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THE PROBABILITY DISTRIBUTION OF THE
AVERAGE MARGINAL PRODUCTS OF
COBB-DOUGLAS FACTORS WITH
APPLICATIONS

CHRIS M. ALAOUZE*
University of New England, Armidale, NSW 2351

The comparative productivity of inputs is often the focus of applied
studies of production. For example, one might wish to compare the mar-
ginal product of water in irrigation districts to provide guidelines for capital
investment in new water projects or to assist in water allocation decisions.

The purpose of this note is to illustrate a straightforward econometric
method for making such comparisons. It is assumed that panel data are
available for T periods on N cross-sectional units and that output is
produced according to a stochastic Cobb-Douglas production function.
The Cobb-Douglas tunction was chosen because it has a simpie formula
for the marginal product and has been found to perform well in studies
of agricuitural production. The statistical results derived in the paper are
obtained assuming that the error term of the production function is
independentiy and identically distributed. This assumption can be easily
relaxed and the asvmptotic resuits presented in the paper can be genera-
lised for the case where the variance-covariance matrix of the error term
is known or can be estimated consistently. An important generalisation
is the Zellner (1962) seemingly unrelated regressions framework. Oniy the
simplest case is developed here because of space limitations.

To illustrate the wide appiicability of these results a test for risk aver-
sion 1s developed which can be applied when the production setting satis-
fies specified assumptions.

Statistical Results

The results of the paper are based on the assumption that output is
produced according to the following Cobb-Douglas production function:

3

(1) Ya=A, I X7 explun), As>0, X, >0, 8,50
i=1

where A, represents fixed factors that are specific to firm i, X,,; is the
level of factor y used by firm / in period ¢, and u,, is an error term assumed
to be distributed independently of all factors.

The A.. represents factors of production which vary across firms but
are fixed for each firm, are correlated with the levels of other inputs and
are not observed by the econometrician. Exampies of such factors are the
level of management (Mundlak 1961), the level of technical efficiency
(Hoch 1962) and soil quality (Chamberlain 1980). Because these factors

* The idea tor the paper arose in discussions with Neil Sturgess and Michael Read and
I would like to thank them for their encouragement throughout the course ot the work.
| would also like to thank Peter Liovd for his helptul comments on an earlier draft ot the

paper.
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are correlated with the levels of observed inputs it is important to incor-
porate them directly in the econometric specification. This can be done
by using firm-specific dummy variables and this requires panel data with
at least two observations on each firm.

The parameters of equation (1) can be estimated by regressing the
logarithm of output on the logarithm of each input and a set of firm-
specific dummy variables. The estimated vector of siope coefficients is
equivalent to the analysis of covariance estimate of this parameter vector,
and each estimated slope coefficient (g;) estimates the point elasticity of
output with respect to a particular factor.

The measure of the average marginal product considered here is calcu-
lated by multipiying the estimated output elasticity of the jth factor in
the sample and the geometric mean of the average product of the jth factor
in the sample.*

At N T '
@  Z=4{0 I (Yux,)|"
where the avaiiable sample is for r=1, ..., T periods (7=2) on each
of i=1,..., Nfirms. This average marginat product may aiso be written
as

(3)  Z=§exp(Y-%)

where
T

InY./NT and £,= £ S InX./NT
i=1

=1

Y=

M=
1+

=1

In this note the expected value of Z, conditional on the values taken
by the firm effects (A,,) and the leveis of the variable inputs (X.,) in the
sample is calculated and interpreted and the asymptotic distribution of
Z, (j=1, ..., k)is derived.

Finite Sample Resuits
Equation (1) can be written as

k
(4) ln Y,~, = lnA,,.' + ‘: leanj +Uu,

J=1

where i=1,...,Nandr=1, ..., T. The usual matrix representation
of equation (4) is:

(5) Q=KBo+XB+U

where Q is an NT vector with elements InY,,, K=/ @ er (where Iy is an
Nx N identity matrix and er is a T vector of ones) is an N7 X N matrix
of firm-specific dummies, 3, is an N vector with elements InA4,,, X is an
NT x k matrix with elements InX,,;, 3 is a £ vector with elements 3,, and
U is an NT vector with elements u,,. This is a stochastic regressor model

' For applications of this measure of the average marginal product, see Mundlak (1961),
Hoch (1962) and Dawson and Lingard (1982).
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where KB, and X are stochastic matrices. Following Mundlak (1978) the
distribution of U is specified conditionai on the firm effects in the sampie
(B,) and X. It is assumed that u,, is an independent and identically dis-
tributed normal random variable with mean zero and variance ¢?, dis-
tributed independently of 3, and X, and that the matrix [K X] has rank
N+k.

Ordinary feast squares (OLS) estimation of equation (5) yields estimates
of Be and 8. The latter estimate

6) B=(X'RXY'XRQ

(where R = Iy — Iy ® Jr and Jr=ere’/T) is the analysis of covariance esti-
mate of 3. Under these assumptions, an unbiased (and consistent) esti-
mate of o, is:

(N *=(Q—~ Ko~ XBV(Q— KB~ XB)/(N(T-1)= k)

where 3, is the OLS estimate of G,.?

Since Q is a linear transformation of U, the distribution of Q condi-
tional on 8, and X is multivariate normal. and since the £+ | random
vector (¥,3") is a linear transformation of Q, it follows that conditional
on B3, and X, the elements of (Y, 3 "} have a multivariate normal distribu-
tion. It is easy to verify that conditional on 3, and X, Y is uncorrelated
with the elements of 3 and therefore Y and § are conditionaily
independent.®

The following resuits concerning the lognormal distribution (Aitchison
and Brown 1957) are required to calculate and interpret the conditional
expectation of Z,.

Let » be a normally distributed random variable with mean x and vari-
ance o%, then R =exp(») is lognormally distributed with mean

(8) E(R) =exp(u+a*/2)
and median
9 M(R) = exp(M(v)) =exp(u)

Application of these resuits to equation (1) yields

(10) E(YiraAOi! Xl'fl! LN ) uk) Ao‘ H XB GVD(U:‘/Z)
and
(ll) 1"/!( YnlAm’ Xulv o ey xrk) Ao. H X%

Thus, as Goldberger (1968) has noted, the conditional expectation of

: The maximum likelihood estimator of ¢? in this model is inconsistent because it does
not correct for the degrees ot freedom associated with the firm dummies. For details and
further references. see Chamberiain (1980, p. 229).

3 This result uses some basic properties of the multivariate normal distribution which are
discussed in Theil (1971, pp. 70-1 and p. 79).
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Y.. involves the variance of the random disturbance term in the produc-
tion function, whereas the conditional median involves only the *systematic’
determinants of output. )

Using equations (10) and (11) and the conditional independence of Y
and B, the conditional expectation of Z; can be derived:

(12)  E(Z;|Bor X)=E(B,|B80, X)E(exp(Y - 1) |80, X)
=| I 11 BM(Y, -)/X,.,,.]”"Texp(az/an

iz1 tel

k
where M(Y,.|-)=A,, 11 X% , 1s the conditional median of Y,,.
Jj=1
Thus, the conditional expectation of this measure of the average mar-
ginal product of a Cobb-Douglas factor is equal to the geometric mean
of marginal products of the factor evaluated at median levels of output
muitiplied by a term containing the variance of the error term of the
production function.
When NT is large E(Z;| 8o, X) depends mainly on the systematic deter-

minants of output.

Asymptotic Results*

Let 4'=(Y,8) and E(§'|Bo, X)=(E(Y|Bo, X),8)), then (NT)"*(5-
E(¥]|8,, X)) has a conditional normal distribution with mean vector zero
and covariance matrix Zpyr,

N (81 o‘(X’RX/ONT)")

so that providing (X'RX/NT) converges to a positive definite matrix as
(N— o), the conditional random variable (N7)'/*(¥— E(¥|-)) has an
asymptotic normal distribution.®

Since Z, is a non-linear function of the elements of ¥, providing 4 con-
verges in probability to a constant vector the multivariate 6 method can
be used to determine the asymptotic distribution of Z,.¢ It is usual in pooled
cross-section and time series studies for N to be large and 7 small; thus,
the asymptotic results will be based on the number of firms, N becoming
large. In deriving these results, it is assumed that for fixed T

(13) Im(X'RX/NT)=A
Ne—a
where A Is a kX k positive definite matrix, and

* Fisk (1966) derives the asymptotic distribution of the marginal product of a Cobb-Douglas
factor for a given value of the input vector. The results of this section are different to those
of Fisk in that they are derived in a fixed-effects framework and are obtained for geometric
means of the estimated marginal products of all factors.

* This follows because the characteristic function of (NTY'/3(3 ~ E(713,.X)} converges 0
the characteristic function of a multivariate normal random variable as N7— oo. See Theil
(1971, p. 369) for a discussion of this result.

* For a discussion of the multivariate 6 method, see Bishop, Feinberg and Holland (1975,
pp. 492-4).
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(14)  mE(Y|80, X)=o+ T Bx,=

where Bo—llm r 6.,./N and x; —hmx,

Nw=oo =1

These assumptions are sufficient to guarantee that as N— o, Gand Y
are consistent estimates of 8 and m respectively. That is,’

phmB 8 and plim¥Y=m

N

Let Z be the k vector with elements Z;; then, under these assumptions,
application of the muitivariate 6 method yields

(15 (NTY™Z~ B0, XN2NO, HEHD

where A is the &k X (k+ 1) matrix of the elements of 4Z'/3~ evaluated at

A N - , 2 0
y=(mg, Z=x, (=1, ...,4k, I=[g o4

and N(O,HZ H') denotes the multivariate normal distribution with mean
vector O and covariance matrix AZH'.
The asymptotic distribution of Z, can be obtained from equation (15):

(1) (NTY"(Z, - E(Z,1B0, X)ZNO, ¥)

where V, = a*Blexp(2(m - x,)} + o*a,,exp(m — x,))

is the variance of the asymptotic distribution of Z,, and a, is the jth
diagonal element of A™*. In order to apply equation (16), a consistent esti-
mator of V, is required. and this can be obtamed using the following con-
sistent estimators of the components of V: cisa consnstent estimator
of o, Z}1s a consistent estimator of 3 exp(Z(m -X)), ‘/5, is a consistent
esumator of exp(2(m — x,)) and NTG*(X’RX);, is a consistent estimator of
0 a;, where (X' RX),, is the jth diagonal element of (X'RX)™. Since

dHX'RX);}= V(g,) is an estimator of the variance of 3,, the consistent esti-
mator of o%a, can be expressed as NTV(3;). Thus,

(7 V,=8Z]+ NTV(E)Z)/3;
is a consistent estimator of V. Thus, in large samples the interval

(18)  Z,+&(1 ~%)(V,/N'n”2

where @(l—%) is the 100(1 —%‘-) percentile of the standard normal

distribution, is an approximate 100(1 — «) per cent confidence interval for

* These resulis can be proved using the Chebyshev inequality. See Theil (1971, pp. 362-3.
Theorem 8.1) for a similar exampie.
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the geometric mean of the marginal products of factor ;j of firms in the
sample evaluated at median levels of output.

Application: Testing for Risk Aversion

The preceding statistical resuits can be used in a number of applica-
tions. For example, they can be used to construct confidence intervals for
the geometric means of the expected marginal products of the variable
factors of firms in the sample and, under specified conditions, they can
be used to estimate the shadow prices of rationed factors. {For details,
see Alaouze 1988.) .

Another interesting application which is developed below is a test for
risk aversion. In developing this application, it is assumed that input and
output prices are known with certainty, but similar results can be obtained
if the input prices are known with certainty and the output price is indepen-
dent of output of each firm (Alaouze 1988).

By the nature of the allocation problem, the entrepreneur chooses the
levels of inputs which maximise his objective function (expected profit
or expected utility, I1,,) before the random variable which enters the objec-
tive function is realised. Let

n:‘x=PuYu—' : Pirinr;

J=

(where P, is the price of output from firm i in period r and P, is the price
paid for input j by firm / in period f) be the profit function for firm i
in period ¢. The first order conditions for profit maximisation can be writ-
ten as

(19) E(aYil/aXilj)—_'Puj/Pu (j: l, . e sy k)
Noting that

(20) aYir/aXirj=.BjYir/an (jzl, e k)

and using equations (10), (12) and (20) the geometric mean of the left-
hand side of (19) can be written as

@y | I 0 EQY./0X.)]" =6EZ,180 X)  (=1,..., k)

where 8 =exp((1 — 1/NT)o?/2).
. N T t
Lewting A= T T P,/P.]" and 6=exp((1~1/NT)32/2) be a

consistent estimator of #, then under these assumptions, the conditional
random variable #Z, has the following asymptotic distribution:®

@  Wndz-PHENO, &) G=1...., K

where 6 = exp(c?/2).

* This result follows from proposition (iii) of Theil (1971, p. 371).
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If risk neutrality is taken as the null hypothesis (that is, entrepreneurs
maximise expected profits), then equation (22) gives the probability dis-
tribution of #Z, under the null hypothesis.

If entrepreneurs maximise expected utility and the utility function is
strictly concave, then

(23) E@Y./0X.)>P.,/P. (j=1, ...,k

This result is proved in the Appendix. Taking risk aversion as the alter-
native hypothesis, equation (23) implies that:

(24)  O0E(Z,|Bo, X)>P
Thus, under the null hypothesis, and in large samples, the statistic
(25) T=(z -P)/8V/NT)?

has approximately a standard normal distribution. The null hypothesis
is rejected in favour of the alternative hypothesis when T exceeds the crit-
ical value of the standard normal distribution corresponding to the chosen
level of significance. In order to apply the test, data on the price of output
and the price of one input are required. [t is also very important that the
production function be correctly specified and that the assumptions under-
lying the test hold. Obviously, a misspecified model or failure of any crit-
ical assumptions can lead to a misleading test result.

APPENDIX

In this Appendix a proof of equation (23) is derived. In the following
analysis, the assumptions of the last section are maintained except that
it is assumed that firms maximise the expected utility of profits. It is also
assumed that the expected utility function U(II) is strictly concave in I
[U"{IT) < 0} and strictly increasing in IT {U'(TT) > 0] where single and double
primes represent first and second derivatives respectively. For convenience,
the firm and time subscripts are dropped.

The first-order conditions for maximising expected utility can be writ-
ten as

(Al) EU'(IDPY/0X))=EU'(ID)P, (Jj=1,...,%k
and, using eguation (20), equation (Al) can be written as
(A2) EUADPYB/X)=EUID)P, (j=1,...,%

In order to analyse equation (A2), a theorem due to Gurland (1967)
concerning the correlation between two monotone functions of a single
random variable is required.

Theorem: Let f and g be monotone functions of a random variable W
and assume that one of these functions is continuous. Then, if fand g
are both non-increasing or both non-decreasing,

E(AWNE(g(W) < E(fIW)g(W))
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If f 1s non-decreasing and g is non-increasing or vice versa, then

E(AWNE((W)) = E(SIW)g(W)

[t is assumed that all the expectations appearing in these inequalities
exist. The inequalities are strict if W is not a degenerate random variable.

To apply the theorem, take PY as the random variable and U’(IT) and
PY as the functions f and g. Since dU'(IN)/3(PY)=U"(I1)<0, U'II)
1s monotone decreasing in PY for fixed values of all other variables, so that
application of the theorem yields the following inequalities between terms
on the left-hand side of equation (A2):

(A3)  E(U'IDPYB/X)<E(UIDEPYE/X) (J=1, ...,k

Replacing the left-hand side of equation (A2) with the right-hand side of
inequality (A3) and simplifying yields

(Ad) E(PYB/X)>P, (=1 ..., 6
Using equation (20), inequality (A4) can be written as
(AS) E@Y/aX))>P,/P (=1, ...,k

This is equation (23) in the text. Some interesting extensions of these
results can be derived. For example, if the output price is random but
uncorrelated with output, this approach can be used to establish that

(A6) E@Y/0X;)>P,/E(P) (J=1,...,k)

If the output price is random, all input prices are random, PY is indepen-
dent of all input prices and Y is uncorrelated with P, a generalisation of
Gurland’s Theorem (Alaouze and Lloyd 1986) can be used to show that

(A7) EQ@Y/4X,)>E(P)/E(P) J=1 ...,k

An important requirement in establishing the inequalities (AS), (A6)
and (A7) is that the output price is uncorrelated with output, and this
requirement is also necessary to derive expressions similar to equation (19)
for the risk-neutral case.

In the case where the production function is non-stochastic and only
the output price is random, Batra and Ullah (1974) establish that

aY/aX,=P,/E(P) (/=12

for a general production function with capital and labour as inputs.
It 1s interesting to note that the assumption that the production func-
tion exhibits diminishing returns to each input is not sufficient to guaran-
tee that the risk-averse firm uses less of each input than the risk-neutral
firm because (for example) the partial derivatives in inequality (AS) and
equation (19) are evaluated at different points (Hartman 1975).
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