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Dynamic and Spatial Relationships in US Rice Markets 

 

Abstract 

Spatial market integration refers to the smooth transmission of price signals and information 

across spatially separated markets. This paper investigates whether US rice markets are spatially 

integrated and whether these markets are integrated across rice varieties. Understanding dynamic 

and spatial relationships across regions and varieties provides important insights for policy 

making. Rice is among the top seven US major crops in terms of harvested acres – covering over 

2.6 million acres – and sixth in terms of sales, with annual cash receipts around 3.1 billion 

dollars. Of the four major producing regions, three are in the South – Arkansas-Missouri, 

Louisiana-Mississippi, and Texas, and the other is California. The varieties are different 

associated with the production region. California mainly produces short and medium grain; while 

Arkansas, Texas, and Louisiana produces mostly long also medium grain. We investigate the 

potential market integration of these rice markets by applying a Vector Error Correction Model 

to monthly f.o.b. milling price data from 1980 to 2014.  Arkansas-Missouri region is identified as 

the leading price in the variety of long grain also medium grain markets. Interestingly, Arkansas-

Missouri medium grain plays an additional important role in the long grain market. California 

short grain market seems to move somewhat independently (weakly exogenous) in the short run, 

but its price movement is affected by Arkansas-Missouri medium grain in the longer term.  

 

Keywords: Rice markets, Cointegration, Impulse response functions 

JEL Classification: Q11, Q13, C32 
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Introduction 

Rice is a staple commodity in both the U.S. and world markets – especially Asia, Africa and 

Latin America. Although US rice is produced in four distinct regions, i.e. Arkansas-Missouri, 

Mississippi Delta (parts of Mississippi, Missouri, Louisiana and Arkansas), Texas-Southwest 

Louisiana, and California (mainly Sacramento Valley), it still plays a major role in US 

agriculture. It is among the top seven US crops in terms of harvested acres, covering over 2.6 

million acres in 2013 to 2015, and sixth in terms of sales (cash receipts) with annual transactions 

of over 3.1 billion dollars (ERS - USDA). In addition, U.S. is a major rice exporter, accounting 

for more than 10 percent of the annual volume of global rice trade (ERS, 2015).  

There are three varieties of rice in the U.S., classified according to the length of grain - 

long, medium and short. The long grain is almost entirely produced in the southern regions, 

covering about 70% of the total US rice production. Arkansas produces about 65% of all long 

grain rice. The medium grain is produced in Arkansas and California, accounting for over 25% 

of the total US rice production, while remaining less than 2% of short grain is produced in 

California. (Childs, 2012).  Figure 1 presents the time trend of rice production over varieties 

across regions. More than 200 million cwt of rice being produced in 2000s.  The blue and light 

blue area together indicates the long grain production from Arkansas-Missouri, Louisiana-

Mississippi, and Texas. The combined brown and light brown areas present the medium grain 

production across Arkansas-Missouri, Louisiana-Mississippi, and California. The area in green 

refers to short grain production in California. 

Spatial price analysis of agricultural commodities in the United States has been widely 

studied in the literature (e.g. Fackler and Goodwin, 2001; Serra and Goodwin, 2004; Yu, Bessler 

and Fuller, 2007; Stockton, Bessler and Wilson, 2010). However, it is surprising that the spatial 

and dynamic relationships among U.S. rice prices is still lacking given its economic value. 

Taylor et al. (1996) has investigated the relationships between US and Thai rice prices but spatial 

price dynamics within US rice markets was not covered in their study. The analysis of spatial 

price dynamics is important to understand the US rice market structure and, in turn, helpful for 

improving price transparency in the markets. Thus, the objective of this study is to investigate 

and identify the dynamic relationships of the prices of three rice varieties, i.e. short, medium and 

long grain, among major domestic markets. The analysis will provide insights in the price 
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discovery process among separate US rice markets. Relevant findings have potential risk 

management effects for producers, as well as price discovery effects having policy implications. 

 

 

 

Figure 1: US Rice Production of Different Varieties and Regions 
Source: USDA NASS 

Note: AR_lng = AR-MO long grain, LA_lng = LA-MS long grain, TX_lng = Texas long grain, AR_med 

= AR-MO medium grain, LA_med = LA-MS medium grain, CA_med = CA medium grain, and CA_sht = 

CA short grain 

 

 

We employ a structural multivariate time series Vector Autoregression model with an 

error correction term (VECM). Multivariate time series such as a VECM has been commonly 

used in the literature of spatial price analysis. To formulate a structural VECM, a Directed 

Acyclic Graphs (DAG) from Pearl (1995 and 2000) and Spirtes, Glymour and Scheines (2000) 

have been utilized to sort-out the instantaneous causal flows among the innovations from the 

VECM (Hoover, 2005) and used to construct the structural decomposition of the VECM 

residuals (Swanson and Granger, 1997).   

 

Data 

We use average monthly f.o.b. prices in $/cwt from major milling centers located in each specific 

region. In particular, we use price data for grain varieties of Arkansas long (ar_lng), Arkansas 
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medium (ar_med), Louisiana long (la_lng), Louisiana medium (la_med), Texas long (tx_lng), 

California medium (ca_med) and California short (ca_sht) obtained from the Agricultural 

Markets Service – USDA (Table 17, www.ers.usda.gov/data-products/rice-yearbook-2015.aspx). 

Prices are considered from January 1980 to July 2015.  Figure 2 depicts these prices over the 

study period. The spike of rice prices between 2008 and 2010 is related to price movement of 

other crops over the same period. After 2010 California short grain (green line) is generally the 

most expensive and long grains from Arkansas, Texas, and Louisiana (blue-light blue lines) are 

lower than the short grain and medium rice varieties. Descriptive statistics of the data are 

reported in Table 1. 

 

 

 

Figure 2: U.S. Rice Prices of Grain Size and Major Producing States 
Source: Table 17, Rice Yearbook 2015, Agricultural Markets Service – USDA 

Note: AR_lng = AR-MO long grain, LA_lng = LA-MS long grain, TX_lng = Texas long grain, AR_med 

= AR-MO medium grain, LA_med = LA-MS medium grain, CA_med = CA medium grain, and CA_sht = 

CA short grain 

http://www.ers.usda.gov/data-products/rice-yearbook-2015.aspx
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Table 1.  Descriptive Statistics of Data ($/cwt), August 1979 – February 2015 (427 observations) 

 Variables Mean Std. Dev CV Min Max Autorcorr. 

Arkansas long grain ar_lng 19.06 5.94 31.17 8.56 42.50 0.9829 

Louisiana long grain la_lng 18.74 5.82 31.03 9.13 43.25 0.9818 

Texas long grain tx_lng 20.11 5.96 29.62 10.50 44.00 0.9823 

Arkansas medium grain ar_med 20.44 7.71 37.73 10.06 46.25 0.9896 

Louisiana medium grain la_med 20.28 7.71 37.73 10.00 43.25 0.9916 

California medium grain ca_med 23.09 9.44 40.89 11.50 52.25 0.9929 

California short grain ca_sht 23.66 9.68 40.93 11.81 53.25 0.9929 

Note: Price data are not deflated 

Source: Table 17, Rice Yearbook 2015, Agricultural Markets Service – USDA 

 

 

Methods 

We employ the framework used by Bessler and Yang (2003) and Stockton, Bessler and Wilson 

(2010), which combines the DAG method and multivariate time series modeling, to explore the 

spatial price dynamics of rice markets.  Given the non-stationarity nature of the data, we specify 

a vector error correction model (VECM) of the U.S. rice market with the seven selected prices. 

After the VECM is estimated, the contemporaneous innovations (residuals) are obtained. The 

DAG analysis then identifies the contemporaneous causal relationships among these innovations. 

This enables to address our matter of interest, that is, the dynamics of the variables are 

investigated by innovation accounting (impulse response functions and forecast error variance 

decompositions). 

 First, the data series are tested for non-stationarity using the Augmented Dickey-Fuller 

(ADF) test and Phillip-Perron (PP) test (Dickey and Fuller, 1979; Phillips and Perron, 1988) 

considering a constant and constant with trend. For the ADF test, the optimal lag length for the 

augmented terms was determined by minimizing the Schwarz-loss statistics (SL in Table 2). A 

unit root was found in five out of seven price series based on the ADF test (Table 2). The PP test 

suggested all series are not stationary.  The unit root test for the data in first difference in the 

second half of Table 2 to confirm that we have I(1), i.e., the first difference is stationary.  
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Table 2.  Non-Stationarity Tests  

Raw data ADF test with time trend 

 ar_lng ar_med ca_med ca_sht la_lng la_med tx_lng 

Test statistics -3.37 -3.27 -3.06 -2.80 -3.60 -3.12 -3.57 

Lag using SL 1 1 2 1 1 1 1 

5% critical value -3.41 -3.41 -3.41 -3.41 -3.41 -3.41 -3.41 

Decisiona NS NS NS NS S NS S 

 Phillips Perron test with time trend 

 ar_lng ar_med ca_med ca_sht la_lng la_med tx_lng 

Z(t) stat -2.86 -2.73 -2.65 -2.57 -3.01 -2.73 -3.12 

Lagsb 5 5 5 5 5 5 5 

5% critical value -3.42 -3.42 -3.42 -3.42 -3.42 -3.42 -3.42 

Decision NS NS NS NS NS NS NS 

First difference ADF test 

 ar_lng ar_med ca_med ca_sht la_lng la_med tx_lng 

Test statistics -12.15 -12.20 -13.28 -12.76 -11.11 -11.93 -12.63 

Lag using SL 0 0 1 0 0 0 0 

5% critical value -2.86 -2.86 -2.86 -2.86 -2.86 -2.86 -2.86 

Decisiona S S S S S S S 

 Phillips Perron test 

 ar_lng ar_med ca_med ca_sht la_lng la_med tx_lng 

Z(t) stat -12.23 -12.27 -13.61 -12.94 -11.06 -11.96 -12.60 

Lagsb 5 5 5 5 5 5 5 

5% critical value -2.87 -2.87 -2.87 -2.87 -2.87 -2.87 -2.87 

Decision S S S S S S S 

a NS = nonstationary, S = stationary;  b The number of Newey-West lags, {4(𝑇 100⁄ )
2

9} lags 

 

After confirming the presence of unit roots, the Johansen’s Trace test for co-integration 

(Johansen, 1991) was applied in order to determine the possible presence of any long-run 

stationary relationships among the prices. To determine the optimal lag of the VECM, we first 

determine the optimal lag of the corresponding level VAR since the optimal lag length of the 

VECM is one less than that of the corresponding level VAR. The optimal lag of the level VAR is 

determined based on the Schwarz Loss metric. The optimal number of lags in the series was 

determined as three. Thus, for the VECM, the optimal lag length is two.  

The Johansen trace test provides the information on the cointegrating vectors. The results 

are reported in Table 3.  Based on the trace-test statistics regarding the rank hypothesis, the 

number (𝑟) of cointegrating vectors was determined to be six.  Trace* and C* refer to the values 

of the trace statistic and the critical values at the 5% significance level considering an intercept, 

while Trace and C refer to the values of the trace statistic and the critical values at the 5% 

significance level considering a trend and intercept. 



7 
 

Table 3.  Trace Test on Order of Cointegration 

Rank      Trace*a          C*a Decision      Traceb         Cb Decision 

r = 0 237.33 134.54 Reject 276.56 150.35 Reject 

r  1 166.10 103.68 Reject 186.77 117.45 Reject 

r  2 103.32 76.81 Reject 122.75 88.55 Reject 

r  3 69.12 53.94 Reject 87.78 63.66 Reject 

r  4 42.98 35.07 Reject 59.06 42.77 Reject 

r  5 20.76 20.16 Reject 33.15 25.73 Reject 

r  6 3.20 9.14 Failc 10.98 12.45 Fail 
a Trace* and C* refer to the values of trace statistic and critical values at the 5% significance level with an 

intercept. 
b Trace and C refer to the values of trace statistic and critical values at the 5% significance level with a 

time trend and an intercept  
c The first “fail to reject” the null hypothesis occurs for r ≤ 6.  Thus, there are 6 cointegrating vectors. 

 

 

Given these prior results, we apply the vector error correction model (VECM) to our 

series of prices based on the procedure described in Lütkepohl and Krätzig (2004). Let 𝐲𝑡 denote 

the vector of variables under consideration, 𝐲𝑡
′ = [𝑦1𝑡, ⋯ , 𝑦7𝑡], where the subscript 1 represents 

ar_lng, subscript 2 represents la_lng and so on. The VECM model with two lags is noted as: 

 ∆𝐲𝑡 = 𝚷𝐲𝑡−1 + ∑ 𝚪𝑖Δ𝐲𝑡−𝑖 + 𝜇 + 𝐞𝑡
2
𝑖=1                   (𝑡 = 1, … … . . 𝑇)   (1) 

where Δ is the first difference operator (e.g. Δ𝐲𝑡 = 𝐲𝑡 − 𝐲𝑡−1); 𝐲𝑡 is a (7× 1) vector of prices; 𝚷 

is a 77 coefficient matrix of rank 𝑟, i.e., number of co-integration vectors such that 𝚷 = 𝛂𝛃′. 

The 76 matrix 𝛂 is a matrix of weights knows as the speed of adjustment parameters and the 

67 matrix 𝛃 is the matrix of cointegrating parameters. 𝚪𝑖 is a 77 matrix of short-run dynamic 

coefficients; and 𝐞𝑡 is a 71 vector of innovations.  

After estimating the VECM of 2 lags in equation (1), we identify the contemporaneous 

structure of the innovations through the DAG analysis of the correlation matrix of the �̂�𝑡. The 

DAG method, as described by Pearl (1995, 2000) and Spirtes, Glymour and Scheines (2000), 

considers a non-time sequence asymmetry in causal relations among variables and is an 

illustration using arrows and vertices (variables) to represent the causal flow among a set of 

variables (Pearl, 2000). Directed acyclic graphs represent a conditional independence 

relationship as given by the recursive decomposition: 

Pr(𝑣1, 𝑣2, … … … . . , 𝑣𝑛) = ∏ Pr(𝑣𝑖|𝑝𝑟𝑖)
𝑛
𝑖=1       (2) 
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where Pr (.) is the joint probability of variables 𝑣1, 𝑣2, ⋯ , 𝑣𝑛 and 𝑝𝑟𝑖 represents parents of 𝑣𝑖, the 

minimal set of  predecessors (the variables that come before in a causal sense) that renders 

𝑣𝑖  independent of all its other predecessors (Pearl, 2000, p.14-15).  Geiger, Verma, and Pearl 

(1990) have shown that there is a one-to-one correspondence between the set of conditional 

independencies among variables implied by (2) and the graphical expression of variables in a 

directed acyclic graph.   

The PC Algorithm marketed as TETRAD V (www.phil.cmu.edu/tetrad/current.html) is 

used to compute the directed acyclic graph.  The process of causal determination begins with a 

completely undirected graph which shows an undirected edge between every pair of variables in 

the system.  Then, the PC algorithm proceeds step-wise to remove edges based on correlation 

relationships among the variables. Finally, the PC Algorithm determines causal flows using 

conditional independence relationships on the remaining edges. See Spirtes, Glymour and 

Scheines (2000) for more about the PC algorithm. 

After obtaining the DAG results, we estimate structural innovations directly from the 

reduced form residuals by applying the additional (obtained) contemporaneous restrictions 

(Lütkepohl, 2005, p. 362). We then use standard innovation accounting techniques to obtain 

inferences with respect to the dynamic adjustments in each of the variables from unexpected 

shocks in the series. The forecast error variance decomposition (FEVD) consists of when the 

innovations/shocks to each variable is decomposed, permitting the identification of the relative 

proportion of the movements in a sequence due to its own shock, over the other shocks to the 

variable. In the case that own shocks explain mostly all of the forecast error variance of a 

specific series, this variable may be considered (weakly) exogenous with respect to the other 

variables in the system.  

Conversely, if a large proportion of the FEVD from a variable’s sequence can be 

explained by shocks to one or more of the other variables, then this variable is considered 

endogenous to the system. The FEVD approach likewise permits to draw inferences with respect 

to the magnitude and degree of influence during the sequence, among the variables in the system. 

In addition, impulse response functions (IRF) are likewise determined through standard 

innovation accounting. IRFs permit to identify the dynamic adjustments, in terms of direction 

and magnitude, for each variable in the system in response to unit shocks in a particular system’s 

http://www.phil.cmu.edu/tetrad/current.html
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variable. The IRFs are generated by separately shocking innovations for each of the variables by 

one standard deviation.      

 

Results 

Contemporaneous Causal Structure 

Figure 3 displays the contemporaneous causal relationships among the variables, where each line 

is an edge indicating a relationship between the connected markets. As shown in Figure 3, CA 

market is separated from other markets in the contemporaneous period. California short grain 

price concurrently leads California medium grain price. Likewise, Arkansas medium grain 

concurrently leads Arkansas long grain as well as Louisiana medium grain. Arkansas long grain 

concurrently leads both Texas long grain and Louisiana long grain. This latter also concurrently 

leads Louisiana medium. As seen in Figure 3 the California markets are contemporaneously 

segregated.  Based on Figure 3, we may conclude that Arkansas medium is the price concurrent 

leader in the southern regions and Louisiana medium is the “sink of the price dynamics. 

 

 

Figure 3: Directed Acyclic Graph of Seven Rice Markets using PC Algorithm 
ar_lng = Arkansas long grain, ar_med = Arkansas medium, ca_med = California medium, ca_sht = California short, 

la_lng = Louisiana long, la_med = Louisiana medium, and tx_lng = Texas long, respectively 

 

    

It is relevant to re-emphasize that the DAG results from Figure 3 show only the 

contemporaneous causal structure. The contemporaneous period here refers to the actual period 

in which a disturbance to the system (the US rice market) may occur; for example, a one-time-
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only shock to Arkansas medium grain and its effects. It is also noted that the causal structure in 

Figure 3 only shows the direction of causal flows among the variables and does not say anything 

about the magnitude or the sign (positive or negative) of the effect. These latter are determined 

by the innovation accounting. 

 

Innovation Accounting 

Impulse responses in Figure 4 depicts the response of all variables to a one-time-shock in the 

innovation of one variable when other variables’ innovations remain constant. The (one-time) 

shock is positive and of a magnitude equal to one standard deviation of the innovation of the 

particular factor (variable), applied at a contemporaneous period (month zero), and leaving all 

other factor’s innovations constant for all dates (Hamilton, 1994, pg. 318). 

 

 

 Impulse Variables (Innovation to) 

 ar_lng ar_med ca_med ca_sht la_lng la_med tx_lng 

ar_lng 

 

ar_med 

ca_med 

ca_sht 

la_lng 

la_med 

tx_lng 

Figure 4: Impulse Response Functions 
ar_lng = Arkansas long grain, ar_med = Arkansas medium, ca_med = California medium, ca_sht = California short, 

la_lng = Louisiana long, la_med = Louisiana medium, and tx_lng = Texas long, respectively 
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In the first column in Figure 4, Arkansas long grain market’s shock only affects the other 

long grain markets in a significant manner; i.e. Louisiana long and Texas long. This significant 

positive impact, of up to five to six percent on Louisiana and Texas long grain subsides after 

about eight months. Similarly, Louisiana long grain’s shock significantly affects only Arkansas 

long and Texas long grain, but at a briefer impact of up to six months. The shock from Texas 

long grain only produces a very minor effect on Louisiana long grain and it’s negligible on 

Arkansas long grain. Thus even though all markets are co-integrated, Arkansas long grain has a 

sizeable effect on the other long grain markets and not upon its own local (Arkansas) medium 

grain market. Thus it appears that grain markets are not spatially segregated but actually set apart 

by varieties. In addition, Arkansas dominance among long grain markets may respond to its 

larger volume in comparison to the other producing states. 

The second column illustrates the effect from a shock to Arkansas medium grain. In this 

case, there is a significant positive effect of about five percent in both California’s medium and 

short grain markets. In addition, this effect is persistent through time and appears to be 

permanent. There is also a significant positive impact on Louisiana medium grain, in the order of 

six to seven percent, and again seems like it maybe a permanent effect given its persistence 

through time. Finally, there likewise exists an increasing effect on Texas long, which also 

remains permanent. Thus Arkansas medium grain market affects not only the other medium 

markets, but also other variety markets (e.g. California short and Texas long) in other regions. In 

addition, its impact on these markets shows certain steady persistence.  

California medium grain does not have any effect on the other markets (column three). 

However, California short grain (column four) does have a significant positive impact of about 

four percent on California medium grain. Once again this effect is appears to be permanent. Thus 

the effect from California markets seem to be spatially segregated from other markets, and just 

impacting from short to medium grain. Shocks on Louisiana medium grain (column six) only 

have a minor substantial impact on the other markets, at around two percent; however, this 

impact becomes insignificant after six months.  

The Forecast Error Variance Decomposition (FEVD) considering up to 18 months for the 

Arkansas long and medium grain are shown in Table 4, which is grouped across varieties. 

Arkansas long grain’s price variation, first row, is impacted mostly by itself but also a bit by 

Arkansas medium, as well as much less by Texas long grain.  
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Table 4.  Forecast Error Variance Decompositions 

 

ar_lng = Arkansas long grain, ar_med = Arkansas medium, ca_med = California medium, ca_sht = California short, 

la_lng = Louisiana long, la_med = Louisiana medium, and tx_lng = Texas long, respectively 
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However, in the case of Arkansas medium grain’s price variation, fourth row, it is almost 

completely due to itself (i.e. weakly exogenous). In case of California, both medium and short 

grain markets move a bit independently in the short term, but are likewise affected by Arkansas 

medium after half a year.  Also, Louisiana long’s price variations, second row, is mostly affected 

by Arkansas long, and then after a year it is also affected by Arkansas medium. However, 

Arkansas medium substantially affects the majority of Louisiana medium grain’s price 

variations, fifth row. Finally, Texas long, third row, is again mostly impacted by Arkansas long 

after the 1st month, and also after a year by Arkansas medium, thus in a similar way as Louisiana 

long grain is affected. 

 

Conclusions 

Rice is a staple commodity in the US and world markets. Although U.S. rice is produced in four 

distinct regions, i.e. Arkansas, Mississippi Delta, Texas and Southwest Louisiana, and California, 

it still plays a major role in US agriculture. Rice is among the top seven US crops in terms of 

harvested acres and sixth in terms of cash receipt. The U.S. exports about half of its rice 

production to overseas markets and accounting for over ten percent of the annual volume of 

global rice trade. Thus understanding the dynamic and spatial domestic market integration is of 

significant relevance. Dynamic and spatial market integration refers to the smooth transmission 

of price signals and information across spatially separated markets. We investigate whether there 

is dynamic and spatial market integration among US rice markets. More specifically, this paper 

attempt to unveil whether the US rice markets are spatially integrated and investigate whether 

integrated across rice varieties, long, medium and short grain.  

In this study, we applied the DAG approach to compute the contemporaneous causality 

among seven US f.o.b. mill prices in the context of the multivariate time series modeling, a 

Vector Error Correction Model. Results suggest that, in the contemporaneous period, Arkansas 

medium price is the leading reference among Arkansas, Louisiana and Texas long and medium 

grain. California medium and short grains are segregated. From IRFs and FEDV, we conclude 

that Arkansas long grain price is a leading reference in the markets for the long grain. Arkansas 

medium price is also identified as a leading reference in markets for medium grains. 

Interestingly, Arkansas medium grain plays an important role in long grain markets, medium 

grains markets itself, and also California short grain even though California short grain seems to 
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move somewhat independently in the short run. The findings of this research are in general 

agreement with the size of regional rice production, in terms of long grain (and Arkansas) being 

the sizeable major player. Except the considerable influence of price from Arkansas medium 

grain is not immediately apparent, and is left for future analysis.  
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