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Abstract 

Disjoint interval-censored (DIC) observations are found in a variety of applications 

including survey responses, contingent valuation studies and grouped data. Despite 

being a recurrent type of data, little attention has been given to their analysis in the 

nonparametric literature. In this study, we develop an alternative approach for the 

estimation of the empirical distribution function of DIC data by optimizing their 

nonparametric maximum likelihood (ML) function. In contrast to Turnbull’s standard 

nonparametric method, our estimation approach does not require iterative numerical 

algorithms or the use of advanced statistical software packages. In fact, we demonstrate 

the existence of a simple closed-form solution to the nonparametric ML problem, where 

the empirical distribution, its variance, and measures of central tendency can be 

estimated by using only the frequency distribution of observations. The advantages of 

our estimation approach are illustrated using two empirical datasets. 

 

 

Keywords: Empirical likelihood, Mean bounds, Turnbull, Variance-covariance matrix. 
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Introduction 

Censoring is a very common data problem in many economic applications. A special case of 

censoring is disjoint interval-censored (DIC) data, in which a random variable is observed only 

as a set of non-overlapping intervals; thus, the true value for each observation is only known to 

be within a specific interval among several discrete class intervals. DIC data are found on survey 

responses to closed-category questions, grouped data, and contingent valuation studies using 

payment card designs.  

Closed category questions are commonly used in survey instruments used by economists 

and other social-scientists. In order to simplify the respondents’ task and to encourage a 

response, researchers tend to gather demographic and sensitive quantitative information – such 

as income and age – using a discrete number of categories (Bailey, 1994). As a result, the exact 

value of these variables is unknown, instead the survey responses are observed as DIC data.  

DIC data are also generated when a continuous variable is compiled and summarized on 

the form of a frequency table or grouped data which is the typical case with population-wide 

surveys (e.g., U.S. Census Bureau, 2012). Further analysis on these data may require access to 

the individual responses; unfortunately, the desired level of disaggregation may not be possible 

given confidentiality limitations. Additionally, DIC data are found in contingent valuation 

studies, particularly in payment card questions, where respondents are asked to select their 

maximum willingness to pay for nonmarket goods from a set of possible choices (e.g., Cameron 

and Huppert, 1989). 

The analysis of interval-censored variables requires the use of special statistical 

techniques. Interval-censored observations are commonly analyzed using both parametric and 

nonparametric maximum likelihood (ML) methods (i.e., Bhat, 1994; Hanemann, Loomis and 



 

4 

 

Kannimen, 1991; Zapata et al., 2011). However, parametric ML estimation relies on a priori 

assumptions about the underlying distribution of the variable of interest. Hence, if the 

distribution function is misspecified, results may generate inconsistent estimates. For this reason, 

some authors have advocated to the use of nonparametric ML techniques, in which no 

distribution function is imposed on the observations. In the nonparametric approach, the 

empirical distribution function is first estimated and then it is used to calculate statistics of 

interest (Haab and McConnell, 1997).  

Despite being a recurrent type of data, little attention has been given to the specific 

analysis of DIC data in the nonparametric literature (Li, et al., 2005). In this study, we develop 

an alternative approach for the estimation of the empirical distribution function of DIC data 

using the nonparametric maximum likelihood (ML) function. In contrast to the standard 

nonparametric method, our estimation approach does not require iterative numerical algorithms 

or the use of advanced statistical software packages. In fact, we demonstrate the existence of a 

simple closed-form solution to the nonparametric ML problem, where the empirical distribution, 

its variance, and measures of central tendency can be estimated by using only the frequency 

distribution of observations. The advantages of the proposed estimation approach are illustrated 

using two empirical datasets: a population-wide survey where the income variable is available as 

grouped data, and another from a contingent valuation dataset. 

 

Estimation Methods 

Data Generating Process  

When information is collected using a close-category elicitation format, every respondent i is 

presented with 𝐾 disjoint closed intervals of the form [𝐴𝑘−1, 𝐴𝑘), 𝑘 = 1,… , 𝐾.  Denoting the true 
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(but unobserved) variable of interest for the ith individual as 𝑦𝑖, then the ith respondent is asked to 

select the interval that encloses her true value of 𝑦𝑖. Consequently, every 𝑦𝑖 is observed to fall 

into one of the intervals: [𝐴0, 𝐴1), [𝐴1, 𝐴2), …, [𝐴𝐾−1, 𝐴𝐾).  

The probability that 𝑦𝑖 is in the kth interval with boundary values of  𝐴𝑘−1 and 𝐴𝑘 is given 

by:  

                                𝑃(𝐴𝑘−1 ≤ 𝑦𝑖 ≤ 𝐴𝑘) = 𝐹(𝐴𝑘) − 𝐹(𝐴𝑘−1)            𝑖 = 1,2, … . 𝑁, 

where 𝐹(∙) is the underlying cumulative distribution function (CDF) of 𝑦. 

Given a sample of 𝑁 individuals, the log-likelihood function can be represented by 

(1)                       𝑙𝑛𝐿 = ∑ 𝑙𝑛 ∑ 𝑑𝑖𝑘[𝐹(𝐴𝑘) − 𝐹(𝐴𝑘−1)]
𝐾
𝑘=1

𝑁
𝑖=1 ,   

where dik is a dummy variable that indicates whether the ith individual chooses the kth interval 

among 𝐾 options.     

Parametric Estimation 

The parametric procedure assumes that 𝑦 follows a particular statistical distribution with 

parameter vector 𝜽. Thus, the generic log-likelihood function in (1) can be re-written as a 

function of 𝜽: 

(2)                          𝑙𝑛𝐿( 𝜽|𝑑) = ∑ 𝑙𝑛 ∑ 𝑑𝑖𝑘[𝐹(𝐴𝑘; 𝜽) − 𝐹(𝐴𝑘−1; 𝜽)]𝐾
𝑘=1

𝑁
𝑖=1 . 

Then, optimization algorithms are used to find the value of the vector 𝜽 that maximizes the 

conditional log-likelihood function in (2). For example, if the variable of interest 𝑦 is assumed to 

follow a Normal distribution with mean 𝜇 and variance 𝜎2, then the specific log-likelihood 

function can be written as1: 

                                                 
1 Alternatively, the log-likelihood in expression (3) could be modeled as a Truncated Normal distribution with 

truncation points at 𝐴0 and 𝐴𝐾, or either of them. 
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(3)                      𝑙𝑛𝐿(𝜇, 𝜎|𝑑) = ∑ 𝑙𝑛 ∑ 𝑑𝑖𝑘 [Φ (
𝐴𝑘−𝜇

𝜎
) − Φ(

𝐴𝑘−1−𝜇

𝜎
)]𝐾

𝑘=1
𝑁
𝑖=1 , 

where 𝐹(∙) in equation (2) has been replaced by the cumulative standard normal Φ(∙), and �̂� and 

�̂�2 are the corresponding estimates of the true parameters (Swan, 1969). 

Nonparametric Estimation 

The nonparametric ML procedure, on the other hand, does not rely on a priori assumptions about 

the probability distribution of the variable of interest (𝑦). Given that the probability distribution 

of 𝑦 (F) is unknown, the nonparametric procedure considers each 𝐹𝑘 = 𝐹(𝐴𝑘) in (1) as a 

parameter to be estimated. Moreover, in order to ensure that the likelihood estimates define a 

valid CDF, the ML estimation needs to be expressed as a constrained maximization problem of 

the form:        

(4)   Max𝑭 𝑙𝑛 𝐿(𝑭|𝑑) = ∑ 𝑙𝑛 ∑ 𝑑𝑖𝑘(𝐹𝑘 − 𝐹𝑘−1)
𝐾
𝑘=1

𝑁
𝑖=1  

   subject to: 0 = 𝐹0 ≤ 𝐹1 … ≤ 𝐹𝐾 = 1. 

Nonparametric ML estimates (�̂�) are usually obtained by applying the Turnbull’s self-consistent 

algorithm2 (Day, 2007; Gomez, Calle, and Oller, 2004; and Turnbull, 1976), where the variance 

of the �̂�𝑘’s is calculated using finite difference approximation techniques.        

Nonparametric Closed-Form Solution 

Even though some authors have claimed that there is no closed-form solution to the general 

nonparametric ML problem described in expression (4) (e.g., Haab and McConnell, 1997; Day, 

2007), there are some especial cases where a closed-form solution is available. One of these 

cases occurs when the observed intervals are a set of disjoint closed intervals. In particular, this 

                                                 
2 Limitations of the Turnbull’s self-consistent algorithm, as well as alternative algorithms to solve the nonparametric 

ML problem are discussed in Day (2007).  
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is the type of data collected in both close-category survey questions and on contingent valuation 

studies using a payment card design. 

Note that given 𝑁 individuals and 𝐾 observed intervals, the unconstrained version of (4) 

can be rewritten as 

(5)                       𝑀𝑎𝑥𝑭 𝑙𝑛 𝐿(𝑭|𝑁) = ∑ 𝑁𝑘𝑙𝑛(𝐹𝑘 − 𝐹𝑘−1)
𝐾
𝑘=1 , 

where 𝐹0 = 0, 𝐹𝐾 = 1, and 𝑁𝑘 are the number of respondents who chose the kth interval. The first 

order conditions (FOC) for the maximum likelihood problem in (5) are given by 

(6)               
𝜕𝑙𝑛𝐿(𝑭|𝑁)

𝜕𝐹𝑘
=

𝑁𝑘

𝐹𝑘− 𝐹𝑘−1
−

𝑁𝑘+1

𝐹𝑘+1− 𝐹𝑘
= 0      𝑘 = 1,2…𝐾 − 1 

or equivalently by 

(7)          𝑁𝑘+1𝐹𝑘−1 − (𝑁𝑘 + 𝑁𝑘+1)𝐹𝑘 + 𝑁𝑘𝐹𝑘+1 = 0       𝑘 = 1,2…𝐾 − 1. 

Moreover, the FOC in (7) can be expressed in matrix form as a system of 𝐾 − 1 linear 

equations: 

(8)                                              𝑵𝑭 = 𝚯, 

where 𝑵 = [

−(𝑁1 + 𝑁2) 𝑁1 0 ⋯ 0

𝑁3 −(𝑁2 + 𝑁3) 𝑁2 ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋮
0 0 … 𝑁𝐾 −(𝑁𝐾−1 + 𝑁𝐾)

] is a (𝐾 − 1 × 𝐾 − 1) 

matrix; and 𝑭 = [𝐹1, 𝐹2, … , 𝐹𝐾−1]
𝑡 and 𝚯 = [0,0, … ,−𝑁𝐾−1]

𝑡 are (𝐾 − 1) vectors. 

Consequently, the vector �̂� = 𝑵−1 𝚯 is the solution to system of equations in (8). 

Furthermore, it can be shown that the kth element of �̂� is given by 

(9)                         �̂�𝑘 =
∑ 𝑁𝑗

𝑘
𝑗=1

∑ 𝑁𝑗
𝐾
𝑗=1

=
∑ 𝑁𝑗

𝑘
𝑗=1

𝑁
   𝑘 = 1,2…𝐾 − 1. 

Note that the unconstrained solution to 𝐹𝑘 in (9) ensures that 0 < �̂�𝑘 < 1 and �̂�𝑘 < �̂�(𝑘+1), 

implicitly satisfying the constrains imposed to (4). The advantage of the estimates in (9) 
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compared to those obtained using the standard estimation routine is that the �̂�𝑘 values can be 

estimated simply using the “raw” proportions of observations belonging to each category without 

the need of any numerical optimization technique. 

 Although, the data generating process and methods described previously focus on 

individuals’ responses to survey questions and corresponding maximum likelihood methods 

using individual level data, the result in equation (9) highlights the fact that the proposed method 

to estimate the empirical distribution can also be used with grouped data since the only data 

requirements are the intervals, the number of observations within an interval, and total number of 

observations in the study; or alternatively, the intervals and the proportion of observations on 

each interval.  

 The variance-covariance matrix of  �̂�, var(�̂�), is given by (−𝐸[𝐻(𝑭)])−1, where 𝐻(𝑭) is 

the corresponding Hessian Matrix (i.e., the matrix of partial derivatives of the FOC with respect 

to the 𝐹𝑘’s). In particular, it can be shown that 

(10) var(�̂�) = 𝑁−2

[
 
 
 
𝑁1

−1 + 𝑁2
−1 −𝑁2

−1 0 ⋯ 0

−𝑁2
−1 𝑁2

−1 + 𝑁3
−1 −𝑁3

−1 ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋮
0 0 … −𝑁𝐾−1

−1 𝑁𝐾−1
−1 + 𝑁𝐾

−1]
 
 
 
−1

, 

where the kth diagonal element of var(�̂�) (i.e., the variance of �̂�𝑘) is equal to  

(11)                    var(�̂�𝑘) = 𝑁−3 ∑ 𝑁𝑗 ∑ 𝑁𝑖
𝐾
𝑖=𝑘+1

𝑘
𝑗=1                   𝑘 = 1,2…𝐾 − 1. 

There may be the case in which no 𝑦𝑖 is observed at one or several intermediate intervals3, if this 

occurs then intervals with no observations need to be pooled as described in the Appendix.   

                                                 
3 The 1st and 𝐾th intervals are given by the first and last non-empty intervals (intervals with observations), 

respectively, regardless if there are additional empty intervals before or after them. 
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Mean bounds estimation 

The empirical distribution estimates can be further used to obtain lower bound (LB) and upper 

bound (UB) estimates of the underlying mean of 𝑦. Particularly, the expected value of 𝑦 can be 

written as (Haab and McConnell, 1997):  

(12)   𝐸(𝑦) = ∫ 𝑦
𝐴𝐾

𝐴0
𝑑𝐹(𝑦) 

                                                         = ∑ ∫ 𝑦𝑑𝐹(𝑦)
𝐴𝑘

𝐴𝑘−1

𝐾
𝑘=1 .     

Under a set of continuous and disjoined intervals, the mean bound estimators proposed by Haab 

and McConnell (1997) reduce to a simple weighted average, where the lower bound or upper 

bound of each interval is weighted by its corresponding response relative frequency. Specifically, 

the lower and upper mean bound estimators are given by 

(13)                                       𝐿𝐵(𝑦) = ∑ 𝐴𝑘−1(�̂�𝑘 − �̂�𝑘−1)
𝐾
𝑘=1     

                                                        = 𝑷𝒀𝑳𝑩, 

and 

(14)                 𝑈𝐵(𝑦) = ∑ 𝐴𝑘(�̂�𝑘 − �̂�𝑘−1)
𝐾
𝑘=1       

                                                        = 𝑷𝒀𝑼𝑩, 

respectively. Where 𝑷 = [
𝑁1

𝑁
,
𝑁2

𝑁
, … ,

𝑁𝐾

𝑁
](response relative frequency), 𝒀𝑳𝑩 = [𝐴0, 𝐴1, … , 𝐴𝐾−1]

𝑡 

(intervals lower bounds) and 𝒀𝑼𝑩 = [𝐴1, 𝐴2, … , 𝐴𝐾]𝑡 (intervals upper bounds).  

 

Income and Welfare Applications 

The main attributes of our estimation approach are first illustrated in a simulated dataset. The 

dataset consists of 1,000 observations generated using a Normal distribution with mean (𝜇) 50 

and standard deviation (𝜎) of 12. The generated observations were then allocated into 5 class 
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intervals: [0, 19.99], [20, 39.99], [40, 59.99], [60, 79.99] and [80, 100]. The corresponding 

distribution of the simulated data set, as well as the nonparametric CDF estimates and their 

respective standard errors are presented in Table 1. The 𝐹𝑘 values can be directly estimated using 

the “raw” proportions of observations belonging to each category. For example, �̂�1=0.004, �̂�2= 

0.004+0.212= 0.216, and so for. Similarly, the lower and upper mean bounds can be calculated 

using expressions (13) and 0. The lower and upper mean bounds for the simulated data enclose 

the true mean and were estimated to be 39.54 and 59.53, respectively. Although not shown in the 

paper, it is relevant to mention that both the estimated �̂�𝑘’s and their variance-covariance matrix 

were identical to those obtained employing standard numerical optimization algorithms of the 

Turnbull nonparametric method. 

In an attempt to demonstrate the usefulness of our nonparametric modeling approach in 

real data, the proposed estimation methods are used to analyze two different well-known 

interval-censored datasets. The first dataset comes from the U.S. Census Bureau (U.S. Census 

Bureau, 2012), and it contains a summary of the 2011 U.S. household income distribution. Two 

main characteristics make this dataset very appealing to our illustration purposes. First, this 

dataset is larger than most datasets analyzed in empirical studies in terms of the number of 

observations and intervals used. Second, as is the case with most public data containing sensitive 

information, the specific income level of each household is not available; instead the household 

income is presented in an aggregated manner. Specifically, this dataset consists of 121,084 

observations (in thousand units) grouped in 42 income class intervals (Table 2).  

The fact that household income data are only available at an aggregated level is not a 

limitation to the analysis, because the only information needed to estimate their empirical 

distribution and nonparametric mean bounds are the number of observations per interval. The 
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estimated CDF and their corresponding standard errors are presented in Table 2. The lower and 

upper bounds of the mean household income were estimated to be $63,194 and $86,324, 

respectively4. Our mean bound estimate encloses actual average household income reported by 

the U.S. Census Bureau  ($69,677 with and standard error of $368). Additionally, based on the 

CDF in Table 2 we can also infer that the median household income in the U.S ranges from 

$50,000 to $54,999. 

The second empirical dataset considered in this study comes from a 1984 - 1985 

multipurpose survey of saltwater anglers residing in northern and central California coastal 

counties near San Francisco Bay. This dataset is used to illustrate a practical application of our 

nonparametric approach on welfare analysis. Particularly, on one of the contingent valuation 

questions of the survey, anglers were asked how much they are willing to pay per year to support 

hatcheries and habitat restoration that would result in a doubling of current fish catch rates. 

Anglers’ willingness to pay (WTP) was gathered using a payment card elicitation approach. 

Specific results of the survey regarding the welfare analysis appear in Cameron and Huppert 

(1989), and are reproduced in Table 3. Note that there are several empty intermediate intervals in 

the data, thus before estimating the empirical CDF we pooled some of the intervals. Specifically, 

two pooled intervals were created (i.e., $250 - $449.99 and $450 - $749.99) by merging the 

empty intervals with their appropriate neighboring intervals (see Table 3).  

The nonparametric lower and upper mean bounds of anglers’ WTP for enhancement of 

fish stocks were estimated to be $38.83 and $59.64, respectively5. The median WTP is expected 

                                                 
4 The lower bound of the first interval and the upper bound of the last interval were set to be equal to $0 and 

$1,000,000, respectively. 

5 The maximum anglers’ WTP for enhancement of fish stocks was set to be equal to $1,500. 
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to be enclosed by the interval $20 - $24.99. Following Cameron and Huppert (1989), we also 

estimated a parametric model of anglers’ WTP function assuming a Log-normal distribution (i.e., 

the probability of observing the kth interval in expression (3) is given by Φ(
ln (𝐴𝑘)−𝜇

𝜎
) −

Φ(
ln (𝐴𝑘−1)−𝜇

𝜎
) ). Under this assumption, the parametric unconditional mean WTP was estimated 

to be $51.96 with standard error of $4.90. The unconditional parametric WTP median was 

estimated to be $23.436. Both parametric mean and median estimates were enclosed by their 

nonparametric counterparts. Based on these results, we can argue that the Log-normal 

distribution seems to be a good approximation of the underlying true distribution. 

 

Summary and Conclusions 

Interval-censored observations are found in a variety of applications, from survey responses to 

grouped data presented to report population-wide surveys; thus the necessity of a robust and 

practical approach to analyze this type of data. In this paper we developed an alternative 

approach to estimate the empirical distribution function of the variables of interest by optimizing 

their corresponding nonparametric maximum likelihood function. We focused on the special 

censoring case where the observed data are a set of disjoint intervals. In contrast to Turnbull’s 

standard nonparametric method, our estimation approach does not require iterative numerical 

algorithms or the use of advanced statistical software packages. In fact, our estimates are very 

                                                 
6 A conditional mean WTP (conditional on observable characteristics) of $61.80 with and standard deviation of 

$42.22 is reported in Cameron and Huppert (1989). Additionally, the conditional median WTP was estimated to be 

$25.76. 
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intuitive and easy to compute, and they are identical to those obtained using the standard 

nonparametric approach.  

 Empirical distribution estimates were further used to create estimates of central tendency. 

A practical way to estimate nonparametric lower and upper mean bounds is presented. In fact, 

we demonstrated that for disjoint intervals the lower and upper bound of the mean are equal to 

simple weighted averages, where the weights are given by the intervals’ relative frequency. Also, 

based on the estimated empirical distribution function, an interval containing the median of the 

distribution can be inferred. 

 The attributes of our estimation approach were illustrated in two well-known datasets. 

The first dataset consisted of grouped observations and it contained a summary of the 2011 U.S. 

household income distribution. The second dataset used corresponds to a contingent valuation 

study, where Californian anglers where asked to state their willingness to pay for enhancement 

of fish stocks using a payment card elicitation technique. In both empirical applications the 

nonparametric mean estimates enclosed the reported mean or the estimated parametric mean of 

the original studies. 

 The proposed estimation methods can also be used as a model validation tool. 

Particularly, a comparison between candidate models’ estimates of central tendency and the 

nonparametric mean bounds and median interval could be considered as an initial step to 

discriminate between potential models. Also, in the analysis of survey responses with grouped 

data, the nonparametric mean bounds can be presented along with the traditional survey 

summary statistics (e.g., mean, standard deviation) as a data-driven and robust interval of the true 

mean. 
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 One caveat of interval-censored data analysis, in general, is that this type of analysis 

tends to be sensitive to the number of intervals used, as well as to the values of the interval 

boundaries. In terms of parametric estimation, it has been demonstrated that the intervals chosen 

and the estimation method employed significantly influence the outcome estimates (e.g., 

Cameron and Huppert, 1989). Even though we are not aware of any study analyzing the effect of 

interval’s characteristics on the reliability of nonparametric estimates, similar effects as those 

observed in parametric analysis may be found on nonparametric estimates.  

Two particular shortcomings of the nonparametric approaches should also be mentioned. 

First, in some instances the first and last intervals are open intervals, thus ad hoc boundary 

values need to be used. Finally, the non-parametric approaches limit the exploration of the 

effects of covariates on the estimated function.  
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Table 1. Distribution of the Simulated Dataset. 

Interval Observations Relative Frequency CDFa CDF Std Error 

0 - 19.99 4 0.0040 0.0040 0.0020 

20 - 39.99 212 0.2120 0.2160 0.0130 

40 - 59.99 599 0.5990 0.8150 0.0123 

60 - 79.99 173 0.1730 0.9880 0.0034 

80 – 100 12 0.0120     
a Estimated �̂�𝑘 values and corresponding standard errors are from equation 9 and 11, respectively.  
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Table 2. 2011 U.S. Household Income Distribution.  

Household Income Observations (1,000) Relative Frequency CDFa CDF Std Error 

Under $5,000 4,261 0.0352 0.0352 0.0005 

$5,000 - $9,999 4,972 0.0411 0.0763 0.0008 

$10,000 - $14,999 7,127 0.0589 0.1351 0.0010 

$15,000 - $19,999 6,882 0.0568 0.1919 0.0011 

$20,000 - $24,999 7,095 0.0586 0.2505 0.0012 

$25,000 - $29,999 6,591 0.0544 0.3050 0.0013 

$30,000 - $34,999 6,667 0.0551 0.3600 0.0014 

$35,000 - $39,999 6,136 0.0507 0.4107 0.0014 

$40,000 - $44,999 5,795 0.0479 0.4586 0.0014 

$45,000 - $49,999 4,945 0.0408 0.4994 0.0014 

$50,000 - $54,999 5,170 0.0427 0.5421 0.0014 

$55,000 - $59,999 4,250 0.0351 0.5772 0.0014 

$60,000 - $64,999 4,432 0.0366 0.6138 0.0014 

$65,000 - $69,999 3,836 0.0317 0.6455 0.0014 

$70,000 - $74,999 3,606 0.0298 0.6753 0.0013 

$75,000 - $79,999 3,452 0.0285 0.7038 0.0013 

$80,000 - $84,999 3,036 0.0251 0.7289 0.0013 

$85,000 - $89,999 2,566 0.0212 0.7500 0.0012 

$90,000 - $94,999 2,594 0.0214 0.7715 0.0012 

$95,000 - $99,999 2,251 0.0186 0.7901 0.0012 

$100,000 - $104,999 2,527 0.0209 0.8109 0.0011 

$105,000 - $109,999 1,771 0.0146 0.8256 0.0011 

$110,000 - $114,999 1,723 0.0142 0.8398 0.0011 

$115,000 - $119,999 1,569 0.0130 0.8527 0.0010 

$120,000 - $124,999 1,540 0.0127 0.8655 0.0010 

$125,000 - $129,999 1,258 0.0104 0.8758 0.0009 

$130,000 - $134,999 1,211 0.0100 0.8858 0.0009 

$135,000 - $139,999 918 0.0076 0.8934 0.0009 

$140,000 - $144,999 1,031 0.0085 0.9019 0.0009 

$145,000 - $149,999 893 0.0074 0.9093 0.0008 

$150,000 - $154,999 1,166 0.0096 0.9189 0.0008 

$155,000 - $159,999 740 0.0061 0.9251 0.0008 

$160,000 - $164,999 697 0.0058 0.9308 0.0007 

$165,000 - $169,999 610 0.0050 0.9359 0.0007 

$170,000 - $174,999 617 0.0051 0.9410 0.0007 

$175,000 - $179,999 530 0.0044 0.9453 0.0007 

$180,000 - $184,999 460 0.0038 0.9491 0.0006 

$185,000 - $189,999 363 0.0030 0.9521 0.0006 

$190,000 - $194,999 380 0.0031 0.9553 0.0006 

$195,000 - $199,999 312 0.0026 0.9578 0.0006 

$200,000 - $249,999 2,297 0.0190 0.9768 0.0004 

$250,000 and over 2,808 0.0232     
a Estimated �̂�𝑘 values and corresponding standard errors are from equation 9 and 11, respectively. 
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Table 3. Anglers’ WTP Function Distribution. 

WTP  Observations Relative Frequency CDFa CDF Std Error 

$0 - $4.99 52 0.1520 0.1520 0.0194 

$5 - $9.99 14 0.0409 0.1930 0.0213 

$10 - $14.99 38 0.1111 0.3041 0.0249 

$15 - $19.99 49 0.1433 0.4474 0.0269 

$20 - $24.99 31 0.0906 0.5380 0.0270 

$25 - $49.99    49 0.1433 0.6813 0.0252 

$50 - $74.99 57 0.1667 0.8480 0.0194 

$75 - $99.99 6 0.0175 0.8655 0.0184 

$100 - $149.99 28 0.0819 0.9474 0.0121 

$150 - $199.99 6 0.0175 0.9649 0.0099 

$200 - $249.99 9 0.0263 0.9912 0.0050 

$250 - $299.99 1 0.0029   

$300 - $349.99 0    

$350 - $399.99 0    

$400 - $449.99 0  0.9942 (Pooled) 0.0041 

$450 - $499.99 1 0.0029   

$500 - $549.99 0    

$550 - $599.99 0    

$600 - $749.99 0  0.9971 (Pooled) 0.0029 

$750 and over 1 0.0029     
a Estimated �̂�𝑘 values and corresponding standard errors are from equation 9 and 11, respectively. 
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Appendix 

Pooling Procedure to Merge Empty Intervals. 

(i) For 𝑘 = 2 → 𝐾 − 1, identify intervals with no observations. 

(ii) If no participant chose the (𝑘+1)th interval then the kth and (𝑘+1)th intervals need to be 

merged into one interval containing 𝑁𝑘 observations with boundary values of 𝐴(𝑘−1) and 

𝐴(𝑘+1). 

(iii) Continue until intervals are pooled sufficiently so that all remaining intervals have 

observations. 

(iv)  Estimate the resulting 𝐹𝑘’s of the pooled intervals using expression (9). 

 


