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Decomposition of Discrete Choice Model Generated Probabilities and their Robustness to 
Changing Substantive Knowledge (Conditioning Variables) 

 
Abstract 

 
Clear understanding of “goodness” and how substantive knowledge contributes to such goodness 
is generally absent from the economist’s use of probability. Although probability forecast from 
either subjective experts or from data based on prior theory and models can be generated, it is 
more problematic to generate a “good probability forecast” with a crisp understanding of what 
constitutes “good”. Further it is generally not clear to economists how different conditioning 
information affects this measure of “good.”  

Heretofore probability forecasts have been evaluated using the Brier Score and its Yates 
partition. Our work contributes by exploring how different sets of substantive information affect 
the Brier score and each component of the Yates partition. We will explore partitions associated 
with a set of observational data on beverages and the associated consumer decision to purchase. 
Probabilities are modeled using discrete choice models.  

Results show the higher the substantive knowledge, higher the model’s ability to offer a 
high probability for events occurred versus low probability for events that did not occur. Also, this 
model gave rise to lower Brier Score (lower the better) and higher covariance between 
probabilities offered and events observed. Better sorting of probabilities was demonstrated in the 
model with more substantive knowledge.  
 
Keywords: Brier Score, Yates partition, probabilities, discrete choice model, beverages 
 
JEL Classification: C18 
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Decomposition of Discrete Choice Model Generated Probabilities and their Robustness to 

Changing Substantive Knowledge (Conditioning Variables) 

Problem Statement and Justification: 

Probability has been at the center of economics and decision making. Yet a clear understanding of 

“goodness” and how substantive knowledge (conditioning variables) contributes to such goodness 

is generally absent from the economist’s use of probability. While it is, perhaps, simple to generate 

a probability forecast from either subjective experts or from data based on prior theory and 

estimated models, it is more problematic to generate a “good probability forecast” with a crisp 

understanding of what constitutes “good.” Further it is generally not clear to economists how 

different conditioning information sets affect our measure of “good.”  

Heretofore probability forecasts have been evaluated using the Brier Score (Brier 1950). 

Some work in economics has explored (rather superficially) this metric and its Yates partition 

(Yates, 1988). Our work seeks to contribute to the knowledge-base by exploring how different sets 

of substantive information affect the Brier score and each component of the Yates partition. In 

particular, we will explore partitions associated with a set of observational data on non-alcoholic 

beverages and the associated consumer decision to purchase. Beverages studied are regular soft 

drinks, diet soft drinks, isotonics (sports drinks), high-fat milk, low-fat milk, fruit drinks, fruit juices, 

bottled water, coffee and tea. Our interest is to explore for beverages having good Brier score 

components over bad Brier score components. Probabilities will be modeled using discrete choice 

models.  

Preliminary work by Dharmasena (2010) and Dharmasena et al., (2014), on evaluating 

probabilities generated through discrete choice models in modeling the decision to purchase a 
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given non-alcoholic beverages by a sample of U.S. households, suggests following mixed results. 

Probabilities generated through probit model in the decision to purchase fruit juices gave the 

lowest Brier score and low-fat milk had the highest Brier score, demonstrating good and poor 

probability forecasts, respectively. However, as far as the Yates partition of the Brier score is 

concerned, the most important component, the covariance between the probabilities generated 

through the model and outcome index, as identified by Yates (1988) is the heart of the forecasting 

problem. The highest covariance is associated with beverage coffee and the lowest covariance is 

associated with fruit juices. This result suggests the probability forecasts associated with fruit 

juices to be worse compared to such probability forecasts associated with coffee. However, 

according to the Brier score estimate, fruit juices had the best model. These results are 

contradictory. Therefore, our effort will be geared to find potential effects of the substantive 

knowledge (information we place on the right-hand side of discrete choice models) on generating 

“good” probability forecasts, measured through the Brier score and various components of the 

Yates partition of the Brier score. 

 

Objectives: 

 Specific objectives of this study are to: (1) study the robustness of the Brier score to changes in 

substantive knowledge; (2) study the robustness of the components of the Yates partition to the 

Brier score to changes in substantive knowledge; both using probabilities generated through 

discrete choice models. 
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Methodology: 

For each beverage, we generate the Brier score and its Yates partition for varying combinations of 

substantive knowledge variables (price, age, education status, employment status, region, race, 

Hispanic status, age and presence of children, poverty status and gender of the household head). 

The behavior of the components of the Yates partition of the Brier score (such as variance of the 

indicator variable, bias, scatter, minimum variance and the covariance of probabilities and 

outcome indexes) and robustness of each part to varying combinations of substantive knowledge 

were explored. This would allow us to bring a meaningful interpretation to each component of the 

Yates partition in terms of evaluating probabilities, as well as to discover the most important 

component of the Yates partition in sorting probabilities. 

The Brier Score and the Yates Partition of the Brier Score 

The following discussion on Brier score (BS), and the Yates partition of the Brier score 

follows from Brier (1950), Yates (1982), Yates and Curley (1985) and Yates (1988).  

Let f represent the probabilistic forecast for an event that the forecaster is trying to predict 

(in our analysis, probabilities are generated using qualitative choice models). Let d represent the 

outcome index where, 1=d if the event occurs and 0=d if the event does not occur. As shown in 

equation (1), the probability score (PS) is formally defined as the squared difference between f and 

d.  

2d)(fd)PS(f, −=          (1) 

The PSis bounded 1PS0 ≤≤ . Over N occasions, indexed by Ni ,.....,1= , the mean of the PS (or PS

or the Brier score) is given by 

 ∑
=

−=
N

1i

2
ii )d(f

N
1d)(f,PS         (2) 
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Sanders (1963) and Murphy (1972a, 1972b, 1973) have decomposed the Brier score into various 

components including measures of calibration and resolution. However, Yates (1982), Yates and 

Curley (1985), and Yates (1988) further decomposed the Brier score into its variance and 

covariance components allowing for additional analysis. His formulation called “covariance 

decomposition” is given as follows. 

 d)Cov(f,*2BiasScat(f)MinVar(f)Var(d)d)(f,PS 2 −+++=     (3) 

The various components of PS on the right hand side of equation (3) have following definitions 

and interpretations. Var(d) represents the variance of the outcome index and defined as: 

 )d(1dVar(d) −=          (4) 

where  

 ∑
=

=
N

1i
id

N
1d           (5) 

Equation (4) shows the relative frequency or the “base rate” with which the target event occurs, 

where the target event for our analysis would be the decision to buy coffee. This decision is 

completely out of control of the forecaster (in our analysis the forecaster is the qualitative choice 

model), hence the Var(d) is not determined through our model. The remaining terms reflect the 

factors that are under the model’s control. Thus we want to minimize, )( fScat and 2Bias , while 

maximizing d)Cov(f, for an allowable minimum variance (MinVar(f) ) to obtain the lowest PS . It 

should be noted that our objective is to minimize the PS in evaluating probabilities, because the 

lower the Brier score, the higher the ability of the model to correctly classify probabilities.  

Bias is defined as follows. 

 )df(Bias −=           (6) 

where 
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 ∑
=

=
N

1i
ifN

1f           (7) 

In the equation (6), f is the mean of the probabilities generated from the model. Bias reflects the 

overall miscalibration of the forecast. The square of the bias, which is what actually appears in the 

covariance decomposition (equation 3), reflects the calibration error regardless of the direction (+ 

or -) of the error.  

The d)Cov(f, term is defined as follows. 

 r(d)][slope][Vad)Cov(f, =         (8) 

The slope is defined as the difference between the means of conditional probability of events that 

actually occurred and conditional probability of events that actually did not occur. Algebraically 

the slope is defined as follows.  

 )ff(Slope 01 −=          (9) 

where 

 ∑
=

=
1N

1j
1j

1
1 f

N
1f           (10) 

 ∑
=

=
0N

1j
0j

0
0 f

N
1f           (11) 

Here 1f represents the conditional mean probability forecast for event under consideration over 

the 1N occurrences for which the event actually occurs; 0f represents the conditional mean 

probability for event under consideration over the 0N occurrences that the event does not occur, 

with 01 NNN += . The maximum value that Slope can have is 1, which occurs when the model 

always reports 1=f when the target event is going to occur and 0=f when it is not. 

Furthermore, Slope is the gradient of the regression line when probabilities generated through the 

model are regressed on outcome indexes. For a perfect forecast, all the probabilities associated 
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with events that do not occur must have probabilities equal to zero and all probabilities associated 

with events that did occur must have probabilities equal to one, resulting in a slope equal to one. 

Therefore, it makes sense for Slope to contribute to mean probability score negatively. In other 

words, steeper the Slope, the more appropriate the classification of probabilities for events that 

occurred and that did not occur (high probabilities for event that occurred and lower probabilities 

for events that did not occur, the smaller the Brier score the better).  

 Covariance between the probabilities generated through the model and outcome index 

),( dfCov is the heart of the forecasting problem (Yates, 1988). It reflects the ability of the model 

to make distinctions between individual occasions in which the event occurs or does not occur. In 

other words, it represents how responsive the forecast is to information related to the event. Our 

objective with respect to minimum variance is that the model needs to maximize the value 

associated with the ),( dfCov to achieve a lower Brier score. 

 Scatter is defined as the mean of the weighted variances of probabilities associated with 

events that occurred and that did not occur. The algebraic representation of scatter is depicted in 

equation (12) below. 

 )]Var(fN)Var(f[N
N
1Scat(f) 0011 +=        (12) 

where 

 ∑
=

−=
1N

1i

2
11i

1
1 )f(f

N
1)Var(f         (13) 

and 

 ∑
=

−=
0N

1i

2
00i

0
0 )f(f

N
1)Var(f         (14) 

)Var(f1 is the conditional variance of the probabilities generated from the model associated with 

the events on those 1N occasions when the event actually occurred and )( 0fVar is the conditional 
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variance of the probabilities generated from the model associated with the events on those 0N

occasions when the event actually did not occur. )( 1fVar and )( 0fVar measure variability in model 

generated probabilities which is unrelated to whether or not the target event occurs. Scatter can 

be interpreted as an index of overall noise contained in model generated probabilities. It is 

expected that the Scatter will be minimized to achieve a lower mean probability score. 

)( fMinVar is defined as follows. 

 Scat(f)Var(f)MinVar(f) −=         (15) 

where )( fVar is the variance of the entire collection of probabilities generated for the target 

event. Minimum variance can also be shown as follows. 

 )]d(1d[)ff(MinVar(f) 2
01 −−=        (16) 

which contains the elements of the covariance of judgments and outcome indexes (Yates, 1988). 

To give more perspective to the relationship between minimum variance and overall variance of 

the probabilities generated through the models, we can rearrange equation (15) as follows. 

 Scat(f)MinVar(f)Var(f) +=         (17) 

Minimum variance can also be defined as the variance of probabilities on top of scatter that 

contributes toward the overall variance, i.e. )( fVar . 

 Since )( fVar contributes to the Brier score positively, one would want to minimize it. That 

is to say, in the equation (17), we have to minimize the components in the right hand side, i.e. 

)( fMinVar and )( fScat . It would make sense to minimize )( fScat of probabilities as lower the 

)( fScat the tighter the distribution of probabilities around conditional means of probabilities for 

events that actually occurred and events that did not occur the better the model’s ability to sort 

probabilities for events that occurred versus events that did not occur. However, it would not 

make sense to minimize the )( fMinVar in trying to minimize the overall variance of the 

probabilities generated. This is clear when one looks at the equation (16). )( fMinVar is a function 
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of Slope and variance of index variable, where the latter is not determined through the model that 

we used to generate probabilities. The only manipulatable component is the Slope, which is a 

function of conditional probabilities. What is desired is to have a maximum slope of one at the 

extreme in minimizing the Brier score. However, in trying to minimize the )( fVar , if one minimizes 

the )( fMinVar , it will eliminate the Slope, which is not desirable. Therefore, we need to have 

some Slope, hence some )( fMinVar in the model, in minimizing )( fVar and trying to achieve the 

minimum Brier score. Therefore, )( fMinVar essentially reflects the maximum allowable model 

variability (or amount of model variability that must be tolerated) which is required to minimize 

the )( fVar , hence the Brier score. 

 Since ),( dfCov and )( fMinVar are both functions of Slope, )( 01 ff − and Variance of 

outcome index, )1(( dd − , we can establish a relationship between ),( dfCov and )( fMinVar as 

follows. Equation (16) can be rearranged to represent the Slope as follows; 

 
Var(d)

MinVar(f))ff( 01 =−         (18) 

Substituting (18) into (8) and after simplification we arrive at the following relationship that 

combines Covariance of forecast probabilities, Minimum Variance and Variance of outcome index 

as follows. 

 Var(d)*MinVar(f)d)Cov(f, =        (19) 

According to equation (19), variance of outcome index and Minimum Variance are positively 

related to the covariance of forecast probabilities and outcome index. It is an obvious fact that 

variance of the outcome index, )(dVar is beyond the control of the forecasting model and only 

determined externally by the actual observations. Therefore, the only model generated variable 

that affect the ),( dfCov is )( fMinVar . We can conclude that higher the Slope, the higher the

)( fMinVar , the higher the ),( dfCov . In other words, high )( fMinVar is associated with high

),( dfCov . This result has leverage in explaining the forecasting model’s sorting power 
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(resolution) and ),( dfCov . We also can conclude that, high resolution is associated with high

),( dfCov . 

 It is important to note that, although the Brier score gives an overall indication of the  

ability of the model to forecast (the lower the Brier score, the better the forecast), the 

components of the covariance decomposition of the Brier score provides a clearer indication of 

the ability of the model to forecast as well as to sort probabilities. 

Data:  

Data are observational, collected by Nielsen HomeScan scanner data for household purchases of 

various non-alcoholic beverages (expenditure, quantity information as well as household 

demographics) for calendar years 1998 through 2012. 

 

Results and Discussion: 

Our work would give us a sense of how substantive knowledge contributes to the representation 

of good probability forecasts. Some preliminary results are as follows. Model’s ability to offer a 

high probability for events occurred versus low probability for events that did not occur (also 

known as resolution) is higher, the higher the substantive knowledge (see Figure 1 and Figure2). 

Also, the model with more substantive knowledge gave rise to lower Brier Score (lower the better) 

and higher covariance between probabilities offered and events observed (see Table 1). Overall, 

better sorting of probabilities was demonstrated in the model with more substantive knowledge 

vis-à-vis the model with less substantive knowledge. Future work will be conducted to generate 

Brier Score and Yates partition of Brier Score for many possible combinations of substantive 

knowledge.  



Table 1: Substantive Knowledge Information in Logit Models and Associated Brier Score and Covariance  

Model Substantive Knowledge Information Brier Score Covariance (f,d) 

1 Price 0.06388 0.0010 

2 Price, Poverty 0.06382 0.0011 

3 Price, Poverty, Age 0.0636 0.0015 

4 Price, Poverty, Age, Employment 0.0633 0.0021 

5 Price, Poverty, Age, Employment, Education 0.0632 0.0023 

6 Price, Poverty, Age, Employment, Education, Region 0.0627 0.0031 

7 Price, Poverty, Age, Employment, Education, Region, Race 0.0626 0.0035 

8 Price, Poverty, Age, Employment, Education, Region, Race, Hispanic 0.0625 0.0036 

9 Price, Poverty, Age, Employment, Education, Region, Race, Hispanic, Children 0.0621 0.0046 

10 Price, Poverty, Age, Employment, Education, Region, Race, Hispanic, Children, 
Gender 

0.0612 0.0066 

 



 
Figure 1: Resolution graph for Model 1: (substantive knowledge variable, Price) 

 
Figure 2: Resolution graph for Model 10 (substantive knowledge variables: Price, Poverty, Age, 
Employment, Education, Region, Race, Hispanic Status, Presence of Children, Gender of 
household head) 
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Resolution Graph:Fruit Juices Model 10
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