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UTILITY-EFFICIENT PROGRAMMING FOR
WHOLE-FARM PLANNING*

LOUISE H. PATTEN, J. BRIAN HARDAKER
University of New England, Armidale, NSW’ 2351

and DAVID J. PANNELL
University of Western Australia, Nedlands, WA 6009

A programming technique, utilitv-efficient programming, is developed for farm
planning under risk. The objective function is the parametric sum of two parts
of the utility function in which the degree of risk aversion varies systematically
with the parameter. This technique has severai advantages over those previously
available: a number of types of utility functions are applicable including ones
exhibiting decreasing risk aversion: the degree of risk aversion can be limited to
a plausible range; the form of the distribution for activity net revenues is flexible;
and the technique can be used with available algorithms. The method is illustrated
using a parametric linear programming algorithm.

To date, there has been no compiletely satisfactory method of finding
the utility-maximising farm plan from among the set of possible risky
plans. The reason is that, in order 1o determine the optimal farm pian
for a given farmer, his or her utility function must be known. Utility
elicitation from farmers is difficult and the difficulties are compounded
when general recommendations are being formulated for many farmers.
One approach used has been to identify a set of efficient plans from which
the individual farmer can choose. The efficient set should contain all
farm plans that farmers could prefer if they have utility functions beiong-
ing to some specified class and there should be no farm plan outside the
identified set that would give such a farmer a higher expected utility.
Methods of deriving such a set are known as stochastic efficiency analysis.

While methods of stochastic efficiency analysis have been developed,
to date, their effective use in whole-farm planning has been limited.
Although mathematical programming techniques have been widely used
for farm planning because such models allow good representation of the
production constraints and inter-activity relationships commonly encoun-
tered on farms, combining mathematical programming with stochastic
efficiency analysis for farm planning has been less successful. Of the tech-
niques available for representing risk attitudes in mathematical program-
ming models, most are either inconsistent with expected utility
maximisation or only generate stochastically efficient plans under cer-
tain limited and unsatisfactory conditions, as noted below. In this paper,
a programming model is presented that generates efficient sets of plans
for defined classes of utility functions without some of the deficiencies
of existing methods.

Hadar and Russell (1969) introduced second-degree stochastic
dominance (SSD) analysis, enabling preference ordering of uncertain
prospects under the relatively undemanding assumption that the utility
function is monotonically increasing and concave (risk-averse). Third-

* Thanks are due to Jock Andersen, John Dillon and Gordon MacAuiay for comments
on an earlier draft of this paper. David Pannell thanks Rob Fraser, Ross Kingwelii and Bob
Lindner for their contributions to a study which preceded this joint paper.
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degree stochastic dominance analysis allows further ordering of distri-
butions under the stronger assumption of decreasing risk aversion (Whit-
more 1970). Other authors have shown how the efficient set can be
otherwise restricted in terms of ‘utility family-specific’ efficiency, that
is, for decision makers whose utility functions have a particular algebraic
form (Anderson, Dillon and Hardaker 1977, pp. 292-4). Subsequently,
Mever (19774, b) extended SSD analysis to dominance with respect to
a function, allowing comparison of distributions given upper and lower
limits on absolute risk aversion.

Despite its theoretical superiority over other techniques, there are two
weaknesses of stochastic dominance analysis that have limited its appli-
cation in farm planning. First, the procedures are not well developed for
problems involving mixtures of alternatives. Second, and related to the
first point, most available procedures have only allowed determination
of stochastic dominance through pairwise comparisons of alternatives.
Despite the existence of computer codes (for example, Raskin and Cochran
1986), the computation becomes very costly if many alternatives are to
be reviewed. Methods of integrating this analysis into mathematical
programming have been limited.

The best-known application of stochastic efficiency analysis for whole-
farm planning is quadratic risk programming (QRP) [and its linear
approximations such as MOTAD (Hazell 1971)]. QRP, first applied by
Freund (1956), is commonly used to generate the mean-variance efficient
set of ptans. It has the advantage of being simple to apply using widely
available quadratic programming computer codes. Unfortunately, the
approach usuaily requires restrictive assumptions of either a quadratic util-
ity function or normally distributed net income.' Quadratic utility func-
tions imply positive marginal utility only within a bounded range (Hanoch
and Levy 1970) and increasing absolute risk aversion (Arrow 1965, p. 35).
Both characteristics are inconsistent with the expected nature of true prefer-
ences. On the other hand, an assumption of normally distributed net
income can be both unrealistic and unsatisfactory for risk-averse decision
makers who are not indifferent between symmetrical and skewed distri-
butions (Collender and Chalfant 1986). Hadar and Russeli (1969) showed
theoretically that a mean-variance frontier may contain distributions that
can be ordered by SSD analysis while excluding distributions that would
be in the SSD set. These conclusions were confirmed empirically in a stock
market context by Porter and Gaumnitz (1972) (who nevertheless con-
cluded that the differences between the two efficient sets were not very
great).

Another method of applying stochastic dominance analysis in a whole-
farm planning framework is risk-efficient Monte Cario programming
(REMP), as developed by Anderson (1975). In REMP, many farm plans
are selected partly at random and then reduced by pairwise comparisons
to the stochastically efficient set. However, REMP does not allow the
whole set of efficient plans to be identified and, in fact, those identified
may not be truly efficient.

A third approach. mean-Gini programming, has been advanced as com-
bining the advantages of SSD analysis and mean-variance analysis while
avoiding the limitations of each. However, despite some theoretical advan-

' While normality and/or a quadratic utility function are sufficient conditions for the
appropriateness of the mean-variance, they are not aiways necessary conditions (Meyer 1987).
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tages (Yitzhaki 1982), it is computationally very inefficient and therefore
impracticable.?

Other mathematical programming models accounting for risk, such as
game theory (for example, Hazell 1970) or maximum admissible loss
models (Boussard 1970), can be criticised as being inconsistent with
expected utility maximisation, the predominant economic paradigm for
risk analysis.

The application of stochastic dominance criteria could be greatly
enhanced by their inclusion in a mathematical programming formulation
in a less-restrictive manner than present options provide. Such an approach
is presented below. This procedure allows the identification of all farm
plans that are efficient for a set of decision makers whose risk attitudes
can be represented by a particular class of utility functions, defined over
an interval of degrees of risk aversion. The farm plans so identified will
be first, second, third and n-th degree stochastically efficient for those
particular decision makers.

Utility-Efficient Programming
Lambert and McCarl (1985) present a mathematical programming for-
mulation that allows identification of the expected utility maximising solu-
tion for any specific concave utility function, and does not require an
assumption of normally distributed net income. Utilitv-efficient program-
ming is a reformulation of this approach using parametric objective

programming.
Consider the class of separable utility functions of the form
(1 U= G@2) + \H(2)

where z is net income and for which the degree of risk aversion varies
with A\, and G and H are appropriately selected functions of z. Lin and
Chang (1978) have reviewed several alternative utility functions and have
listed their properties, specifically, implied restrictions on parameters,
coefficients of risk aversion and risk aversion ranges. A number of these
functions have the required property of separability (see Appendix). Of
particular interest, however, is the so-called ‘sumex’ function (Schlaifer
1971, p. 9.4):

(2) U = —exp(—az) — \exp(— b2) a b, x>0
The sumex function has the desirable property that

(3) r. = [@exp(—az) + Ab*exp(— b2))/laexp(—az) + Abexp(—- bz)]

where r, is the coefficient of absolute risk aversion, defined as — U"/U
(Arrow 1965, p. 33). Therefore, the function exhibits decreasing absolute
risk aversion with increases in income (Z). Moreover, as the parameter
is varied, the coefficient of absolute risk aversion varies between a and
b. This property is useful in that @ and & can be set at the upper and lower
limits of the range of risk aversion of interest for a particular analysis.
While any suitable separable utility function could be used in the program-

? For example, Okunev (1986) found that, while his exampie could be run with 1 min

of CPU time using mean-~variance analysis, it took 78 h of CPU time using the mean-Gini
model!
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ming formulation below, the application will be based on the sumex
function.
Define the following mathematical programming problem:

4) max E[U] = Ekpk[G(Zk) + )\H(Zk)]
X
subject to
Zw=cx fork=1,...,K
Ax = d
and x=0

where \ is a non-negative parameter, p, is the probability of state k, G
and A are two parts of the utility function U, z. is the total net revenue
for state k, c. is the activity net revenue vector for state &, x is the vector
of activity levels, A is the matrix of input output coefficients, and d is
the vector of right-hand side coefficients.

The above formulation can be regarded as a special case of discrete
stochastic programming (Cocks 1968; Rae 1971a, b) and it is trivial to
extend what follows to the general discrete stochastic case.

The parameter \ is varied using a parametric objective programming
algorithm. At each change of basis, corresponding to a particular level
of risk aversion, the expected utility maximising solution is identified.
When A = 0, r, = a, whereas when A — oo, r. — b. Thus, the complete
utility-efficient solution set for the utility functional form used can be iden-
tified. The solution meets the aim outlined in the introduction and that
is that no plan outside the identified set would be preferred by any member
of the target group of decision makers, and none in the set would not
potentially be preferred by some decision maker. The efficient set is,
however, utility-family specific.

The activity net revenue vectors for all states, c., represent the uncer-
tainty in activity returns. Therefore, there is no need to assume any stan-
dard form of distribution. Suitable values may be actual (or detrended)
observations from recent vears, which can be treated as a sample of equally
likely outcomes or as states with subjectively assessed probabilities.

Solution of the utility-efficient programming problem requires access
to an algorithm able to solve mathematical programming formulations
with a parametric linear combination of two non-linear objective rows.
To our knowledge, no such algorithm has yet been coded for computer
application. Three possible approaches were therefore considered:

(a) solution using a non-parametric, non-linear code such as MINOS
(Murtagh and Saunders 1977) with stepwise variation in \;

(b) solution using a parametric quadratic programming routine with
quadratic approximation of G and ;

(¢) solution using a parametric linear programming routine with linear
approximation of G and A.

While option (a) should present no major difficulties, the problem would
need to be solved many times to span adequately the range of X of interest.
This could prove expensive in computer and analyst’s time. Options (b)
and (c) both involve approximations of G and A and the latter was
preferred on grounds of simplicity.
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Utility-Efficient Programming Using Linear Approximation
Since the functions G and A for the sumex are concave, the Duloy and

Norton (1975) procedure was used for the linear approximation. Thus,
the linear programming formulation of the model is as follows:

(5) max E[U] = Z.Pdg/w. + A/w,)
X
subject to
Ax = d
—C,"x + Vk'w,( = 0
t'Wk <1
and x,w=0k=1,...,K

where w, 1s a g by | vector of weights representing each of the g segments
of G and H for each state k, v, is a g by 1 vector of values of z, for state
k chosen as corner values for the linear segmentation of G and H, g, and
h. are g by 1 vectors of calculated values of G and H, respectively. cor-
responding to the values of z, (total net revenue) in v,, all for state &,
and ¢ is a ¢ by 1 vector of ones.

The linear segments, represented in v,, do not have to be the same for
each state. Since the smaller the linear segments the closer the approxi-
mation to the original function, some effort needs to be spent on deter-
mintng the size and number of segments to use. The approach followed
here is first to solve the problem 10 maximise expected profit, and then
to set corner values close together in the region of the income values for
each state given in this solution. Once the initial solutions are obtained,
the length of segments may be further refined to improve the
approximation.

Application of Ulility-Efficient Programming

To illustrate the technique a farm planning example was taken from
Hardaker (1979, ch. 10) where it was used to demonstrate MOTAD
programming. The problem involves choice among five activities (wheat,
barley, grass seed, potatoes and pigs), subject to eight constraints (land

TABLE 1

Technical Constraints for the Exampie Problem

Grass  Pota- d
Constraint Units Wheat Barley seed toes Pigs Sign  vector
Land ha 1 1 1 1 - = 150
Max. cereals ha I 1 -2 -4 - = 0
Max. wheat ha 1 - -1 -2 - = 0
Max. potatoes ha - - - i - < 20
Max. pigs no. - - - - 1 = 50
Labour [ h l 3 1 10 2 =< 500
Labour 1[I h 3 k! 4 - 2 =< 550
Labour Il ' 3 ] - 25 2 < 450
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TABLE 2
Vectors of Net Revenues per Unir

State Wheat Barley Grass seed Potatoes Pigs
1 200 170 300 600 120
2 250 230 500 350 190
3 270 200 100 1050 140
4 300 260 250 800 160

2 All values are expressed in 5/ha.

TABLE 3
Final v. Vectors: Corner Values of Wealth*

State Wiy Wiy Wia Wia Wes
1 42 000 44 500 47 000 49 500 52 000
2 57 000 61 500 66 000 70 500 75 000
3 32 000 34 500 37 000 39 500 42 000
4 48 000 49 000 50 000 51 000 52 000

4 All values are expressed in 3.

area, maximum cereal, wheat and potato areas, maximum number of pigs,
and three labour usage constraints) (see Table 1). The activity net revenues
for four previous years are given in Table 2 and are treated as four equally
likely states of nature in the example formulation. The corner income
values for the linear approximation of utility (that is, the v, vectors) for
each state are shown in Table 3.

The relevant absolute risk aversion range for the model was derived from
the plausible range of relative risk aversion, r,, defined as the elasticity
of the marginal utility of wealth. Arrow (1965, p. 33) has shown that
r. = r./w where w is wealth. Little and Mirrlees (1974, p. 330) suggest
that . will be a number close to 2; therefore, a range of 1 to 3 was used.
The approximate wealth of the example farmer was assessed by capitalis-
ing the estimated average annual net income of the tarm. This process
gave a range of r, of 6 X 10 to 2 x 107, This range gave the result
of only one optimal farm plan, indicating the discriminating power of risk
programming when risk aversion is limited to a plausible range. However,
for the purposes of illustration, the range was enlarged to 1 x 10™ to
1 x 107, Thus, the G and A functions used were:

(6) G = —exp(-0.00012)
(7 H = —exp(-0.000001z2)
Results

The resuits obtained are illustrated by the solid lines in Figure 1. For
purposes of comparison, the QRP resuits for the same levels of risk aver-
sion are shown as broken lines in the same figure.
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FiGure 1 — Utility-Efficient ( ) and Quadratic Risk Programming (---) Solutions.

The two sets of solutions are substantially different, reflecting the differ-
ent objective functions. The utility-efficient solutions include less barley,
fewer pigs and more grass seed over most of the range of risk aversion
levels investigated. Therefore, insofar as the assumptions underlying the
model are less restrictive than those of the QRP model. and more closely
reflect farmers’ actual circumstances, the utility-efficient set of plans is
clearly superior as a basis for choice of a plan by an individual farmer.
This superiority will be greater the more actual risk attitudes differ from
those implied by quadratic utility and are better reflected in the function
used for utility-efficient programming, and/or the more the distributions
of farm incomes depart from the normal.
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Conclusions

The objective of any programming approach to farm planning which
takes risk into account is to provide decision makers with the smallest set
of farm plans which inciudes the plan that maximises the individual’s util-
ity. To obtain this set. the utility function used or implied in the approach
must be consistent with the subject’s actual preferences and any additional
constraints used to reduce the number of possible solutions must also be
in accord with those actual preferences. In addition, the technique used
must be practical. That is, data required should be obtainable with reason-
able ease and the computational task shouid not be excessive.

The utility-efficient programming approach outlined in this paper
appears to satisfy the above criteria reasonably well. The technique is
applicable to a number of types of utility function. Therefore, if certain
characteristics of the preferences of the target decision makers are known
or can be inferred (for example, that they exhibit decreasing risk aver-
sion), a function that implies these characteristics may be available. A
second advantage of this technique is that all knowiedge about the range
of risk aversion relevant to a particutar group of decision makers can easily
be incorporated into the model.’ Thereby, solutions that would be of no
interest to the decision makers are avoided. The third advantage of this
approach is that, unlike QRP, no assumptions concerning the nature of
the distribution of activity net revenues need to be made. It shares the
advantage with MOTAD programming of allowing the available data to
indicate the nature of the multivariate distribution, while also allowing
for a degree of subjectivity if appropriate, for example by assigning sub-
jective probabilities to states. Finally, as shown in the example, utility-
efficient programming can be effectively approximated using parametric
linear programming, for which there are widely available and efficient com-
puter packages.

APPENDIX

Suitable Utility Functions for Utility-Efficient Programming

Table Al shows how four types of utility function can be partitioned
into separate functions G and A for use in utility-efficient programming.
Restrictions on the parameters, coefficients of absolute risk aversion and
the ranges of risk aversion are also shown.
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