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Production economics in the presence of risk*

Sriram Shankar'

This paper provides an overview of the literature on production under the influence of
risk. Various specifications of stochastic production function such as models with
additive and multiplicative uncertainty, Just and Pope model, output-cubical, state-
allocable and state-general models are discussed. Further, criteria determining optimal
producer behaviour are derived for deterministic production technology and for vari-
ous kinds of state-contingent technologies such as output-cubical, state-specific, state-
allocable and state-general technologies. Finally, a brief discussion is presented about
the drawbacks of each of these specifications of technology.
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1. Introduction

The problem of production under uncertainty has been analysed using two
different approaches. The first of these has been state-contingent approach in
general equilibrium framework developed by Debreu (1952) and Arrow
(1953). The other approach has been based on stochastic production func-
tions: Sandmo (1971) and Just and Pope (1978).

Duality approach to producer theory that originated with Shephard
(1953,1970) argues that under standard regularity conditions,' any produc-
tion technology can be conveniently represented by either production possi-
bility set or by cost (or profit) functions and these two representations are
equivalent. As state-contingent production under uncertainty is a special case
of multi-input, multi-output technology, duality tools can be readily applied
to state-contingent production technology. Furthermore, Chambers and
Quiggin (1998, 2003) show that when the input sets are closed and nonempty,
a well-behaved cost function can be derived from any stochastic production
or revenue function.

In the stochastic production approach introduced by Sandmo (1971) and
Just and Pope (1978), the main idea was to derive the first-order conditions
for optimisation and use the implicit function theorem to describe compara-
tive static responses to changes in parameters of technology.

* The author wishes to thank anonymous reviewers for helpful comments on an earlier draft
of this paper. The usual caveat applies.
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! That is, if the production or cost functions are continuous and twice differentiable in their
respective arguments.
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598 S. Shankar

In most production processes, risk plays an important part in the choice of
inputs and supply of output. Just and Pope (1978) quantify production risk in
terms of output variance by specifying the risk function in such a way that
the inputs increase or decrease production risk. However, an important limi-
tation of Just and Pope framework is that it does not model decision-makers’
behaviour towards risk. Love and Buccola (1991, 1999) address this limita-
tion by explicitly taking into account producer attitude towards risk by
including a utility function in their model. The main shortcoming of Love
and Buccola’s approach is that they assume specific functional form for the
utility function that describes producer attitude towards risk and a restrictive
probability distribution for modelling the error term, which represents
producer risk.

Kumbhakar (2002) extends Love and Buccola’s model by incorporating an
efficiency term in addition to the risk term in their model. The limitation of
Kumbhakar’s model is that it does not account for the uncertain environment
that the producers find themselves operating in. Therefore, it does not allow
substitutability between state-contingent outputs (and inputs). These short-
comings of existing models can be resolved if the modelling is carried out in a
state-contingent framework.

For the sake of simplicity and for conserving space, we restrict our analysis
to single input and single output technology. The analysis of more general
multi-input and multi-output technology is not conceptually harder and only
notationally more involved.

This paper is organised as follows. Section 2 discusses conventional
deterministic production technology, highlighting producers’ optimising
behaviour and limitations of the corresponding technology. Section 3
presents the state-contingent approach using concepts and terminology of
Hirshleifer and Riley (1992), and Chambers and Quiggin (2000). In
Sections 4, 5 and 6, respectively, we describe producers’ optimising behav-
iour with examples for output-cubical, state-allocable and state-general
technology. Further, in these three sections, limitations of the respective
technologies are highlighted. Finally, some concluding comments are
offered in Section 7.

2. Conventional technology

Section 2.1 defines the conventional technology, Section 2.2 describes pro-
ducers optimising behaviour for this technology and Section 2.3 discusses the
limitations of conventional technology.

2.1. Representation

For the conventional production technology, output can be written as a func-
tion of input as

© 2012 The Author
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Production under uncertainty 599

z = f(x). (2.1)

There are many alternative representations of a production technology,
including cost functions, transformation functions, distance function, pro-
duction possibilities sets and input correspondences. For example, the input
correspondence associated with Equation (2.1) is:

X(z) = {x : x can produce z}. (2.2)

The input set contains all inputs x that can produce a given output z. Given
that the production function is continuous and twice differentiable, the prop-
erties of the input sets can be summarised as follows:

X(z) is closed for all z. (2.3)
X(z) is convex for all z. (2.4)

Inputs are said to be weakly disposable if
x € X(z),=Vi>1, ix € X(z); and (2.5)
Inputs are said to be strongly disposable if
x € X(z)andx" > x = x* € X(z). (2.6)

2.2. Optimising behaviour

Given cost of input w and price of output p, producer maximises profit
Il = pz—wx = pf(x)—wx. The first-order condition for profit maximisation
is given by

pf'(x) —w =0, (2.7)

or
: (2.8)

where /'(x) represents first derivative of the production function f(x) with
respect to x. Hence, the optimal production choice (z*,x*) is a point on the
production function where the isoprofit line with a slope w/p is tangent to the
production function. In Figure 1, the optimal production bundle is repre-
sented by (z*,x*) located on the production function.

2.3. Limitation

The conventional production technology is deterministic and does not
account for production risk. For example, in agriculture, a farmer’s ex ante

© 2012 The Author
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Figure 1 Optimal production choice for conventional technology.

production decisions are based on her expectation about the future weather
conditions. Hence, a deterministic production technology is unrealistic in
modelling a farmer’s decision in an inherently uncertain production environ-
ment.

3. Producer behaviour under uncertainty in state-contingent framework

Uncertainty in production environment is described by a set Q = {1,...,S}
consisting of all possible future states of nature, where nature selects one of
the states from this set and this choice by nature is independent of production
choices made by the producer. Hence, production can be thought as two-per-
iod game between producer and nature. In period 0, the producer commits
input x costing w, to the production process, and in period 1, nature resolves
the uncertainty by picking a state of nature from the Q. Decision-makers
belief about future states of nature is described by subjective probability vec-
tor # = (m,...,mg). Based on the state of nature {s} realised in period 1, the
output z, in the corresponding state of nature is unecarthed by the transforma-
tion function #(x, z), where z = (z;,...,zg) represents the state-contingent out-
put vector. In other words, if state of nature {s} is chosen by nature and the
producer had chosen ex ante input—output combination (x, z), then the
ex post output is z,, which is the sth element of z. The price and net return
vectors associated with state-contingent output vector are given by
p = (p1.....ns) and y = (y1,....ys) = (p121 — wx,...,p,zg— WX), respectively.
The producer chooses input bundle x to maximise her utility W, which is
assumed to be nondecreasing in state-contingent net returnsy = (yy,...,Vs).

© 2012 The Author
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Figure 2 Illustration of the main ideas behind state-contingent production.

Under relatively weak assumptions of monotonicity, continuity and differ-
entiability on the utility 1, Rasmussen (2003) defines a risk-averse decision-
maker to satisfy the condition that:

W(f""’Y)ZW(yla---ayS)a (31)

where y is the expected net return given by

y=myr+my+ ...+ nsys. (3.2)

Figure 2 depicts the preferences of a risk averse producer. From the
figure, it is evident that the indifference curves for the risk averse decision-
makers are convex. The figure also shows producers output choices y =
(»1, ¥»), net return ¥ = m,y; 4+ my» and certainty equivalent CE.? The bisec-
tor (see Hirshleifer and Riley 1992, for further discussion) indicates
certainty because along this line the net return is the same no matter what
state of nature materialises ex post. In Figure 2, the line with slope —(m;/7,)
that is tangent to the indifference curve which also intersects the bisector is
referred to as fair-odds® line. At the point of tangency, we have:

2 The certain return that provides the same utility as the uncertain net return vector y.
3 See p.89-90 Chambers and Quiggin (2000) for a more formal explanation.

© 2012 The Author
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. Wa(y,y)

Furthermore, Figure 2 shows that at y the absolute slope of the indifference
curve W is less than the slope of the fair-odds line, which means:

m Wil a), (3.4)
T~ Wa(yi,»)

Equation (3.1) determines whether the decision-maker is risk-neutral or
risk averse. When Equation (3.1) holds with equality the producer is said
to be risk-neutral and when Equation (3.1) hold with inequality the pro-
ducer is said to be exhibiting risk-averse behaviour. Hence, in Figure 2 the
utility of risk-neutral decision-maker coincides with the fair-odds line and
is given by

WEN(y) = myi + maya + -+ + nsys. (3.5)

In general (see Rasmussen 2003), it is not possible to derive a criteria for
optimum input usage for a risk averse (or a risk loving) producer but one
may be able to compare a risk averse (or risk loving) decision-maker with a
risk-neutral decision-maker. In other words, it is possible to conclude whether
a risk averse (or risk loving) producer will employ more or less input when
compared with a risk-neutral producer. For making such comparisons, it is
important to define ‘good’ and ‘bad’ states of nature, both of which are sub-
jective ideas.

A risk-neutral producer (Eqn 3.5) would choose an input x* (optimal) to
achieve an utility of WRN(p(x*),....ys(x*) = Ty (x*) + moya(x*)+ - - -+
nsys(x*). As the utility is ordinal rather than cardinal in nature, it can be re-
scaled® in such a way that

S
S (), s() = 1, (36)
s=1

which implies that the sum of the partial first derivative of utility function W
with respect to y, evaluated at net return vector y(x*) is one.
A risk averse producer faces a ‘good’ state of nature {s} if

Wiri(x7), ..., ys(x")) < my (3.7)

and she faces a ‘bad’ state of nature {s} if

4 In fact, it can be scaled in any arbitrary way as long as the scale factor is a positive number.
> We follow Rasmussen’s definition of ‘good” and ‘bad’ states (see Rasmussen 2003).

© 2012 The Author
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Ws(yl(X*)v"'ayS(X*)) > T (38)

And in state of nature {s} when

Ws(yl(X*)v’”ayS(x*)) = T (39)

the producer is said to be facing a neutral state of nature.

Therefore, in a ‘good’ state of nature an additional dollar of state-contin-
gent net income provides a lower marginal utility than the probability of that
state. On the contrary, in a ‘bad’ state of nature an additional dollar of state-
contingent net income provides a higher marginal utility than the probability
of that state. It is important to note that marginal income is represented by
the net return (income) evaluated at a risk-neutral producer’s optimal input
bundle (x*) and the marginal utility in a particular state is represented by the
first derivative of a risk averse producers’ utility with respect to the net return
of the corresponding state of nature evaluated at the net income that a risk-
neutral producer’s optimal bundle would produce.

4. Output-cubical technology

Most conventional frontier models are output-cubical. An output-cubical
technology is a special but restrictive type of state-contingent technology as it
does not allow substitution between output realised in different states of
nature. Section 4.1 defines an output-cubical technology and Section 4.2
describes producers’ optimising behaviour for this technology. In Sections 4.3
and 4.4, respectively, we discuss some examples and limitations of an output-
cubical technology.

4.1. Representation

For the output-cubical production technology, output can be written as a
function of input as

zg=flx,&) s€Q={1,...,S}, (4.1)

where ¢ is a random term that producers cannot control.

Chambers and Quiggin (2000, p. 59) use input correspondence to repre-
sent stochastic technology. While analysing uncertain production processes,
it is assumed that the state-contingent vector of outputs is produced by an
input managed by the producer and a random vector over which the
producer has no jurisdiction. If € = (ey,...,es) € R} is the random vector
which is out of the producer’s control, then the stochastic production
function specification requires the following relationship between inputs and
the stochastic output

© 2012 The Author
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zg < flx,€), where f: Ry x R, —R,. (4.2)

The output-cubical (state-contingent) input correspondence associated
with Equation (4.2) is

X(z) = {x:z; < flx,¢),5 € Q}

= X zg < fx, €
QZ{ s S Slx,€)} (43)

= ﬂ {Y(Zsa ES)}a

s€Q

where X(zy, €;) can be conceived as the ex post input set associated with the
production function for a given realisation of the random variable.

4.2. Optimising behaviour

If w is cost of input and p, is price of output in the state of nature
s € Q= {1,...,5}, then producers profit is given by

M=) pefj(x,e) —wx (4.4)

jeQ

where e; = 1, if sth state of nature is realised ex post and e; = 0, Vj # s
e Q.
The first-order condition for profit maximisation is given by

JEQ
or
w
JACRD _E’ (4.6)

where f](x, ¢,) represents the first derivative of the production function fi(x,
&) with respect to x when {s} is the realised state of nature. Hence, the opti-
mal production choice (z},x*) is a point on the production function where
the isoprofit line with a slope w/p, is tangent to the production function in the
realised state of nature {s}. In Figure 3,° the optimal production bundle is
represented by (zi,x*),s € {1,2} located on the respective production
functions.

© OC is an abbreviation for Output-Cubical.

© 2012 The Author
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Figure 3  Optimal production choices for OC technology: S = 2.

4.3. Examples

4.3.1. Additive uncertainty
In this case, we have

flx,65) = g(x) + €. (4.7)
For this specification,

X(z)=({x:z,— & < g0} (4.8)

s€Q

If g(x) is increasing in variable input x under producer’s control

X(Z) = {X : Max{zl — €ly.-.,285 — GS} < g(x)}
:Xg(MaX{Zl —61,...,25—65}), (49)

where X, (m) = {x : Max{g(x) = m} and the corresponding cost function is
given by

c(w,z) = co(w,Max{z; —€y,...,z5 — €s}), (4.10)

where ¢, is dual to X,

If w: Ri—>R+ represents a continuous preference ( Yaari 1969; Quiggin
and Chambers 1998) structure that is strictly increasing in state-contingent
net returns,’ if there is no price uncertainty, and if the price of stochastic

7 Net return of a producer is defined as the total revenue obtained by selling the products
minus the total cost incurred in the production process.

© 2012 The Author
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output is normalised to one, then the producer’s objective function (see
Chambers and Quiggin 2002) is

Max{W({21 — cg(w,Max{zl —€ly...,Z85 — 65}), PN

{zg — cg(w,Max{z; —€,...,z5 — €es}))}. (4.11)

The producer with this objective function will choose the kinked point on
her optimal isocost curve (see Figure 1 in Chambers and Quiggin 2002). So
her choice is determined by

Z] — €] = Zy — €5,8 € Q. (4.12)
This implies that all producers, irrespective of their risk attitudes, share a

common expansion path that is parallel to nonstochastic production vector,
that is,

Zg =121+ € —€1,5 € Q. (4.13)

So,® for stochastic production technology with additive uncertainty risk
lovers, risk-neutral and risk averse, all choose the same state-contingent out-
put and the corresponding input.

4.3.2. Multiplicative uncertainty
In this case, we have

S(x, &) = h(x)es, (4.14)

where /1 is a nonstochastic production function.
The state-contingent correspondences are given by

X(z) = ﬂ{x ;i—jg h(x)}

s€Q

_ {x:Max{Zl,...,ZS} < h(x)} (4.15)

€] €s

:Xh(Max{i,...,Z—SD
€] €s

and the corresponding cost function is given by
ch (W,Max{zl,...,zs}), (4.16)
€1 €S

® For a detailed discussion, see Chambers and Quiggin (2002).

© 2012 The Author
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where ¢;, is the minimal cost function for stochastic production function 4.
Again, as in the case of additive uncertainty, a rational producer will disre-
gard her risk preference and input price and choose expansion path given by
€
Zy=121—,5 € Q. (4.17)
€1
Therefore, if the uncertainty is multiplicative, then the producer’s risky
returns from production in state of nature {s} would be €,/¢; times her returns
from production in a risk-less state of nature {1}.

4.3.3. Just and Pope model

Just and Pope (1978) observed the unrealistic restriction that the output
expansion paths in state-contingent output space were linear and independent
of input prices and producers’ risk preferences. The Just—Pope technology
can be written as

flx,e5) = g(x) + h(x)e;, (4.18)

where g(x) and /(x) are nonstochastic technologies and the term A(x)e, repre-
sents multiplicative uncertainty. It can be seen from Equation (4.18) that
additive uncertainty and multiplicative uncertainty are special cases of
Just—Pope technology. The state-contingent input correspondence for
Just—Pope specification is given by

X(z) = [({x : g(x) + h(x)es > 2} (4.19)
seQ
This specification takes care of the problems related with producer’s linear
expansion path but it still does not allow for substitutability between state-
contingent outputs.

4.3.4. Kumbhakar model

Kumbhakar (2002) extends Just and Pope technology by incorporating
producer behaviour towards risk in his model. Kumbhakar’s model is
specified as

z = g(x) + h(x)e, (4.20)

where ¢ ~ N(0,1) is the stochastic error term representing production uncer-
tainty. The mean output and output risk function are defined as E(z) = g(x)
and Var(z) = h*(x), respectively.

Furthermore, it is assumed that producers maximise their expected util-
ity (E(U(I1))) of profit'® (IT = z — wx). The first-order condition for maximis-
ing producers’ utility can be written as

° The utility function U(.) is assumed to be continuous and differentiable function of
profit IT.
10 The actual profit is normalised by output price p to get the normalised profit I1.

© 2012 The Author
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g(x)=w—0n(x), (4.21)

where g’(x) = dg(x)/dx, h'(x) = dh(x)/dx and 0 = E(¢U’(I1))/ E(U’(IT)).

The variable input x is risk-increasing when #’(x) is positive!! and it
is risk-decreasing when /#’(x) is negative. There is no change in risk if
W(x) = 0. In Equation (4.21), 6 captures producers’ risk preferences. For
a risk-averse producer 0 is greater than zero and the converse is true
for risk-loving producers. For a risk-neutral producer 0 is equal to zero.
Finally, Equation (4.21) clearly indicates that input allocated by produc-
ers depends on risk ().

4.4. Limitations

Chambers and Quiggin (2000) mention three important observations regard-
ing output-cubical stochastic production function. First, the strong func-
tional restriction on the interaction between the random factors and
controllable inputs does not appear to have an empirical basis. The stochastic
error term is supposed to capture the effect of random inputs, which imposes
the restriction that stochastic inputs must be weakly separable from control-
lable inputs.

Second, irrespective of whether the stochastic production function
exhibits continuity, the cost function dual to this technology is not every-
where differentiable in outputs. Hence, traditional methods that equate
marginal cost to marginal benefit are no longer applicable for such tech-
nologies.

Third, the nondifferentiability of cost function with respect to state-contin-
gent outputs implies that output sets of the stochastic production function
are cubes in state-contingent output space. Hence, technologies linked to sto-
chastic production function are referred as ‘Leontief-in-output’ or ‘output-
cubical’. Therefore, output-cubical technology does not allow producers to
manage production risk by allocating inputs to different states of nature
based on their expectations about these future states of nature.

5. State-specific, state-allocable technology

State-specific, state-allocable technology is a flexible and realistic kind of
state-contingent technology that allows for substitution between outputs
realised in different states of nature. Section 5.1 defines a state-specific,
state-allocable technology and Section 5.2 describes producers optimising
behaviour for this technology. In Sections 5.3-5.5, respectively, we dis-
cuss two examples and a limitation of a state-specific, state-allocable
technology.

""" As the marginal risk 0 Var(z)/dx = 2 h(x)l’(x) > 0 when #/(x) > 0.
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5.1. Representation

For the state-specific, state-allocable production technology, output can be
written as a function of input as

zy = flx5,8) s€Q={l,..., S} (5.1)
The input correspondence associated with Equation (2.1) is:
X(z) =) Xi(z), (5.2)

sEQ
where each X;(z,) C R,.

Alternatively, state-allocable input technology can be represented by out-
put correspondence given by

Z(x):{z:(zl,...,zs):szgx}, (5.3)

s€Q

where each z; C R,.

Comparing Equations (4.1) and (5.1), we observe that for output-cubical
specification of technology the state-contingent output z, depends on the
total input x allocated to the production process, but for state-specific, state-
allocable specification of technology the state-contingent output z, depends
on the input allocated to the corresponding state of nature, that is, x;.

5.2. Optimising behaviour

The optimisation problem for state-allocable input is given by

Max W(yi,...,ps), (54)

X150 XS

S .
where y; = pfi(x;) —w) 0 x5, j € Q.
The first-order condition for state-allocable input that is state-specific'? is
therefore given by

of:(x; S .
J s=1
Since, Ele W(y) = 1 (see Eqns 3.6,5.5) can be written as
ofi(x; )
w0 (n22) =, jea (56
Xj

Similarly, the optimality condition for a risk-neutral decision-maker is
given by

12 In this paper, we only consider state-allocable input that is state-specific in nature.

© 2012 The Author
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u (p, 8@53)) =w, je (5.7)

A risk-averse decision-maker would use more input than a risk-neutral
decision-maker if

oW(y)
Ox;

> 0. (5.8)

X=x*

s=1

(X S
= (%(y)pj% —wy W/(y)>

From Equation (5.7), it follows that when the risk-neutral producer uses
an optimal amount of input, the marginal product times the price of input in
a particular state of nature is equal to the ratio of cost of input and producer’s
risk-neutral probability in the corresponding state of nature, that is, (p,0f,(x;)/
0x;| vy = w/m;. Therefore, Equation (5.8) reduces to

S
Wily) > m ) Wi(y). (5.9)
s=1

Equations (5.8 and 5.9) imply (since Zf:l Wi(y) = 1 from Eqn 3.6) that in
‘bad’ state of nature a risk-averse decision-maker will apply more input than
a risk-neutral decision-maker. And using similar argument, in ‘good’ state of
nature a risk-averse decision-maker will apply less input than a risk-neutral
decision-maker.

Figure 4a depicts a two-state technology where the total amount of the
input used in the production process has been fixed at x*. This ‘beaker’ dia-
gram shows that state-contingent outputs can be substituted for one another.
The horizontal axis of this ‘beaker’ measures total input allocated to the pro-
duction process. Input committed to state of nature {1} is measured from
right to left and the input committed to state of nature {2} is measured from
left to right.

The left vertical axis measures output produced in state s = 1 and the right
vertical axis measures the output produced in state s = 2. Figure 4a also
shows that state-contingent output increases at diminishing rate with an
increase in the input allocated to the corresponding state of nature. Panel (b)
shows state-contingent product transformation curve where output in state of
nature {1} is traded off with output in state of nature {2}. The negative slope
of the state-contingent product transformation curve indicates that an
increase in output in a given state of nature can be achieved by decreasing
output in another state of nature.

At A in Figure 4a x{' is allocated to state of nature {1} and x5 = x* — x{
is allocated to state of nature {2}, such that the state-contingent outputs are
the same in every state of nature, that is, z{' = z{. Therefore, by choosing 4
firms can eliminate risk. However, any other allocation of x* involves risk.

© 2012 The Author
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Figure 4 A state-allocable, state-contingent technology.

For example, even if the input is equally allocated between states of nature,
firms will obtain a higher output in state of nature {2} than in state of nature
{1} at point B (z¥ < zJ)). The bisector (45° line) in panel (b) gives the locus
of all riskless state-contingent output pairs.

Using Equation (5.7) and normalising output prices (assuming the prices
are the same for every state of nature) to one, the state-contingent output as a
function of the corresponding risk-neutral probability for the O’Donnell

et al. (2010) model is given by
1
g \"T
Zg = <asbw> . (5.10)

Equation (5.10) indicates that for decreasing (b > 1) returns to scale,
state-contingent output increases with risk-neutral probability in the corre-
sponding state of nature.
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Figure 4c shows that for given total input allocated to the production pro-
cess, an increase in the risk-neutral probability 7; in state of nature {1} results
in an increase in state-contingent output in that state of nature, that is, z;
increases. Simultaneously, as the risk-neutral probability in state of nature
{2} is m, =1 — m;, the state-contingent output in state of nature {2}
decreases. Therefore, the output choices (see Figure 4b) of an efficient and
rational firm are determined by the stochastic technology (a;,a»), the total
input x* allocated to the production process and the risk-neutral probabilities
(m1,m,) associated with the various states of nature.

5.3. Example 1: O’Donnell, Chambers and Quiggin model

O’Donnell et al. (2010) model production technology using the following
Cobb-Douglas function:

Xs

zy = (—)Ub, seQ={1,2}, (5.11)

ds

where z; is the amount of stochastic output produced in period 1 by
employing x, amount of nonstochastic input in period 0, a; > 0 is the
technology parameter related to production of output in state of nature {s}
and the parameter b represents the degree of substitutability between
state-contingent outputs.
From Equation (5.11), the input allocated to a specific state of nature {s} is
given by
xy=azl, seQ=1{1,2}. (5.12)

Assuming that the firms are rational and efficient, the total input used in
the production process in period 0 is the sum of the inputs allocated to each
state of nature, that is

xX=x1+x :alzf—l—azzg. (5.13)

5.4. Example 2: Chavas model

Chavas (2008) provides a cost-based approach to represent state-contingent
technologies. The specification of ex ante output in Chavas (2008) is as
follows:

Zy=pels€Q={1,....S}, 1e{l,... T}, (5.14)

where {s} represents state of nature and ¢ is an index for time or technology.
Here, ¢, is a random variable that takes different values across different states
of nature and o, is the spread parameter that varies across time or technology.
It is important to observe that in Equation (5.14) the spread parameter g, is
independent of the state of nature realised ex post.
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Further it is assumed that there exists an auxiliary variable y, such that
w=kel'seQ={1,...,S}, te{l,..., T} (5.15)

Here, y, is a proxy variable that measures production under uncertainty.
Taking log of both sides of Equation (5.15), In y, = In k,+ ¢, In ¢, which basi-
cally is an ordinary least squares regression with heteroskedastic error having
a variance of g,.

If for the rth observation, the state of nature {s} is realised, from Equa-
tion (5.15) it follows that e, = (v,/k,)"/". Substituting this value of e, in (5.14),
the simulated state-contingent output can be written as

2 ={zp i 20 = 20 R 3 Jhiir = 1, T} (5.16)

The exponential term ¢,/g, varies across states of nature and across obser-
vations, while y, merely represents'? the underlying technology and does not
effect the simulated output z{.

To get a consistent estimate for cost function C(w,, z¢, ) and consequently
input demand function x(w,,z¢, ), it is necessary first to get consistent esti-
mates for k, and o,. For tth observation, Chavas (2008) defines K — 1 values
of by, such that by, < by, < --- < by_yy,. He further defines K partitions,
Vlt = [_mabll]a Vkr = [b(k—l)t:bkl]ak = 2,...,K and VKI = [bK,,OO],l = 1,...,T SO
that at least one observation z,, € Vy, Vt.

Finally, the following assumptions are made

T T
Zpy = (Zlkmzn)/<zlkw> and (5.17)
r=1 r=1

K={z :k=1,...,K}, (5.18)
where the indicator variable I, is defined as
Ly, = 1 if zpy € Vi, else Ity = 0.

A generalised-Leontief functional form is assumed for the cost function,
that is,

M M
C(wy, Z,K, 1) = h(w,, Z,K, ) [ZZ“UW”l/zwﬁl/z

i=1 j=1

M
+ Zwﬁgj(le, 1, (5.19)
=1

where a; = o; Vi # j and M is the number of inputs used in the production

13" For this model to be valid, it is crucial that both Equations (5.14 and 5.15) hold good.
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process. In Equation (5.19), h(w,, zX 1) and g;(zX, 1), respectively, have the
following functional forms

K
h(.) = Zﬁkzkr + ZZﬁkk/Zerk’r and (5.20)
=1 2k K
g,(.):yoj+yj,t, j=1,....M, (5.21)

where f5;,» measures the substitution between state-contingent outputs.
Using Shephard’s Lemma the input demand function can be written as

+ gj(zfv t)7

J
i=1,....Mandt=1,...,T.

M
xi,(w,,Z,K, 1) = h(w,,le, 1) [ oc,-jwj,l/Z/w[,l/z
—1

(5.22)

Chavas (2008) applies his model to US agricultural data and finds that the
substitution of outputs across the states of nature is negligible.

5.5. Limitation

If the technology is state-specific state-allocable, then the output in any state
of nature is zero if no input is allocated to that state of nature, which is unre-
alistic. For example, in agricultural production, use of a particular nutrient in
‘wet’ state may be more effective than its use in a ‘dry’ state of nature, result-
ing in better yields in ‘wet’ state and significantly diminished, yet nonzero
yields in ‘dry’ state of nature.

6. State-general technology

Section 6.1 defines a state-general technology and compares it with state-
specific, state-allocable technology, and Section 6.2 describes producers’
optimising behaviour for this technology. In Sections 6.3 and 6.4, respec-
tively, we discuss an example and some limitations of a state-general tech-
nology.

6.1. Representation

For the state-general production technology, output can be written as a func-
tion of input as

zy = f(X1,X2,...,Xs,8) s€Q={1,...,S} (6.1)

The output correspondence for state-general technology is given by
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Z(x) = {Z:(zl,...,ZS) :x:Zx‘\}, (6.2)

s€Q

where each z; C R,

The difference between state-specific, state-allocable technology and
state-general technology is that when the technology is state-specific state-
allocable, input allocated to any given state of nature affects output only in
that particular state of nature, whereas in the case of state-general technology
input allocated to any particular state of nature affects output in more than
one state of nature. Mathematically the following conditions apply for state-
specific, state-allocable and state-general technology, respectively,

Ifs(x) <~ 0 and M:07j7ésandj,seﬂ (6.3)
O0x 0x;
and
af;ix) #0Vs€ 0 CQ 0 # {¢}and k€ Q. (64)
k

It can be seen from Equations (6.3 and 6.4) that state-specific, state-alloca-
ble technology is a special case of state-general technology.

6.2. Optimising behaviour
For state-general inputs, the optimisation problem is defined as

Max W(yi; ..., »s), (6.5)
where

Vs = pofs(x) —wx, s€Q. (6.6)

Optimal input usage can be arrived at by setting the first derivative of
Equation (6.5) to zero, that is

ES:W‘ ( af‘i)—w>:o. (6.7)

s=1

For a risk-neutral decision-maker (having linear utility), Equation (6.7) is

replaced by
XS: < 8fy —w> =0 (6.8)

which can be further rewritten as
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e 060 (O 69
; Py (ps o > (6.9)

which implies that a risk-neutral producer increases her input until the
expected marginal product of the particular input exceeds its cost.
Furthermore, it is obvious from Equations (6.7 and 6.8) that the marginal
net return will be greater than zero in some states of nature and less than
zero in the remaining states of nature. This has an important implication,
which is that both risk-neutral and risk-averse producers would apply
higher input in some states of nature and lower input in the remaining
states of nature relative to the input that they would have applied to the
production process had they been fully aware about the state that would
prevail in the future. In mathematical terms there exist at least two states,
say s, j € Q such that

Is(x) Ifi(x)

pSW—W #pjw—w (610)
A risk-averse decision-maker would apply more input relative to a risk-

neutral decision-maker, if

OW(yi(x),...,ys(x))
ox

>0, (6.11)

X=x*

where x* is the optimal input applied by a risk-neutral producer to the pro-
duction process. Using the fact that y(x) = pf,(x) — wx, Equation (6.11) can
be written as

8W(y1(x)? s 7y5(x))
ox

—Sowo(n 89

x=x* §=

As at x* Equation (6.8) holds, Equation (6.11) can be rewritten as

OW(y1(x),...,ys(x))
ox

> 0.

_ i(Ws(y) — ) (1’5 aféﬁcX) - W>

x=x*

(6.13)

Partitioning the set containing all possible states of nature (v U " = Q
and w N @ = ¢) into subsets containing ‘good’ and ‘bad’ states of nature
represented by w and «’, respectively, Equation (6.13) can be written as
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aW(yl(x)a s ayS(x))

=St - m) (2 - w)

Ox x=x* icw X=x*
ofi(x
+> (Wiy) —m) (Pj é(x )_ W) > 0.
Jjew' o
(6.14)

Further, if at the optimal input used by a risk-neutral producer, the mar-
ginal net returns in the ‘good’ states of nature are negative and positive in the
‘bad’ states of nature, then a risk-averse producer will apply more input than
a risk-neutral producer.

Thus, a risk-averse decision-maker will apply more input to the production
process than a risk-neutral decision-maker (whose optimal input usage is
xR®N), if the marginal return in ‘bad’ state of nature is positive and the mar-
ginal net return in ‘good‘ state of nature is negative. On the contrary, a risk-
averse decision-maker will use less input than a risk-neutral decision-maker,
if the marginal return in ‘bad’ state of nature is negative and the marginal net
return in ‘good state of nature is positive.

6.3. Example: Nauges, O’Donnell and Quiggin model

Taking logarithm on both sides of Equation (5.11), the production technol-
ogy in O’Donnell et al. (2010) can be rewritten as

lnzS:%(lnxS— In a5),s € Q={1,...,S}. (6.15)

Nauges et al. (2009) extend production technology represented by Equa-
tion (6.15) into a more flexible specification of technology given by

1
In z, :E[ In (0x — Ox;+x,) — Inay, seQ={1,...,S}, (6.16)

where 0 < 6 < 1 is the parameter that determines whether an input allocated
to a particular state is state-specific or state-general and x = Zle Xy 1S the
total input allocated across all states of nature.

Nauges et al. (2009) apply their model to a panel data of Finnish farms.
The data contain yearly farm-level observations on land (in acres) allocated
to each crop, crop output and expenditures on labour, fertilisers and pesti-
cides. The major source of production risk arises owing to the variable nature
of weather conditions. The output in the model is an output index which is
derived by dividing the sum of the value of wheat, barley and oats by an out-
put price index. Land is the only state-allocable input. In their application,
the state-specific, state-allocable input allocations to different states of nature
are observed.
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The three cases of interest for this technology are

(i) 0 =0.
In this case, this technology boils down to O’Donnell et al. (2010) tech-
nology given by Equation (6.15).

(i) 6 =1.
In this case, technology takes the form of output-cubical technology and
can be written as

1
lnzS:E[lnx— Inag,secQ={I1,...,S}. (6.17)
(i) 0 < 0 < 1.

Here, the technology becomes state-general because a nonzero output is
produced in any given state of nature even if no input is allocated to that

particular state of nature.

An example from agriculture can best describe state-general input. In
wheat production, any farmer may experience either a ‘wet’ season or a ‘dry’
season. By using x amount of fertiliser she can produce z; in ‘wet’” season and
z5 in ‘dry’ season. The yields in ‘wet’ and ‘dry’ seasons are mutually exclusive
and they only depend on the total input applied in the production process.
The farmer thus produces nonzero output no matter what state of nature she
experiences by applying a given amount of fertiliser to the production
process.

Jaramillo et al. (2010) using a methodology similar to Nauges et al.
(2009) argue that state-contingent approach can be used for studying
dynamics of seed trait adoption. In their application, the authors find that
the traits which protect yield against production uncertainty are state-
specific and the traits which supplement production factors that are more
stable are state-general.

6.4. Limitation

Whether the technology is state-allocable or state-general, when the total
input used in the production process is fixed, the substitution between state-
contingent outputs is brought about by re-allocating input among the various
states of nature. In the case of state-specific, state-allocable technology, the
substitution between state-contingent outputs is exclusively accomplished by
substituting inputs between various states of nature. But this may not be true
in the case of state-general technology because if the input is state-general,
then it is possible to produce output in a given state of nature even if no input
is allocated to the corresponding state of nature. Therefore, the ‘beaker’
diagram in Figure 4 also holds for state-general technology, but unlike state-
specific, state-allocable technology, it is not possible to identify input alloca-
tions to individual states of nature.
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Again, the empirical implementation of Nauges et al. (2009) model requires
knowledge of the input allocations to different states of nature. In most prac-
tical applications, input allocated to different states of nature is not observed.

7. Conclusion

A major shortcoming of conventional productivity analysis is that it does
not explicitly take into account the substitutability of inputs (and hence
the outputs) between the potential states of nature. These potential states
of nature arise owing to the inherently stochastic nature of the operating
environment faced by the decision-makers. To account for the stochastic
nature of the production process, O’Donnell and Griffiths (2006) estimate
state-contingent production frontiers. A limitation of their approach is
that they assume the technology to be output-cubical, thereby ruling out
substitution of inputs (and hence the outputs) between the various states
of nature.

O’Donnell et al. (2010) by way of simulation show that in an uncertain
decision environment, rational decision-makers, using the same stochastic
technology and operating in the same markets, often make different produc-
tion choices. However, O’Donnell et al. (2010) specify a state-allocable tech-
nology that is state-specific. In most empirical applications, the production
technology is usually state-allocable but not state-specific.

This limitation is overcome by Nauges et al. (2009) as they estimate a tech-
nology that is state-general in nature. However, in their application, input
allocations to various states of nature are observed. But, in many real-world
applications, the input allocated to different states of nature is unobserved
and only the total input used in the production process is observed. There-
fore, future research needs to be focused on devising techniques to estimate
state-general production technology, when only the total input applied to
production process is observed.

The state-contingent theory holds good even when there is continuum (see
Chambers and Quiggin 1998; Briec and Cavaignac 2009, for details) of states
of nature. However, Just (2003) and Rasmussen (2004) mention that the main
limit to the empirical application of the state-contingent approach is the theo-
retically large number of states that need to be defined to realistically repre-
sent agricultural environments. Rasmussen (2004) shows that even
considering a limited number of state variables results in an impossibly large
number of states. Given these comments, in future research it is important to
explore the factors determining the appropriate number of states.
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