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Integrating spatial dependence into Stochastic
Frontier Analysis

Francisco José Areal, Kelvin Balcombe and Richard Tiffin†

An approach to incorporate spatial dependence into stochastic frontier analysis is
developed and applied to a sample of 215 dairy farms in England and Wales. A num-
ber of alternative specifications for the spatial weight matrix are used to analyse the
effect of these on the estimation of spatial dependence. Estimation is conducted using
a Bayesian approach and results indicate that spatial dependence is present when
explaining technical inefficiency.

Key words: Bayesian, spatial dependence, spatial weight matrix, technical efficiency.

1. Introduction

Despite many economic phenomena being driven by spatial processes, spatial
relationships have rarely been exploited in the economic literature before the
late 1990s (Bockstael 1996; Anselin 2001). Disregarding spatial aspects of the
data may produce inefficient or biased estimates and consequently, mislead-
ing inference (Anselin 2001). However, interest in spatial issues has increased
recently. It was in the 1990s when there were the first calls for the introduc-
tion of spatial econometrics in agricultural economics (Bockstael 1996; Weiss
1996). Weiss (1996) stresses, as does Bockstael (1996), that economic pro-
cesses such as agricultural production are spatial phenomena and factors such
as yield, soil characteristics, landscape configurations and pest populations
show spatial variability. Weiss (1996) calls for the use of spatial information
in agricultural economics and points out that results obtained from incorpo-
rating spatial analysis into agricultural economics has implications for farm
management and for agricultural and environmental policies. For instance,
spatial information can reveal where fertiliser use is profitable and where it is
counterproductive (Weiss 1996).
Two special issues have been devoted to the subject of spatial econometrics

in agricultural economics journals in the recent years. Firstly, the special issue
of Agricultural Economics (2002) and secondly the special issue of the Jour-
nal of Agricultural Economics (2007). Holloway and Lapar (2007) provide an
excellent review of recent literature in which spatial econometrics techniques
have been used. The authors focussed their review on studies dealing with
spatial bio-economic modelling and land use modelling. They classified the
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articles into two groups: those that explicitly use spatial econometric methods
and those that use geographic information systems (GIS) techniques.
As for agricultural production, there are a number of potential sources of

spatial dependence in efficiency, including soil quality, climatic conditions,
socio-economic aspects and other location-specific attributes. For instance,
spatial dependence in technical efficiency can be found because farmers in an
area may emulate each other; it may be due to the level of infrastructure in
the area or, it may be because of the climatic and topographic conditions of
the area where the farm is located. All these are usually unobservable vari-
ables that may be spatially correlated. In other words, no matter what spa-
tially correlated covariates are included in the production function, it is
always possible that some will be omitted. This is also true for models that
account for latent technical inefficiency. Although these models may include
a set of covariates, more or less spatially correlated, that may help to explain
the level of technical inefficiency, it is almost certain that some spatial effects
will be omitted.
A number of models have been developed to account for spatial depen-

dence such as the spatial autoregression (SAR) model (Whittle 1954; Mead
1967; Besag 1974; Ord 1975; Anselin 1988), the spatial error model (SEM)
and its variant the higher order contiguity model or spatial Durbin model
that allows for explanatory variables from neighbouring observations
(LeSage 1999; Bell and Bockstael 2000). None of these models incorporate
spatial dependence into technical efficiency analysis. Despite advances in the
econometric application of spatial analysis (e.g. Anselin 1988; LeSage 1999)
very little research can be found in the literature on how to incorporate spa-
tial dependence into technical efficiency analysis (Druska and Torrace 2004;
Schmidt et al. 2009). The efficiency literature usually considers spatial hetero-
geneity, where efficiency levels may differ depending on the location. Spatial
dependence refers to the correlation between the efficiency levels of the farms
and the efficiency levels of ‘neighbouring farms’. Spatial heterogeneity in the
technical efficiency literature is controlled (if controlled at all) by introducing
dummy variables for political land divisions such as regions, counties and
provinces. For example, Hadley (2006) introduced dummy variables to
account for regional heterogeneity. The introduction of dummy variables has
also been used to account for spatial heterogeneity in less favoured areas
(Iraizoz et al. 2005; Hadley 2006).
We incorporate spatial dependence into technical efficiency analysis using

an autoregressive specification of the inefficiency component of a compound
error term. Our approach differs from Druska and Torrace (2004), which used
an autoregressive specification in the error term to estimate the spatial depen-
dence based on a standard fixed effects model. The work here also differ from
Schmidt et al. (2009) which makes farm inefficiency dependent on a parameter
that captures the unobserved spatial characteristics. Our work differs in both
the specification of the model and the scope of the analysis. We directly
integrate the unobserved spatial characteristics in the stochastic frontier model
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by specifying the inefficiency to be spatially autoregressive and including a
parameter that measures the level of spatial dependence. Schmidt et al. (2009)
examined the unobserved local characteristics in each municipality by incor-
porating them into the analysis assuming that (i) they follow a conditional
autoregressive (CAR) prior distribution (i.e. they incorporate the assumption
that neighbour municipalities have a similar level of unobserved local charac-
teristics) or (ii) a Normal distribution (i.e. unobserved local characteristics are
independent of the neighbours). Schmidt et al. (2009) examined unobserved
spatial effects at relatively small levels (i.e. municipalities), whereas we take dif-
ferent specifications, some of which not restricted by political boundaries. By
examining different spatial structures, we are able to discern how spatial
dependence varies with different characterisations of neighbourhoods, which
is an aspect that Schmidt et al. (2009) conclude is worth being investigated.
Our approach enables us to obtain both the degree and significance of spatial
dependence in the whole area studied for different characterisations of neigh-
bouring farms. Schmidt et al. (2009) only provide information on the signifi-
cance of spatial dependence at the municipality level.
The following sections are dedicated to the description of the data, – meth-

odology and empirical approaches used for integrating spatial dependence
into stochastic frontier analysis. The empirical section includes a description
of the data used and along with the results the final section concludes.

2. Data

The analysis herein uses balanced panel data from the Farm Business Survey
(FBS) for the years 2000–2005. A total of 215 dairy farms in England and
Wales are included in the data set. The FBS includes a large amount of infor-
mation related to farm enterprises. We classified farm output data into the
following: (i) milk and other dairy products, (ii) leasing out quota and (iii)
other products. Laspeyres and Paasche quantity indices were calculated to
compute a Fisher’s quantity index that aggregated the output in milk and
other milk output into one variable and other products also into one variable.
The base for price and output indices was calculated as the average of prices
and outputs. With regard to inputs, we use utilised agricultural area (UAA)
in ha; herd size (number of cows); labour (£); machinery and general farming
costs (£), which includes contract work, machinery rental, machinery and
equipment valuation, machinery and equipment repairs, vehicle fuel and oil,
electricity, heating fuel for all purposes, water for all purposes, insurance
excluding labour and farm buildings, bank charges professional fees, vehicle
tax and other general farming costs; and livestock costs (concentrate feed-
stuff, coarse fodder, veterinary services and medicines).
Spatial information on farms was provided by the Department for

Environment Food and Rural Affairs (Defra) as part of the FBS. The FBS
provides information on the geographical location of the farm at a 10 km
grid square level. Figure 1 shows the location of the FBS farms. A 10 square

Integrating spatial dependence into SFA 523

� 2012 The Authors
AJARE � 2012 Australian Agricultural and Resource Economics Society Inc. and Blackwell Publishing Asia Pty Ltd



km block contains at least one farm in the data set and a maximum of four.
This information was used to build a number of connectivity (or spatial
weight) matrices that represent the relative spatial information.

3. Methods

3.1. The spatial weight matrix

Although the use of political land divisions in efficiency analysis may capture
some effects associated with policies at regional, county or provincial levels,
there may be factors such as climatic and topographic conditions which differ
within those political divisions. To account for factors that may be present on
a smaller or larger scale relative to a political division of the land, a quantifi-
cation of the structure of spatial dependence needs to be introduced.
The spatial information about farms can be incorporated into a connectiv-

ity or spatial weight matrix (W). A connectivity matrix can be defined in dif-
ferent ways depending on the appropriate definition of a neighbourhood.
Two questions usually arise when analysing technical efficiency: the structure
of spatial dependence and the appropriate metric used to decide how close
two farms are. Both issues are problematic in microdata environments where

Figure 1 Farms location in 10 sq km blocks.
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observations are scattered throughout a landscape (Bell and Dalton 2007;
Holloway and Lapar 2007). There are two main ways in which the spatial
weight matrixW can be specified.
The spatial weight matrix W is a symmetric matrix with the elements Wij

representing the distance or closeness of farm i with farm j.
W is usually row standardised such that the rows add up to one. This

facilitates the interpretation of model coefficients. Let’s consider four farms
where farm 1 is close to farm 2; farm 2 is close to farms 1, 3 and 4; farm
3 is close to farms 2 and 4, while farm 4 is close to farms 2 and 3. The
spatial weight matrix based on this spatial example could take the unstan-
dardised form

WU ¼

0 1 0 0
1 0 1 1
0 1 0 1
0 1 1 0

0
BB@

1
CCA: ð1Þ

The diagonal elements WU
ii are set to 0 in order to preclude an observation

of the efficiency for the i farm from directly predicting itself. The spatial
weight matrix is row standardised so each element in the standardised matrix

W,Wij ¼
WU

ijP
j

WU
ij

, is between 0 and 1 as shown below

W ¼

0 1 0 0
0:33 0 0:33 0:33
0 0:5 0 0:5
0 0:5 0:5 0

0
BB@

1
CCA: ð2Þ

Close proximity can have different interpretations. It can mean that two
farms can be adjacent neighbours or neighbours within a given distance. For
the latter, the elements of the W are given by: WU

ij ¼ 1 if 0 < distance
between i, j £ s (s is the distance beyond which no dependence is assumed);
otherwiseWU

ij ¼ 0:
After standardising, we estimate the model z = qWz + e where z is the

vector of inefficiencies. The parameter q determines the correlation between
the elements of z. If z referred to farms efficiency, then q would represent the
correlation between individual farm efficiency and the mean efficiency of the
neighbouring farms.
An alternative approach to the one shown earlier is the use of a spatial

weight matrix based on distance (Anselin 2002). In this case, neighbours have
different weights. Those with higher weights are closer in distance. Therefore,
q determines the correlation between farm efficiency and adjusted by distance
mean efficiency of neighbouring farms. This approach is also arbitrary in the
sense that the cut-off distance is selected by the researcher. The distance
weight matrix specified here is one of a power form
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Wij ¼ exp �d2ij
.
s2

� �
; ð3Þ

where dij is the distance between a farm in location i and a farm in location j;
s is the distance around a given observation over which other observations
are likely to be dependent.
The cut-off distance chosen to determine the distance beyond which spatial

effects are not relevant is a key issue. Bell and Bockstael (2000) found that
their results were more sensitive to the specification of the neighbourhood in
the spatial weight matrix (i.e. choice of the cut-off distance) than to the esti-
mation technique used. They found that the spatial dependence estimate
changed with the cut-off distance selected, increasing first at a small cut-off
distance and falling afterwards as the cut-off distance was increased. They
applied a higher order contiguity model and showed how spatial dependence
diminishes with distance.
Roe et al. (2002) also estimated their models using different cut-off

distances and highlighted that the appropriate cut-off distance is an empirical
issue. Kim et al. (2003) used SAR and SEM hedonic price models to measure
the benefits of air quality improvement. The spatial weight matrix was speci-
fied based on distances between district centroids with a cut-off distance of
4 km chosen after experimenting with a series of different cut-off distances.
All these articles show that a cut-off distance exists where spatial dependence
reaches a maximum.

3.2. Scope

Milk producer farm (in)efficiencies in England and Wales are studied in this
study. Milk producers have an annual milk quota that partially binds produc-
tion because producers can lease in and/or lease out milk during the produc-
tion year. Therefore, we include, in the analysis, the fact that production
is partially constrained by the annual quota Q that includes the initial quota ±
quota bought/sold, leasing in quota qui and leasing out quota quo. Not
accounting for such constraints may lead to wrongly attributing the effects of
such constraints to the farmer being unsuccessful in optimising production
(Färe et al. 1994).
If producers optimise their production by not wasting resources, this

will lead them to operate near the edge of their production possibility set.
However, there may be an array of motives that explain why not all pro-
ducers are successful in optimising production. In this study, we focus on
developing a way to explain technical inefficiency through spatial depen-
dency. The departure point of any technical efficiency analysis is the defini-
tion of the production technology of a firm. This can be characterised in
terms of a technology set, the output set of production technology and the
production frontier.

526 F.J. Areal et al.

� 2012 The Authors
AJARE � 2012 Australian Agricultural and Resource Economics Society Inc. and Blackwell Publishing Asia Pty Ltd



3.3. Output distance function

We use a distance function approach because it describes technology in a way
that allows efficiency to be measured for multi-input and multi-output enter-
prises (Coelli et al. 2005). An output distance function describes the degree to
which a firm can expand its output given its input vector. We start from a
producible output set, which is the set of all outputs that can be feasibly pro-
duced using the set of all inputs. The output set for production technology is
defined as

P x;Qð Þ ¼ y 2 RM
þ :x can produce y given y1 ¼ Qþ qui� quo

� �
¼ y : x; yð Þ 2 Tf g,

ð4Þ

where y refers to all M outputs of the farm including milk (y1), the leasing
out of quota (quo) and other outputs, which take only positive real numbers
RM
þ , and x refers to all K inputs used in the farm, which take only positive

real numbers RK
þ, including the leasing in quota (qui) and the annual alloca-

tion of quota Q which includes the initial quota ± the amount of quota
bought/sold in the current year. The output set is included within the techno-
logical set T.
The output distance function is defined on the output set P x;Qð Þ as

DO x; y;Qð Þ ¼ min h :
y

h

� �
2 P x;Qð Þ

n o
for all x 2 RK

þ, ð5Þ

which means that the initial allocation of quota Q, the leasing in qui and leas-
ing out quota quo are treated in the same way as conventional inputs (x) and
outputs (y).
Assuming a translog functional form for the parametric distance func-

tion with M outputs and K inputs offers several attractive properties
including flexibility, as well as making it easy to derive and permit the
imposition of homogeneity, which makes it the preferred form in the
literature (Lovell et al. 1994; Coelli and Perelman 1999; Brümmer et al.
2002, 2006).

lnDOi ¼ a0 þ
XM
m¼1

am ln ymi þ
1

2

XM
m¼1

XM
n¼1

amn ln ymi ln yni þ
XK
k¼1

bk ln xki þ
1

2

XK
k¼1

XK
l¼1

bkl ln xki ln xli þ
XK
k¼1

XM
m¼1

dkm ln xki ln ymi;i ¼ 1,...,n, ð6Þ

where i denotes the ith farm in the sample; qui and Q are included in x as
inputs; and quo is part of y as an output. Using linear homogeneity of the
output distance function in outputs, Equation (6) can be transformed into an
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estimable regression model by normalising the function by one of the outputs
(Lovell et al. 1994; Coelli and Perelman 1999; Brümmer et al. 2002, 2006;
Orea 2002; O¢Donnell and Coelli 2005). From Euler’s theorem, homogeneity
of degree one in output implies:

XM
m¼1

am þ
XM
m¼1

XM
n¼1

amn ln yni þ
XM
m¼1

XK
k¼1

dkm ln xki ¼ 1, ð7Þ

which will be satisfied if
PM

m¼1 am ¼ 1,
PM

m¼1 amn ¼ 0 for all n, andPM
m¼1 dkm ¼ 0 for all k. Substituting these constraints is equivalent to normal-

ising by one of the outputs, which leads to the following expressions:

lnDO
yi
y2i
;x

� �
¼ lnDO

1

y2i
yi;xð Þ ð8Þ

and

� ln y2 ¼ a0 þ
XM
m¼1

a1 ln
ymi

y2i
þ 1

2

XM
m¼1

XM
n¼1

amn ln
ymi

y2i
ln
yni
y2i
þ
XK
k¼1

bk ln xki þ
1

2

XK
k¼1

XK
l¼1

bkl ln xki ln xli þ
XK
k¼1

XM
m¼1

dkm ln xki ln
ymi

y2i
þ ei þ zi; ð9Þ

where ei is a symmetric random error term that accounts for statistical noise
and zi is a non-negative random variable associated with technical ineffi-
ciency.
Monotonicity constraints involve constraints on functions of the partial

derivatives of the distance function. As pointed out by O¢Donnell and Coelli
(2005), the elasticities of distance with respect to inputs and outputs are
important derivatives.

@ lnDO

@ ln xk
¼ bk þ

XK
k¼1

bkl ln xli þ
XM
m¼1

dkm ln
ymi

y2i
ð10Þ

@ lnDO

@ ln ym
¼ am þ

XM
m¼1

amn ln
yni
y2i
þ
XK
k¼1

dkm ln xki: ð11Þ

For DO to be nonincreasing in x, @ lnDO

@ ln xk
� 0 while for DO to be nondecreas-

ing in y. The data were normalised so that each variable had a sample mean
of one. This means that the monotonicity conditions can be expressed as
am � 0 and bk £ 0. It is worth noting that coefficient results have changed
the sign, and therefore, the expected coefficients should be am £ 0 and
bk ‡ 0.
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We used the spatial information contained in the data set to create a num-
ber of specifications for the spatial weight matrix W that were used to investi-
gate the effect of these on the results. One specification involved the
introduction of a spatial connectivity matrix whose common specification
was a n · n matrix W with elements Wij = 1 for farms j = 1, ..., n within a
10 square km grid to farm i and Wij = 0 for those farms that were not close.
Once W was row standardised, this effectively accounted for the average effi-
ciency of the farms surrounding the farm within the 10 km square grid.
Another alternative specification was where the spatial connectivity matrixW
has elements Wij = 1 for farms j = 1, ..., n within the Government Office
Regions (GOR) of farm i and Wij = 0 for those farms that were located in
the same GOR. Finally, four more alternatives were used by specifying a spa-
tial distance matrix W with elements Wij = dij where dij is the Euclidean dis-
tance. The weight specification used was the power form (Eqn 3) and four
cut-off distances were used (s = 20 km; s = 100 km; s = 180 km and
s = 240 km). As pointed out earlier, defining how to quantify close proximity
is arbitrary, that is, cut-off distance is decided by the investigator. The dis-
tance between farms is calculated using the Euclidean distance

dij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi � xj
	 
2þ yi � yj

	 
2q
; ð12Þ

where xi, yi are the coordinates of the points.

3.4. Estimation

A Bayesian procedure was used for estimation. We describe this procedure in
the following section. We start with the standard stochastic output distance
function model which is specified as

yit ¼ xitbþ eit � zi; ð13Þ

whereyit is a vector of the logarithm of milk and other milk products for each
farm i in year t; xit is a matrix of the logarithm of other outputs and inputs of
the farm i in year t; b is a vector of parameters associated with the outputs
and inputs of the farm to be estimated; eit is the random error and zi repre-
sents the inefficiency of the ith farm. Stacking all the variables into matrices,
we obtain

y ¼ xbþ e� z� 1Tð Þ: ð14Þ

This standard model can be transformed to account for spatial dependence
in the inefficiency term. The spatially dependent inefficiency term is
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z ¼ qWzþ ~z; ð15Þ

where W is a connectivity matrix that; is the spatial coefficient; and ~z are
latent variables whose distributional form is unknown. By plugging Equation
(15) into Equation (14), we obtain the following expression

y ¼ xbþ e� I� qWð Þ�1~z
� �

� 1T: ð16Þ

The parameter q is assumed to be between 0 and 1.1

3.4.1. The conditional likelihood function.
The distributional assumptions determine the form of the likelihood function.
Here, it is assumed that the prior distributions for the latent errors are normal
and gamma distributed (Koop et al. 1995; Koop 2003). In this case, normal-
ity is assumed. Note that we have i = 1, ..., n farms observed during T years
(t = 1, ..., T). Here, pðÞ refers to the density and p(|) is the conditional
density.

pðyjb; h; q;l�1z ; ~zÞ ¼
YN
i¼1

h
T
2

ð2pÞ
T
2

exp �h e0e
2

� �
ð17Þ

noting that p yjb; h;q; l�1z ; ~z
	 


¼ p yjb; h; q;l�1z ; z
	 


¼ p yjb; h; l�1z ; ~z
	 


:

Defining ~y ¼ yþ I� qWð Þ�1~z� 1T

h i
the following expression is obtained

p yjb; h; l�1z ; ~z
	 


/ h
TN
2 exp � h

2
~y� xbð Þ0 ~y� xbð Þ

� �
: ð18Þ

The expression above is of a standard form used for efficiency analysis (Koop
et al. 1995; Koop 2003) with the spatial element being the extension of the
model.

3.4.2. The priors
The likelihood function must be complemented with a prior distribution on
the parameters b; h; l�1z ; q

	 

to conduct Bayesian inference. An independent

Normal-Gamma prior is used for the coefficients in the production frontier
and the error precision.
The distribution of the inefficiency term is determined by the distribution

of z, which is a latent variable. We define p ~zjl�1z

	 

instead of p zjl�1z

	 

, which

is defined given q, W and p ~zjl�1z

	 

: The conditional distribution for the latent

variable ~zi is

1 We broke this assumption to evaluate the robustness of our results. They were found to be
robust.
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p ~zijl�1z

	 

¼ fG ~zija;l�1z

	 

¼

~za�1
i

lj
zC að Þ

exp �l�1z ~zi
	 


; ð19Þ

where C �ð Þ is the gamma function; and fG ~zija;l�1z

	 

indicates the Gamma

density with parameters a and l�1z . This prior is commonly used in literature
(van Den Broeck et al. 1994; Koop et al. 1995; Fernández et al. 2000).
Assuming a = 1, the inefficiency distribution is exponential and the ineffi-
ciency prior becomes

p ~zijl�1z

	 

/ exp �l�1z ~zi

	 

: ð20Þ

The prior for l�1z is assumed to be gamma with parameters 2 and � ln r�ð Þ
where r* is the median of the prior distribution. Finally, the prior for q is
assumed to be an indicator function.

f qð Þ ¼ I q 2 0; 1½ �ð Þ: ð21Þ

The expression above is a uniform distribution and its applicability depends
on the appropriate construction of the weight matrix. The indicator function
I �ð Þ ¼ 1 if q 2 0; 1½ � or otherwise I �ð Þ ¼ 0. This means that the parameter q
that accounts for spatial dependence is expected to have a positive impact on
the efficiency scores.

3.4.3. The joint posterior.
The joint posterior distribution can be broken down into as the multiplication
of the conditional likelihood function and the priors. The joint posterior in
terms of z is

p b; h; l�1z ; z;qjy
	 


/ p yjb; h; l�1z ; ~z
	 


	 p bð Þ 	 p hð Þ 	 p ~zjl�1z

	 

	 p l�1z

	 

	 I q 2 0; 1½ �ð Þ: ð22Þ

3.4.4. The conditional posteriors.
The Gibbs sampler is based on conditional distributions that describe the
probabilities of a combination of values for parameters of interest which
are conditional on the observables. The use of conditional distributions
facilitates obtaining posterior distributions of the parameters of interest.
To estimate the model, it is useful to have the conditional distributions in
order to employ the Gibbs sampling method (Geman and Geman 1984;
Casella and George 1992). The conditional posterior for b is a Normal
distribution after extracting the kernel for b from expression Equation
(22).
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p bjh;l�1z ; ~z; q; y
	 



 N b;V
	 


: ð23Þ

As in Koop (2003), the conditional posterior density for h is

p hjb;l�1z ; ~z;q; y
	 



 G s�2; v
	 


: ð24Þ

To obtain the conditional posterior for l�1z , it is more useful to use ~z rather
than z. The joint conditional posterior density for l�1z and ~z is the kernel from
expression Equation (22) that involves l�1z and ~z:

p ~z;l�1z jb; h; y; q
	 


/
YN
i¼1

exp �h e0iei
2

� �
	 p ~zjl�1z

	 

	 p l�1z

	 

ð25Þ

from which the conditional posterior for l�1z is

p l�1z j~z;b; h; y; q
	 



 G m; gð Þ ð26Þ

which is a Gamma distribution with parameters m ¼ Nþ1PN

i¼1 zi

 � ln r�ð Þ

and
g ¼ 2Nþ 2.
Recalling that z and ~z are related as in expression Equation (15) the condi-

tional posterior distribution for ~zi is

pð~zijb; h; lz; y;qÞ1 exp � hT

2
zi � �xib� �yi þ

l�1z

Th

� �
þ ð~zi � ziÞl�1z

� �� �
ð27Þ

where xi ¼
PT

t¼1
xi;t
T and yi ¼

PT
t¼1

yi;t
T .

Equation (27) is not of a recognisable distributional form. Therefore, a
posterior simulator (i.e. a random number generator) needs to be used, such
as a Metropolis–Hastings algorithm (Metropolis et al. 1953; Hastings 1970).
We use a random walk algorithm proposal whereby a new set of ~zi are pro-
posed using a Metropolis based on the posterior above. Given a new draw of
~zi, then the entire z needs to be updated in each iteration using expression
Equation (15).
To obtain the conditional posterior of q, the spatial problem can be repre-

sented in matrix form as

yþ I� qWð Þ�1~z
� �

� 1T

� �
� Xb ¼ e: ð28Þ

It follows that the conditional posterior for q is
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p qjb; h;l�1z ; y; ~z
	 


/ exp �h e0e
2

� �
	 p qð Þ

¼ exp �h e0e
2

� �
	 I q 2 0; 1ð Þð Þ;

ð29Þ

which provides the basis for the use of a second Metropolis–Hastings step. A
random walk Metropolis–Hastings algorithm is used to draw q with proba-
bility of acceptance of the proposed q* being

P ¼ min 1;
p q�jy;b; h; l�1z ; ~z
	 


p qoldjy;b; h; l�1z ; ~z
	 


 !
: ð30Þ

Recall that expressions Equations (29) and (30) are for the case that q > 0.
In the case of q = 0 (i.e. there is no spatial component) note that z ¼ ~z:
Classical approaches could be used to estimate our model. For example, it

is possible that EM algorithms in the Max Likelihood context (or perhaps
even GMM) could be used. However, the Markov Chain Monte Carlo
(MCMC) approach to estimation means that we do not have to find explicit
expressions for the likelihood function after the latent variables have been
integrated out. The principle advantage of the MCMC approach is that the
mapping of the latent distributions is an integral part of the estimation proce-
dure.

4. Results

We expect the nature of the connectivity matrix will determine the results,
and for this reason, we wish to explore alternative specifications for the
weight matrix. We would expect q to increase with the cut-off distance for the
spatial effects up to a distance and then decrease. We would expect the spatial
dependence to be lower for small neighbourhoods because such areas may
not include the whole area that has a spatial incidence on efficiency. In addi-
tion, we would expect that once we reach a given cut-off distance, the spatial
effect should decrease indicating that the spatial dependence has a limit.
Three spatial models for inefficiency were estimated, one where the weight or
connectivity matrix is specified regarding neighbours as farms within a 10 km
square grid (SM1); one where neighbours are those farms in the same GOR
(SM2); and another where the connectivity matrix is specified as a distance
matrix (SM3). The SM3 was estimated using four cut-off distances, 20, 100,
180 and 240 km (SM3-20; SM3-100; SM3-180 and SM3-240).
Results for the parameters associated with inputs and outputs of the pro-

duction function are shown in Table 1 for models SM1 and SM2; Table 2 for
models SM3-20, SM3-100, SM3-180 and SM3-240. All signs are as expected
with the exception of the coefficient for the leasing quota in, which is negative,
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but the 90% coverage posterior region shows that there is no clear evidence
that supports the belief that this coefficient is negative. The number of cows
and milk quota allocated at the beginning of the year are the two most impor-
tant inputs in terms of milk production, whereas the production of other out-
puts by the farm reduces the production of milk, holding everything else
constant.
Figures 2 and 3 show the kernel distributions for farm efficiency of the pos-

terior means of technical efficiency evaluated over all farms for models SM1,
SM2 and SM3. Results suggest that the way in which the connectivity matrix
is defined has an impact on the levels of efficiency obtained. The efficiency
average is 0.86 when neighbours are considered to be those within a 10 km
grid square and 0.78 when neighbours are considered to be those farms in the
same region. Figure 3 shows smaller differences between the alternatives. The
mean efficiencies are 0.84, 0.81, 0.80 and 0.80 for SM3-20, SM3-100, SM3-
180 and SM3-240, respectively. Figure 4 shows the expected technical effi-
ciency levels obtain from the different characterisations of W against the map
of England and Wales at a 10 km grid square level. In those grid squares
where more than one farm is located the result shown is the mean of the effi-
ciency within that grid square. Results for the mean efficiencies were slightly
higher for the SM1 model that is reflected in the map for SM1 which has dar-
ker squares than the other maps. We also calculated the percentage difference
in absolute terms between the posterior means of TE for the case where spa-
tial dependence is not taken into account and for the different models taking
into account spatial dependence. Incorporating spatial dependence to the
analysis leads to variations of TE estimates of the order of 6% with respect to
farm TE estimates using a model where spatial dependence is not incorpo-
rated.
Regarding the results for the conditional posterior distribution for the spa-

tial dependence parameter q, these are shown in Figures 5 and 6. Results for
SM1 and SM2 are shown in Figure 5, whereas the four alternatives of MS2

Table 1 Slope parameters for models SM1 and SM2

SM1 SM2

Coefficients 90% posterior Coefficients 90% posterior

Intercept )0.03 )0.10, 0.04 )0.04 )0.06, 0.18
Leasing quota out )0.12 )0.18, )0.05 )0.11 )0.18, )0.05
Other output )0.28 )0.33, )0.24 )0.29 )0.34, )0.25
UAA 0.05 0.00, 0.10 0.05 0.00, 0.12
Milk quota 0.39 0.28, 0.50 0.35 0.24, 0.46
Number of cows 0.42 0.31, 0.54 0.46 0.34, 0.58
Leasing quota in )0.02 )0.06, 0.02 )0.02 )0.06, 0.02
Machinery & General costs 0.10 0.03, 0.18 0.10 0.02, 0.17
Labour costs 0.03 )0.03, 0.09 0.04 )0.03, 0.10
Livestock costs (per cow) 0.16 0.10, 0.22 0.18 0.12, 0.25
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are shown in Figure 6. Spatial models SM1 and SM2 show similar results for
the spatial parameter q with averages of 0.13 and 0.18, respectively, which
suggests that efficiency is farm determined rather than spatially determined.
The parameter q is 59.2% more likely to be higher using SM2 than SM1
which suggests that the spatial dependence is larger than just a 10 km square
grid.
Models SM3 were run to investigate the effect of the cut-off distance chosen

on the correlation q between efficiency and the adjusted by distance mean effi-
ciency. Results show that the spatial dependence parameter q increases with
the cut-off distance up to a point between 100 and 240 km and then decreases.

Figure 2 Kernel distributions of the posterior means of technical efficiency across all farms
for SM1 and SM2.

Figure 3 Kernel distributions of the posterior means of technical efficiency across all farms
for SM3 models.

536 F.J. Areal et al.

� 2012 The Authors
AJARE � 2012 Australian Agricultural and Resource Economics Society Inc. and Blackwell Publishing Asia Pty Ltd



The probability that q using SM3-180 is higher than using SM3-240 is 53%,
whereas the probability that q using SM3-180 is higher than SM3-100 is
59%. These results indicate that the spatial parameter q may increase with
the cut-off distance but will decrease once the cut-off reaches a distance
between 100 and 240 km. These results are similar to those obtained by Bell
and Bockstael (2000) where the spatial estimate increases and then falls. A
reason for this is that a spatial matrixW which has been specified using a rela-
tively small cut-off distance may not contain enough observations that help
to obtain a good estimate of the mean efficiency in the neighbourhood. The
spatial estimate will start to fall once farms that are not related in terms of
efficiency with the farm of interest start to be included in the spatial distance
weight matrixW. This will occur at a given distance. With regard to the mean
of q- this is 0.14, 0.31, 0.35 and 0.34 for the 20, 100 and 180 and 240 km alter-
native models, respectively.
The relatively low values for q obtained by all models (i.e. efficiency

depends mainly of farm management) can be seen in Figure 4. Apart from
some clusters in the East Midlands region and North Yorkshire, no other
clear large clusters can be seen on the maps. Differences were found
between estimates of the spatial parameter q obtained by models where

SM1 SM3-20SM2

SM3-240SM3-180SM3-100

Figure 4 Efficiency estimates in England and Wales at 10 km grid square level.
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neighbourhood comprehends farms within a relatively large area (i.e. between
0.31 and 0.35 for SM3-100, SM3-180 and SM3-240) and models where neigh-
bourhood contains farms within a smaller area of between 10 and 20 grid
square km (i.e. between 0.13 and 0.14 for SM1 and SM3-20). In other words,
it is more likely that the efficiency level of a farm is closer to the mean effi-
ciency level of neighbouring farms when neighbourhood is defined for areas
larger than 20 grid square km than for areas equal or smaller than 20 grid
square km. As it can be seen in the maps, there are areas where adjacent
squares have different efficiency levels, which lead to low values of q if ‘small’
neighbourhoods are considered. By extending the cut-off area the efficiency
level of a farm gets closer to the efficiency level of its neighbouring farms.

Figure 5 Estimates of the posterior distributions for q constructed from the Monte Carlo iter-
ates: 10 km grid square versus GOR.

Figure 6 Estimates of the posterior distributions for q when s = 20 km; s = 100 km;
s = 180 km and s = 240 km constructed from the Monte Carlo iterates.
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5. Conclusions

The work outlined in this article has shown how spatial dependence can be
accounted for within a stochastic frontier model by specifying inefficiency to
be spatially autoregressive and including a parameter that measures the level
of spatial dependence. By examining different spatial structures, we also
showed how spatial dependence varies with different characterisations of the
neighbourhood. The application of these techniques gives insightful informa-
tion on whether there is spatial dependence in technical efficiency and has
implications for best implementing policies aiming at improving underper-
forming farms.
The results suggest that there is spatial dependence in technical efficiency in

dairy farms in England and Wales, and not accounting for it may produce
biased results for the efficiency distribution. Farm technical efficiency depends
to some degree on where the farm is located, and therefore, policies aimed at
improving efficiency should take this into account.
The results for the conditional posterior of the spatial dependence parame-

ter q are sensitive to the specification of the spatial weight matrix. It may not
be only due to whether we use a connectivity matrix or a distance based
spatial matrix but also owing to the cut-off size chosen. Thus, results from the
connectivity matrix raise the question of how big the size of the spatial effect
is. Mean spatial dependence reaches its maximum over a 100 km distance
from the farm. Therefore, an examination of how sensitive results are to the
type of weight put to individual farms as well as to the cut-off size chosen
must be conducted to deliver meaningful results.
When analysing spatial heterogeneity, there is not a strong reason to sup-

port this being analysed at the political division level. In fact, usually hetero-
geneity occurs owing to the geographical and climatic characteristics of the
area, which do not necessarily coincide with the political divisions of the land.
Therefore, it is not surprising that heterogeneity is not found at political divi-
sion level and it should be analysed accordingly. The consequences of study-
ing heterogeneity at the wrong spatial level may be important as policy
decisions would be based on misleading information. For example, based on
an analysis for which no heterogeneity is found between a number of regions
the same policy may be applied for these regions. However, if heterogeneity is
in fact present at other smaller or larger spatial levels a more appropriate pol-
icy would be to apply different policies within those regions or covering vari-
ous regions. The results presented in this article are important for policy
makers as they highlight that policies devoted to improving farm perfor-
mance need not necessarily be applied at the national or regional level. Spa-
tial dependency or heterogeneity may cross political borders or differ within
the same political region. This represents a challenge to policy makers on
how to implement policies at the ‘right’ geographical level. Governments
would like to see production allocated to those areas where efficiency is higher
and/or help to increase efficiency in those areas where efficiency can be
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improved. This article has shown that farm specific inefficiency associated
with spatial dependence can be identified as well as identifying those farms
which may need help in improving their performance. Most importantly,
because farm efficiency was found to be spatially dependent this means that
there are drivers behind technical efficiency that are correlated with where
farms are located. Identification of these drivers can have a major impact on
designing policies aimed at improving farm performance.
Future research should focus on developing ways to estimate the distance

at which the dependence parameter reaches its maximum. This would be
helpful to design more accurately the spatial level of policies that aim to
improve farm efficiency. Once it has been identified that spatial dependence
exists, research should concentrate on identifying and incorporating into the
analysis potential explanatory factors for such spatial dependence.
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