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Farmer’s subjective elicited water response function
for intensive olives and compromise programming method
for irrigation supply decision

Julio Berbel? and Carlos Gutiérrez-Martin®

ABSTRACT: This research analyses the subjective crop yield-water relationship and proposes a method
to determine water supply in irrigated olives. The probability density for water response functions (PDF)
is elicited from a series of interviews carried out on a wide group of farmers. The elicitation technique is
based upon the triangular distribution (highest possible, most frequent and lowest possible) and estimates
of yield related to water supply (low, ‘normal’ and full irrigation). The model presented illustrates the
possibility of implementing simple decision models to support farmers to manage water considering the
objectives of maximizing profit and minimizing risk.
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Funcién subjetiva de respuesta al agua del agricultor en olivar intenso
y la programacién compromiso para decisiones

RESUMEN: La investigacion analiza la funcion subjetiva de produccion de agua (respuesta produccion-
riego). Se han obtenido funciones de densidad de probabilidad de respuesta al riego basadas en la funcion
triangular (rendimiento ‘mas probable’, ‘pesimista’ y ‘optimista’) correspondientes a diferentes dosis de
riego (‘completo’, ‘medio’ y ‘bajo’). A partir de esta informacion se plantea un modelo de decision de tipo
normativo para determinar la dosis optima de riego en olivar intensivo que incluye rentabilidad esperada y
riesgo entendido como la probabilidad de no alcanzar un umbral prefijado de ingresos.
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1. Introduction

Agricultural productivity and input use is based on farmer’s decision making
process, including objectives of the farmer decision making unit and subjective view
of constraints and production functions. Farmer’s subjective belief and informa-
tion availability fundamentally affect input application decisions. Therefore local
farmer’s decisions have an impact on the microeconomics of farming but also on the
general economy as the level of fertilizer, quality of seeds, pesticides or water use
affects the global economic behaviour of a country. Additionally, from the environ-
mental point of view some inputs have major externalities, with water and chemicals
affecting quantitative and qualitative status of ecosystems.

This paper tries to support decision making in an innovative context where ob-
jective data are not available. It belongs then to ‘normative’ approaches rather than
‘descriptive or explicative’. The research tries to make a contribution to a new type
of farming (intensive olive irrigation) for all farmers, researchers and policy makers
by studying the subjective water/crop relationship when field data are not (and will
not in the medium term) available. It will also make an exploratory analysis of the
microeconomics of deficit irrigation that has changed (in our opinion) the economics
of irrigation both at individual level and at basin scale. Nevertheless, the model can
be extended to other inputs (fertilizers, chemicals, etc.) without difficulty, but the
research in this paper will focus on water management.

Agriculture uses above 80 % of water resource in Mediterranean and arid regions
of the world, and frequently is the most constraining factor in many agricultural
systems. Consequently, knowledge of decision-making processes regarding water
use is crucial to design some techniques and policies to reach a sustainable use of
water resources. The importance of irrigation in agriculture is clearly reflected in its
contribution to agricultural world production: although only 18 % of the world agri-
cultural land (250 mill. ha) is under irrigation, irrigated agriculture accounts for 80 %
of global water consumption (3,000 km?/year) and produces 43 % of the world’s food
supply (more than 50 % in value terms), according to official statistics. Therefore,
water allocation policies are of decisive importance in terms of economic efficiency,
territorial equilibrium and social equity. The availability of water for irrigation
allows farmers to obtain higher yields and the possibility of growing a larger amount
of crops. Thus, within this productive framework, the farmers’ decision-making pro-
cess in irrigated agriculture is more complex than that in rainfed farming.

The available information regarding input production functions draws mainly on
nitrogen application and water doses. The nature of yield versus irrigation water (IR)
curves clarify the importance of attaining relatively higher yields with higher water
productivity. According to Molden et al. (2010), there is considerable scope for im-
proving water productivity of crop, livestock and fisheries from field to basin scales.
Practices used to achieve this include water harvesting, supplemental irrigation, de-
ficit irrigation, precision irrigation techniques and soil-water conservation practices.
Our research will pay attention to the technique of deficit irrigation and the subjec-
tive belief on risk that farmers assign to this technology.
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Decision models of irrigated agricultural systems are generally normative so they
propose the ‘best’ decision to achieve the objective(s) and only a small number of
descriptive models can be found. However, policy instruments should be selected on
the basis of inducing farmers’ responses on an aggregated level. Descriptive models
give better explanations and predictions of farmers’ responses to physical and envi-
ronmental context. Gomez-Limon et al. (2007) argue that models developed within
a normative paradigm do not match the observed behaviour of producers, which
suggests that there is a need for more complex models capable of providing more
accurate results and propose the need to use more realistic hypotheses based on the
psychology of decision-makers.

The hypothesis underlying the research is that environmental impact of agri-
culture is dependent on farmers’ decision-making that is subject to the available
information, which is reflected by crop-input relationships models and multiple ob-
jectives. Greiner et al. (2009) conclude that better knowledge of farmers’ motivations
and risk attitudes is required to define some public policies that reach relevant impro-
vements in the environmental performance of agriculture because adoption processes
are strongly affected by factors other than the financial benefit of the innovation,
particularly values and motivations and personal risk assessments.

The inclusion of risk in decision models under deficit irrigation has been pro-
posed by some authors such as Grové (2006) who used efficient deficit irrigation
schedules based on certainty equivalence assuming an exponential utility function,
and Upendram et al. (2015) who analysed a series of simulations of irrigated crop
production in the Kansas High plains aquifer to identify the risk-efficient conditions.
Both papers conclude that models on irrigation decision making should include risk
into the objectives of the farmer.

We have adopted for the decision model exposed the methodology proposed by
Ballestero y Romero (1991; 1996) where classical portfolio selection bi-criteria pro-
blems are addressed, implying an utility function where profitability and safety as
objectives are solved with a surrogate utility function as an alternative methodology
for selecting portfolios.

The structure of the paper is as follows. The next section presents the concept of
irrigation total cost. Section 3 gives a brief description of the study area, while sec-
tion 4 presents the methodology and the assumptions used and section 5 describes the
main result of the survey. The full model is described in section 6 and, finally, section
7 outlines the main conclusions of the paper.

2. Background on decision making under uncertainty

The review of decision-making under uncertainty in agricultural economics
should mention the seminal work by Anderson et al. (1977) who made a complete
and classical exposition of decision methods in agriculture with detailed treatment of
risk and uncertainty and a recent updated work by Hardaker ez al. (2004).
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Hazell y Norton (1986) made a complete review of mathematical programming
models in the farm with a complete analysis on the introduction of risk through va-
riance, semi-variance, MOTAD and target MOTAD parameters, and also treating
the introduction of risk through implementation of game programming models. Risk
modelling under a multiattribute utility function has been treated by Gomez-Limon et
al. (2004) and an example of integration of multicriteria methods and risk analysis is
the proposal of Ballestero y Romero (1996).

Most of the abovementioned works are based on the use of measured objective
data (economic and technical observations) that are conveniently treated to build a
bicriteria decision model with risk and return as the relevant objectives or multicrite-
ria where other attributes are also relevant to decision makers.

This paper adopts an alternative approach because the context under analysis
lacks of scientifically observed robust data. Our decision maker’s model of behaviour
will be based on farmers’ perception rather than measured information. Therefore,
it is a normative model rather than a descriptive or explicative model. Hardaker and
Lien (2010) propose that decision making analysis should explore the subjectivist
view where the probability of an outcome is defined as the degree of belief in an un-
certain proposition against the dominant approach based on the objective probability
defined as the limit of a relative frequency ratio.

Previous research has focused on farmers’ perceived temporal yield distributions
and variability (e.g. Clop-Gallart y Judrez-Rubio, 2007). Rejesus et al. (2013) studied
the spatial dimension of yield variability and the subjective perception. They found
that the farmer’s subjective view of within-field yield variability fundamentally
affects input application decisions.

Decision theory states that the most relevant information for decision makers that
face risk outcomes is the subjective set which encapsulates their beliefs about uncer-
tain states of nature. We are interested in input use (water) as related to farmer sub-
jective beliefs. A precedent was the work by Griffiths ez al. (1987) that analysed the
subjective distributions for the ‘average’ farmer and concluded that there is evidence
of variables that influence perceptions about the response of mean yield to nitrogen.
In their research they concluded that farmers’ perceptions on nitrogen-yield relations-
hip depend on characteristics of the farms and of the farmers themselves.

The analysis of farmer subjective perception on water-yield relationship has not
been studied previously and can be considered the main innovation of this research.

Probably the most widely used relationship between crop yield and water con-
sumed is the approach proposed by Doorenbos y Kassam (1979). This approach is
based on one single equation relating the relative yield loss of any crop (either herba-
ceous or woody species) to the relative reduction of water consumption, i.e. evapo-
transpiration (ET), by way of a coefficient (Ky), which is specific for any given crop
and condition. A complete review of the present knowledge about K coefficients and
crops’ response to water availability can be found in Steduto et al. (éOlZ).

A farmer takes decisions on the irrigation water dose (W) that is related to ET by
the value of the effective rainfall plus irrigation efficiency. Additionally, irrigation
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efficiency depends on the uniformity of application and the relative irrigation supply.
In the short term the decision variable that can be managed is the water dose. There
is a large body of literature that propose empirical and theoretical yield-irrigation
functions as the relationship between irrigation and crops’ yield is the basis for opti-
mal management of irrigation.

3. Case study

The Guadalquivir River is the longest river in Southern Spain, with around
650 km. The total added length of the river and its tributaries is around 10,700 km.
The basin covers an area of approximately 58,000 km? with a population of 4.1 mi-
llion. The most populated cities are Seville, Cordoba, Granada and Jaen.

Irrigation schedule, techniques and water dose decisions are taken in an uncer-
tainty context as most variables have an stochastic nature such as future water supply
(rain and supply guarantee), water demand (climate), yields and prices. Agriculture is
a risky business subject to market, climate and natural uncertainties. Expected utility
theory is a dominant paradigm in the agricultural decision theory.

The basin has a Mediterranean climate with an uneven rainfall distribution (avera-
ging 630 mm) and an average annual temperature of 16.8 °C. The largest land cover
in the basin is forestry (49 %) followed by agriculture (47 %), urban areas (2 %) and
wetlands (2 %) (Confederacion Hidrografica del Guadalquivir, 2010). Surface waters
have an annual flow of 7,100 million m?®and groundwater has a flow of 2,576 million
m?. Currently half of these surface waters and groundwater are extracted for use by
the various sectors, with agriculture using the most (87 % of the volume). Per capita
water consumption in the basin in 2005 was 1,600 m®. For an analysis of the evolu-
tion of the Guadalquivir basin and the role of irrigated olive in the basin trajectory,
see Berbel et al. (2013).

The case study selected to analyse the farmer subjective water-yield relationship
is the irrigated olive in Andalusia (Southern Spain). According MAGRAMA for year
2014 in Spain 740,511 ha of olive were irrigated (20.54 % of total irrigated area). The
adoption of irrigated olive has been increasing from the 70’s initially by placing into
already existing groves (100 trees per hectare), drip irrigation systems, and slowly
increasing densities, intensive (around 250) and superintensive (around 800).

Olive orchard has been a traditional crop since Roman times in Andalusia. Irri-
gation started in the early 80’s based on traditional densities around 100 trees per
hectare. Olive orchards are mostly irrigated with supplementary irrigation with low
doses (generally around 100 to 150 mm) to an area close to 500.000 ha, which repre-
sents the largest irrigated crop area in this region. The high value of water for this
use explains the expansion of the technique. Berbel et al. (2011) analysed the eco-
nomics of the deficit irrigated olive with traditional tree densities. Lopez- Baldovin
et al. (2006) developed a multi-period model of irrigated agriculture in Guadalquivir
where irrigated olive was forecasted to increase cultivated area.
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Recently farmers have been increasing tree density to around 300 trees per hec-
tare (called ‘intensive’) or up to 800 trees (called ‘superintensive’). The water pro-
duction function for traditional density (100 trees per hectare) is well known and was
analysed in Mesa-Jurado et al. (2010) but the water production function for higher
densities (300 to 800 trees per hectare) is not known yet. The technique is recent and
agronomic research at the moment is lagging behind the deployment of innovative
farmers plantations, based upon a trial and error approach to olive intensification.

This paper therefore will use the “perceived production function” to make a
proposal for irrigation dose decision making. We conducted a survey in Andalusia
focused on medium level densities and farmers with medium to large farms. We
selected 98 observations, and average values in the survey were: farm area: 40 ha,
trees density: 283 per ha, irrigation water rights: 2,614 m*ha, olive irrigation doses:
989 m’/ha. These values are above the average of irrigated olives in Andalusia (Junta
de Andalucia, 2002), summarized in Table 1.

TABLE 1

Survey and Andalusian data

Level Farm size (ha) Density (trees/ha)
Andalusia irrigated (global) 6.7 175.0
New Intensive/Flat 10.4 246.8
Our Survey 40.3 283.1

Source: Junta de Andalucia (2002).

Table 1 shows that farm size and density increase simultaneously. The survey
was directed to a set of farmers that are early adopters of intensive techniques. The
densities are higher than average and also the farm size. Probably there is a bias in the
selection as the survey is directed to intensive olives and therefore early adopters are
larger farms (in our survey). The ratio “Water use/full irrigation rights (concesion)”
is 57.5 %. Average production is 6,442 kg/ha with an average percentage of oil about
19.8 %. Olives are 15 year old in average. An explanation for the larger farms size
that are in our survey is that we surveyed the ‘area under management’ rather than
administrative property (Official Census information in Table 1).

The analysis of the farmer responses in the survey shows that farmers tend to un-
derestimate water response as illustrate Graph 1.
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GRAPH 1

Expected versus observed average oil production (kg/ha)
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Farmers were inquired about past observations (2011-2013) and also about ave-
rage expected production, pessimist and optimist expectations for three irrigation
doses and rain fed conditions. This is the raw material for designing a decision model
that is discussed in next sections. Coefficient of Variation (ratio of the standard de-
viation to the mean -CV-) is 0.42 at national level and decrease to 0.17 in the sample
of ‘superintensive’, which is due to the homogenization that irrigation and intensifi-
cation produces on the yield variability. Table 2 shows that production in the sample
is 2.27 times over national average.

TABLE 2
Observed yield (kg/ha) olive for oil Spain and sample (2011-2013)

Year National % Sample %
2011 3,257 113 6,510 100
2012 1,520 53 5,460 84
2013 3,857 134 7,623 117
Mean 11-13 2,878 100 6,531 100
Population CV 0.42 0.17

Source: MAGRAMA and own elaboration.
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Consequently Graph 1 shows a close relation between the observed average
production (2011-2013) and expected average production with a coefficient of
b =0.9495 (expected vs. observed average). The fact that it is below unity can have
various explanations (pesimism, estrategic behaviour, inter-year variability...) and
probably needs further research.

4. Normative decision making for intensive olive farmers

A decision making model assumes that a farmer knows the water-supply response
with a certain degree of uncertainty. The distribution function is unknown but may be
approximated by a triangular distribution function where three values determine the
stochastic distribution, those are: most probable, minimum (pessimistic) and maxi-
mum (optimistic) water response.

Y=f(w, K (1]

Equation [1] is a technical relationship water-yield where W is the water applied
and K is a parameter that integrates the rest of inputs (fertilizer, seed, etc.). Although
there may be for some crops and conditions an ‘objective’ function obtained by agro-
nomic field research, it is frequent that farmers work under uncertainty and they need
to rely on a subjective water-supply function that depends on:

*  Objective characteristics of farm: soil, climate, harvest technique...
*  Subjective characteristics: age, education...

Initially the water production function does no depends on farmers’ risk attitude,
that may be defined as risk averse, risk neutral or risk seeking depending on the
weight that farmer gives to the probability of losses against expected average results.
The decision will be based in the maximization of expected utility.

The analysis of utility is always a complex procedure; we will develop here the
efficient set ‘expected return versus probability of income being below a certain
threshold’. This analysis is straightforward and allows the decision maker to analyze
the tradeoffs between the profitability, considered as an average or as the most proba-
ble profit, and the probability of losses.

This decision model will be based upon the triangular probability function as far-
mers must give response to the question regarding irrigation doses: (a) no irrigation;
(b) deficit irrigation; (c¢) normal or most probable doses and (d) supersaver or maxi-
mum irrigation. Each level will have three possible states of nature: pessimistic, most
probable and optimistic. The three approximations give 4 x 3 = 12 points that belong
to the three water-crop response functions: optimistic response, normal response and
pessimistic response. We will adjust quadratic functions to these curves in order to
build the decision model.
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The level of water used determines the olive oil production and cost. When we
assume an expected price (in this case the price is hold constant as we want to focus
in the water-crop relationship), we will obtain the level of expected gross margins
according to the pessimistic/normal/optimistic response curve. All of them imply that
gross margin is equal to the values given by [2].

GM =Q(W)P-CW-CQO W) (2]

Where: GM is gross margin (EUR/ha), O(w) is the produced olive oil (kg/ha), P
is the olive oil price, C_ is the water cost, ¥ is the water dose (m*), and C is the va-
riable cost EUR/kg (mainly the harvesting cost). If we also substract the rest of costs
that are constant (taxes, depreciation...) or that can be assumed constant (manage-
ment...), we can obtain the net margin, although in our model is more convenient to
operate with the GM. Next section will show the development of this model in some
real cases.

The sample gives the results shown in Table 3 for some variables that can be con-
sidered as good estimators of sample values.

TABLE 3

Economic variables obtained from sample

Number Minimum Maximum Average StDev
Irrigation cost* EUR/m’ 62 0.03 0.30 0.11 0.08
Fertiliser (soil) EUR/ha 94 20.00 300.00 77.93 65.64
Fertirrigation EUR/ha 89 20.00 290.00 196.01 48.89
Pruning EUR/ha 98 6.00 290.00 162.23 55.58
Machinery EUR/ha 21 7.00 50.00 19.24 10.48
Pesticides EUR/ha 98 120.00 380.00 254.54 59.55
Harvest EUR/kg 97 0.05 0.30 0.13 0.03
Oil yield % 79 15.00 23.00 19.47 2.13

* Irrigation cost is variable, and comprises the energy plus cost paid to Water User Associations (CCRR).

Source: Survey.

Information displayed at Table 3 is useful for modelling the decision making were
the more relevant variables will be variable cost of water (from 0.03 to 0.30 EUR/m?)
and the variable cost of harvesting (from 0.05 to 0.30 EUR/kg). The values of ferti-
lizer, pesticides etc. can be considered fixed costs. Nevertheless, we have not recei-
ved a significant number of answers to ‘fixed cost’ (insurance, depreciation...) and,
therefore, we used values from MAGRAMA (2014) for an estimation of the fixed or
‘quasi fixed’ production costs.
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5. Analysis

The survey originally included all farmers (n = 99). The main objective is to find
an expected water response curve and a secondary objective is to link the expected
water response to farmer subjective and objective characteristics. Regarding the
water response we have lost 10 cases because they were defined as outliers or they
lack in some critical information (water supply or expected yield), consequently we
proceeded with n = 89 farmers to study response curves.

We were unable to find significant relations between variables after applying a
battery of methods and finally we produced a cluster analysis to make a classification
of responses. Graph 2 illustrates the curves for the three selected clusters.

GRAPH 2

Response to water supply by cluster
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Cluster analysis shows that ‘Red cluster’ (rhombus points) with higher response
have a medium size (40 ha), higher olive tree height (4.3 m), younger groves (13.7
years), and the main varieties are 33 % Picual and 33 % Hojiblanca. ‘Green’ cluster
(‘X’ points) have smaller size (30 ha), younger groves (14.2 years), lower trees (3.6
m), and the main varieties are 50 % Picual, 25 % Hojiblanca. Members of cluster
‘Blue’ (Squared points) with the lowest response have a greater size (50 ha), older
groves (16.7 years), lower trees height (3.6 m) and the main varieties are 50 % Pi-
cual, 25 % Hojiblanca.
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The discriminant analysis applied to the three groups did not generate any variable
that explains satisfactorily belonging to each group. It has not been possible to relate the
expected response to any objective (farm size, density...) or to any subjective farmer’s
characteristic. We believe that a further analysis of this research question is required.

Nevertheless to illustrate the application of the method, we apply the model for a
singular farmer (#78) that can be extended to the cluster groups or individual farmers
although that is outside the scope of this paper.

6. Model of irrigation decision for a farmer

As we mention above, farmers were inquired about the expected water-crop res-
ponse, so that we will study three cases for farmer 78 who is a farmer with 102 ha,
408 trees per ha, average irrigation is 1,400 m’*/ha although he declares a quota of
1,450 m*/ha and the elicited production function as shows in Table 4 and Graph 3 and 4.

TABLE 4

Farmer #78 subjective water crop response

Water Production (kg/ha)

m*/ha Pessimistic Normal Optimistic
Rain fed 0 2,000 2,500 3,000
Deficit 400 3,000 3,500 4,000
Normal 1,400 4,200 5,800 6,500
Surplus 2,800 5,000 6,500 7,800

Source: Own elaboration.

This production function (kg/ha) can be transformed into a gross margin estima-
tion with the following parameters that can be considered average for the last mar-
keting seasons: olive oil net received price (EUR/kg) P = 1.80; oil percentage per kg
olive: 7 = 20 %; Cost of water (EUR/m’) C = 0.28; Variable cost per kg of olives
(EUR/kg), C = 0.12; Fixed cost (EUR/ha), FC = 800. As said before, this farmer de-
clares a ‘normal’ irrigation quota of 1,450 m*ha. With these parameters we generate
the three “Gross Margin vs Water” functions (pessimistic, likely and optimistic) that
are illustrated in Graph 4.
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GRAPH 3
Expected yield/irrigation function (farmer #78)
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GRAPH 4

Gross Margin as a function of irrigation and subjective perception
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Based on this information, the consequent phase is the elicitation of the efficient
set and the compromise solution. We used the triangular distribution as proposed by
Romero (1977) as an adaptation of Ballestero (1973) for the use in agricultural valua-
tion. This allows using the information contained in the survey response (pessimistic/
most-likely/optimistic). Assuming this distribution and assuming also that the fixed
cost or desired breakeven margin is K = 800 EUR/ha, the result is the estimation of
the efficient curve Expected Margin vs. Risk. We adopt the ‘safety first approach’ or
‘downside risk’ paradigm against the mean-variance model where both deviations
below the target (losses) and over it (profit) have the same weight in the decision ma-
king. A great number of authors favour this concept of risk parameter integrated into
decision model (Berbel, 1993). Therefore we draw the probability of not reaching the
margin goal (losses) that is shown in Graph 5.

GRAPH 5
Efficient set Gross Margin vs. Risk farmer #78
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As Graph 5 shows, there is a dominated set below and after the optimal level of
irrigation that is summarized in Table 5.
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TABLE 5

Pay-off matrix

Irrigation (m*/ha) E(GM) Pr (GM<800)
1,450 1,012 5.29
1,750 1,026 5.89

Note: Farmer’s present irrigation is 1,400 m*/ha, Risk is estimated with a triangular distribution.
Source: Own elaboration.

As we can see the values are close to the farmer’s irrigation of 1,400 m*/ha. The
efficient set has a low range of variation for this farmer.

The ideal point is defined in the payoff matrix by E (GM) = 1,026 EUR/ha, and
the probability of taking negative profit is equal to 5.29 %. Reaching this point is im-
possible (see Graph 5), so we have to find the point that, being in the efficient set, is
closest to the ideal point. In order to do so, we will calculate distances between every
point of the efficient set to the ideal point using different metrics.

The distance is defined by [3]:

L,(X,w) = [Z Wip
i=1

i=

p11/P

Zi — fiX)

7 3]

The distance was previously normalized by dividing each criteria by the ideal
(Z) minus anti-ideal (Z.,) (best and worst value for each dimension), and therefore,
all distances moved between 0 and 1. We can combine each criterion with different
weights (W)). The compromise programming problem is then to find the minimum
distance according to the metric that is included in feasible set Fd.

inL,(X,
G, () T ) 4

As Ballestero y Romero (1991) explain, compromise set is the set formed by the
optimal solutions of all the compromise programming problems , for p =1, 2, ..., ©
where we apply the Yu’s theorem (Yu, 1973): “for a problem with two objectives, the
limits of the compromise set are the optimal solutions of Cl(w) and Coo(w)”. Balles-
tero y Romero (1991) proved that for a wide class of utility functions, their maximum
value is reached in the compromise set. Graph 6 illustrates the efficient and the com-
promise set.
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GRAPH 6
Efficient set Gross Margin vs Risk and ideal point
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I =Ideal solution, CP = Compromise Set.
Source: Own elaboration.

In Graph 6 it can be seen that the ideal solution is (1,026; 5.29 %) and that the
compromise set when w = w, is bounded by solutions C1 (1,022; 5.43 %) for irriga-
tion 1,600 m3/ha and Coo (1,022; 5.44 %) for irrigation 1,602 m3/ha.

7. Concluding remarks

Compromise programming has been used to analyse a farmer’s decision regarding
an intensive irrigated olive under deficit irrigation regime. As there is not available
empirically determined water production function, we use a farmer’s elicited subjec-
tive production function in order to support decision-making. The results show that the
compromise solution is in the range 1,450 to 1,750 m’/ha, and it is relevant to notice
that the farmer’s present water use is 1,400 m*ha while maximum yield is expected
to be achieved with 2,800 m3/ha. Therefore for intensive olives economic optimum is
reached with almost 50 % of maximum irrigation needs (maximum production), this is
relevant for policy makers and farmers in order to allocate water rationally.

Regarding the multi-criteria analysis the result for this farmer implies that that
present irrigation (1,400 m3/ha) doses are close to the compromise set (1,602 m*ha).
The farmer’s quota was 1,450 m*/ha and, therefore, the compromise solution is un-
feasible unless farmer could increase his water rights.
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We believe that the use of the multi-criteria paradigm and compromise program-
ming will improve decision making in the field of water management. Policy makers
should consider the use of realistic models of farmers’ behaviour in order to better
estimate the impact of water and agricultural policies.

The present research will continue by exploring decision making in irrigation
management applied to irrigated olives. The present paper focused on a farmer’s de-
cision model based upon a real case in Guadalquivir basin. The model and the small
survey presented here may serve as an introduction to improve the knowledge about
water use and risk behaviour in farmers that grow irrigated olives, which is presently
the most important crop according to water use and irrigated area in Andalusia. Au-
thors can supply the database to any researcher in order to enlarge the discussion and
research on this important issue.
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