow value on the capacity 8. The
shadow value will be non-zero if any of the capacity constraints are
effective. The throughput of the storage site or process is indicated by
X, with the subscript ¢ used to indicate throughput. The supply and
demand prices and quantities and other coefficients for the two com-
modities are indicated with subscripts 1 and 2 and the identity matrix
is indicated as /. The special character of problem 2 in incorporating
the storage and handling costs is in the function g(X,) and the intercept
term u. The volume-related storage and handling cost function may be
written for the quadratic case as:

(24) T(X)=u— tX+AX?

where 7, A and u are as previously defined and g(X,) is the last two
terms in this function.

Extension of the model to a full activity analysis type of formulation
implies a physical transformation of the traded raw material or the
combining of traded raw materials into a traded final product (a
number of intermediate products could be included). In this instance
the first and third identity matrices may involve transformation co-
efficients in equations (21) and (22). This alternative will not be
degscribed since it is considered in detail by Takayama and Judge
(1971).

A Sample Problem

To illustrate the solution of such a model a small-scale sample
problem is used with three fixed supply regions for the raw material,
each with different transportation costs to the storage and handling
facility, two storage and handling facilities and three final demand
points, again with different transport costs. The average cost of
handling and storage is assumed to be quadratic in terms of the
throughput measured as the flow into a facility.

The basic data for the model consist of a set of demand functions,
fixed levels of supply from each of the three raw material sites, average
storage and processing cost functions and fixed transport rates. The
demand functions are assumed to be as follows:

y1=200—10p,
and
y2=100—5p>

where y| and y; are quantities demanded in regions 1 and 2 at prices p;
and p,. The raw material supplies are assumed to be x; =30, x2=20
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and x3=30. Since a storage capability is assumed it is necessary to
specify the carryover stocks of the commodity at the end of the period
as y3=4 and ys=>5 (these could be set with minimum and maximum
levels if necessary). The average short-run storage and handling costs
were both assumed to be the same and as follows:

T(X)1=7-0—0-19X,+0-0017 X}
T(X)2=7-0—0-19X,+0-0017 X3

The transport costs between the various locations in the system are
presented in Figure 5 together with an illustration of the various ship-
ment routes and the variables involved. The notation used is slightly
different from that of the spatial equilibrium problem formulations
above and is similar to the notation used in the tableau for the sample
problem. The shipments from raw material sites are indicated as X,
the shipments of the final product as yi; and the throughput of the
storage and handling site as r« for the j-th raw material site, the k-th
storage and processing site and the i-th final demand site.

Final Carryover Raw material
demand ys3= 4 @ stocks supply
y
13 X1q S1) x,= 30
Y Store and 1
11
D1 process 2y
3 T4 12
y = 200-10p
r X
2
5 Y12 1 > !
S2 X2= 20
3
4 Y21 Y22
y_ = 100-5p
2 2 4 Store and x
(.- process 3 3\ 3
Yoo T2
Y X32 S3 X3= 30

y; = demand quantities u

Xj= supply quantities Carryover
¥i= outshipments from k to i Y4=5 @ stocks

Xjk= inshipments from j to k

1y, = elevator k throughput Note: Transport costs shown on routes.

FiGURE 5—Representation of the Shipping, Storage and Processing System.

Storage capacities for each of the storage and handling sites were set
at T1=60 and 72 = 40. If these capacities prove to be limiting then a
shadow value is generated for the capacity constraint which represents
the amount per unit of volume that could be spent profitably on
eliminating the capacity constraint. The mathematical programming
tableau corresponding to the above set of data is presented as Table 1
and the solution to this system as Table 2.

The problem presented in Table 1 was solved as a minimisation
problem using MINOS 5.1 (Murtagh and Saunders 1987) on a Mac-
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Note: f(R1)=—0-19R:+0-0017R}, f(R2)=—0-19RZ+0-001 7R3, g(R1)=—0-19R, +
0-0017R? and g(R2)= —0-19R>+0-0017R3. The intercept of 7-0 was incorporated
into the objective function and the right-hand side.

4The solution was obtained using the MINOS program (Murtagh and Saunders 1987).
The letter A refers to processed material, B to raw material, DP to demand price, SP to
supply price, Y to flows in the processed product, R to throughput of the storage and
handling sites, C to the shadow value on any fully utilised capacity (the value of an
additional unit of storage) and X to the raw material shipments. The numbers refer to
sites and X 12 indicates a shipment from raw material site 1 to storage and handling site 2
while Y12 represents a shipment from storage and handling site 1 to demand site 2. The
constraint row names have an R as the first letter. The problem is set up as a
minimisation problem in the tableau above.

intosh SE microcomputer with a 20 mB hard disk. To use MINOS it
was necessary to code in FORTRAN the first order derivatives of the
objective function and the non-linear constraint functions. To facili-
tate the running of the model a routine was developed for the inclusion
of the function coefficients at the end of the standard input file for
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TABLE 2
Simplified Model: Cubic Programming Solution®

Primal variables Dual variables
ADPI 15-15 RADPI 15-15
ADP2 15-50 RADP2 15-50
ADP3 12-15 RADP3 12-15
ADP4 11-50 RADP4 11-50
ASP1 12-15 RASP1 12-15
ASP2 11-50 RASP2 11-50
Ci 0-0 RClI 0-0
C2 0-0 RC2 0-0
BDPI 10-44 RBDPI 10-44
BDP2 8-44 RBDP2 8-44
BSP1 9-44 RBSP1 9-44
BSP2 8-44 RBSP2 8-44
BSP3 7-44 RBSP3 7-44
Y1l 485 RY11 48-5
Y12 0-0 RY12 0-0
Y13 4:0 RY13 4.0
Y21 0-0 RY21 0-0
Y22 22-5 RY22 22-5
Y24 5-0 RY24 5-0
R1 52-5 RR1 52-5
R2 275 RR2 27-5
XI11 30-0 RX11 30-0
X12 0-0 RX12 0-0
X21 20-0 RX21 20-0
X22 0-0 RX22 0-0
X31 2-5 RX31 2-5
X32 275 RX32 27-5
Objective function value 0.0
Linear part —3110-45
Non-linear part 3110-45

aThe variable names are the same as in Table 1.

cubic programming problems, The time taken, including program
overhead and time to enter file names, was 0-97 of a minute. A much
larger model (over 480 rows and columns) of a similar structure took
about 30 minutes to solve. Much shorter times can be obtained by using
the basis restart facilitics in MINOS once an initial solution has been
obtained.

In examining some of the effects of changes to various parameters in
the system it was noted that changing the intercept of the cost functions
simply changed the prices for the raw material since the same volumes
were traded and processed given the fixed supply [a result reported by
Fisher (1981) using graphical methods]. This is an interesting result,
since in the case of commodities with inelastic supplies and relatively
elastic final demands the major effect of reducing the handling and
processing costs will be a rise in the raw materials price with a much
smaller rise in the final demand prices. This result might be applicable
to some agricultural sectors.

Applications

The technique illustrated above would seem to have wide
applicability to situations where there are transformations in time,
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space and form and costs which vary with the volumes handled.
Typically, the analysis of transformation cost behaviour in agricultural
economics, when trade is involved, has proved to be difficult because
of the inappropriate nature of assuming constant per unit costs of
transformation and the uncertainty about the existence of a solution. In
addition to transformation costs, the effects of exchange rates, trade
restrictions and other domestic policy interventions can be taken into
account. Some of the areas in which the approach would seem to be
appropriate are in meat processing where live animals are transformed
into meat, in the dairy sector where milk transportation and processing
is a significant issue, in wool handling and storage where the work of
Toft and Cassidy (1985) using transshipment models could be ex-
tended to use this framework, and in grains where the efficiency of
transportation storage and handling is an important issue. Extension of
the model toward optimising over time is also possible so that a greater
understanding can be obtained of the interactions between storage
policies and trade policy [the standard intertemporal model has been
developed by Takayama and Judge (1971)].

Concluding Comment

In the paper, a generalisation of the standard spatial equilibrium
model has been presented which allows for the inclusion of non-linear
functions for transformation costs. If the average cost function is
quadratic in character then a mathematical programming model with a
cubic objective function and some quadratic constraints is obtained. It
was shown that under a reasonable set of conditions a solution exists to
the problem and that the value of the objective function of the cubic
competitive spatial equilibrium model will be zero. This is a most
useful property in helping to verify the model formulation.
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